FINAL 2017 SHELTER ISLAND YACHT BASIN DISSOLVED COPPER TOTAL MAXIMUM DAILY LOAD MONITORING AND PROGRESS REPORT

Submitted to:
California Regional Water Quality Control Board
San Diego Region

Prepared by:

amec foster wheeler

Amec Foster Wheeler Environment & Infrastructure, Inc. 9210 Sky Park Court, Suite 200
San Diego, California 92123

Prepared for:

Port of San Diego

March 2018

Amec Foster Wheeler Project No. 1715100603

March 29, 2018

California Regional Water Quality Control Board San Diego Region 2375 Northside Drive, Suite 100 San Diego, CA 92108-2700 Attn: Mr. Wayne Chiu

Subject:

Submittal of the 2017 Shelter Island Yacht Basin Total Maximum Daily

Load Monitoring and Progress Report

Dear Mr. Chiu,

Please find enclosed a hard copy and CD of the 2017 Shelter Island Yacht Basin Total Maximum Daily Load Monitoring and Progress Report.

Following submission of this report, the Port and the Shelter Island Master Leaseholders Group would like to meet with you and go over the report, address any of your questions, and discuss direction regarding the final compliance phase of the TMDL.

I will be following up shortly to schedule a meeting at your convenience.

Please feel free to contact me at (619) 686-6372 if you have any questions on the information provided above.

Respectfully.

Kelly Tait

Senior Environmental Specialist

Environmental Protection

San Diego Unified Port District

KT/aa

Attachments: 2017 Shelter Island Yacht Basin Total Maximum Daily Load Monitoring and Progress Report & CD

cc: Jason H. Giffen John Carter D2# 1505120

March 2018

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons who manage the system, or those persons who the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Karen Holman

Director

Environmental Protection

San Diego Unified Port District

TABLE OF CONTENTS

			Page
		AND ABBREVIATIONS	
UNIT:	S OF M	EASURE	vi
EXEC		SUMMARY	
1.0	INTRO	ODUCTION	
	1.1	Background	
	1.2	SIYB TMDL Compliance Schedule	1-5
	1.3	Sources of Dissolved Copper	1-5
	1.4	Water Quality Objective Criteria	
	1.5	Monitoring Purpose	
	1.6	Revision of Monitoring Plan	
	1.7	Implementation of Best Management Practices	1-7
	1.8	Recent AFP and Copper Initiatives	1-8
	1.9	SIYB Time Series Study	1-9
	1.10	Content of Report	1-9
2.0	METH	10DS	2-1
	2.1	SIYB Implementation of Best Management Practices	
	2.2	San Diego Bay-Wide Implementation of BMPs	
	2.3	Dissolved Copper Load Analysis	
		2.3.1 SIYB Hull Paint Guidance List	2-1
		2.3.2 Vessel Tracking	2-2
		2.3.3 Annual Copper Loads from Passive Leaching and In-Water	er Hull
		Cleaning	
		2.3.4 Annual Dissolved Copper Load	2-4
	2.4	Water Quality Monitoring	
		2.4.1 Sampling Station Locations	
		2.4.2 Sampling Date	
		2.4.3 Sample Collection	
		2.4.4 Equipment Decontamination and Cleaning	
		2.4.5 Chemical Analyses	
		2.4.6 Toxicity Testing	
		2.4.7 Toxicity Statistical Analyses	
	2.5	Quality Assurance and Quality Control	2-19
	2.6	Chain-of-Custody Procedures	
	2.7	Data Review and Management	
		2.7.1 Data Review	
		2.7.2 Data Management	
3.0		JLTS	
	3.1	SIYB TMDL Implementation	
		3.1.1 BMP Implementation	
		3.1.2 Vessel Counts by Hull Paint Type	
		3.1.3 Slip Count and Occupancy	
		3.1.4 Vessel Dimensions	
		3.1.5 Estimated Copper Load	
		3.1.6 Estimated Copper Load Reduction	
	3.2	SIYB TMDL Water Quality Monitoring	
		3.2.1 Surface Water Chemistry	3-20

TABLE OF CONTENTS (continued)

			Page
		3.2.2 Toxicity	3-23
4.0	ONG	OING INITIATIVES AND STUDIES RELEVANT TO THE SIYB TMDL	
	4.1	DPR Efforts	4-1
	4.2	USEPA Interim Decisions on Copper Compounds	4-1
	4.3	Port Initiatives	
		4.4 SIYB Time Series Study	
5.0	DISC	CUSSION	
	5.1	Dissolved Copper Load	5-1
	5.2	Dissolved Copper Load Reduction	
		5.2.1 Estimated Future Load Reductions	
	5.3	Water Quality Monitoring	5-4
		5.3.1 Dissolved Copper Levels	
		5.3.2 Toxicity Tests	
6.0	CON	CLUSIONS	
7.0	REF	ERENCES	7-1

LIST OF TABLES

Table 1-1.	Loading Targets for SIYB TMDL Attainment	1-5
Table 1-2.	Sources of Dissolved Copper per the SIYB TMDL	1-6
Table 2-1.	Vessel Survey Data Collected in 2017	2-2
Table 2-2.	Vessel Tracking Data Collected for 2017	2-3
Table 2-3.	Dissolved Copper Loading Calculation Assumptions	2-6
Table 2-4.	Sampling Station Coordinates	2-7
Table 2-5.	In Situ Analytical Methods and Detection Limits	2-12
Table 2-6.	Laboratory Analytical Methods and Detection Limits	2-15
Table 2-7.	Conditions for the 96-Hour Pacific Topsmelt Bioassay	2-17
Table 2-8.	Conditions for the 48-Hour Mussel Development Bioassay	2-18
Table 2-9.	Sample Holding Times	2-20
Table 3-1.	Key Initiatives by Program Component (Second Interim TMDL	
	Phase)	3-3
Table 3-2.	2017 Outreach Efforts and the Audiences Reached	3-11
Table 3-3.	2017 Copper Load by Vessel Hull Type and Reported Occupancy	
	at Yacht Clubs and Marinas as a Result of Passive Leaching Using	
	TMDL Assumptions	3-18
Table 3-4.	2017 Copper Load by Vessel Hull Type and Reported Occupancy	
	at Port-Operated Facilities as a Result of Passive Leaching Using	
	TMDL Assumptions	3-18
Table 3-5.	2017 Copper Load by Vessel Hull Type and Reported Occupancy	
	at Yacht Clubs and Marinas as a Result of In-Water Hull Cleaning	
	Using TMDL Assumptions	3-19
Table 3-6.	2017 Copper Load by Vessel Hull Type and Reported Occupancy	
	at Port-Operated Facilities as a Result of In-Water Hull Cleaning	
	Using TMDL Assumptions	3-19
Table 3-7.	2017 Estimated Copper Load Reduction	3-20
Table 3-8.	Chemistry Results for SIYB Surface Waters, August 2017 Event	3-21
Table 3-9.	Results of the 96-Hour Pacific Topsmelt Bioassay	3-24
Table 3-10.	Results of the 48-Hour Bivalve Larvae Bioassay	3-25
Table 3-11.	Summary of Reference Toxicant Test Results for Pacific Topsmelt	3-27
Table 3-12.	Summary of Reference Toxicant Test Results for Bivalve Larvae	3-27

LIST OF FIGURES

Figure 1-1.	Location of Shelter Island Yacht Basin in San Diego Bay	1-3
Figure 2-1.	Shelter Island Yacht Basin TMDL Sampling Station Locations	2-9
Figure 2-2.	2017 Sample Collection Times versus Tide	2-11
Figure 2-3.	Field Sampling Photographs	2-13
Figure 3-1.	Vessel Census Response Rate by Monitoring Year	3-1
Figure 3-2.	Dissolved Copper Concentrations in SIYB Relative to Baseline	
	Conditions	3-22
Figure 5-1.	Annual SIYB Copper Load per Monitoring Year	5-1
Figure 5-2.	2017 Estimated Load Reduction (952.7 kg/yr) Relative Percentage	
	per Category	5-2
Figure 5-3.	Load Categories per TMDL Year, 2011–2017	5-3
Figure 5-4.	Dissolved Copper Comparison by Sampling Station	5-5

LIST OF APPENDICES

APPENDIX A SIYB DISSOLVED COPPER TMDL MONITORING PLAN REVISION 3

APPENDIX B BEST MANAGEMENT PRACTICE PLANS APPENDIX C VESSEL TRACKING DATA

APPENDIX D WATER QUALITY RESULTS

APPENDIX E 2018 TIME SERIES STUDY

APPENDIX F CORRESPONDENCE AND AGENCY MEMORANDA

 $W: \c 18\c 17-151-00603\ SIYB\c 18-012\c 18-012\ Final\ 2017\ SIYB\ TMDL\ Annual\ ProgMonRpt_2018-03-23-v1.doc$

ACRONYMS AND ABBREVIATIONS

303(d) list Clean Water Act Section 303(d) list of water quality impaired segments

AB Assembly Bill antifoulant paint AFS antifouling strategy

Environment & Infrastructure, Inc.)

Basin Plan Water Quality Control Plan for the San Diego Basin – Region 9

BLM biotic ligand model

BMP best management practice
CCC criterion continuous concentration
CCR California Code of Regulations
CMC criterion maximum concentration

COC chain-of-custody
CTR California Toxics Rule

CTD conductivity, temperature, and depth

CWA Clean Water Act
DO dissolved oxygen

DOC dissolved organic carbon

DPR Department of Pesticide Regulation EC₅₀ median effective concentration

ELAP California Environmental Laboratory Accreditation Program

FAQ frequently asked question

H₂SO₄ sulfuric acid HPB Harbor Police Dock ID identification

Investigative Order
Investigative Order No. R9-2011-0036

LC₅₀ median lethal concentration low-impact development

LOEC lowest observed effect concentration

MAMPEC Marine Antifoulant Model to Predict Environmental Concentrations

MAR marine habitat

MIACC Marina Inter-Agency Coordinating Committee
Monitoring Plan SIYB Dissolved Copper TMDL Monitoring Plan
MS4 Municipal Separate Storm Sewer System

N/A not applicable

Nautilus Nautilus Environmental Laboratory
NOEC no observed effect concentration
OAL Office of Administrative Law

PDF Portable Data Format

PMSD percent minimum significant difference

Port San Diego Unified Port District

QA quality assurance

QAPP Quality Assurance Project Plan

QC quality control

Regional Board San Diego Regional Water Quality Control Board

RFP request for proposal

RHMP Regional Harbor Monitoring Program

SBE Sea-Bird Electronics

SIML Shelter Island Master Leaseholders

SIYB Shelter Island Yacht Basin

SM Standard Method

SOP standard operating procedure

SUSMP Standard Urban Stormwater Mitigation Plan

ACRONYMS AND ABBREVIATIONS (continued)

SWAMP Surface Water Ambient Monitoring Program
SWQMP Stormwater Quality Management Plan
SWRCB State Water Resources Control Board

Time Series Study 24-Hour Time Series Analysis of Dissolved Copper in SIYB

TMDL Total Maximum Daily Load TOC total organic carbon TSS total suspended solids TST test of significant toxicity

USEPA United States Environmental Protection Agency

Weck Weck Laboratories
Weston Solutions, Inc.
WILD wildlife habitat

WQO water quality objective YSI YSI Incorporated

UNITS OF MEASURE

≤ less than or equal to≥ greater than or equal to

 μ micron(s) μ g microgram(s)

μg/cm²/day micrograms per square centimeter per day

μg/L microgram(s) per liter

μm micrometer(s)

cm² square centimeter(s)

ft feet or foot kg kilogram(s) kg/yr kilograms per year

kg/yr/vessel kilograms per year per vessel

L liter(s) m meter(s)

m² square meter(s)
mg milligram(s)
mg/L milligram(s) per liter

mL milliliter(s)

pH hydrogen ion concentration

ppt part(s) per thousand

yr year(s)

EXECUTIVE SUMMARY

This report is the annual Shelter Island Yacht Basin (SIYB) Dissolved Copper Total Maximum Daily Load (TMDL) Monitoring and Progress Report for 2017, which has been prepared in compliance with Investigative Order No. R9-2011-0036 (Investigative Order), issued by the San Diego Regional Water Quality Control Board (Regional Board) to the San Diego Unified Port District (Port) on March 11, 2011. The Investigative Order states that TMDL implementation progress is to be determined by (1) tracking data on the number of vessels that have converted from using copper-based hull antifoulant paints (AFPs) to using alternative AFPs, and (2) monitoring dissolved copper concentrations and toxicity in the water column. Passive leaching of copper from vessel hull paints has been identified as the major source of dissolved copper in SIYB; it composes 93 percent of the total load, according to the TMDL. The dissolved copper load attributed to in-water hull cleaning was identified as second highest source in SIYB.

The 2017 monitoring period marks the fifth and final year of the second TMDL interim compliance period, which requires a 40 percent load reduction. Per the requirements of the Investigative Order, the *SIYB TMDL Monitoring Plan* (Amec Foster Wheeler Environment & Infrastructure, Inc. [Amec Foster Wheeler], 2017a) describes the monitoring program that is used to track the progress of implementing the SIYB Dissolved Copper TMDL and achieving the required dissolved copper load reductions.

This 2017 Monitoring and Progress Report follows the approach described in the most recent Monitoring Plan and reports on best management practice (BMP) implementation in SIYB and San Diego Bay, vessel conversions, and water quality monitoring, as required by the Investigative Order.

Best Management Practice Implementation

The Port and the Shelter Island Master Leaseholders TMDL Group have been implementing a variety of BMPs to reduce dissolved copper loading and improve water quality in SIYB. During 2017, several BMP activities continued or were implemented, including the following:

- Ongoing education and outreach activities, such as regular meetings with stakeholders and up-to-date online content.
- Continuing efforts to encourage the use of low-leach copper paints (i.e., Department of Pesticide Regulation [DPR] Category I paints [i.e., paints with leach rates ≤9.5 micrograms per square centimeter per day (µg/cm²/day)]) and non-copper alternatives.
- The acceptance of two proposals pursuing alternative methods for copper reduction in marine waters through the Port's Blue Economy Incubator, which supports the research and development of pilot projects.

Vessel Conversions and Reduction of Dissolved Copper

Based on the vessel tracking assumptions discussed in Section 2.3.4 of this report, the transition of a vessel to non-copper hull paint was assumed to reduce annual loading by 0.9 kilogram per year (kg/yr), and the transition to DPR Category I or low-copper hull paints was assumed to reduce loading by 50 percent (i.e., 0.45 kg/yr). Vessel tracking indicates that there

has been a reduction of 45.4 percent (approximately 952.7 kg/yr) in annual dissolved copper loading to SIYB from vessels when compared with the SIYB TMDL-assumed baseline loading of 2,100 kg/yr¹.

The 45.4 percent dissolved copper load reduction calculated for the 2017 monitoring period is a result of (1) continuous improvement of the vessel tracking and reporting process, and (2) continued transition of vessels to non-copper DPR Category I (low leach), and low-copper hull paints. Based on the 2017 load reduction result (45.4 percent), the second compliance target of the SIYB TMDL program has been achieved.

Water Quality Monitoring

Monitoring of water column dissolved copper and toxicity is required to determine whether and when water quality objectives have been met, and beneficial uses have been restored. In August 2017, water quality was sampled at six stations in SIYB and at one reference station (adjacent to SIYB near the main San Diego Bay navigation channel) to determine dissolved copper concentrations in the basin, test for acute and chronic toxicity, and assess water quality trends.

Results from the August 2017 monitoring event showed that the basin-wide average dissolved copper level was 7.9 microgram(s) per liter (μ g/L), which was approximately 5 percent lower than the 2005–2008 baseline average (8.3 μ g/L), but higher than the basin-wide averages observed during the previous three monitoring events (2016 [7.1 μ g/L], 2015 [6.9 μ g/L], and 2014 [7.0 μ g/L]). Consistent with results of previous years, dissolved copper results at five of the six SIYB sampling stations exceeded the California Toxics Rule (CTR) criterion continuous concentration (CCC) water quality objective (WQO) of 3.1 μ g/L. The 2017 monitoring event also showed that dissolved copper concentrations at four of the six stations had exceeded the CTR acute criterion maximum concentration (CMC) WQO (4.8 μ g/L). This finding is the same as was observed in 2016.

The 2017 monitoring program found that two stations (SIYB-1 and SIYB-2, the stations farthest inside the basin) had statistically significant effects on developing mussel larvae. This finding is consistent with results of previous studies. No toxicity was observed in the fish larvae survival tests.

In addition to the annual TMDL water quality monitoring performed in 2017, a special study examining the potential effect of tidal influence on dissolved copper concentrations of surface water over a full semidiurnal tidal cycle (Time Series Study) was completed in January 2018. This study addressed how a full tidal cycle may influence surface water dissolved copper concentrations. The Time Series Study involved collection of surface water samples at three stations located throughout SIYB at approximately two-hour intervals for the duration of a full tidal cycle (approximately 25 hours). Overall, the results of this study indicated that tidal variations may affect the dissolved copper concentrations in surface waters of SIYB, however

¹ The total dissolved copper load per the SIYB TMDL equals 2,100 kilograms per year (kg/yr) from vessel paints (the total includes contributions from passive leaching and in-water hull cleaning). The estimated load contributions from background sources, urban runoff, and atmospheric deposition are not included in this total.

much of what was observed appeared dependent on location within the basin. The technical report summarizing the Time Series Study is included as Appendix E of this report.

Summary

The SIYB TMDL monitoring program results indicate that the second interim compliance target, a 40 percent load reduction by 2017, was reached. Since the initiation of the vessel tracking program in 2008, a load reduction of nearly 953 kilograms (kg) has been achieved (compared to the TMDL load assumption of 2,100 kg). This level of reduction (45.4 percent) exceeds the 2017 TMDL load reduction target. A key factor for the load reduction achievement is the ongoing conversion of vessels from high leach rate copper paints to Category I paints and non-copper alternatives.

Future reductions in the dissolved copper levels in SIYB surface waters will be incumbent on further reducing copper inputs. Substantial reduction of dissolved copper inputs to SIYB waters should occur beginning on July 1, 2018. On this date, the DPR Rule takes effect. This rule mandates that only copper AFPs with a leach rate of ≤9.5 micrograms per square centimeter per day (µg/cm²/day) (i.e., Category I paints) may be applied to recreational vessels that are berthed in California saltwater marinas. This mandated reduction of copper inputs should complement existing reduction efforts, such as the ongoing transition to non-copper paints and the implementation of BMPs by both the Port and the SIML TMDL Group.

Ived Copper TMDL Monitoring	n and Progress Report	March 20
	This page intentionally left blank	

1.0 INTRODUCTION

This report is the annual Shelter Island Yacht Basin (SIYB) Dissolved Copper Total Maximum Daily Load (TMDL) (SIYB TMDL) Monitoring and Progress Report for 2017, which has been prepared in compliance with Investigative Order No. R9-2011-0036 (Investigative Order), issued by the San Diego Regional Water Quality Control Board (Regional Board) to the San Diego Unified Port District (Port) on March 11, 2011 (Regional Board, 2011). The Investigative Order, issued under Section 13325 of the Porter-Cologne Water Quality Control Act, requires that the Port provide technical reports on the progress of the SIYB TMDL. The SIYB TMDL implementation progress is to be determined by tracking data on the number of vessel hulls converted from using copper-based antifoulant paints (AFPs) to using non-copper or low-copper alternatives and by monitoring dissolved copper concentrations and toxicity in the water column. These measures are used to assess copper load reductions and to evaluate progress toward attaining water quality objectives (WQOs) and protecting beneficial uses.

1.1 Background

Shelter Island Yacht Basin is a recreational yacht basin near the mouth of San Diego Bay, California, and is composed of marinas and yacht clubs, an anchorage, a fuel dock, and other facilities that support the marine industry. SIYB is in an area where the configuration of the enclosed basin reduces tidal flushing (Figure 1-1).

Copper is commonly used as a biocide in vessel AFPs because of its effectiveness in reducing fouling of vessel hulls. It is currently legal to use copper in vessel paints in the State of California. However, these paints leach copper into the water column. Copper is not only toxic to the targeted fouling organisms on vessel hulls, but may also be toxic to other non-targeted organisms that inhabit the basin.

SIYB waters contain dissolved copper concentrations that have exceeded the dissolved copper numeric WQO as well as the toxicity and pesticides narrative WQOs, and these contaminants threaten and impair the wildlife habitat and marine habitat beneficial uses in the basin. Because of this exceedance, SIYB was placed on the list of impaired water bodies compiled pursuant to federal Clean Water Act (CWA) Section 303(d) (the 303(d) list). The SIYB TMDL was developed to address and resolve this impairment by reducing the loading of dissolved copper to SIYB.

Final 2017 Shelter Island Yacht Basin Dissolved Copper TMDL Monitoring an	d Progress Report	March 2018
	This page intentionally left blank	

Figure 1-1. Location of Shelter Island Yacht Basin in San Diego Bay

Final 2017 Shelter Island Yacht Basin	Marris 0040
Dissolved Copper TMDL Monitoring and Progress Report	March 2018
This page intentionally left blank	

1.2 SIYB TMDL Compliance Schedule

Under Resolution R9-2005-0019, the SIYB TMDL requires that loading of dissolved copper into the water column be reduced by 76 percent, from 2,163 kilograms per year (kg/yr) to 567 kg/yr over a 17-year period (Regional Board, 2005). This period extends to 2022, based on the official SIYB TMDL approval date² of February 9, 2005. No reductions in dissolved copper loading were required during the initial two-year orientation period (2005–2007). The subsequent 15-year period requires incremental reductions of dissolved copper loading by 10 percent within 7 years (2012); by 40 percent within 12 years (2017); and by 76 percent within 17 years (2022) (Table 1-1).

Estimated Target Loading Percent Reduction Reduction to be Stage **Time Period** from SIYB TMDL Attained by End (kg/yr of Dissolved **Estimated Loading** of Year Copper) 1 2005-2007 N/A N/A 10^a 2 2008-2012 2012 (7 years) 1,900 3 2013-2017 40 2017 (12 years) 1,300 2018-2022 76 2022 (17 years) 567

Table 1-1.
Loading Targets for SIYB TMDL Attainment

Notes:

kg/yr = kilogram(s) per year; N/A = not applicable; SIYB TMDL = Shelter Island Yacht Basin Total Maximum Daily Load

For the first SIYB TMDL compliance year (2012), loading calculation estimates presented in the 2012 Monitoring Report indicated a 17 percent reduction in dissolved copper loading to SIYB, thus exceeding the 10 percent goal. In a letter dated July 26, 2013, the Regional Board stated, "Based on the data submitted and information provided in the Report [2012 SIYB TMDL Monitoring and Progress Report], the 10 percent reduction in dissolved copper loading required to demonstrate compliance with the SIYB TMDL by the December 1, 2012, compliance date was achieved."

The 2017 monitoring period is a compliance year, and the final year of the third interim stage of the TMDL. The fourth and final interim stage begins in 2018.

1.3 Sources of Dissolved Copper

Based on the Regional Board's source analysis, the total mass load of dissolved copper to SIYB was estimated to be 2,163 kg/yr, of which 98 percent of inputs were attributable to passive leaching of copper from copper-based hull paints on vessels and to hull-cleaning activities (Table 1-2). The total copper load from the SIYB TMDL equals 2,100 kg/yr from vessel paints. The estimated load reduction resulting from background, urban runoff, and atmospheric deposition (which equates to approximately 63 kg/yr) is not included in this total. This report

_

a. Loading calculations presented in the 2012 SIYB TMDL Monitoring and Progress Report showed that a 17 percent load reduction had been achieved. Compliance with the 2012 load reduction goal of 10 percent or greater was confirmed by the Regional Board in a letter to the Port dated July 26, 2013.

² For a TMDL to be incorporated into the Water Quality Control Plan for the San Diego Basin – Region 9 (Basin Plan), it must be approved by the Regional Board, State Water Resources Control Board (SWRCB), Office of Administrative Law (OAL), and United States Environmental Protection Agency (USEPA) Region 9. The official TMDL approval date is the OAL approval date.

evaluates the dissolved copper loading based on the vessel-related contribution, totaling 2,100 kg/yr.

Table 1-2.
Sources of Dissolved Copper per the SIYB TMDL

Source	Estimated Mass Load to SIYB (kg/yr)	Contribution to SIYB (Percent Dissolved Copper)
Passive Leaching	2,000	93
Hull Cleaning	100	5
Urban Runoff	30	1
Background	30	1
Direct Atmospheric Deposition	3	<1
Sediment	0	0
Total	2,163	100

Notes:

kg/yr = kilogram(s) per year; SIYB = Shelter Island Yacht Basin

1.4 Water Quality Objective Criteria

The WQO for dissolved copper in SIYB is equal to the National Recommended Water Quality for Aquatic Life of the United States Environmental Protection Agency (USEPA) and the California Toxics Rule (CTR) water quality values for dissolved copper in marine environments (USEPA, 2000). Continuous or chronic exposures may not exceed 3.1 micrograms per liter (μ g/L) over a 4-day average; acute exposures may not exceed 4.8 μ g/L over a 1-hour average. In addition, numeric WQOs must not be exceeded more than once every three years.

In addition to numeric WQOs, the *Water Quality Control Plan for the San Diego Basin – Region 9* (Basin Plan) established narrative WQOs for toxicity and pesticides (Regional Board, 1994) as follows:

Toxicity Objective – All waters shall be maintained free of toxic substances in concentrations that are toxic to, or that produce detrimental physiological responses in, human, plant, animal, or aquatic life. Compliance with this objective will be determined by use of indicator organisms; analyses of species diversity, population density, and growth anomalies; and bioassays of appropriate duration; or other appropriate methods as specified by the Regional Board.

Pesticide Objective – No individual pesticide or combination of pesticides shall be present in the water column, sediments, or biota in concentrations that adversely affect beneficial uses. Pesticides shall not be present at levels that will bioaccummulate in aquatic organisms to levels that are harmful to human health, wildlife, or aquatic organisms.

Two beneficial uses within SIYB are threatened by elevated dissolved copper concentrations: marine habitat (MAR) and wildlife habitat (WILD). The Regional Board indicated that, if numeric WQOs are met for dissolved copper, then narrative WQOs will also be considered to be met. However, because current numeric WQOs are not site-specific, direct assessments of toxicity as well as SIYB biota also directly indicate basin-wide attainment of beneficial uses and narrative WQOs.

1.5 Monitoring Purpose

Because of the proportional contribution of copper loading to SIYB from copper-based hull paints, tracking of vessel conversions from copper to non-copper or lower copper hull paints is the primary method used to assess compliance with interim SIYB TMDL load reduction targets. In addition, water quality monitoring assesses long-term trends in the basin and provides comparisons with the numeric and narrative WQOs, as measured by surface water dissolved copper concentrations and toxicity. As with all TMDL projects, monitoring is a necessary component to ensure that water quality standards are gradually being met. By conducting both vessel tracking and water quality monitoring on an annual basis, the program will eventually be able to evaluate the relationship between load reductions and water quality. Additionally, this approach will provide the data needed to assess the overall effectiveness and success of the SIYB TMDL implementation in attaining both loading reductions and numeric WQOs to protect the basin's MAR and WILD beneficial uses.

1.6 Revision of Monitoring Plan

The Monitoring Plan (Revision 3) was updated for the 2017 monitoring year to include the modification of several field procedures:

- Field filtration of all samples collected for dissolved copper and zinc analyses, in agreement with the USEPA 1640 protocol.
- Performance of a top-to-bottom vertical water quality profile (using a conductivity, temperature, and depth [CTD] profiler) at each station to evaluate pH, temperature, light transmittance, and salinity with depth in the water column.
- Addition of total suspended solids (TSS) analyses.

1.7 Implementation of Best Management Practices

The Port has incorporated a copper reduction program and best management practices (BMPs) to reduce copper loads in SIYB and throughout San Diego Bay. The five elements of this program are:

- Testing and research
- Transition to Category I paints and non-copper hull paints
- Policy development and legislation
- Education and outreach to boaters
- Monitoring and data assessment

The Shelter Island Master Leaseholders (SIML) TMDL Group was formed to represent the 11 marinas and yacht clubs in SIYB. The group's purpose is to compile information from marinas and yacht clubs collected from the boat owners in their facilities for SIYB TMDL Investigative Order reporting requirements. In addition, the SIML TMDL Group has developed a BMP program specific to the marinas and yacht clubs in SIYB.

Over the course of the SIYB TMDL program, multiple quality control measures have been integrated to build on previous knowledge and to help effectively implement the SIYB TMDL program.

Additional measures include:

- Meetings between the Port and other stakeholders in SIYB about the SIYB TMDL
- Increased scrutiny of water quality data and analytical methods
- Reassessment of field sampling techniques, including additional oversight of field procedures
- Review of methods used to track the type of hull paints used on vessels in SIYB

These measures were implemented to collect relevant useful data and to enhance communication among all involved parties. The intent of this iterative and collaborative process is to provide transparency to the process and to provide a known and scientifically defensible dataset to support the SIYB TMDL compliance objectives.

1.8 Recent AFP and Copper Initiatives

In addition to the BMP implementation, vessel tracking, and water quality monitoring, this monitoring report also identifies other policy- or legislative-related activities during the reporting period and discusses, where applicable, how these actions factor into this report. These items are summarized below and are discussed further in Section 4.

Department of Pesticide Regulation Actions

The Department of Pesticide Regulation (DPR) is the agency responsible for regulating pesticides, including antifouling paints, throughout the state of California. Over the course of the SIYB TMDL, the DPR has undertaken several actions related to copper AFPs. The following initiatives were ongoing within this reporting period:

- Updated List of Copper-based Antifoulant Paints by Leach Rate Category (DPR, 2017)
- DPR's adoption of section 6190 of Title 3, California Code of Regulations (DPR Rule).
 This action establishes a maximum allowable copper leach rate for copper-based AFP products registered in California for use on recreational vessels beginning July 1, 2018.

USEPA Actions

The USEPA is responsible for establishing federal water quality standards. During this reporting period, the USEPA opened a comment period for the Registration Review Proposed Interim Decisions for Copper Compounds, Case Number 0636, 0649, 4025, and 4026 (EPA-HQ-QPP-2010-0212). The review process allows for transparency as the USEPA considers the latest science when determining whether current regulations for copper require additional changes from the current legislation.

1.9 SIYB Time Series Study

Since the annual SIYB TMDL monitoring began in 2011, individual surface samples obtained for copper analyses have been collected at one point in the daily tidal cycle.

In an effort to understand how the tides may influence concentrations of dissolved copper in surface waters in SIYB, a 24-hour study was conducted in January 2018 to assess the pattern of surface water dissolved copper concentrations throughout the basin during one full semidiurnal tidal cycle (Time Series Study). The technical memorandum summarizing the findings of the Time Series Study is included as Appendix E and is briefly discussed in Section 4.3.

1.10 Content of Report

This TMDL Monitoring and Progress Report for SIYB presents the monitoring results for 2017 and includes:

- Methods to assess, estimate, and reduce copper loads
- TMDL implementation, including BMPs implemented by the Port in SIYB and throughout San Diego Bay
- A new marina and yacht club copper reduction BMP guidance document prepared by the SIML TMDL Group
- Evaluation, interpretation, and tabulation of data collected by the Port, SIML TMDL Group, yacht clubs, and marinas on vessel tracking and hull paint conversions
- Water quality monitoring data, including chemical and toxicological evaluations of surface water samples collected in August 2017
- Information regarding ongoing copper initiatives germane to the SIYB TMDL
- A summary of the data from the Time Series Study conducted in SIYB in January 2018
- Discussion of the 2017 TMDL monitoring program findings, including other copper-related issues and studies considered germane to the SIYB TMDL
- A summary of the SIYB TMDL monitoring program recommendations

The report also includes several appendices with additional supporting data. Appendix A is the 2017 SIYB TMDL Monitoring Plan. Appendix B contains BMP plans for both the Port and the SIML TMDL Group. Appendix C is the vessel tracking data spreadsheet (including information for each available slip) for the entire SIYB. Appendix D contains the water quality monitoring results for the August 2017 sampling event, including field-collected data, the analytical chemistry report, and the toxicity testing report. Appendix E contains a technical memorandum that presents the data of the Time Series Study conducted in SIYB in January 2018. Appendix F includes 2017 SIYB-related correspondence between the Port and other agencies and other pertinent information.

017 Shelter Island Ya ved Copper TMDL Mo	nitoring and Progress Report	March 2
	-	
	This page intentionally left blank	

2.0 METHODS

This section describes in detail the BMP plans in place to reduce copper loads, methods used to estimate load reductions (e.g., vessel hull paint tracking), field program methods to assess dissolved copper levels in SIYB, and project-specific quality assurance (QA) and quality control (QC) procedures used during water quality monitoring and data analysis.

2.1 SIYB Implementation of Best Management Practices

The Port has developed a comprehensive copper reduction program and maintains a cumulative list of copper reduction BMPs implemented in support of the TMDL since 2007 (Appendix B). In addition, the SIML TMDL Group selected and implemented BMPs that contribute to dissolved copper load reductions in SIYB. Selection, implementation, and effectiveness assessments of BMPs were at the discretion of each party. In compliance with Investigative Order reporting requirements, the SIML TMDL Group submits information annually to the Port that details the BMPs and actions implemented throughout the year to reduce dissolved copper loads to SIYB. The Port's BMP plan and the SIML TMDL Group's BMP plan are presented in Appendix B.

2.2 San Diego Bay-Wide Implementation of BMPs

The report in Appendix B also describes BMPs or other actions implemented by the Port to reduce dissolved copper discharges from vessel hulls into harbors or marinas within San Diego Bay. The Port reported the actions that were taken to reduce dissolved copper discharges to marinas beyond San Diego Bay, including actions with statewide or national applicability.

2.3 Dissolved Copper Load Analysis

This section describes the methods and procedures used to estimate dissolved copper loading into SIYB during 2017, including vessel tracking methodologies and estimates of the contribution of dissolved copper into SIYB attributable to in-water hull cleaning. This section also addresses how these two factors were combined to estimate the annual dissolved copper load to SIYB in 2017.

2.3.1 SIYB Hull Paint Guidance List

The comprehensive SIYB Hull Paint Guidance List (Port, 2017) originally prepared by the Port was used to assist with vessel tracking efforts. This guidance list groups individual AFPs by DPR leach rate categories and contains relevant product information such as paint name, product number, copper content, and DPR registration number. The list also includes new products available since 2012, or other non-copper biocide AFPs (i.e., zinc, Irgarol, etc.) or non-biocide (i.e., foul-release) coatings and products.

This guidance tool was developed to help marina operators compile their annual vessel data census more accurately. It is also intended to help demonstrate transparency in reporting the updated vessel tracking, enhance vessel tracking and reporting efforts, and reduce variability in vessel data.

2.3.2 Vessel Tracking

Annual reduction of copper loading was assessed by tracking conversions of hull paints from copper to non-copper or lower copper products (i.e., either by leach rate or copper content) for vessels moored in SIYB.

Yacht club and marina operators collected vessel-tracking data by distributing a survey form to all SIYB vessel owners. The survey, a standard form developed by the SIML TMDL Group, was given to all marina and yacht clubs in SIYB to distribute. An example of the survey form is in Appendix C. Although vessel owner response to the survey was not mandatory at all facilities, if no response was initially received, the yacht club and marina operator made follow-up attempts to gather the information by telephone calls and emails. The SIML TMDL Group self-reports and submitted the 2017 vessel tracking data to the Port in mid-January 2018. Prior to submittal to the Port, the SIML TMDL Group conducted a QC check of the survey results. New for the 2017 reporting period, the Port notified each marina that they must self-certify their data for accuracy and completeness. Marinas were asked to return a signed self-certification statement verifying the data that was submitted (see Appendix F for certification letters).

Once the survey results were received by the Port, each marina's annual hull survey data were crossed-checked against the product and registration numbers in the SIYB Hull Paint Guidance List. If the information conformed to the SIYB Hull Paint Guidance List, the vessel's paint was tracked as identified in the aforementioned categories. The vessel tracking information that is collected by the SIML TMDL Group during the hull survey is listed in Table 2-1. Vessel tracking data submitted to the Port by the SIML TMDL Group are in Appendix C.

Table 2-1.
Vessel Survey Data Collected in 2017

Vessel Tracking Data Fields		
1.	Name of Marina or Yacht Club	
2.	Slip/Mooring Reference Number	
3.	Percentage of Time Occupied	
4.	Vessel Type (power or sail)	
5.	Vessel Length	
6.	Vessel Beam Width	
7.	Paint Type (Copper, DPR Category I, Low-copper, or Non-copper)	
8.	Paint Product Name	
9.	Paint Product Number	
10.	Boatyard Name or Purchase Date	
11.	Painting Date (month)	
12.	Painting Date (year) ^a	
13.	Percent Copper	
14.	DPR Category I Registration Number	

Notes

a. Aged-copper paints are determined by the painting date. To be considered an aged paint for the 2017 survey, the vessel would have had to be painted on or prior to December 31, 2014.
 DPR = Department of Pesticide Regulation

Vessel tracking data from SIYB included the percentage of time that slips were unoccupied or were occupied by vessels with copper, lower copper (DPR Category I and low-copper paints), aged-copper paints, non-copper, or unknown hull paints, as required by the Investigative Order (Table 2-2). As indicated by the SIYB TMDL Group, the occupancy rate at most yacht clubs and marinas in SIYB was calculated using a nightly count of empty slips. The annual percentage of time that the slip was occupied was determined by dividing the total number of days occupied by 365 days.

Table 2-2.
Vessel Tracking Data Collected for 2017

	Vessel Tracking Data Fields			
1.	Total number of slips or buoys in facility available to be occupied by vessels			
2.	Number of unoccupied slips or buoys and length of time unoccupied during each year			
3.	Number of vessels confirmed with copper-based hull paints and approximate length of time occupying a slip or buoy in facility each year			
4.	Number of vessels confirmed with aged-copper-based hull paints ^a and approximate length of time occupying a slip or buoy in facility each year			
5.	Number of vessels confirmed with DPR Category I paints ^b and approximate length of time occupying a slip or buoy in facility each year			
6.	Number of vessels confirmed with alternative hull paints, by hull paint type, and approximate length of time occupying a slip or buoy in facility each year			
7.	Number of vessels with unconfirmed information about hull paints and approximate length of time occupying a slip or buoy in facility each year			
8.	Estimate of the dissolved copper load reduction achieved for the year (kg/yr and percent)			

Notes:

DPR = Department of Pesticide Regulation; kg/yr = kilogram(s) per year

The SIML TMDL Group submitted vessel tracking data to the Port for the yacht clubs and marinas in SIYB, including confirmation of the category of hull paint reported for boaters who responded to the survey. Lower copper (DPR Category I or low-copper) and non-copper hull paints were considered to be confirmed if the required supporting data that were provided (i.e., all of the required data fields were completed) for a given hull paint confirmed the DPR registration number or product number of a reported paint (Table 2-1). Vessels stored out of the water (e.g., on HydraHoists®) or in slip liners, or reported to have no bottom paint, were also confirmed as having non-copper paint for that slip. For vessels to be considered as having hulls with aged-copper paints, the painting date submitted must have been on or before December 31, 2014, for the 2017 monitoring year.

To be conservative, loading was calculated for unconfirmed paints, assuming that paint was copper-based if the vessel owner did not know the paint's DPR registration number or product number. These data were used to calculate the annual dissolved copper load to SIYB from vessels under both confirmed and unconfirmed scenarios, as described further in Section 2.3.4.

2.3.3 Annual Copper Loads from Passive Leaching and In-Water Hull Cleaning

To estimate dissolved copper loads attributed to vessels for the SIYB TMDL monitoring program, the in-water hull-cleaning load (100 kg/yr) and passive leaching load (2,000 kg/yr)

^a. Per 2013 Regional Board letter

b. Per Regional Board email dated October 21, 2015

identified in Appendix 2 of the SIYB TMDL Technical Report³ were combined to form a total vessel-related load of 2,100 kg/yr. This vessel-related baseline load was divided by the total vessel population identified in the TMDL (2,363 vessels), which resulted in an annual per vessel load of 0.89 kg/yr (rounded to 0.9 kg/yr). Therefore, any reference to the annual per vessel dissolved copper load is considered to be 0.9 kg/yr.

The dissolved copper load attributed to in-water hull cleaning was identified in Appendix 2 of the SIYB TMDL (Regional Board, 2005) as approximately 100 kg/yr. As part of this Regional Board's load estimation, it was assumed that all SIYB vessel hulls were painted with copper paint, all hulls were cleaned approximately monthly, and in-water hull-cleaning BMPs were used during half of the cleaning events.

As recommended in the 2015 Monitoring and Progress Report, starting in 2016 and continuing in 2017, the copper loads from passive leaching and in-water hull cleaning are presented separately. As discussed above, the annual per-vessel dissolved copper load is 0.9 kg/yr. This total annual per vessel load is composed of the load from passive leaching (approximately 0.86 kg/yr) and in-water hull cleaning⁴ (approximately 0.04 kg/yr) per Appendix 2 of the SIYB TMDL (Regional Board, 2005). The copper loading estimates in Section 3.1.5 present separate load estimate calculations for passive leaching and in-water hull cleaning contributions using the TMDL assumption.

2.3.4 Annual Dissolved Copper Load

The SIYB TMDL copper load reduction is assessed by tracking the number of vessel hulls with copper paint, lower copper paint (DPR Category I or low-copper), aged-copper paint, or non-copper paint, as well as by counting the number of vacant slips in SIYB. Vessels that have aged-copper paint are considered to have a lower copper load (i.e., 0.45 kg/yr), but are tracked separately.

The vessel tracking program estimates loading reductions conservatively. If the hull paint name and type were unknown, the paint was assumed to be copper-based. Additionally, if the latest painting date was unknown, the vessel was assumed to be painted recently. Lastly, if the occupancy time of a slip or mooring was not reported, the slip or mooring was assumed to be occupied 100 percent of the time (i.e., 365 days per year). Data on paint categories for transient vessels visiting the Port-operated transient vessel dock and temporary anchorage were not available; therefore, these vessels were assumed to have copper hull paints.

The assumptions below were used by the Regional Board to derive the baseline copper loading identified in Appendix 2 of the SIYB TMDL Technical Report (Regional Board, 2005). Loading reductions for the 2017 SIYB TMDL monitoring program were calculated based on comparisons with these baseline conditions:

_

³ Appendix 2 of the SIYB TMDL is at the following website address: http://www.waterboards.ca.gov/sandiego/water_issues/programs/watershed/souwatershed.shtml

⁴ The annual copper load contribution from in-water hull cleaning (0.04 kg/yr) presented in this report is based on the TMDL load assumption of 5 percent.

- All 2,363 SIYB slips or buoys were occupied by a number of vessels (N_v).
- All 2,363 recreational vessels moored within SIYB have copper-based paints 100 percent of the time.
- Annual loading from passive leaching basin wide (Lp) equals 2,000 kg/yr.
- Annual loading from hull cleaning (L_h) equals 100 kg/yr.
- Average annual loading per vessel (L_v) with copper hull paint equals 0.9 kg/yr, where $L_v = (L_p + L_h)/N_v$.

In accordance with the SIYB TMDL, this loading reduction analysis assumed an average loading reduction of approximately 0.9 kg/yr for every vessel in SIYB that converted from copper-based to non-copper-based paints. The use of lower copper hull paints was also recognized in the SIYB TMDL as a viable means of reducing copper loading to the basin. Lower copper paints are identified as DPR Category I paints and paints having a copper content of less than 40 percent (i.e., low-copper). This loading reduction analysis also assumed that, on average, each vessel that transitioned to lower copper hull paints reduced annual dissolved copper loading by 50 percent (0.43 kg/yr for passive leaching + 0.02 kg/yr for in-water hull cleaning). Aged-copper paints also were considered as a 0.45-kg/yr load if they were applied prior to December 31, 2014.

The assumptions for the calculations of annual dissolved copper loading are in Table 2-3.

Table 2-3.
Dissolved Copper Loading Calculation Assumptions

Dissolved Copper Loading Assumptions				
1.	All vessels moored in SIYB at the enactment of the TMDL had copper hull paints.			
2.	Average annual dissolved copper load from a vessel with copper paint equals 0.9 kg/yr.			
	a. The passive leaching load from a vessel with copper paint equals 0.86 kg/yr.			
	b. The cleaning load from a vessel with copper paint equals 0.04 kg/yr.			
3.	Vessels with unknown hull paints have copper paint			
4.	Slips/moorings for which occupancy data are not provided are considered to be 100-percent occupied.			
5.	Annual dissolved copper load from a vessel with non-copper hull paint equals 0 kg/yr.			
6.	DPR Category I paints are paints with leach rates ≤9.5 µg/cm²/day. These paints are considered as lower copper.			
7.	Low-copper hull paints are paints with less than 40-percent copper. These paints are also considered as lower copper.			
	Average annual dissolved copper load from a vessel with lower copper paint equals 0.45 kg/yr			
8.	a. The passive leaching load from a vessel with lower copper paint equals 0.43 kg/yr.			
	b. The cleaning load from a vessel with lower copper paint equals 0.02 kg/yr.			
9	Vessels determined to have aged-copper paint (i.e., copper paint applied to a vessel hull prior to December 31, 2014 ^a) will have an annual dissolved copper load equal to 0.45 kg/yr.			
10.	Annual loads will be normalized by the percent of time vessels are docked in SIYB.			
Notes:				

Notes:

Annual loading was calculated for each slip by multiplying the reported dissolved annual loading for a given hull paint category by the percentage of time a slip was reported to be occupied (e.g., the product of 0.9 kg/yr for copper hull paints and 90 percent occupancy results in an annual loading of 0.81 kg/yr). In the case of the Port-operated anchorage, data on the number of three-day permits issued weekly were used to calculate annual occupancy and loading. For each issued permit, it was assumed that the vessel occupied the anchorage for an average of three days, and because no hull paint data were collected, all vessels were assumed to have copper paints. Therefore, annual dissolved copper loading due to passive leaching and hull cleaning was calculated by multiplying the annual dissolved copper load (0.9 kg/yr) by the average number of vessels occupying the anchorage weekly in 2017 and the average percentage of time that slips were occupied.

a. December 31, 2014, is the cutoff date for vessels to be considered to have aged-copper paint for the 2017 annual monitoring and progress report load calculation. This cutoff date will advance by one -year for each subsequent annual load calculation.
 μg/cm²/day = micrograms per square-centimeter per day; DPR = Department of Pesticide Regulation; kg/yr = kilogram(s) per year; SIYB = Shelter Island Yacht Basin; TMDL = total maximum daily load

2.4 Water Quality Monitoring

Water quality was sampled to measure the average concentration of dissolved copper in the basin. The monitoring used methods consistent with those of prior studies conducted by the Regional Board in SIYB, as reported in Appendix 6 of the SIYB TMDL Technical Report (Regional Board, 2005). To be consistent with these prior studies, water quality was monitored at six stations in SIYB and at one reference station in the main channel of San Diego Bay adjacent to SIYB. These station locations were similar to those sampled by the Regional Board and met the Investigative Order requirement of spatially representing dissolved copper concentrations in SIYB, as described in the original Monitoring Plan and most recent update (Weston Solutions, Inc. [Weston], 2011; Amec Foster Wheeler, 2017a).

As required in the SIYB TMDL, dissolved copper concentrations were compared with the surface water baseline level of $8.28 \pm 1.36 \, \mu g/L$ (mean \pm standard error). This value was calculated using surface water quality data collected between 2005 and 2008 from stations in the immediate vicinity of the Regional Board monitoring station network (Weston, 2011).

2.4.1 Sampling Station Locations

The SIYB water quality monitoring station network was composed of six stations within SIYB (i.e., SIYB-1 to SIYB-6) and one reference station in the main channel of San Diego Bay outside of the mouth of the basin (SIYB-REF) (Table 2-4 and Figure 2-1). To the greatest extent possible, samples were collected within approximately ±3 meters of the target coordinates.

Table 2-4. Sampling Station Coordinates

Station	Target		Actual	
	Latitude	Longitude	Latitude	Longitude
SIYB-1	32.71821	-117.22601	32.71821	-117.22603
SIYB-2	32.71412	-117.22921	32.71416	-117.22922
SIYB-3	32.71550	-117.22989	32.71554	-117.22997
SIYB-4 ^a	32.71683	-117.23203	32.71657	-117.23117
SIYB-5	32.71217	-117.23297	32.71205	-117.23297
SIYB-6	32.70858	-117.23514	32.70877	-117.23511
SIYB-REF	32.70406	-117.23232	32.70409	-117.23199

Note:

^a For safety and sampling schedule reasons, SIYB-4 was collected approximately 85 meters away from the proposed location due to high winds and a prevailing current

Final 2017 Shelter Island Yacht Basin Dissolved Copper TMDL Monitoring and Progress Report	March 2018
This page intentionally left blank	

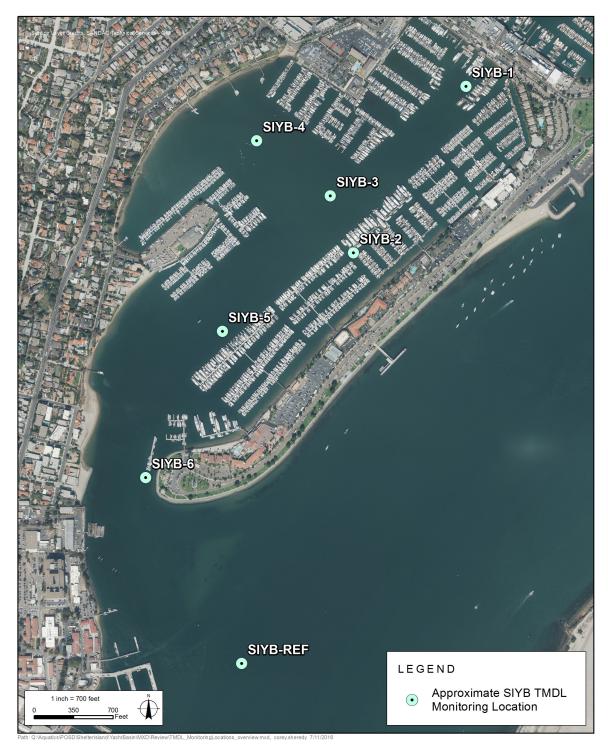


Figure 2-1. Shelter Island Yacht Basin TMDL Sampling Station Locations

2017 Shelter Island Yacht Dived Copper TMDL Monit	pring and Progress Report	March 20
	This page intentionally left blank	

2.4.2 Sampling Date

Surface water at the seven sampling stations (six SIYB stations and one San Diego Bay reference station) was sampled on August 23, 2017. In accordance with the Monitoring Plan, water sampling bracketed slack high tide during the summer, as depicted in Figure 2-2. By sampling in the summer, dissolved copper concentrations were expected to be at their annual peak in the water column because rates of copper release from antifoulant paints are higher at warmer sea surface temperatures and during periods with a greater frequency of hull cleaning. This sampling approach was designed to provide the most conservative estimate of dissolved copper concentrations for SIYB.

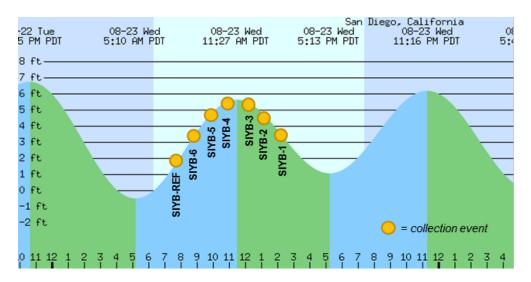


Figure 2-2. 2017 Sample Collection Times versus Tide

2.4.3 Sample Collection

Discrete water samples were collected at each station using a Niskin bottle deployed from a sample collection vessel. "Clean hands" sampling techniques were used, consistent with the project-specific and approved SIYB Quality Assurance Project Plan (QAPP) (Amec Foster Wheeler, 2017b). All stations were located using the Differential Global Positioning System.

Samples were collected within the top 1 meter of the basin surface; these samples are referred to as "surface water." Field measurements were taken at each station for hydrogen ion concentration (pH), salinity, and temperature using a YSI Incorporated (YSI) Pro Plus data sonde. Following the collection and preservation of water samples, a top-to-bottom water quality profile using a Sea-Bird Electronics (SBE) CTD profile instrument was completed to evaluate pH, temperature, light transmittance, dissolved oxygen (DO), and salinity at the station. *In situ* analytical methods and detection limits are listed in Table 2-5.

Table 2-5.

In Situ Analytical Methods and Detection Limits

Water Quality Measurement	Method	Reporting Limit
Salinity	SBE CTD and YSI Pro Plus	± 0.1 ppt
Temperature	SBE CTD and YSI Pro Plus	± 0.1 °C
pН	SBE CTD and YSI Pro Plus	± 0.1 pH unit
Dissolved Oxygen	SBE CTD	± 0.1 mg/L
Light Transmittance	SBE CTD	± 0.1 %

Notes:

% = percent; °C = degrees Celsius; mg/L = milligrams per liter; pH = hydrogen ion concentration; ppt = part(s) per thousand; YSI = YSI Incorporated; SBE = Sea-Bird Electronics; CTD = conductivity, temperature, and depth

After collection, water samples were transferred to labeled containers for analysis of total and dissolved copper and zinc, total organic carbon (TOC), dissolved organic carbon (DOC), TSS, and toxicity.

Detailed field notes were recorded during sample collection at each station and all samples were logged on a chain-of-custody (COC) form, and then placed in a cooler on ice. Samples were stored at 4 degrees Celsius (°C) in the dark until delivered to the appropriate laboratory for analysis, within 24 hours of collection. Water chemistry analyses were conducted by Weck Laboratories (Weck) of City of Industry, California; toxicity tests were conducted by Nautilus Environmental Laboratory (Nautilus) of San Diego, California. Both laboratories are accredited through the California Environmental Laboratory Accreditation Program (ELAP). Photographs taken during field sampling are presented in Figure 2-3.

Photo A. Water sample collections were conducted using a Niskin bottle following clean sampling techniques.

Photo C. Water sample collection for trace level copper analysis uses a Niskin bottle following clean sampling techniques.

Photo B. Recording of weather conditions, activities such as boat cleaning, and any other observations that may have an impact on water quality is an important component of the field monitoring program.

Photo D. Filtration of water samples is conducted in the field immediately after collection for analysis of dissolved organic carbon.

Figure 2-3. Field Sampling Photographs

Final 2017 Shelter Island Yacht Basin Dissolved Copper TMDL Monitoring and Progress Report	March 2018
This page intentionally left blank	

2.4.4 Equipment Decontamination and Cleaning

The Niskin bottle was cleaned prior to sampling with clean, soapy water and thoroughly rinsed with deionized water. Upon deployment, the Niskin bottle received a thorough site water rinse prior to sample collection. After collection, water samples were transferred using the clean-hands method from the Niskin bottle to laboratory-certified, contaminant-free, high-density polyethylene bottles. The Niskin bottle was also rinsed thoroughly with deionized water between sites, and then rinsed with the site water of each station before sample collection.

2.4.5 Chemical Analyses

After collection was completed, samples were transported to the laboratory under customary COC protocols. Samples were analyzed for total and dissolved copper, total and dissolved zinc, TOC, and DOC, following certified USEPA or Standard Method (SM) test methods. Test method selection was based on the best available combination of sensitivity (low-level detection limits), accuracy (minimum susceptibility to bias or matrix interference), and precision (reproducibility) in accordance with the QAPP.

General water quality measurements (of salinity, temperature, TOC/DOC, TSS, and pH) were also taken at each station. Natural water quality parameters such as DOC are well known to affect the bioavailability and toxicity of copper in marine environments (Delgadillo-Hinojosa et al., 2008; Rosen et al., 2005; and Zirino, 2002). Zinc was also included for testing because it is commonly used as an alternative biocide in antifoulant paints. Both total zinc and dissolved zinc were measured to determine whether concentrations are increasing as vessel hull paints are converted from copper-based to non-copper-based paints.

Analysis of water quality data included calculations of average surface water dissolved copper concentrations to compare with the dissolved copper CTR WQO (3.1 μ g/L). In Section 3.0, the 2017 dissolved copper results are compared with the 2005–2008 baseline data as reported in the Monitoring Plan (Weston, 2011) to evaluate the change in dissolved copper levels in the surface waters over time.

The laboratory analytical methods and detection limits are specified in Table 2-6.

Table 2-6.
Laboratory Analytical Methods and Detection Limits

Water Quality Measurement	Method	Method Detection Limit	Reporting Limit
Total Copper	USEPA 1640	0.0038 μg/L	0.010 μg/L
Dissolved Copper	USEPA 1640	0.0038 μg/L	0.010 μg/L
Total Zinc	USEPA 1640	0.036 μg/L	0.20 μg/L
Dissolved Zinc	USEPA 1640	0.036 μg/L	0.20 μg/L
TOC	SM 5310 B	0.016 mg/L	0.10 mg/L
DOC	SM 5310 B	0.016 mg/L	0.10 mg/L
TSS	USEPA 2450 D	1.0 mg/L	5.0 mg/L

Notes

μg/L = microgram(s) per liter; DOC = dissolved organic carbon; mg/L = milligram(s) per liter; SM = Standard Method; TOC = total organic carbon; TSS = total suspended solids; USEPA = United States Environmental Protection Agency

2.4.6 Toxicity Testing

Toxicity testing consisted of a 96-hour acute bioassay test using Pacific topsmelt (*Atherinops affinis*) to be consistent with the SIYB TMDL guidance (Regional Board, 2005). Additionally, a 48-hour chronic bioassay test using mussel larvae (*Mytilus galloprovincialis*) was performed because previous studies have used the 48-hour mussel larvae chronic test as their primary indicator of toxicity. Both tests were used to assess compliance with the narrative toxicity objective because both species have ecological relevance to the marina environment and previously have been found to be sensitive to copper.

2.4.6.1 Topsmelt 96-Hour Acute Bioassay

Topsmelt acute toxicity tests were initiated on August 24, 2017 (the day following sample collection) following the procedures described in *Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms* (USEPA, 2002).

Juvenile topsmelt were exposed for 96 hours to three sample concentrations (0.5 dilution series) and a control. Each concentration was tested with six replicates and five topsmelt per replicate. Water quality measurements were conducted daily of DO, temperature, pH, and salinity. Test conditions are summarized in Table 2-7. After 96 hours, percent survival was calculated. The test was considered acceptable if mean survival was greater than or equal to 90 percent in the controls.

A 96-hour reference toxicant test using copper chloride was conducted concurrently with the project sampling to evaluate the relative sensitivity of test organisms to a single known chemical, as well as the laboratory's proficiency with the test procedure. The topsmelt reference toxicant test was conducted with copper concentrations of 0, 50, 100, 200, 400, and 800 μ g/L. The reference toxicant test was conducted concurrent to the SIYB testing and used test organisms from the same batch. Following test termination, the median lethal concentration (LC₅₀) was calculated and compared with historical laboratory reference toxicant test data for this species. Test organisms are considered appropriately sensitive when the test LC₅₀ is within two standard deviations of the historical laboratory standard.

Table 2-7.
Conditions for the 96-Hour Pacific Topsmelt Bioassay

96-Hou	96-Hour Acute Fish Survival Bioassay					
Samples Tested	SIYB-1, SIYB-2, SIYB-3, SIYB-4, SIYB-5, SIYB-6, SIYB-REF					
Date Sampled	August 22, 2017					
Test Dates	August 24–28, 2017					
Test Species	Pacific topsmelt (Atherinops affinis)					
Test Protocol	USEPA Acute Manual, 2002 (EPA/821/R-02/012)					
Test Acceptability Criterion	≥90 percent mean survival in the laboratory control					
Test Type and Duration	Acute survival/96-hour static-renewal (48-hour water renewal)					
Organism Supplier	Aquatic Biosystems, Fort Collins, Colorado					
Control Water Source	Scripps Pier seawater, 20-µm filtered					
Acclimation Time	3 days					
Age at Test Initiation	14 days old					
Test Concentrations	0 (laboratory control), 25, 50, and 100 percent sample					
Replicates per Sample	6					
Organisms Exposed per Replicate	5					
Exposure Volume	250 mL					

Notes:

μm = micrometer(s); mL = milliliter(s); USEPA = United States Environmental Protection Agency

2.4.6.2 Bivalve 48-Hour Bioassay

The 48-hour bivalve larvae tests were initiated on August 24, 2017, for all samples collected in SIYB and followed the procedures described in *Short Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms* (USEPA, 1995).

Bivalves were exposed to five sample concentrations and a control. Each concentration was tested with five replicates and approximately 150 larvae were targeted for inoculation into each replicate. Daily water quality measurements included DO, temperature, pH, and salinity. Test conditions are summarized in Table 2-8.

After test termination, the percentage of surviving embryos with normal development was calculated to determine whether normality had been significantly reduced. The test was considered acceptable if (1) at least 50 percent of larvae survived, and (2) an average of 90 percent of surviving larvae developed normally in the controls. A combined endpoint of normal surviving embryos is reported.

Table 2-8.
Conditions for the 48-Hour Mussel Development Bioassay

48-Hour Chron	48-Hour Chronic Bivalve Survival and Shell Development Bioassay					
Samples Tested	SIYB-1, SIYB-2, SIYB-3, SIYB-4, SIYB-5, SIYB-6, SIYB-REF					
Date Sampled	August 23, 2017					
Test Dates	August 24–26, 2017					
Test Species	Mediterranean mussel (Mytilus galloprovincialis)					
Test Protocol	USEPA/600/R-95/136 (USEPA, 1995); ASTM 1998; PTI 1995					
Test Acceptability Criteria	Mean percent survival in the lab control must be 50 percent, and 90 percent of surviving organisms must have normal shell development. The percent minimum significant difference (PMSD) in the test must be less than 25.					
Test Type/Duration	Bivalve larvae survival and development (endpoint reported as normal development of surviving embryos) – Static/48 hours					
Organism Supplier	Kamilche Seafarms (Shelton, Washington)					
Control Water Source	Scripps Pier seawater, 20-µm filtered					
Age Class of Mussels Exposed	<4 hour-old embryos					
Test Concentrations	0 (laboratory control), 6.25, 12.5, 25, 50, and 100 percent sample					
Replicates/Sample	5					
Initial Density of Organisms Exposed per Replicate	~150					
Exposure Volume	10 mL					

Notes:

µm = micrometer(s); mL = milliliter(s); USEPA = United States Environmental Protection Agency

A 48-hour reference toxicant test using copper chloride was conducted concurrently with the project sampling to evaluate the relative sensitivity of test organisms as well as the laboratory's proficiency with the test procedure. The bivalve reference toxicant test was conducted with copper concentrations of 0, 2.5, 5.0, 10, 20, and 40 μ g/L. The same batch of test organisms was used for both the reference toxicant test and the project samples. At test termination, the median effective concentration (EC₅₀) was calculated and compared with historical laboratory reference toxicant test data for this species. Test organisms are considered to be responsive and appropriately sensitive if the test EC₅₀ was within two standard deviations of the respective historical laboratory mean.

2.4.7 Toxicity Statistical Analyses

Determinations of toxicity using the 96-hour topsmelt and 48-hour mussel bioassays were statistically assessed using the Comprehensive Environmental Toxicity Information System TM , Tidepool Scientific Software. Survival of topsmelt fish and normal development of surviving mussel embryos in each test dilution from SIYB were compared with organism performance observed in control exposures to filtered clean seawater collected from the end of the pier at Scripps Institution of Oceanography, La Jolla, California. Results were used to determine LC₅₀ and EC₅₀ values. If fish survival and normal embryo development in the controls did not differ significantly from those of the treatments, then conditions within were considered nontoxic at the station. The test of significant toxicity (TST) method was used to identify any samples that exhibited a statistically significant difference from the control (USEPA, 2010).

2.5 Quality Assurance and Quality Control

Sampling process QA/QC included preparation prior to, during, and after sample collection to minimize the possibility of compromising sample integrity. The sample collection team was trained in and followed field sampling standard operating procedures (SOPs), as described in the SIYB QAPP (Amec Foster Wheeler, 2017b). As part of the updated field collection protocol, QA/QC reviewers from the Port and Amec Foster Wheeler were onboard the sampling vessel at all times to review each step of the sample and data collection process. Additionally, Portapproved field checklists were used throughout the sampling event to ensure that all procedures were consistent at each location, all samples were collected in exactly the same manner at every station, and all required field data were properly recorded (see Appendix D). Observations of activities (e.g., vessel hull cleaning) surrounding the sampling area were recorded on field data sheets at each station and during movement between stations.

Field staff members were careful to avoid contamination of samples at all times, wore powder-free nitrile gloves during sample collection, and used the clean-hands technique. All samples were collected in laboratory-supplied, laboratory-certified, contaminant-free sample bottles. Field measurement equipment was checked for operation in accordance with the manufacturer's specifications, and was inspected for damage prior to use and when returned from use. The QA/QC checks for the 2017 monitoring year are summarized as follows:

- ✓ QAPP updates
- √ Verification of laboratory certifications
- √ Field mobilization and equipment checklists
- √ Field sampling QA/QC checklists
- √ Field equipment calibrations records
- ✓ Observations of water clarity

- ✓ Staff training on QAPP-required field procedures
- ✓ Field conditions and water quality data sheets
- ✓ Onboard QA/QC oversight
- ✓ Observations for hull cleaning or other waterquality-impacting activities near sampling station locations

As required by Surface Water Ambient Monitoring Program (SWAMP) protocols, the monitoring program also included the addition of a field replicate. The field replicate sample consisted of a second complete set of samples collected at one of the sampling station locations (SIYB-1 in the 2017 monitoring program). The purpose of the field replicate is to assess variability in sampling procedures as well as ambient conditions.

Chemistry and toxicity samples were uniquely identified on sample labels using indelible ink. All sample containers were identified by the project title, appropriate identification number, date and time of sample collection, and preservation method. Sample labels were inspected by a QA reviewer before and after bottles were filled at each station to ensure that every sample and analysis type was labeled correctly before moving to the next station. All samples were kept on ice from the time of sample collection until delivery to the analytical laboratory for analysis within method-specified holding times (Table 2-9). Amec Foster Wheeler delivered samples on the same day as sample collection to Weck and Nautilus. Both Weck and Nautilus are California ELAP accredited for the specific tests that were performed at the time they were conducted.

Table 2-9. Sample Holding Times

Analyte	Holding Time
TOC	28 days
DOC	28 days ^a
Total Copper	180 days
Dissolved Copper	48 hours ^b
Total Zinc	180 days
Dissolved Zinc	48 hours ^b
TSS	7 days
48-hour Acute Bioassay	36 hours
96-hour Chronic Bioassay	36 hours

Notes:

DOC = dissolved organic carbon; TOC = total organic carbon; TSS = total suspended solids

The QA objectives for chemical analysis conducted by the participating analytical laboratories are provided in their individual laboratory QA manuals. The objectives for accuracy and precision involved all aspects of the testing process, including:

- Methods and SOPs
- Calibration methods and frequency
- Data analysis, validation, and reporting
- Internal QC
- Preventive maintenance
- Procedures to ensure data accuracy and completeness

Results of all laboratory QA/QC analyses are reported in Appendix D. Any QC samples that failed to meet the specified QA/QC criteria in the methodology or QAPP were identified, and the corresponding data were appropriately qualified. Furthermore, in cases where laboratory data were not within control limits, follow-up testing was performed by the laboratory to verify results wherever applicable. All QA/QC records for the various testing programs are kept on file for review, as applicable.

2.6 Chain-of-Custody Procedures

COC procedures were used for all samples throughout the collection, transport, and analytical process. The principal documents used to identify samples and to document possession were COC records, field logbooks, and field tracking forms. COC procedures were initiated during sample collection. A COC record was provided with each sample or group of samples. Each Amec Foster Wheeler employee who had custody of the samples signed the form and ensured that the samples were always attended unless properly secured.

^{a.} The holding time is applicable to preserved sample. The sample will be filtered in the field into a bottle with sulfuric acid (H₂SO₄) preservative for DOC analysis.

b. The holding time for metals after preservation is 180 days. The dissolved fraction will be filtered in the field through a 0.45-micrometer (μm) glass fiber filter using a bottle top vacuum filtration system. Samples will be preserved at the laboratory immediately upon receipt from the courier, within 24 hours of sample collection.

Documentation of sample handling and custody included the following:

- Client and project name
- Sample identifier
- Sample collection date and time
- Any special notations on sample characteristics or analysis
- Initials of the person collecting the sample
- Date the sample was sent to the analytical laboratory

Completed COC forms were placed in a plastic envelope and kept inside the cooler containing the samples. As previously noted, Amec Foster Wheeler staff members physically couriered the bay water samples from the dock on SIYB to Weck and Nautilus on the same day that the samples were collected (August 23, 2017). This level of effort provided an additional security to the COC process and ensured that all holding times were met.

Upon sample delivery to the analytical laboratory, the COC form was signed by the person receiving the samples. COC records were included in the final reports prepared by the analytical laboratories. Following completion of the analytical analyses, remaining sample material was stored until the holding time expired; samples were then disposed of properly.

2.7 Data Review and Management

Field and laboratory data were reviewed for completeness and accuracy prior to analysis and reporting, and were stored in a database, as described in the following sections.

2.7.1 Data Review

After each survey, field data sheets were checked for completeness and accuracy by the field crew and the QA reviewer. In addition, all sample COC forms were checked against sample labels at the end of the day prior to sample transport to the laboratories. In the laboratory, technicians documented sample receipt and sample preparation activities in laboratory logbooks or on bench sheets. Data validation included use of dated and signed entries by technicians on the data sheets and logbooks used for samples, sample tracking and numbering systems to track the progress of samples through the laboratory, and QC criteria to reject or accept specific data. Data for laboratory analyses were entered directly onto data sheets. Data sheets were filled out in ink and signed by the technician, who checked the sheet to ensure completeness and accuracy. The technician who generated the data had primary responsibility for the accuracy and completeness of the data. Each technician reviewed the data to ensure the following:

- The sample description information was correct and complete.
- The analysis information was correct and complete.
- The results were correct and complete.
- The documentation was complete.

All data were reviewed and verified by participating team laboratories to determine whether data quality objectives had been met, and whether appropriate corrective actions had been taken when necessary.

2.7.2 Data Management

All laboratories supplied analytical results in Adobe Portable Data Format (PDF) files. After completion of the data review by participating team laboratories, laboratory results were forwarded to Amec Foster Wheeler for review and reporting. All laboratory records that were submitted, including any raw data, are included in Appendix D with each laboratory report.

3.0 RESULTS

This section provides details on new and ongoing dissolved copper BMP implementation activities undertaken by the Port and the SIML TMDL Group; results of the vessel tracking census; estimates of copper load reduction; and results of the ambient water quality and toxicity monitoring performed in SIYB in August 2017.

3.1 SIYB TMDL Implementation

Evaluation, interpretation, and tabulation of data and information on SIYB TMDL activities undertaken by the Port and SIML TMDL Group are provided in the following subsections. Through enhanced activities by marina and yacht club managers to survey boaters, approximately 82 percent of boat owners responded (based on the final combined 2017 survey) and reported their hull paint data. 2017 marks the highest reporting percentage since the program has started, and is a direct reflection of the improved efforts dedicated to collecting complete hull paint data. Figure 3-1 illustrates the continued response rate improvements over previous surveys.

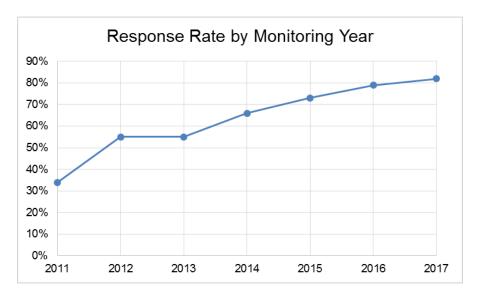


Figure 3-1. Vessel Census Response Rate by Monitoring Year

3.1.1 BMP Implementation

The Port and marina and yacht club owners and operators have implemented or are in the process of planning and implementing several categories of BMPs and other actions to reduce dissolved copper discharges to SIYB, including:

- ✓ Hull Paint Transition
- ✓ Hull-Cleaning BMPs
- ✓ Education and Outreach
- ✓ Grant Funding and Incentives
- ✓ Alternative Hull Paint Studies
- ✓ Monitoring
- ✓ Reporting
- √ Policy/Regulation
- ✓ Testing and Research
- ✓ Structural and Mechanical BMPs
- ✓ Agency-Wide Activities

3.1.1.1 Port of San Diego BMPs to Reduce Copper Loading

As part of its Copper Reduction Program, the Port has initiated, and is in the process of planning and implementing, a number of BMPs and other actions to reduce discharges of dissolved copper into harbors and marinas within SIYB, throughout San Diego Bay, and statewide. The Port's Copper Reduction Program is a pragmatic approach that complies with the interim and final goals of the SIYB TMDL. The Copper Reduction Program focuses on the largest source contributions, identifies a strategic approach for implementing projects over the short- and long-term, and effectively achieves regulatory compliance while balancing economic and public interests.

The projects implemented by the Port since the Regional Board adopted the SIYB TMDL have reduced dissolved copper discharges to SIYB. The Port's Copper Reduction Program began in 2007 and identified over 30 key initiatives, many of which enabled the Port to comply with the SIYB TMDL's first interim target.

The second interim compliance phase concluded in 2017, and the load reduction target was achieved. This success can be credited to both the robust, successful endeavors that have been initiated and completed as part of the Port's Copper Reduction Program as well as to tenant efforts (see Section 3.1.1.2). The Port was again successful in conducting and/or completing several initiatives during the second interim compliance period. During the 2013-2017 interim compliance phase, the Port made progress across all focused areas of the Copper Reduction Program. The design of the Copper Reduction Program has facilitated successful copper loading reductions in SIYB by laying foundational elements during the first interim target phase, which were then continued and built upon during the second interim target phase. It is also envisioned that these efforts will lead to continued success as the program transitions into the final compliance phase. Highlights from the Copper Reduction Program for the 2013-2017 interim compliance phase include (see also Table 3-1):

- Continued work with the DPR resulting in establishing copper leach rate regulations at the state level;
- Full conversion of the entire Port vessel fleet to non-copper hull paint;
- In-water hull cleaning policy established and enforced;
- The completion of the 319(h) Hull Paint Conversion Grant;
- Developed an outreach program model which included hosting booths at boating community events where in total 23 booths were hosted with the potential of reaching approximately 260,700 attendees total; and
- Annual water quality monitoring and special studies completed to address data gaps pertaining to water quality in SIYB.

Table 3-1.

Key Initiatives by Program Component (Second Interim TMDL Phase)

Copper Reduction Program		0040			,	2045	Direct (D) or	Completed (C)	-v -
Component	Initiative	2013	2014	2015	2016	2017	Indirect (I) Load Reduction?	or On-Going (O)	5 Year Summary
Delieu Development/Legisletien	AB 425	Pot Sponsored Bill	Leach Rate Established (DPR)	-	-	DPR Leach Rate Regulation Adopted	D	0	1 State Bill Sponsored 5 Comment letters submitted regarding copper related issues 19 IWHC Enforcement Actions
Policy Development/Legislation	EPA	-	BLM Letter	-	BLM Letter	Registration Review Letter	I	С	
	IWHC	1st Full Year of Regulation	Regulations	s remain in place: continued e		nd reissued,	D	0	
	Paint Research	Port Grant funded research	On-going ac	dditional research	and information d	issemination	D	C (Grant), O (research)	Early stage paint research funded by Port grant Continued research by Port staff and
Testing and Research	Other Technologies	-	-	-	Blue Economy Incubator (BEI) established, RFP released	2 BEI copper- related projects selected	D	0	dissemination of what is learned to boatyards, marinas, boaters • BEI established and RFP issued for technology solutions to copper issues
	Culvert Feasibility	Tidal Flushing Modeling	-	-	Engineering culvert Feasibility Study	Continued internal feasibility discussions	D	0	
	Port Fleet	Full	fleet converted a	nd maintained with	non-copper hull	paint	D	0	Entire Port vessel fleet converted to non-
Hull Paint Transitions:	Private Recreational Boats ¹	27 vessels converted under 319(h)	5 vessels converted under 319(h)	7 vessels converted under 319(h)	Conversions	s maintained	D	С	copper hull paint resulting in 11.01 kg/yr load reduction • 41 total vessels converted to non-copper hull paint under the 319(h) grant resulting in 36.9 kg/yr load reduction
	Events	Signature hull paint expo event launched; Boating event outreach	Signature expo; Boating event outreach	Boating event outreach	Signature expo; Boating event outreach	-	I	0	23 booths at boated related events (reaching 260,700 people) • 4 Expos hosted • 3 brochures/print materials created • Over 500 print materials distributed to boatyards
Education and Outreach	Web Material	Paint Conversion Cost Calculator completed	On-going updat	odates of special website, Peer-based testimonial video available to view			I	0	• 2,226 views on Web-Based calculator • 962 views on Boater Testimonial video • 7 Press Releases • 4 newspaper articles
	Print Material	Press Releases	Paint information packets	Boater Paint Brochure, Press Releases	Λ rti	es, Newspaper cles	I	0	

Amec Foster Wheeler Environment & Infrastructure, Inc.

Table 3-1.

Key Initiatives by Program Component (Second Interim TMDL Phase) (Continued)

Copper Reduction Program Component	Initiative	2013	2014	2015	2016	2017	Direct (D) or Indirect (I) Load Reduction?	Completed (C) or On-Going (O)	5 Year Summary
	Annual Water Quality Monitoring	Annual v	vater quality moni	toring for dissolve	d copper at TMDI	stations	I	0	Annual compliance monitoring show meeting interim TMDL target load reductions
	Conceptual Model	Upd	ated	-	-	-	1	С	• 2 updates to CSM
	Water Column Special Study	-	-	Development	Final report	-	I	С	•1 Modeling Study• 2 Special Studies• 1 completed RHMP cycle and planning 2018
Monitoring and Assessment	24 hr. Tidal Special Study	-	-	-	-	Development	I	0	1 completed 14 min syste and planning 2010
	RHMP Core Monitoring	Core monitoring conducted	Data analysis and draft reporting		Final report	2018 core monitoring planning	I	C (2013) O (2018)	
	Modeling Study	Development	Final report	-	-	-	I	С	

¹Port was directly involved in the conversions of private recreational vessels through the 319 (h) Grant program.

Amec Foster Wheeler Environment & Infrastructure, Inc.

The Copper Reduction Program efforts for 2017 are described below. A complete list of the Port's BMPs, including status brief effectiveness assessments, are provided in Appendix B. Unless footnoted otherwise, the following BMPs have been implemented in support of the SIYB TMDL:

Policies and Legislative Efforts to Reduce Copper Loading

Policies and legislative efforts to reduce copper loading are instrumental to the Port's Copper Reduction Program to not only help meet regulatory compliance requirements, but also to work towards reducing copper throughout San Diego Bay. The Port's policy and legislative efforts are in place to assist in pursuing regulatory change, one of the five goals of the Copper Reduction Program.

State and Federal Agency Efforts

The Port continues to implement policy-based efforts that support legislation (Assembly Bill 425 [AB 425]), other federal paint evaluations, and scientific studies. Regular communications with state and federal agencies, policy makers, and legislators promote consistency in requirements being developed across the state. They also provide a valuable networking mechanism to discuss strategies for implementation of activities and lessons learned and to build upon successful activity models. During 2017, the following efforts occurred:

United Stated Environmental Protection Agency (U.S. EPA)

In November 2017, the Port submitted a comment letter to the U.S. EPA's Docket ID No. EPA-HQ-QPP-2010-0212 Registration Review Proposed Interim Decisions Being Issued for Copper Compounds, Case Numbers 0636, 0649, 4025, 4026. In the comment letter, the Port specifically commented on interim decisions pertaining to Section 4. Ecological-Antimicrobial Uses- Anti-foulant Paints and Coatings. The Port strongly supported the use of sound science and advancements in technology and encouraged the EPA to carefully review product leach rates to ensure accepted leach rates will not adversely impact water quality. The Port also encouraged the EPA to consider the impacts related to copper-loading by recommending they require paint registrants to submit specific hull cleaning and maintenance expectations for products as part of the Data Call-In Notice. The comment letter is provided in Appendix F.

<u>DPR</u>

On November 18, 2016, the DPR published for public review, an Initial Statement of Reasons establishing the intent to adopt 3 CCR Section 6190, relating to leach rates for copper antifouling paints. In summary, the proposed action requires registrants of all new copper-based AFP products to submit leach rate data as a requirement for registration and sets forth the maximum allowable copper leach rate (i.e., ≤9.5 µg/cm2/day) to become effective July 1, 2018. The public review period was not widely publicized, and ended on January 4, 2017. On January 31, 2017, the Port provided comments on the DPR's Initial Statement of Reasons, supporting the leach rate effective date of July 1, 2018 and encouraging the use of the additional mitigation measures that were identified when DPR established the leach rate in 2014 (provided in Appendix F). This rule was adopted in August 2017 and will become effective July 1, 2018.

In July 2017, the DPR released an updated list of paints that meet the AB 425 leach rate criteria. Both the original and updated DPR Lists have been instrumental in moving

several Port projects forward, namely (1) development of paint guidance for improved vessel tracking, (2) development of a brochure to educate boaters on the importance of using DPR Category I (low leach) paints, (3) acceptance of updated tracking for SIYB annual reporting purposes, and (4) development of a modeling study using SIYB-specific vessel (i.e., paint) information and DPR leach rates.

On November 13, 2017, Port staff and DPR staff participated in a conference call to further foster the collaborative working relationship between the Port and the DPR, as well as discuss on-going copper related issues, including the missing leach rate data for certain manufactured paints. This on-going collaborative partnership allows for Port staff to remain informed on the latest information available regarding copper anti-fouling paints.

Inter-Agency Coordinating Committee

Two IACC meetings occurred during the 2017 reporting year, one on April 26, 2017 and the second on September 28, 2017. Topics of discussion for the April meeting included: an update from the DPR regarding copper antifouling paint mitigation efforts and activities; an update from the State Lands Commission on proposed commercial vessel biofouling regulations; and an overview of the statewide network of marine protected areas. Topics of discussion for the September meeting included: an overview and update on marine debris issues and activities underway in California; an update about sustained progress of the Clean Marinas Program as well as discussing program expansion; LA County's efforts of implementing the Marina del Rey Toxic Pollutants TMDL; and information about the ongoing registration review of Copper Compounds from the U.S. EPA.

Regulations for In-Water Hull Cleaning

Since October 2011, in-water hull-cleaning regulations have been in place requiring hull-cleaning businesses to obtain Port-issued permits to conduct hull cleaning within tidelands, develop BMP plans and implement BMPs during all cleaning activities, and ensure that all hull cleaners are trained on the BMPs. The regulations also require marinas to check each hull cleaner for proof of a valid permit and to prohibit non-permitted divers from working in their facility. At the end of 2012, the Port began issuing identification cards to all permitted hull cleaners to facilitate check-in at the marinas, a process that continued into 2017.

Validation of the permits continued in 2017 via collaborative efforts made by the Port, marinas, and yacht clubs to continue implementing the check-in process. Port staff regularly inspected marinas and hull-cleaning practices, with 43 inspections in 2017. During the reporting period,

inspections resulted in the following:

- One diver was cited for lack of permit;
- One marina was cited for allowing divers to operate under an expired permit in their leasehold;
- One marina was given a verbal warning for allowing an unpermitted diver to train with a permitted diver in their marina;

- One hull cleaning company was given a verbal warning for entering a marina with an unpermitted diver and performing in-water training with the permitted diver; and
- Four companies were cited for creating a paint plume (1 company) and operating without a valid permit (or proof of a valid permit; 3 companies).

In addition, 36 hull-cleaning permits had reached their end of the two-year permit term in 2017. Thirty of those businesses renewed their permits during this reporting period and 6 of the expired permitted businesses either no longer existed or the permit was not renewed.

For the 2017 reporting period, key permitting statistics are as follows:

- 81 permits have been issued since the onset of the regulation;
- 50 hull cleaning permits are active (as of December 31, 2017);
- 2 new hull cleaning permits were issued in 2017; and
- 30 hull cleaning permits had been renewed in 2017 (as of December 31, 2017).

Boat hull before and after

To date, the regulations helped to reduce copper loads from in-water hull cleaning.

Establishing Marina Self-Certification Forms

Prior to the 2017 vessel tracking data reporting deadline, the Port sent letters and a Marina Self-Certification Form template to each of the eleven marinas in SIYB requesting each marina submit a signed Marina Self-Certification Form with their annual vessel tracking data. Requiring the submittal of a signed self-certification form with the vessel tracking data submission puts ownership and responsibility on the signees to verify the accuracy and completeness of their vessel tracking data. Of the 11 marinas, ten submitted signed Marin Self-Certification Forms⁵.

Testing and Research

The Testing and Research component of the Copper Reduction Program is aimed at finding effective hull paint alternatives. Starting in 2016 and continuing through the current reporting year, one adaptation of the testing and research program element has been that the focus has expanded beyond hull paint research and paint testing. Additional testing and research strategies that could further assist with copper reduction in SIYB include:

- Innovative ways to remove copper from SIYB;
- Exploring the feasibility and potential for increasing basin flow; and
- Further exploring paint alternatives.

⁵ All vessels from La Playa were moved during this reporting period for dock upgrades. La Playa did not submit a Self-Certification Statement form that confirmed there was no data to report.

In 2017, new strategies were incorporated into the Copper Reduction Program and are discussed below.

Copper Removal Approaches

The Port's Blue Economy business incubator was established in 2016 with the purpose to discover new technologies that may assist in Port operations and establish a Blue Economy portfolio of companies that could deliver multiple social, environmental, and economic benefits to the region. Specifically, this program may assist in copper reduction efforts in San Diego Bay.

In April 2016, an RFP was issued for innovative hull cleaning and remediation technology businesses to work with the Port. Under the Blue Economy program, successful trials could enable the subsequent installation of the demonstrated technology. In 2016, the Blue Economy Incubator began receiving proposals. During the first round, two proposals were relevant to copper reduction technologies and negotiations for potential partnerships between the Port and top proposers through the Blue Economy Incubator were started. In 2017, an ad hoc committee held 6 meetings to provide staff direction and feedback regarding proposals that should be moved into consideration by the Board. The following two companies were selected and moved through Board-authorized negotiations to conduct copper-related pilot projects through the Blue Economy Incubator:

- Red Lion Chem Tech proposed a one-year pilot project to demonstrate their core technology to remove soluble copper in seawater through active and passive filtration system. Pilot work is estimated to begin during the 2018 reporting year.
- Rentunder proposed a two-year pilot project to demonstrate their Drive-in Boatwash technology, a new approach for in-water hull cleaning, which may help reduce copper particulates released into San Diego Bay. Pilot work is estimated to begin during the 2018 reporting year.

Basin Flow Approaches

Ongoing research continues on the feasibility of construction of a culvert to increase the flow of water through SIYB by connecting it to America's Cup Harbor. Increasing the flow should decrease the residence time of water in SIYB and may help to further enhance water quality when paired with other management strategies. In 2013, the effectiveness of a culvert was modeled and a potential 17-21% (location specific) reduction in copper concentration averages was predicted for SIYB. The Port Engineering Department completed a culvert feasibility study led by Rick Engineering in July 2016 for SIYB and the surrounding area.

During 2017, the Port continued to hold internal meetings to discuss culvert feasibility, the additional analyses needed to determine feasibility, associated costs, and the potential impacts to tenant operations.

Hull Paint Transitions

The overall goal of the Hull Paint Transition component of the Copper Reduction Program is to transition vessels in SIYB to non-copper hull paint alternatives. The transition from high to low or non-copper alternatives is one of the most direct approaches to reduce copper loading. By transitioning to the available alternatives, load reduction is achieved by both the concentrations

being put into the water both by active leaching during in water hull cleaning, and from passive leaching.

Conversion of Port Fleet

During the previous compliance phase, the Port completed transition of its fleet of boats to use of non-copper paints; all Port vessels now use non-copper paint. Boats were painted with various alternatives, largely depending on their use patterns. *All 16 of the Port's boats continue to use non-copper paints, resulting in a 11.01-kg/yr⁶ copper load reduction.*

Private Boaters

In 2011, the Port successfully secured a Clean Water Act Section 319(h) non-point source program grant from the SWRCB for \$600,000 to help with hull paint transition. The grant-funded SIYB Hull Paint Conversion Project provided cost offsets for SIYB boaters who use non-biocide paints. This project was completed in May 2015. Forty one boats were transitioned as a result of this effort, and it is the Port's understanding that these conversions currently remain in place. This resulted in a direct load reduction of 36.9 kg/yr.

Boater Education and Outreach

The Port has developed an extensive education and outreach program geared toward educating boaters on the use of alternative hull paints and increasing their awareness of the environmental impacts of copper paints. The marketing strategy that was completed in 2011 led to the use of newer marketing tools; these tools continue to be highly effective mechanisms to promote copper reduction.

During 2017, the outreach program continued to employ a variety of techniques to ensure that frequent and consistent messages continue to be delivered through multiple media avenues, reaching a variety of audiences. Outreach efforts continued via email and phone-call responses to public inquiries, regular meetings with the SIMLG, and continuing to host web-access to brochures and information.

Workshops, Seminars and Conferences

Ongoing public education and outreach also can occur in the form of speaking engagements at conferences. In addition to providing information on the Port's alternative hull paint program and current water quality, staff in attendance gain valuable insight from others with similar experiences.

In 2017, Port staff attended 1 conference with focuses on sediment and water quality, as well as regulatory updates. Staff attended the Southern California Society of Environmental Chemistry and Toxicology (SoCal SETAC) in Dana Point (April 27-28, 2017). Port staff attended both days of the meeting and were informed on the latest science and policy regarding sediment and water quality in southern California.

-

⁶ The load reduction calculation for these values took into account actual vessel dimensions, rather than using the average size in the SIYB TMDL assumptions.

Outreach Materials—Printed Literature

Development of printed literature such as paint brochures, event flyers, project FAQs, and handouts is an effective way to disseminate information to the public. Event attendees can take the information home and read it at their leisure, rather than having to wait to get information during the event. In addition, the printed materials also provide a web link and other contact information so that readers can do additional research. *During this reporting period, the Port had the previously produced printed literature available for download on the program website.*

Web and Media Tools

The use of a dedicated website for copper reduction program information is another effective mechanism to reach the public. Websites are increasingly popular as people rely on the Internet as a legitimate information source.

Dedicated Web Address created by the Port

The Port has developed a dedicated web address, www.sandiegobaycopperreduction.org, which links viewers to all elements of its copper reduction program. The link, which was started in 2010, provides information on conversion efforts such as the 319(h) grant project, hull-cleaning regulations, and general paint research information. The site also contains downloadable materials such as FAQs, applications to obtain a hull-cleaning permit, and recent press releases relevant to copper reduction. Monitoring studies are also available on the website. During the 2017 reporting period, Port staff provided updated lists of permitted hull cleaners as new information became available. Staff also ensured that the website was readily available and that information remained current and easy to find.

Vessel Tracking Database

A vessel tracking database was also developed through the 319(h) project. The web-based system was designed to calculate the amount of copper removed as a result of the conversion of boats to non-copper hull paints. The database was designed to calculate this amount not only for project reporting purposes, but also for long-term use for the SIYB TMDL. Due to a lack of interest from the SIYB community, no additional enhancements have been made to the database. As such, if SIYB entities indicate a desire to use the tool, it may have applicability to serve as a model for a standardized hull paint tracking mechanism.

Peer-Based Testimonials

Another media tool is peer-based marketing, with local boaters discussing their experiences using the alternative products. During 2012, video testimonials were developed and displayed at the 2012 expo. In 2013, the video was posted on the Port's website. Additional written testimonials were also included so that readers could learn about other local boaters' experiences. As of December 31, 2017, the video had been viewed 956 times.

Press Releases

Press releases and email are effective media tools to announce special happenings of interest in the copper reduction program. Regular use of press releases also helps to keep the topic fresh in the public's mind. Using established distribution lists, email blasts ensure that the press release information can reach the intended target audiences quickly. Additionally, repeat messaging has been shown to be an effective way to change behavior. The press releases have primarily focused on the increasing use of alternative paints and have highlighted some of the new tools for facilitating hull paint conversion (grant funds, cost calculator, etc.). *In June*

2017, one press release was issued announcing the Port's Blue Economy incubator launch. The press release discussed four pilot projects, two of which relate to copper mitigation throughout San Diego Bay.

Newspaper Articles

The Log newspaper has a 52,000 person readership in southern California and has served as an important vehicle for informing the public about the Port's efforts regarding copper reduction in San Diego Bay.

 July 20, 2017: The article, "Port of San Diego enters final phase of copper reduction mandate", summarized and recapped the results of the 2016 SIYB Annual Report, and discussed the final compliance phase of the TMDL.

Audiences Reached in 2017

The efforts made under the Education and Outreach component of the Copper Reduction Program were designed to reach different stakeholders and audiences depending on the outreach mechanism. While each component was designed for a primary audience, secondary audiences may also benefit from the information. Table 3-2 lists the individual outreach efforts of 2017, as well as the audiences reached.

Table 3-2.
2017 Outreach Efforts and the Audiences Reached

Outrooch		Audience Reached										
Outreach Component	Regulators	Academics	Government Agencies	Boaters	Marinas	Boatyards	Paint Manufacturers	General Public				
Conference Attendance	Р	Р	Р	ı	ı	-	-	-				
Printed Outreach Material	S	S	S	Р	Р	S	8	Р				
Dedicated Web Address to CRP	S	S	S	Р	Р	S	8	Р				
Peer-Based Testimonials	S	S	S	Р	Р	S	S	Р				
Press Releases	Р	S	Р	Р	Р	Р	Р	Р				
Newspaper Articles	Р	S	Р	Р	Р	Р	Р	Р				

Notes:

Internal Education

Increasing Port-wide awareness about the Copper Reduction Program, alternative paint use, and status of water quality regulations is vital to a successful program. A solid understanding of the program attracts support by the Port's decision makers, such as the Board of Port Commissioners and executive team, and so enables projects to move forward. An informed executive team can also ensure that adequate funding is available to implement the program.

P = Primary Audience, indicating that the most likely audience reached with the associated outreach effort

S = Secondary Audience- indicates audiences that could be potentially reached with the associated outreach effort

As such, the Port continually seeks opportunities to provide information on key items of the copper reduction program. The following information was provided to the Port Board and executives during 2017:

- April 6, 2017: Port Board memorandum providing notification of the submittal of the 2016 Shelter Island Yacht Basin Dissolved Copper TMDL Annual Monitoring and Progress Report;
- April 11, 2017: Port staff appeared before the Board presenting information on Red Lion Chem and Rentunder Remediation Applications, two Blue Economy pilot projects aimed at reducing copper in San Diego Bay;
- June 8, 2017: Port Board memorandum providing an update on Blue Economy Incubator pilot projects;
- June 20, 2017: Port staff appeared before the Board presenting program status and updates for the Shelter Island Yacht Basin TMDL;
- June 20, 2017: A resolution was adopted authorizing the Executive Director to Enter into Blue Economy Agreements, specifically Copper Remediation Applications; and
- October 19, 2017: Port Board memorandum providing results of the 2017 SIYB TMDL Annual Water Quality Monitoring and Programmatic Next Steps.

Partnerships and Collaboration

Since the inception of the SIYB TMDL, the Port has been working to identify opportunities with tenants, academia, and other agencies to develop and provide outreach, testing opportunities, funding opportunities, and policies. As of December 2017, the Port has participated in three collaboration opportunities with groups within San Diego and throughout the California boating and regulatory communities. These activities and groups include:

- Coordination with hull cleaners on In-Water Hull-Cleaning regulations;
- Coordination with the SIMLG on SIYB TMDL annual reporting;
- Regular participation in state-led Interagency Coordinating Committee (IACC) meetings for antifouling and marina-related topics; and
- Coordination with other agencies such as Newport Beach and Marina Del Rey to promote regional information sharing regarding Copper TMDL issues.

Additional Efforts (Companion Programs)

There are several other Port programs bay-wide that directly or indirectly support the Copper Reduction Program's efforts. The Blue Economy Incubator (discussed above) will continue to be instrumental in identifying potential pilot studies that may assist in the continued efforts to reduce copper concentrations throughout San Diego Bay.

The Port's Stormwater Program incorporates BMPs to decrease copper loading bay-wide and specifically into SIYB. These efforts, described below, are primarily related to compliance requirements set forth in the Municipal Separate Storm Sewer System (MS4) Permit.

Construction Site Inspections

Construction inspections ensure that sites undergoing development or redevelopment control pollution and prevent discharges. For construction sites and facilities that do not comply, the Port takes enforcement action. *In 2017, 237 inspections were performed along with 90 follow-up inspections where an overall BMP implementation rate of 93.5% was observed.*Commercial Business Inspection Program

Per the requirements of the MS4 Permit, the Port inspects commercial facilities in SIYB and bay-wide. One particular component, the Port's marina inspection program, provides opportunities to educate boat owners about pollution prevention, focusing on visual observations to identify sources of pollution and the pollution prevention practices implemented at the marinas and yacht clubs. The goal of the inspections is to help implement behavior changes that will help reduce pollution (including copper) in bay waters. *In SIYB*, the inspections confirmed that BMPs were being implemented appropriately at most facilities. Written warnings were used to resolve deficiencies at eight facilities during 2017, five of which were not training employees in storm water pollution prevention. Additionally, at three of these facilities, administrative citations (one) and written citations (two) were given regarding the lack of using BMPs for Priority Development Projects.

Stormwater Quality Management Plan (SWQMP) and Development of Regulations

The Port incorporates SWQMP requirements on applicable development and redevelopment projects bay-wide. Depending on the type and size of the projects, SWQMP requirements could include site design, source controls, and treatment controls such as low-impact development (LID). All efforts help reduce copper loading into San Diego Bay. Since 2009, there has been thirty-four existing bay-wide projects overall with metals as priority pollutants, treating a total of 114.25 acres. In SIYB, there have been 5 existing projects overall with metals as priority pollutants, treating a total of 9.19 acres. There were no new projects in SIYB during 2017 with metals as a priority pollutant. As a result, the total treated area did not change.

Monitoring and Reporting

The main goal of the Monitoring and Reporting component of the Copper Reduction Program is to assess long-term improvements in water quality. Additionally, ascertaining a better understanding of basin water quality dynamics has been achieved via the implementation of special studies to address water quality data gaps identified in SIYB.

Shelter Island Yacht Basin Time Series Study Work Plan Development

The Time Series Study was designed to gain a better understanding on the effects tidal variations may have on concentrations of dissolved copper in surface waters in SIYB. At three sampling locations throughout the SIYB, water samples were collected every 2 hours over the course of one full mixed semidiurnal tidal cycle. The Work Plan and Quality Assurance Project Plan were developed in November and December 2017. Sampling occurred in January 2018, and results are provided in Appendix E of this report.

Regional Harbor Monitoring Program (RHMP)

This bay-wide monitoring program assesses the ambient conditions found in San Diego Bay and other southern California harbors based on comparisons with historical data and comparisons of contaminant concentrations with known surface water and sediment thresholds. The program samples water, sediment, benthic infauna, and a variety of fish species in San Diego Bay. Upon completion of the study, a comprehensive report is generated. The Port is the lead agency on this project.

The next core monitoring effort in scheduled for July 2018. Four planning meetings with other RHMP agencies for the 2018 efforts have occurred between September and December 2017.

3.1.1.2 SIML TMDL Group BMPs to Reduce Copper Loading

The SIML TMDL Group reported that the following BMPs and actions were ongoing or implemented in 2017 as a part of the group's TMDL BMP activity. These BMP actions are described in more detail in Appendix B.

- Meetings Participation and attendance at SIYB TMDL Group meetings since 2005 including 11 group meetings in 2017
- Participation Participate in meetings and coordination with Port staff and Port consultants on new and ongoing scientific studies
- **BMP Committee** The BMP committee formed in 2016 and conducted 5 meetings in 2017
- Outreach The BMP Committee initiated an outreach program including correspondence to the marinas and yacht clubs to support the relevance of low leach paints and new regulations upcoming in 2018. The results of these efforts are indicated in the 2017 vessel tracking results with a substantial upswing in the use of low leach paints
- Education Boater education through newsletters, fliers, workshops and readily available literature
- Training Ongoing staff trainings for existing and new marina employees
- In 2017 a Dockwalker Training program was conducted in cooperation with the CA State Parks Division of Department

- Procedures Ongoing procedures for verifying and monitoring Port Diver Permit compliance at facilities, including:
 - Training marina staff on Port Diver Permits
 - Ensuring that all divers have valid Port hull-cleaning permits prior to entering leaseholds
 - Reporting hull cleaners who arrive by boat and do not check in with the dock master's office to the Port
 - Reporting hull cleaners who create visible paint plumes during hull cleaning to the Port
 - Posting diver BMP signs at marinas and yacht clubs entrances

Posted sign informing hull cleaners

- of Boating and Waterways, open to the public
- Vessel Tracking Boat owner surveys conducted for data collection and reporting in 2017 indicate a 3% increase in completeness and response over last year

BMP copper-reducing strategies such as the Hydra Hoist® (left) and dry space storage (right)

Alternative Methods

- Facilitation of dry storage on land
- Encourage the use of slip liners
- Encouraged use of in-water lift systems
- Installation of a high-capacity hoist at San Diego Yacht Club in 2015 that will assist with storing more vessels on land
- Incentives Marinas are encouraged to offer paint based incentive programs, which include slip wait list priority for boats with non-copper paints or low leach paints

An example of a boat slip liner-a common type of copper-reducing BMP strategy

3.1.2 Vessel Counts by Hull Paint Type

Vessel conversion calculations were based on data provided by the SIML TMDL Group for SIYB marinas and yacht clubs in addition to Port-maintained data for Port vessels, transient slips, and mooring buoys. The 2017 census of the hull paint types reported by the SIML TMDL Group is as follows:

- 780 vessels have copper or unknown (assumed to be copper) hull paint.
- 724 vessels have paints considered as lower copper. These vessels consist of the following:
 - 648 vessels have paint that is listed as a DPR Category I (low leach) paints.
 - 76 vessels have low-copper paint (confirmed [53 vessels] and unconfirmed [23 vessels]).
- 468 vessels have aged-copper hull paint.
- 123 vessels have either non-copper paints or no paint at all (confirmed [111 vessels] and unconfirmed [12 vessels]).

The 2017 census of the hull paint types reported from the Port-maintained slips (Port vessels, transient slips, and mooring buoys) is as follows:

- 67 transient dock vessels have copper or unknown (assumed to be copper) hull paint.
- 16 Port-owned vessels have either non-copper paints or no paint at all (16 confirmed).

3.1.3 Slip Count and Occupancy

Based upon the information provided by the SIML TMDL Group and the Port, 2,313 slips⁷ in SIYB were available to be occupied by vessels in 2017, including a Port-operated anchorage with a capacity of up to 40 guest vessels, 27 transient docks, and 16 slips at the Harbor Police dock. Total slip count included one additional slip relative to the 2016 monitoring year count, with a decrease of 50 slips as compared with the 2,363 maximum available slips and moorings reported in the SIYB TMDL (Tables 3-1 and 3-2).

Of the 2,313 slips and moorings in SIYB during 2017, 135 slips were reported to be vacant year round (or at least at the time the survey was conducted), leaving 2,178 slips that were occupied for at least a portion of time in 2017. Slip occupancy rates for each hull paint type are also shown in Table 3-1 (yacht clubs and marinas) and Table 3-2 (Port-operated facilities). On average, slips and moorings in SIYB were occupied 89 percent of the time.

3.1.4 Vessel Dimensions

The average size vessel in SIYB in 2017, based on reported hull lengths and beam widths, was 38.7 feet (11.8 meters, total length) by 12.2 feet (3.7 meters, beam width) (Appendix C). The average wetted hull surface area of 2017 SIYB vessels was calculated to be 37.3 square meters $(m^2)^8$.

-

⁷ At several locations in SIYB, single slips can be occupied by more than one vessel. In these cases, the slip count may include each vessel within the slip. For example, if two vessels occupy a single slip, the slip count for this location may have been reported as two slips, not one. Efforts to improve consistency on this issue remain ongoing.

⁸ The wetted hull surface area used in loading calculations for the SIYB TMDL Technical Report was 35.3 m².

3.1.5 Estimated Copper Load

Copper loads from passive leaching and in-water hull cleaning are being reported separately for the 2017 monitoring year. Dissolved copper loads in 2017 attributed to passive leaching are shown in Tables 3-1 (yacht clubs and marinas) and 3-2 (Port-operated facilities). Dissolved copper loads in 2017 attributed to in-water hull cleaning are shown in Tables 3-3 (yacht clubs and marinas) and 3-4 (Port-operated facilities).

Passive load estimates were calculated by multiplying the number of vessels in each category by either 0.86 kg/yr (for copper, assumed copper, and unconfirmed low-copper paints, or unconfirmed non-copper paints), or 0.43 kg/yr (for DPR Category I, low-copper, and aged-copper paints). In-water hull cleaning loads estimates were calculated by multiplying the number of vessels in each category by either 0.04 kg/yr (for copper, assumed copper, and unconfirmed low-copper paints, or unconfirmed non-copper paints), or 0.02 kg/yr (for DPR Category I, low-copper, and aged-copper paints).

The load estimate for each category was then corrected for average vessel occupancy (i.e., Average Time Occupied in Tables 3-3 through 3-6). The combined 2017 load estimates from passive and in-water hull cleaning sources are presented in Table 3-7 and as follows:

- Vessels with copper (or assumed copper) paints contributed a load of 634.1 kg/yr (this
 total includes 609.7 kg/yr from vessels in yacht clubs and marinas and 24.4 kg/yr from
 vessels in Port-operated facilities).
- DPR Category I paints contributed a dissolved copper load of 275.4 kg/yr.
- Low-copper hull paints contributed a dissolved copper load up to 22.1 kg/yr.
- Aged-copper paints contributed an annual dissolved copper load of 188.2 kg/yr.
- Vessels that were reported to have unconfirmed low-copper (17.3 kg/yr) or unconfirmed non-copper (10.3 kg/yr) paints contributed an annual dissolved copper load of 27.6 kg/yr.
- No dissolved copper load was contributed to SIYB by the 111 vessels with either confirmed non-copper paint, vessels in HydraHoists®, or vessels that were unpainted.
- A total of 135 slips within the SIYB yacht clubs and marinas were reported to be vacant year-round, and so were not loading dissolved copper into the basin.

In summary, vessels painted with copper paints, DPR Category I paints, low-copper hull paints, and aged-copper paints contributed a combined passive and in-water hull cleaning load of 1,147.3 kg/yr (i.e., approximately 1,122.9 kg/yr for yacht clubs and marinas plus approximately 24.4 kg/yr for Port-operated facilities) of dissolved copper to SIYB in 2017.

Table 3-3.
2017 Copper Load by Vessel Hull Type and Reported Occupancy
at Yacht Clubs and Marinas as a Result of Passive Leaching Using TMDL Assumptions

Vessel Hull Paint Category	Number per Category	Average Time Occupied ^c	Copper Load per Vessel (kg/yr) ^d	Total Copper Load (kg/yr)
Copper or Unknown (Assumed Copper)	780	86.9%	0.86	582.59
DPR Category I (Low Leach)	648	94.4%	0.43	263.13
Low-Copper (Confirmed)	53	92.5%	0.43	21.09
Low-Copper (Unconfirmed) ^a	23	83.7%	0.86	16.56
Aged-Copper Paint ^b	468	89.4%	0.43	179.83
Non-Copper (Confirmed or Not Painted)	111	93.7%	0	0
Non-Copper (Unconfirmed) ^a	12	95.1%	0.86	9.81
Vacant Slips (Yacht Clubs and Marinas)	135			0
Total (Yacht Clubs and Marinas)	2,095°			1,073.01

Notes:

- a. Low- or non-copper paints that were not confirmed are counted as high-copper paint, per the Monitoring Plan.
- b. Calculations for aged-copper paints are similar to low-copper paints (0.43 kg/yr load).
- ^{c.} The average total occupancy was derived by the count within each vessel hull paint category multiplied by the average percent occupancy for that category; values are presented to three significant figures.
- d. Based upon per vessel load identified for passive leaching in Appendix 2 of the SIYB TMDL Technical Report.
- e. Note: Vacant slips are not included in this total.

Table 3-4.
2017 Copper Load by Vessel Hull Type and Reported Occupancy at Port-Operated Facilities as a Result of Passive Leaching Using TMDL Assumptions

Vessel Hull Paint Category	Number per Category	Average Time Occupied ^b	Copper Load per Vessel (kg/yr/vessel) ^d	Total Copper Load (kg/yr)
Port Fleet (Confirmed Non-Copper)	16	100%	0	0
Port Transient Dock ^a (Copper or Unknown and Assumed to be Copper)	26	54.9%	0.86	12.27
Port Transient Dock ^c	1	100%	0.86	0.86
Port Weekend Anchorage ^a (Copper or Unknown and Assumed to be Copper)	40	29.5%	0.86	10.16
Vacant Slips (Port HPD Dock)	0	0%		0
Total (Port-Operated Facilities)	83			23.29

Notes:

- a. Calculated as an average, based on total number of days a slip was occupied by a guest vessel.
- b. The average total occupancy was derived by the count within each vessel hull paint category multiplied by the average percent occupancy for that category; values are presented to three significant figures.
- ^{c.} A known research vessel occupies one slip at the transient dock year-round. The paint type could not be verified, therefore the vessel was assumed to have copper-based hull paint.
- d. Based upon per vessel load identified for passive leaching in Appendix 2 of the SIYB TMDL Technical Report.
- % = percent; kg/yr = kilogram(s) per year; HPD = Harbor Police Dock

^{% =} percent; kg/yr = kilogram(s) per year

Table 3-5.
2017 Copper Load by Vessel Hull Type and Reported Occupancy
at Yacht Clubs and Marinas as a Result of In-Water Hull Cleaning Using TMDL Assumptions

Vessel Hull Paint Category	Number per Category	Average Time Occupied ^c	Copper Load per Vessel (kg/yr) ^d	Total Copper Load (kg/yr)
Copper or Unknown (Assumed Copper)	780	86.9%	0.04	27.10
DPR Category I (Low Leach)	648	94.4%	0.02	12.24
Low-Copper (Confirmed)	53	92.5%	0.02	0.98
Low-Copper (Unconfirmed) ^a	23	83.7%	0.04	0.77
Aged-Copper Paint ^b	468	89.4%	0.02	8.36
Non-Copper (Confirmed or Not Painted)	111	93.7%	0	0
Non-Copper (Unconfirmed) ^a	12	95.1%	0.04	0.46
Vacant Slips (Yacht Clubs and Marinas)	135			0
Total (Yacht Clubs and Marinas)	2,095°			49.91

Notes

- a. Low- or non-copper paints that were not confirmed are counted as high-copper paint, per the Monitoring Plan.
- b. Calculations for aged-copper paints are similar to low-copper paints (0.02 kg/yr load for cleaning).
- ^{c.} The average total occupancy was derived by the count within each vessel hull paint category multiplied by the average percent occupancy for that category; values are presented to three significant figures.
- d. Based upon per vessel load identified for in-water hull cleaning in Appendix 2 of the SIYB TMDL Technical Report.
- e. Note: Vacant slips are not included in this total.

Table 3-6.
2017 Copper Load by Vessel Hull Type and Reported Occupancy
at Port-Operated Facilities as a Result of In-Water Hull Cleaning Using TMDL Assumptions

Vessel Hull Paint Category	Number per Category	Average Time Occupied ^b	Copper Load per Vessel (kg/yr/vessel) ^c	Total Copper Load (kg/yr)	
Port Fleet (Confirmed Non-Copper)	16	100%	0	0	
Port Transient Dock ^a (Copper or Unknown and Assumed to be Copper)	26	52%	0.04	0.57	
Port Transient Dockd	1	100%	0.04	0.04	
Port Weekend Anchorage ^a (Copper or Unknown and Assumed to be Copper)	40	31%	0.04	0.47	
Vacant Slips (Port HPD Dock)	0	0%	1-	0	
Total (Port-Operated Facilities)	83			1.08	

Notes:

- a. Calculated as an average, based on total number of days a slip was occupied by a guest vessel.
- b. The average total occupancy was derived by the count within each vessel hull paint category multiplied by the average percent occupancy for that category; values are presented to three significant figures.
- Based upon per vessel load identified for in-water hull cleaning in Appendix 2 of the SIYB TMDL Technical Report.
- d. A known research vessel occupies one slip at the transient dock year-round. The paint type could not be verified, therefore that vessel was assumed to have copper-based hull paint.

^{% =} percent; kg/yr = kilogram(s) per year

^{% =} percent; kg/yr = kilogram(s) per year; HPD = Harbor Police Dock

3.1.6 Estimated Copper Load Reduction

The dissolved copper load reduction for 2017 is shown in Table 3-7. Load reduction is determined by subtracting the estimated dissolved copper load from the 2,100 kg/yr baseline load attributed to vessels identified in the SIYB TMDL Technical Report (passive leaching = 2,000 kg/yr and in-water hull cleaning = 100 kg/yr).

Based upon these calculations, the 2017 estimated copper load reduction is 952.7 kg/yr (i.e., 2,100 kg/yr minus 1,147.3 kg/yr = 952.7 kg/yr), which is a 45.4 percent reduction compared with the baseline load identified in the TMDL.

Table 3-7.
2017 Estimated Copper Load Reduction

Copper Loading Category	Total Copper Load (kg/yr)	
SIYB Vessels in Yacht Clubs and Marinas with Copper or Unknown Paint (Assumed Copper)	609.69	
SIYB Vessels in Yacht Clubs and Marinas with DPR Category I (Low Leach Paint)	275.37	
SIYB Vessels in Yacht Clubs and Marinas with Confirmed Low-Copper Paint	22.07	
SIYB Vessels in Yacht Clubs and Marinas with Unconfirmed Low-Copper Paint	17.33	
SIYB Vessels in Yacht Clubs and Marinas with Aged-copper Paint	188.19	
SIYB Vessels in Yacht Clubs and Marinas with Confirmed Non-Copper Paint or No Paint	0	
SIYB Vessels in Yacht Clubs and Marinas with Unconfirmed Non-Copper Paint	10.27	
Port HPD Fleet	0	
Port-Operated Docks in SIYB	24.37	
SIYB Yacht Club and Marina Year-Round Vacancies	0	
Grand Total Load	1,147.3	
Load Reduction from TMDL ^a	952.7 (45.4%)	

Notes:

3.2 SIYB TMDL Water Quality Monitoring

This section summarizes the results of the 2017 annual analytical chemistry and toxicity monitoring program conducted in SIYB. Detailed laboratory reports are in Appendix D.

3.2.1 Surface Water Chemistry

Annual water quality monitoring was performed on August 23, 2017. Surface water samples were tested for concentrations of total and dissolved copper and zinc, and for DOC and TOC. Results of the monitoring survey are presented in Table 3-8, including the *in situ* water quality measurements; a QA/QC summary of all analytical laboratory data is in Section 3.2.1.2. The chemistry results reports submitted by each analytical laboratory are in Appendix D.

a The total copper load from the TMDL equals 2,100 kg/yr from vessel paints (passive leaching and in-water hull cleaning, combined). The estimated load due to background, urban runoff, and atmospheric deposition is not included in this total.
% = percent; kg/yr = kilograms per year; HPD = Harbor Police Dock; SIYB = Shelter Island Yacht Basin; TMDL = Total Maximum Daily Load

Dissolved Total **Total Zinc** DOC **Dissolved** TOC **TSS** Station Copper Copper Zinc (µg/L) (µg/L) (mg/L) (mg/L) (mg/L) $(\mu g/L)$ $(\mu g/L)$ SIYB-1 12 13 31 31 1.5 1.7 13 SIYB-2 13 28 29 1.5 1.5 11 13 SIYB-3 9.1 9.8 20 21 1.7 1.4 11 SIYB-4 19 1.7 12 7.9 8.3 18 1.5 10 2.5 SIYB-5 3.4 3.9 9.3 1.7 13 SIYB-6 1.8 2.3 5.6 6.6 2.1 1.4 14 SIYB-REF 0.95 1.2 4.4 3.1 1.5 1.5 10

Table 3-8.
Chemistry Results for SIYB Surface Waters, August 2017 Event

Notes:

Values in **bold** are above the USEPA National Recommended Water Quality criterion continuous concentration (CCC) for dissolved copper of 3.1 µg/L in marine waters

No values were above the zinc CCC of 81 µg/L

High tide on 08/23/2017 was +5.47 feet at 11:15 am: tidesandcurrents.noaa.gov

μg/L = microgram(s) per liter; DOC = dissolved organic carbon; mg/L = milligrams per liter; TOC = total organic carbon; TSS = total suspended solids

Dissolved Copper – Dissolved copper levels within SIYB ranged from 1.8 to 13 μ g/L. The lowest concentration within the basin occurred at the outermost station (SIYB-6); the highest level was recorded at an inner station (SIYB-2). The concentration of dissolved copper at the reference station (SIYB-REF) was 0.95 μ g/L. Dissolved copper concentrations at five of the six SIYB stations exceeded the dissolved copper USEPA National Recommended Water Quality CTR WQO of 3.1 μ g/L.

Total Copper – Total copper concentrations measured in SIYB followed a similar spatial pattern, ranging from 2.3 μ g/L at the outermost station in the basin (SIYB-6) to 13 μ g/L at the innermost stations (SIYB-1 and SIYB-2). The total copper concentration at the reference station (SIYB-REF) was 1.2 μ g/L.

Dissolved Zinc – Dissolved zinc levels in SIYB followed a spatial pattern similar to that of dissolved copper. Concentrations ranged from 5.6 to 31 μ g/L within SIYB (lowest at SIYB-6 and highest at SIYB-1). The concentration at SIYB-REF was 3.1 μ g/L. Dissolved zinc levels in SIYB have remained well below the USEPA criterion continuous concentration (CCC) of 81 μ g/L during all SIYB TMDL monitoring events.

Total Zinc – Total zinc concentrations followed the same spatial pattern, with values ranging from 6.6 μ g/L at SIYB-6 to 31 μ g/L at SIYB-1. The concentration of total zinc at the SIYB-REF station was 4.4 μ g/L.

DOC – DOC concentrations in the water column, which have been shown to affect the bioavailability of free copper, maintained relatively consistent levels throughout SIYB, ranging from 1.5 to 2.5 milligram(s) per liter (mg/L).

TOC – Measured concentrations of TOC were relatively consistent for all samples, ranging from 1.4 mg/L at SIYB-3 to 1.7 mg/L at three stations (SIYB-1, SIYB-4 and SIYB-5).

TSS – Measured concentrations of TSS were relatively consistent for all samples, ranging from 11 mg/L at SIYB-2 and SIYB-3 to 14 mg/L at SIYB-6. The concentration of TSS at the SIYB-REF station was 10 mg/L.

3.2.1.1 Comparison of SIYB Dissolved Copper Levels over Time

An average basin-wide dissolved copper concentration was calculated (excluding the reference station) for comparison with the prior SIYB TMDL monitoring results (Figure 3-2). The basin-wide average concentration of dissolved copper measured in 2017 was 7.9 μ g/L \pm 1.8 μ g/L (mean \pm standard error), which was approximately 5 percent lower than the 2005-2008 baseline level.

As shown in Figure 3-2, the dissolved copper levels in the surface waters of the basin have been relatively consistent over the previous four TMDL monitoring events (2014-2017).

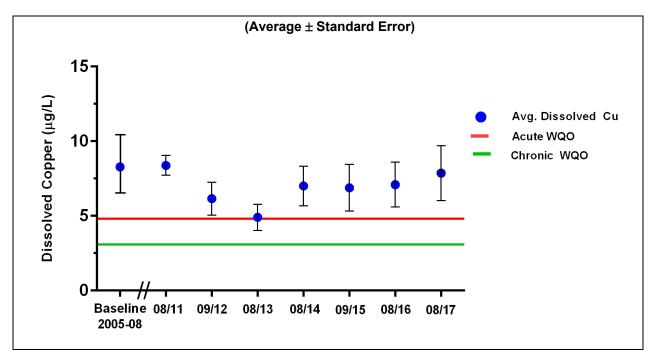


Figure 3-2. Dissolved Copper Concentrations in SIYB Relative to Baseline Conditions

3.2.1.2 Analytical Chemistry QA/QC

All samples were submitted to the analytical laboratories on the same day that they were collected (August 23, 2017). The samples were received in good condition at Weck, at 4.5°C and on ice. The samples for dissolved metals analyses were filtered by the laboratory immediately upon receipt. All samples met holding time requirements for analysis.

Analytical chemistry results underwent a thorough QA/QC evaluation; they were determined to meet the data quality objectives outlined in the QAPP and were deemed acceptable for reporting purposes, with qualifications as noted in the QA section of the individual laboratory

reports (these issues are summarized below). The analytical laboratory reports in Appendix D have specific QA/QC sections that highlight any qualified data.

The following information summarizes the relevant data QA/QC-related findings associated with the 2017 SIYB TMDL study:

- Issue Similar to results in 2016, higher-than-expected levels of total copper and total zinc were observed in the equipment rinsate blank. Ideally, the level of metals in this QA sample should be very low or non-detect. The field blank contained concentrations of less than the equipment blank, indicative of potential trace contamination of equipment. The concentrations of the metals in the equipment rinsate are similar to the concentrations measured at the reference station for zinc.
- Issue Higher-than-expected levels of DOC/TOC were observed in the equipment rinsate blank, and to a lesser degree in the field blank. These low-level detections are of a range similar to that of previous events and may be representative of trace contamination. Corresponding laboratory QA/QC samples meet all project specific limits in the QAPP.
- Issue DOC values in some cases were higher than the TOC values reported for the same sample. Corresponding laboratory QA/QC samples met all QAPP limits, and concentrations measured in the associated laboratory blanks were very low to nondetect. The magnitudes of these minor differences are in general agreement with results from previous events and these differences appear to be inherent to the method. The exact source of these low-level detections is unknown, but they may be a trace-level artifact introduced as part of the filtration step.

Explanation and Resolution – Similar to the 2016 event, trace detections of metals, DOC, TOC, and detectable TSS were measured in the equipment rinsate. The source of these detections is unknown. Based on similar low-level detections of contaminants of concern in the equipment rinsate, several best field practices are employed as part of the field collection. Specifically, the Niskin bottle used for sample collection was the same piece of equipment that has been used for previous SIYB TMDL monitoring events. Furthermore, prior to the TMDL sampling event, the Niskin bottle was scrubbed with an Alconox® solution, thoroughly rinsed with deionized water, and sealed in a plastic bag. Prior to the equipment rinsate collection, the Niskin bottle was rinsed again with laboratory-certified deionized water.

The minor differences and low-level detections were not considered significant enough to warrant retesting or recollection of samples and testing. All results are considered usable for their intended data purposes and are reported as provided by the laboratory.

3.2.2 Toxicity

In addition to water chemistry analyses, the samples were tested for toxicity using an acute 96-hour survival exposure with a marine larval fish (Pacific topsmelt), and a chronic 48-hour survival and development test using bivalve embryos (Mediterranean mussel). The complete toxicity laboratory report for the 2017 study is in Appendix D.

3.2.2.1 Pacific Topsmelt 96-Hour Acute Bioassay

Pacific topsmelt survival ranged from 93.3 percent to 96.7 percent in all laboratory controls. This survival rate meets the minimum acceptable mean control criterion of 90 percent (Table 3-9). No toxicity was observed in any of the undiluted samples tested. The LC₅₀ for all samples was greater than 100 percent, indicating that surface water samples collected in SIYB and at the reference station were nontoxic to topsmelt.

Table 3-9.
Results of the 96-Hour Pacific Topsmelt Bioassay

Composituation	Sample ID/Mean Survival (%)							
Concentration (% Sample)	SIYB-1	SIYB-2	SIYB-3	SIYB-4	SIYB-5	SIYB-6	SIYB-REF	
Laboratory Control	96.7	96.7	96.7	93.3	93.3	96.7	96.7	
25	96.7	96.7	100	96.7	100	96.7	96.7	
50	100	96.7	96.7	100	93.3	96.7	96.7	
100	93.3	93.3	100	93.3	93.3	96.7	96.7	
TST (Pass/Fail)	Pass	Pass	Pass	Pass	Pass	Pass	Pass	
NOEC (%)	100	100	100	100	100	100	100	
LOEC (%)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
LC ₅₀ (%)	>100	>100	>100	>100	>100	>100	>100	

Notes:

3.2.2.2 Bivalve Larvae 48-Hour Chronic Bioassay

Results of the mussel development tests conducted on SIYB surface water samples are summarized in Table 3-10. Results are presented as a combined endpoint of survival and development per the USEPA 1995 protocol.

Bivalve tests were conducted on both filtered and unfiltered samples (for the 100 percent treatments only). Filtration on the undiluted samples was conducted to safeguard against potential undesirable effects from resident organisms in the raw water samples. The need to filter the samples prior to conducting the bivalve larvae test is further discussed in Section 3.2.2.3.

A bivalve larvae test is considered acceptable (i.e., valid) if at least 50 percent of the control larvae survived and an average of 90 percent of surviving control larvae developed normally. Control survival for the 2017 tests ranged from 93.2 percent to 97.7 percent; average control survival was 96.0 percent (which exceeds the test acceptability criteria of 50 percent survival; see toxicity report in Appendix D). Bivalve larvae normality in the controls ranged from 94.9 percent (SIYB-1) to 98.1 percent (SIYB-6); average control normality was 96.4 percent (which exceeds the test acceptability criteria of 90 percent normal development). Based upon these high levels of control survival and normal development, the 2017 SIYB bivalve larvae tests met the required acceptability criteria and the tests were deemed valid.

[%] = percent; ID = identification; LC₅₀ = concentration estimated to be lethal to 50 percent of the organisms; LOEC = lowest observed effect concentration; N/A = not applicable (because all test treatments had an NOEC of 100%); NOEC = no observed effect concentration; TST (Pass/Fail) = test of significant toxicity; TST Pass = sample is nontoxic according to the TST calculation; TST Fail = sample is toxic according to the TST calculation

Table 3-10.

Results of the 48-Hour Bivalve Larvae Bioassay

Concentration	Mean Combined Survival and Normal Development						
(% Sample)	SIYB-1	SIYB-2	SIYB-3	SIYB-4	SIYB-5	SIYB-6	SIYB-REF
Laboratory Control	95.0	96.0	93.2	96.9	97.5	97.7	96.0
6.25	95.2	95.2	96.9	93.7	93.7	95.4	94.5
12.5	95.4	95.3	95.5	96.3	94.9	96.2	94.8
25	96.8	96.6	95.9	90.6	93.9	94.2	95.5
50	96.9	95.9	97.0	98.1	95.5	94.8	94.7
100	41.9	71.4	89.1	94.7	97.2	96.7	96.7
100 (0.45-µm filtered) ^a	62.6	86.1	92.4	92.3	95.2	95.6	95.4
TST (Pass/Fail) unfiltered sample	Fail	Fail	Pass	Pass	Pass	Pass	Pass
TST (Pass/Fail) filtered sample	Fail	Pass	Pass	Pass	Pass	Pass	Pass
EC ₅₀ (% unfiltered sample)	>100	>100	>100	>100	>100	>100	>100
EC ₅₀ (% filtered sample)	94.7	>100	>100	>100	>100	>100	>100

Notes

The reference toxicant EC $_{50}$ value (7.47 µg/L copper) for this test was within two standard deviations of the Nautilus historical mean (8.58 \pm 4.62 µg/L copper), indicating typical organism sensitivity to copper.

A statistically significant decrease in the combined survival and development endpoint using the TST test was observed in two of the six samples tested (SIYB-1 and SIYB-2) from within the basin. Exposure of bivalve larvae to the undiluted and unfiltered SIYB-1 and SIYB-2 samples (i.e., 100 percent concentration) resulted in 41.9 percent and 71.4 percent combined survival and normal development compared with the laboratory control level (95 and 96 percent, respectively). For the undiluted and filtered samples tested, only one sample (SIYB-1) showed statistically a significant decrease in the combined survival and normal development endpoint (62.6 percent). The EC $_{50}$ for the filtered SIYB-1 sample was calculated to be 94.7 percent; the EC $_{50}$ for the unfiltered SIYB-1 and both SIYB-2 samples was >100 percent. The full toxicity testing report in provided in Appendix D.

TST: Pass = sample is nontoxic according to TST calculation; Fail = sample is toxic according to the TST calculation.

Values in **bold** indicate a statistically significant decrease compared to control.

a. Each undiluted sample was also tested filtered through 0.45-µm filter to remove potentially harmful native algae that might interfere with test organism performance. Mean combined survival and normal development in the filtered control was 94.1 percent.

^{% =} percent; µm = micrometer; EC₅₀ = concentration estimated to cause an adverse effect on 50 percent of the organisms

3.2.2.3 Toxicity QA/QC

3.2.2.3.1 Field Observations

On the day prior to sample collection (August 22, 2017), a reconnaissance survey was conducted in SIYB to evaluate the study area for the presence of algal blooms and for general water clarity. In addition to these visual assessments, the reconnaissance survey also included collection of several water samples that were sent to the laboratory to be analyzed for the presence of harmful algal species. The reconnaissance survey showed that the water clarity in SIYB was acceptable and that the collected water samples did not contain an abundance of harmful algae species. Based upon these findings, it was determined that the collection project should proceed as planned. No other QA/QC issues were noted for this test, and all water quality parameters were within the appropriate ranges for the duration of the test.

3.2.2.3.2 Sample Receipt

Samples were received in good condition on the same day that they were collected (August 23, 2017). The SIYB samples were delivered on ice and received in the laboratory within the USEPA recommended temperature range of 0–6°C. All tests were initiated within the 36-hour holding time requirement.

3.2.2.3.3 Toxicity Test Validity

The controls for each test met the minimum test acceptability criteria set by USEPA, as well as internal laboratory QA program requirements. Both the Pacific topsmelt 96-hour acute survival and the bivalve 48-hour chronic development tests met all protocol-required minimum acceptability criteria. Nautilus's QA/QC summary of the toxicity test results is in Appendix D.

3.2.2.3.4 Reference Toxicant Tests

Concurrent topsmelt and bivalve reference toxicant results are summarized in Table 3-11 and Table 3-12, respectively. The controls for both reference toxicant tests met the minimum test acceptability criteria, and the calculated EC_{50} value for the bivalve test fell within two standard deviations of the laboratory historical mean. This result indicates that the test organisms used during this round of testing had typical sensitivity to copper. The LC_{50} for the Pacific topsmelt test was also within two standard deviations of the historical mean, indicating that the fish used during this round of testing had typical sensitivity to copper.

Table 3-11.
Summary of Reference Toxicant Test Results for Pacific Topsmelt

	Copper Chloride Reference Toxicant Test				
Concentration (µg/L Copper)	Mean Percent Survival	LC₅₀ (µg/L Copper)	Historical Mean ± 2 Standard Deviations (μg/L Copper)		
Laboratory Control	100				
50	90				
100	90	141	104 ± 60.4		
200	10		104 ± 60.4		
400	0				
800	0				

Notes:

μg/L = microgram(s) per liter; LC₅₀ = concentration estimated to be lethal to 50% of the organisms

Table 3-12.
Summary of Reference Toxicant Test Results for Bivalve Larvae

	Copper Chloride Reference Toxicant Test				
Concentration (µg/L Copper)	Mean Combined Survival and Normal Development	EC₅₀ (μg/L Copper)	Historical Mean ± 2 Standard Deviations (µg/L Copper)		
Laboratory Control	95.9				
2.5	95.8				
5.0	93.8	7.47	8.58 ± 4.62		
10	0.6	1.41	0.30 ± 4.02		
20	0				
40	0				

Notes:

 μ g/L = microgram(s) per liter; EC₅₀ = concentration estimated to cause an adverse effect on 50% of the organisms

Curved Hinged Larvae

During the 2014 monitoring, it was noted that some of the abnormal larvae (approximately 70 percent) were enumerated as "abnormal" because they had a slightly curved-hinged shell (i.e., bean-shaped) rather than a straight-hinged D-shaped shell. To evaluate the recurrence of this observation for future TMDL bivalve larvae tests, the laboratory scored the larvae as (1) larvae with a fully developed shell with a straight-hinged D-shape, (2) partially developed larvae with a concave or curved hinge, and (3) larvae that fail to develop a shell or display severe morphological defects.

As described in Appendix D, approximately 0 to 3.5 percent of the bivalve larvae in the undiluted, unfiltered samples for SIYB-1 through SIYB-5 for the 2017 study were partially developed, but did not possess a straight hinge. Two of these samples (SIYB-1 and SIYB-2) resulted in statistically significant toxicity to bivalve larvae. This response was not observed in any of the control replicates, nor was it observed in samples from SIYB-6 or SIYB-REF. A much

⁹ Photographs of bivalve larvae with slightly curved-hinged shells were included in the 2014 SIYB TMDL report (AMEC, 2015).

¹⁰ This value is lower than those observed in 2015, which ranged from 5 to 10 percent in SIYB-1 through SIYB-4.

smaller percentage of the larvae were partially developed with a curve-hinged shell in 2017 compared with 2014. The factor(s) that contributed to the elevated number of curve-hinged shells observed in the SIYB-1 sample in 2014 (>70 percent) did not recur in 2017 (see Nautilus' study report contained in Appendix D for more information).

4.0 ONGOING INITIATIVES AND STUDIES RELEVANT TO THE SIYB TMDL

This section provides a summary of additional local, state and federal initiatives or studies that occurred in 2017 that are relevant to the SIYB TMDL. These initiatives are instrumental in supporting the objectives of the Port's Copper Reduction Program to both meet regulatory compliance requirements and work toward reducing copper loading in SIYB and San Diego Bay.

4.1 DPR Efforts

Updated List of Copper-based Antifoulant Paints by Leach Rate Category – On July 20, 2017, the DPR published a memorandum that provided an updated list of copper-based AFP products that contain the active ingredients copper oxide, copper hydroxide, and cuprous thiocyanate (DPR, 2015), grouped into two categories:

- 1. Category I: Products with a leach rate below or equal to (≤) 9.5 micrograms per square centimeter per day (µg/cm²/day)
- 2. Category II: Products with a leach rate greater than (>) 9.5 μg/cm²/day

Both the original and updated DPR Lists have been instrumental in moving several Port projects forward, namely (1) development of paint guidance for improved vessel tracking, and (2) acceptance of updated tracking for SIYB annual reporting purposes.

Update to Section 6190 of Title 3 California Code of Regulations – In August 2017, the DPR adopted section 6190 of Title 3, California Code of Regulations. This action establishes a maximum allowable copper leach rate for copper-based AFP products registered in California for use on recreational vessels beginning July 1, 2018. This regulatory program is a critical component of the SIYB TMDL, as all copper-based AFPs that do not meet the maximum leach rate of 9.5 μg/cm²/day (i.e., non-Category I paints) will no longer available for application on recreational vessels in California marinas. As a result, additional reduction in the copper loading into SIYB should occur. Prior to adoption, on January 31, 2017, the Port provided comments on the DPR's Initial Statement of Reasons. In its summary letter, the Port (1) supported the effective date of July 1, 2018, and (2) encouraged the continued development and implementation of additional copper reduction mitigation measures. The Port's letter is provided in Appendix F.

4.2 USEPA Interim Decisions on Copper Compounds

In September 2017, the USEPA announced availability of the proposed interim registration review on several pesticides, including copper compounds. Triennial Reviews allow the USEPA to consider the latest science when determining whether current regulations for copper require additional changes from the current rules in place. Staying informed and submitting comment letters allows the Port to be involved in the transparent processes set forth by the USEPA and gives a platform for discussing the science and policy aspects that would assist in meeting TMDL compliance. The Port submitted comments on this interim registration review during the 60-day public comment period. In summary, the Port provided the following comments on the proposed interim registration review:

- The Port strongly encouraged the USEPA to consider the most recent scientific findings and water quality impacts, especially in areas with known impairments, to ensure that legally available AFPs do not continue to contribute to those regions' impairments; and
- The Port strongly encouraged the submittal of specific hull cleaning practices and maintenance expectations for each product.

The Port's response letter is provided in Appendix F.

4.3 Port Initiatives

In 2017, the Port continued to pursue a wide range of initiatives as outlined in the SIYB TMDL Implementation Plan (Section 3.1.1.1). Each of these initiatives are incorporated under one of five core elements of the Copper Reduction Program and work in concert to achieve copper loading reductions in SIYB and San Diego Bay.

4.4 SIYB Time Series Study

During each annual TMDL compliance monitoring event, individual surface samples obtained for copper analyses are collected at one discrete time during the course of a daily tidal cycle. For year-on-year consistency purposes, the field collection crew collects individual samples at the seven TMDL stations at approximately the same point in the daily tidal cycle. While the sampling design is consistent at time of collection during the tidal cycle each year, the extent to which surface concentrations of dissolved copper may vary over the course of an entire semidiurnal tidal cycle in SIYB remains unknown. The SIYB Time Series study aimed to capture potential variations in dissolved copper concentrations at the surface over the course of one full semidiurnal tidal cycle.

The "Time Series Study" addresses the following study question: How do tidal variations affect the concentrations of dissolved copper in the surface waters of SIYB? Appendix E contains the technical memorandum, which discusses study methods and results. Overall, tidal variations do seem to affect the dissolved copper concentrations in surface waters of SIYB, however much of what is observed appears dependent on location within the basin. This variability is (1) the least prominent at the head of the basin (as shown at station TS-1), where variability between samples was relatively small; (2) more prominent at the locations closer to the mouth of the basin (as shown by stations TS-2 and TS-3), (3) more prominent between tidal phases closer to the mouth of the basin (i.e., stations TS-2 and TS-3), and (4) not significantly different at each station between the high and low tidal phases captured during the Time Series Study.

Amec Foster Wheeler Environment & Infrastructure, Inc.

5.0 DISCUSSION

This section highlights some of the findings associated with the load reductions and water quality monitoring as they relate to initiatives implemented within this reporting period.

5.1 Dissolved Copper Load

The vessel-tracking program for 2017 estimated an annual dissolved copper load to SIYB of 1,147.3 kg/yr. This value was calculated by adding together the estimated contributions from (1) copper and assumed copper paints, (2) DPR Category I and confirmed low-copper paints, and (3) aged-copper paints. Figure 5-1 shows the dissolved copper loads from 2011 to 2017 compared with the TMDL baseline load (2,100 kg/yr). This figure also shows the estimated yearly load in relation to the TMDL interim and final load reduction targets.

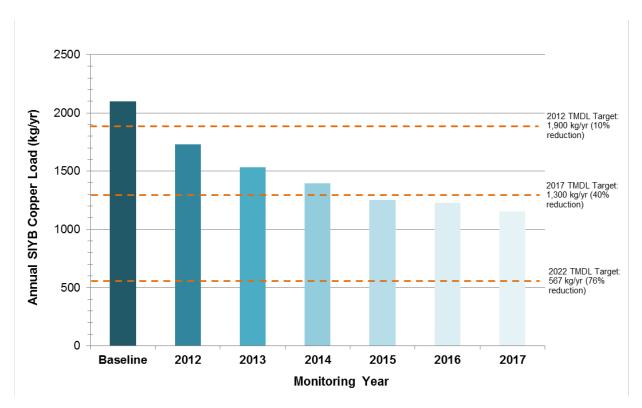


Figure 5-1. Annual SIYB Copper Load per Monitoring Year

5.2 Dissolved Copper Load Reduction

The results of the Port and SIML TMDL Group vessel tracking programs were used to estimate a dissolved copper load reduction of 45.4 percent (952.7 kg/yr) for 2017 compared with the TMDL baseline load (2,100 kg/yr). Not only is this an increase in load reduction from the previous year, but the program has successfully hit the 2017 TMDL required target of 40% load reduction by 2017. The estimated load reduction (952.7 kg/yr) was calculated by adding together all of the individual load contribution sources, and then subtracting this sum from the TMDL baseline (i.e., 2,100 kg/yr minus 1,147.3 kg/yr equals 952.7 kg/yr). The relative load reduction from each reduction category is shown in Figure 5-2.

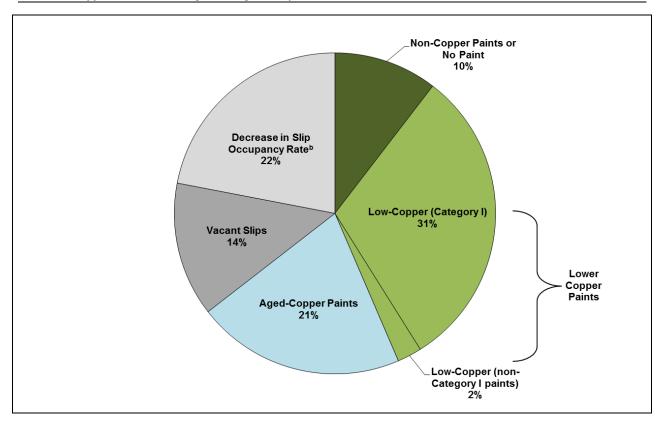


Figure 5-2. 2017 Estimated Load Reduction (952.7 kg/yr) Relative Percentage per Category^a

Notes:

a. The 2017 load reduction was determined by subtracting the estimated dissolved copper load (1,147.3 kg/yr) from the TMDL baseline load (2,100 kg/yr). This value does not include the load reduction due to the difference between the number of total slips used in the TMDL load calculation (2,363) and the number of slips reported in 2017 (2,313). Therefore, the percent breakdown per category is relative to the 952.7 kg/yr estimated load reduction.

b. Decrease in average slip occupancy represents the load reduction due to an average occupancy rate of 89% for all vessels in SIYB

The SIYB TMDL identified vessel conversions from copper to non-copper paints as the primary method for reducing dissolved copper loads to SIYB. In reality (as shown in Figure 5-2), there are numerous ways by which load reduction can occur, such as conversions to DPR Category I or low-copper paints, more time between repainting (i.e., aged-copper paint), or slip vacancies. Adjustments to hull-cleaning practices may also reduce loading to a greater extent than identified in the TMDL. A hull—cleaning event triggers both an active and subsequent passive dissolved copper leaching phase that lasts 30 days post-cleaning (Earley et al., 2013). Adjusting hull-cleaning practices may directly reduce the loading contribution in both the active and passive leaching phases, which would result in further load reductions into SIYB.

With the continued implementation of the annual vessel tracking program, the approach implemented by the SIML TMDL Group provides for self-reporting of realistic loading estimates, which will continue to improve as the data quality and response rate improves. Over the life of the vessel tracking program, numerous modifications were made to the copper load contributions from various loading sources. These modifications were made when new information was obtained that allowed a more accurate copper load assignment, compared with the more conservative TMDL loading assumptions. For example, the reclassification of vessels

with aged paint reduced the per-vessel copper load of 0.9 kg/yr to 0.45 kg/yr, which resulted in a significant decrease in annual copper loads. Using actual yearly occupancy rate information in the load calculations rather than the TMDL assumption of 100 percent occupancy also resulted in a significant load reduction. As a result, the annual copper load reductions provide a realistic assessment of current loading conditions.

Figure 5-3 shows the distribution of load categories throughout each monitoring year. Continuing to conduct a thorough and rigorous annual vessel tracking program is essential to capture the continued movement by SIYB vessels owners to DPR Category I and non-copper paints as well as any substantial changes in the other load reduction categories (e.g., occupancy and vacancy, aged-copper paints). The 2017 vessel tracking program showed that the number of Category I paints increased by 344 vessels (over a 200 percent increase) compared to the 2016 monitoring period. Continued efforts like this by the boaters of SIYB will further assist with loading reductions. This notable observation is illustrated in Figure 5-3.

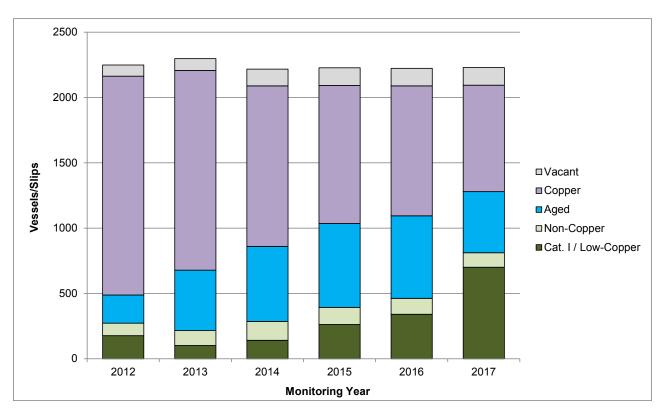


Figure 5-3. Load Categories per TMDL Year, 2011–2017

5.2.1 Estimated Future Load Reductions

The 2018 DPR Rule should result in additional reductions of the total copper load to SIYB. For future load reduction estimating purposes, when all vessels identified in 2017 with high-copper paint (or assumed high-copper paint) transition to a DPR Category I paint, the basin would see a minimum copper load reduction of approximately 338 kg/yr (assuming the same occupancy rate as reported for 2017). The conversion from high copper AFPs to Category I paints combined with all other loading sources would result in the load reduction of 1,285 kg/yr, which is a 61 percent load reduction compared with the TMDL baseline load (based on 2017 occupancy). Transitioning to non-copper paints would be even more beneficial because non-

copper paints contribute 0 percent dissolved copper load to the basin, whereas DPR Category I paints contribute a 50 percent load (when compared to the 100 percent loading of high copper paints).

While the upcoming transition to DPR Category I paints should result in additional reductions in copper loading, this alone will not achieve the required TMDL loading reduction compliance requirement of 76% by 2022. Early predictions show that in SIYB, the DPR Rule may have the ability to reduce loading by 61% (assuming all current copper and/or unconfirmed paints transition to a Category I paint). Additionally, caution should be taken when trying to (1) predict the timeframe over which the load reduction would occur, and (2) estimate the actual reduction in copper loading that would result prior to, during, and after the transition process. The factors that may influence load reductions associated with implementation of the DPR Rule include (but are not limited to): (1) the transition time to phase out non-Category I paints, (2) the amount of time it takes for owners to repaint their vessels with Category I paints, and (3) the potential for a spike in the number of vessel owners opting to repaint with non-Category I paints (i.e., high copper paints) prior to the paint transition taking full effect. It is important to note that the 2017 vessel tracking results suggest an on-going transition to Category I paints is occurring. Even with the new DPR Rule, continued voluntary transitions to non-copper paints, or other policy based changes aimed at further copper reduction will likely also be needed to meet the final TMDL reduction goal.

5.3 Water Quality Monitoring

5.3.1 Dissolved Copper Levels

The 2017 monitoring program showed the basin-wide average dissolved copper level to be 7.9 μ g/L. Copper levels at five of the six SIYB sampling stations exceeded the CTR WQO of 3.1 μ g/L on the day of collection. Dissolved copper concentrations at these same five stations exceeded the CTR during the past three annual monitoring events. The 2017 monitoring event also showed that concentrations of dissolved copper at four of six stations exceeded the CTR acute criterion maximum concentration (CMC) water quality objective (4.8 μ g/L). This result is consistent with the results of 2016, when the CMC was exceeded at the same four stations.

Figure 5-4 depicts the dissolved copper levels measured at each station from 2011 through 2017. As shown on this figure, there is a gradient in dissolved copper levels in SIYB where higher concentrations are consistently found near the head of the basin, with levels decreasing moving toward the mouth (i.e., toward San Diego Bay).

Although the basin-wide dissolved copper average observed in the 2017 monitoring program (7.9 μ g/L) is approximately 14 percent higher compared to the previous three monitoring events (averages ranged from 6.9 μ g/L to 7.1 μ g/L), the 2017 average concentration is within the standard error of previous average concentrations. Additionally, the 2017 results are in agreement with the results of the Enhanced Water Quality Special Study conducted in 2016, which showed the basin-wide dissolved copper average to be 7.6 μ g/L (Amec Foster Wheeler, 2017c). These recent data show that the year-after-year dissolved copper levels seem to be holding steady (neither increasing nor decreasing).

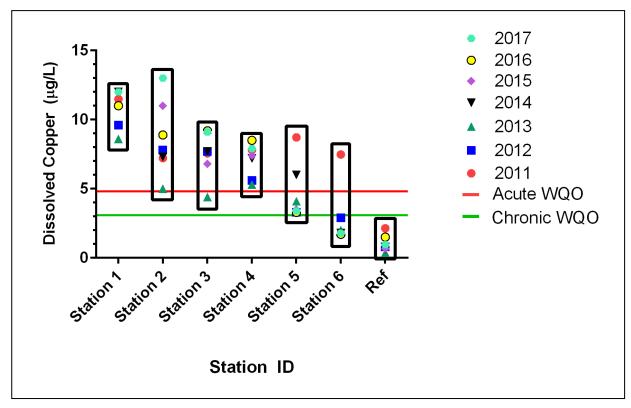


Figure 5-4. Dissolved Copper Comparison by Sampling Station

5.3.2 Toxicity Tests

Consistent with previous tests conducted for the TMDL monitoring program (dating back to the initiation of the monitoring in 2011), no acute toxicity to fish larvae was observed at any of the SIYB stations or the reference station. These results confirm that acute toxicity to fish larvae has not been an issue for SIYB.

Similar to the recent findings of the dissolved copper chemistry analyses of SIYB surface waters, toxicity in basin waters has also been relatively constant. Chronic toxicity has been observed during each year of the TMDL monitoring program dating back to 2012; however, toxicity has been limited to only two stations: SIYB-1 and SIYB-2. Station SIYB-2 showed a toxic response in 2017 (as it did in 2012 and 2015); however, it did not show a toxic response in 2013, 2014, or 2016. SIYB-1 also showed a toxic response in 2017, as it has in each of the previous TDML monitoring years since 2012. Stations SIYB-1 and SIYB-2 are the closest to the head of the basin and have the highest concentrations of vessels within the immediate vicinity (compared with other stations). Consistent with previous SIYB monitoring events, the 2017 monitoring found no chronic toxicity at the sampling stations in the middle or near the mouth of the basin, only at the head of the basin.

Final 2017 Shelter Island Yacht Basin Dissolved Copper TMDL Monitoring and Progress Report	March 2018
This page intentionally left blank	
This page intentionally left blank	

6.0 CONCLUSIONS

The SIYB TMDL monitoring program results indicate that the second interim target, a 40 percent load reduction by 2017, was achieved. The 2017 vessel tracking data show a reduction of 45.4 percent (approximately 952.7 kg/yr) in annual dissolved copper loading to SIYB from vessels when compared with the SIYB TMDL-assumed baseline loading of 2,100 kg/yr. Furthermore, the improvements made to the vessel tracking program provided a realistic assessment of current loading conditions, the accuracy of which will only improve as the data quality and response rate continues to improve. As such, the program, with continued efforts to improve implementation, appears on track to maintain this load reduction.

While copper loading into SIYB has continued to decrease, dissolved copper concentrations in the surface water have leveled off from an original decrease, and thus have remained relatively constant, especially during the four most recent monitoring events (2014–2017). The Port has planned and implemented several studies to evaluate the apparent disconnect between dissolved copper levels observed in surface waters during the annual water quality program and the load calculated using annual vessel tracking data. To date, the Port has collected additional data regarding:

- Tidal variations and their potential effect on surface water dissolved copper concentrations (January 2018)
- Evaluating how increasing circulation in the head of SIYB via the construction of a culvert may help lessen surface water dissolved copper concentrations (on-going)
- How dissolved copper concentrations may vary throughout the basin depending on depth (August 2016)

Such additional data will inform the Port on management strategies that may need to be considered in the next three years for future policy decisions that will be needed to reach the TMDL compliance goal of a 76% loading reduction, since the DPR Rule will only, at most, achieve a 61% reduction of copper loading in SIYB.

For future load reductions to translate into measurable decreases in water column dissolved copper levels, there will need to be continued transitions from high-copper to both non-copper or DPR Category I paints along with the development and implementation of other copper reduction strategies. A substantial copper load reduction should occur when the DPR Rule goes into effect in July 2018. However, while the DPR expects significant reductions in dissolved copper concentrations to be realized following full implementation of the DPR rule, marina basins with more than 1,833 vessels (which includes SIYB) may not fully meet the 3.1 µg/L dissolved copper WQO, even with 100 percent transition to Category I paints (DPR, 2014). Therefore, continued voluntary transitions to non-copper paints, as well as additional management actions may need to be considered to further reduce dissolved copper levels in SIYB.

In the 2016 SIYB TMDL Monitoring Report, the Port proposed to identify additional copper reduction implementation concepts, strategies, and policy initiatives that could be considered in 2017. The following recommendations from the 2016 report were pursued:

- Additional Copper Reduction Implementation Concepts and Strategies Established Marina Voluntary Self-Certification Process: In December 2017, the Port sent letters to each individual marina discussing the importance of vessel tracking for the TMDL, the ending of the compliance phase, summarizing their vessel tracking data that was submitted for 2016, and comparing their 2016 data to other SIYB marinas as a whole. Marina managers were asked to review the data, and return a Self-Certification Statement with their 2017 vessel tracking data submittal that confirmed their data was collected honestly and to the best of their ability. All marinas submitted data for 2017 and all but one marina submitted signed Certification forms.
- Additional Copper Reduction Implementation Concepts and Strategies- Focus on Accurate Reporting and Prepare for the new 2018 DPR Low Leach Rule to go into effect: The main strategy for 2017 was to encourage accurate and complete reporting from all marinas, in order to compile a data set that would most accurately determine if the 2017 interim compliance phase was met. Additionally, the Port recognized how an accurate data set from 2017 will set up the ability to effectively determine if the 2018 DPR Low Leach Rule will assist in further loading reductions in the coming 5 years.

Actions for the final TMDL Phase

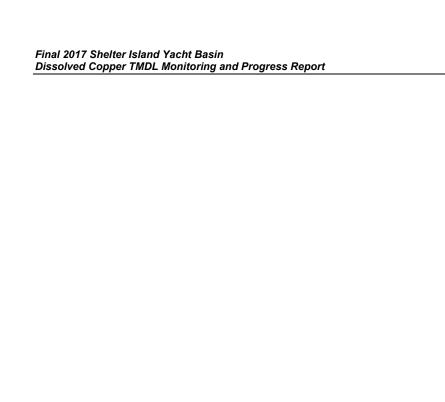
Moving forward into the final TMDL phase, the Port will work with stakeholders and the Regional Board to advance efforts to reduce copper. Efforts to meet the final load reduction target will focus on additional actions that can directly decrease copper loading both from passive leaching and in-water hull cleaning 11. The primary goal of any selected strategy or policy initiative is to improve water quality in the basin and San Diego Bay by realizing measurable and lasting reductions in dissolved copper.

Given the success of achieving interim compliance goals, the Port will continue to implement the BMP structure that is set forth in the Implementation Plan. Efforts for the next three years will be adaptive management-based and focused on exploring strategies that will close the gap between the estimated 61 percent copper load reduction (assuming the DPR Rule and 2017 occupancy data) and the TMDL compliance requirement of a 76 percent load reduction by 2022. Management strategies will be focused on initiatives and/or policies that will result in the additional loading reductions needed to reach a 76 percent load reduction.

The Port will continue to reach out annually to the Regional Board regarding the program's progress towards the TMDL compliance requirement, and seek input, where applicable, on direction for the final compliance phase.

Amec Foster Wheeler Environment & Infrastructure, Inc.

¹¹ This may include further consideration of the potential copper mitigation strategies identified in the DPR's January 30, 2014 memorandum entitled "Determination of Maximum Allowable Leach Rate and Mitigation Recommendations for Copper Antifouling Paints Per AB 425."


7.0 REFERENCES

- AMEC. 2015. 2014 Shelter Island Yacht Basin Dissolved Copper TMDL. Monitoring and Progress Report. March.
- Amec Foster Wheeler. 2017a. Shelter Island Yacht Basin Dissolved Copper TMDL. Monitoring Plan (Revision 3). August 2017.
- Amec Foster Wheeler. 2017b. Shelter Island Yacht Basin Dissolved Copper TMDL. Quality Assurance Project Plan. August 2017.
- Amec Foster Wheeler. 2017c. Shelter Island Yacht Basin Enhanced Water Quality Special Study. March 2017.
- California Department of Pesticide Regulation (DPR). 2014. Determination of Maximum Allowable Leach Rate and Mitigation Recommendations for Copper Antifouling Paints per AB 425. January 30.
- DPR. 2017. List of Copper-Based Antifoulant Paints by Leach Rate Category. Updated July 20, 2017.
- Delgadillo-Hinojosa, F., A. Zirino, and C. Nasci. 2008. Copper complexation capacity in surface waters of the Venice Lagoon, Marine Environmental Research 66: 404–411
- Earley, Patrick J., Brandon L. Swope, Katherine Barbeau, Randelle Bundy, Janessa A. McDonald, and Ignacio Rivera-Duarte. 2013. Life cycle contributions of copper from vessel painting and maintenance activities. Biofouling: The Journal of Bioadhesion and Biofilm Research, DOI: 10.1080/08927014.2013.841891
- Rosen. G., Rivera-Duarte, I., Kear-Padilla, L., Chadwick, B. 2005. Use of laboratory toxicity tests with bivalve and echinoderm embryos to evaluate the bioavailability of copper in San Diego Bay, California, USA. Environmental Toxicology and Chemistry, 24:415–422.
- San Diego Regional Water Quality Control Board (Regional Board). 1994. Water Quality Control Plan for the San Diego Basin—Region 9 (Basin Plan).
- Regional Board. 2005. Shelter Island Yacht Basin Dissolved Copper Total Maximum Daily Load, San Diego Bay. Resolution No. R9-2005-0019. Basin Plan Amendment and Technical Report.
- Regional Board. 2011. Investigative Order No. R9-2011-0036 to the San Diego Unified Port District): Shelter Island Yacht Basin Dissolved Copper TMDL Implementation Plan. March 11.
- Regional Board. 2013. Letter signed by David Gibson, Executive Officer of the San Diego Regional Water Quality Control Board titled, "Comments on 2012 Shelter Island Yacht Basin Total Maximum Daily Load Monitoring and Progress Report." July 26.
- Unified Port of San Diego (Port). 2015. SIYB Hull Paint Guidance List.

- United States Environmental Protection Agency (USEPA). 1995. Short-term Methods for Measuring the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms. EPA/600/R-95/136. EPA Office of Research and Development. Narragansett, RI.
- USEPA. 2000. Water Quality Standards; Establishment of Numeric Criteria for Priority Toxic Pollutants for the State of California. Rules and Regulations. Federal Register, Vol. 65, No. 97. May 18.
- USEPA. 2002. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, Fifth Edition. EPA-821-R-02-012. October.
- USEPA. 2010. National Pollutant Discharge Elimination System Test of Significant Toxicity Implementation Document. EPA/833/R-10/003. June 2010.
- Weston. 2011. Shelter Island Yacht Basin TMDL Monitoring Plan. Prepared for the California Regional Water Quality Control Board, San Diego Region. May.
- Zirino, A., R. Demarco, I. Rivera, and B. Pejcic. 2002. The influence of diffusion fluxes on the detection limit of the jalpaite copper ion-selective electrode. Electroanalysis 14:493–498.

APPENDIX A

SIYB DISSOLVED COPPER TMDL MONITORING PLAN REVISION 3

This page intentionally left blank

March 2018

FINAL SHELTER ISLAND YACHT BASIN TOTAL MAXIMUM DAILY LOAD MONITORING PLAN REVISION 3

Prepared for: California Regional Water Quality Control Board San Diego Region

Prepared by:

Amec Foster Wheeler Environment & Infrastructure, Inc. 9210 Sky Park Court, Suite 200 San Diego, California 92123

In Coordination with:

Port of San Diego

May 2011 Revision 3: August 2017

TABLE OF CONTENTS

4.00.040/4/0.440/5.450.050/4/5/0.40	Page
ACRONYMS AND ABBREVIATIONS	
UNITS OF MEASURE	
1.0 INTRODUCTION	
1.1 Compliance Schedule	
1.2 TMDL Implementation Plan	
1.3 Sources of Dissolved Copper	
1.4 Water Quality Objective Criteria	
1.5 Monitoring Purpose	
2.0 BEST MANAGEMENT PRACTICE IMPLEMENTATION FOR SI	
3.0 TRACKING VESSEL CONVERSIONS	
3.1 Vessel Tracking	
3.1.1 Tracking Approach	
3.1.2 Tracking Templates	
3.2 Annual Dissolved Copper Load Analysis	
4.0 WATER QUALITY MONITORING	
4.1 Water Quality Sampling and Analyses	
4.1.1 SIYB Sample Locations	4-1
4.1.2 Frequency of Sampling	4-2
4.1.3 Sample Collection	4-2
4.1.4 Equipment Decontamination and Cleaning	4-6
4.1.5 Chemical Analysis	4-6
4.1.6 Toxicity Testing	4-7
4.1.7 Water Quality Analysis	4-9
4.2 Field and Analytical QA/QC Procedures	4-10
4.3 Chain-of-Custody Procedures	4-12
4.3.1 Health and Safety	4-13
4.3.2 Use of Boats and Working over Water	4-13
5.0 DATA REVIEW AND MANAGEMENT	
5.1 Data Review	
5.2 Data Management	
5.3 Laboratory Quality Assurance and Quality Control	
6.0 REPORTING	
7.0 REFERENCES	7-1
LIST OF TABLES	
Table 1-1. Loading Targets for TMDL Attainment	
Table 1-2. Sources of Dissolved Copper to SIYB per the TMDL	
Table 3-1. Required Vessel Tracking Data	
Table 3-2. Required Lower Copper and Non-Copper Hull Paint Vessel D	
Table 3-3. Vessel Tracking Data for Annual Monitoring as Required in Ir	_
Table 3-4. Dissolved Copper Loading Calculation Assumptions	
Table 4-1. Sampling Station Coordinates	
Table 4-2. Laboratory Analytical Methods and Detection Limits	
Table 4-3. Conditions for the 96-Hour Pacific Topsmelt Bioassay	4-8

	onditions for the 48-Hour Mussel Development Bioassayample Holding Times	
LIST OF FI	GURES	
Figure 4-1.	Shelter Island Yacht Basin Monitoring Network	4-4
LIST OF AT	TTACHMENTS	

ATTACHMENT A VESSEL TRACKING DATABASE TEMPLATE ATTACHMENT B CHAIN-OF-CUSTODY FORMS

ACRONYMS AND ABBREVIATIONS

APHA American Public Health Association
ASTM American Society for Testing and Materials

Basin Plan Water Quality Control Plan for the San Diego Basin – Region 9

BMPs best management practices

COC chain-of-custody

CTD Conductivity, Temperature, and Depth

CTR California Toxics Rule
DO dissolved oxygen
DOC dissolved organic carbon

DPR Department of Pesticide Regulation

ELAP California Environmental Laboratory Accreditation Program

Implementation Plan SIYB TMDL Implementation Plan Investigative Order Investigative Order No. R9-2011-0036

 $\begin{array}{lll} L_h & & \text{hull cleaning annual loading} \\ L_p & & \text{passive leaching annual loading} \\ LC_{50} & & \text{median lethal concentration} \end{array}$

LOEC lowest observed effect concentration

MAR marine habitat

Monitoring Plan SIYB TMDL Monitoring Plan

N_v number of vessels

NOEC no observed effect concentration
OAL Office of Administrative Law
pH hydrogen ion concentration

Port Port of San Diego QA quality assurance

QA/QC quality assurance and quality control
QAPP Quality Assurance Project Plan

QC quality control

RHMP Regional Harbor Monitoring Program

Regional Board San Diego Regional Water Quality Control Board

SBE SeaBird Electronics

SIML Shelter Island Master Leaseholders

SIYB Shelter Island Yacht Basin

SM Standard Methods

SOPs Standard Operating Procedures

SWAMP Surface Water Ambient Monitoring Program
State Board State Water Resources Control Board

TMDL total maximum daily load TOC total organic carbon

USEPA U.S. Environmental Protection Agency

TST test of significant toxicity WESTON Weston Solutions, Inc.

WILD wildlife habitat

WQO water quality objective

UNITS OF MEASURE

% Percent

 $\begin{tabular}{ll} \begin{tabular}{ll} \be$

μg/cm²/day micrograms per square centimeter per day

cm centimeter(s) ft feet or foot

kg/yr kilograms per year

µm micrometer(s)

m meter(s)

mm millimeter(s)

mg/L milligrams per liter

mL milliliter(s) Nm nanometer

ppt parts per thousand psu practical salinity unit

yr year(s)

1.0 INTRODUCTION

The Shelter Island Yacht Basin (SIYB) Total Maximum Daily Load (TMDL) Monitoring Plan (Monitoring Plan) describes the approach for assessing loading reductions through tracking conversion of vessels from copper to non-copper hull paints to determine compliance with TMDL load reduction targets. The Monitoring Plan also details the specific elements of the annual water quality monitoring program that are performed in SIYB to quantify ambient dissolved copper concentrations and toxicity. Water quality monitoring is used to evaluate annual basin-wide improvements in dissolved copper concentrations and toxicity levels, and to determine progress towards complying with the numeric and narrative objectives of the final TMDL.

This revised Monitoring Plan (Revision 3) is being submitted to the San Diego Regional Water Quality Control Board (Regional Board) to incorporate monitoring program modifications that arose during the 2016 monitoring period. The original Monitoring Plan was submitted to the Regional Board in May 2011 in response to a requirement specified in Resolution No. R9-2005-0019 (in which the Regional Board incorporated the dissolved copper TMDL into the *Water Quality Control Plan for the San Diego Basin—Region 9*) (Regional Board, 2005).

Revision 1 was submitted in 2013, and included program modifications that were made as recommendations to the Regional Board in the 2012 SIYB TMDL Monitoring and Progress Report (AMEC 2013). The modifications presented in Revision 1 were:

- Addition of the "aged-copper paint" category to the vessel classification template
- Modifications to the methods used to collect annual vessel census information
- Discontinuation of conducting in situ free copper analyses
- Analytical and data analysis method revisions

Revision 2 was submitted in March 2016, and included an additional paint tracking category to the annual SIYB vessel census. DPR Category I (low leach) was added as a paint tracking category for 2015. This category was added in response to the DPR's February 23, 2015 list of hull paints by leach rate category. The Port recommended that Category I paint be added as tracking category during a 2015 project status meeting with the Regional Board held on October 5. This modification was approved by the Regional Board. In addition, beginning in the 2015 Monitoring Year, the copper load contributions from passive leaching and in-water hull cleaning were presented separately. This is consistent with the loads provided in Appendix 2 of the SIYB TMDL (Regional Board, 2005). The vessel tracking template was also adjusted to include more relevant information for vessel tracking purposes.

Revision 3, herein, includes the modification of several field procedures for the annual TMDL water quality monitoring program. These include:

-

¹ Per E-mail correspondence between the Regional Board and Port dated October 21 and November 9, 2015.

- 1. Field filtration of all samples collected for dissolved copper and zinc analyses, in agreement with the U.S. Environmental Protection Agency (USEPA) 1640 protocol.
- 2. Performing a top-to-bottom vertical water quality profile (using a conductivity, temperature, and depth [CTD] profiler) at each station to evaluate pH, temperature, light transmittance, and salinity with depth in the water column.
- 3. The addition of conducting total suspended solids (TSS) analyses.

These modifications in Revision 3 of the Monitoring Plan are informational, and therefore do not require a response from the Regional Board.

This revised Monitoring Plan meets the requirements of Investigative Order No. R9-2011-0036 (Investigative Order), which directs the Port of San Diego (Port) to develop and submit a Monitoring Plan to track the progress of implementing the TMDL, and to revise the plan as needed. In addition, the project-specific Quality Assurance Project Plan (QAPP) is revised yearly (prior to the annual monitoring event). The QAPP defines project-specific objectives and organization, monitoring activities, data quality objectives, and quality assurance and quality control (QA/QC) procedures in compliance with the State Water Resources Control Board's *Surface Water Ambient Monitoring Program* (SWAMP) protocols.

1.1 Compliance Schedule

Under Resolution R9-2005-0019, the SIYB dissolved copper TMDL (herein referred to as "SIYB TMDL") requires that loading of dissolved copper into the water column be reduced by 76 percent to 567 kilograms per year (kg/yr) over a 17-year period (Regional Board, 2005). Based on the official TMDL approval date², this time period is set to end in 2022. No reductions in dissolved copper loading were required during the initial two-year orientation period (2005–2007). The subsequent 15-year period requires incremental reductions of dissolved copper loadings: a 10-percent reduction within seven years; a 40-percent reduction within 12 years; and a 76-percent reduction within 17 years (Table 1-1).

Table 1-1.
Loading Targets for TMDL Attainment

Stage	Time Period	Target Reduction from TMDL Estimated Loading	Reduction To Be Attained by End of Year	Estimated Target Loading (kg/yr of Dissolved Copper)
1	2005–2007	0%	N/A	N/A
2	2008–2012	10% ^a	2012 (7 years)	1,900
3	2013–2017	40%	2017 (12 years)	1,300
4	2018–2022	76%	2022 (17 years)	567

Notes:

kg/yr = kilograms per year; N/A = not applicable

a. Loading calculations in the 2012 TMDL Monitoring and Progress Report showed that a 17-percent load reduction had been achieved. Compliance with the 2012 load reduction goal of 10 percent was confirmed by the Regional Board in a letter to the Port dated July 26, 2013.

² For a TMDL to be incorporated into the Basin Plan, it must be approved by the Regional Board, State Water Resources Control Board (State Board), Office of Administrative Law (OAL), and USEPA Region 9. The official TMDL approval date is the date of OAL approval.

The first compliance year for the TMDL was 2012. Loading reduction estimates presented in the 2012 Monitoring and Progress Report (AMEC, 2013) indicated that dissolved copper loading to SIYB by the end of compliance year 2012 had been reduced by 17 percent, exceeding the 10-percent target. In a letter dated July 26, 2013, the Regional Board stated the following, "Based on the data submitted and information provided in the Report [2012 TMDL Monitoring and Progress Report], the 10-percent reduction in dissolved copper loading required to demonstrate compliance with the SIYB TMDL by the December 1, 2012, compliance date was achieved."

The second compliance period began in January 2013 and continues through 2017. This monitoring year will conclude the second compliance period.

1.2 TMDL Implementation Plan

The 2011 SIYB TMDL Implementation Plan (Implementation Plan) is the Named Parties' implementation strategy to reduce the loading of copper into the water column of SIYB, as directed by the SIYB TMDL and the Investigative Order. The Implementation Plan describes the approach to reducing copper loading into SIYB to preserve and restore water quality and beneficial uses of associated marine habitat (MAR) and wildlife habitat (WILD). The Implementation Plan takes a solutions-oriented approach of establishing and implementing best management practices (BMPs) that directly and indirectly help reduce copper loading into the basin to meet the SIYB TMDL interim and final dissolved copper loading compliance thresholds.

The Port has reviewed the BMP initiatives that were detailed in the SIYB TMDL Implementation Plan (Weston, 2011). Based upon this review, the strategic approach to planning and implementing copper reduction BMPs has not changed. The ongoing copper reduction program being implemented by the Port and the SIML TMDL Group is following the same adaptive management strategy and concept for selecting BMPs as was outlined in the Implementation Plan. The Port and SIML TMDL Group provide updates on the BMP program in each annual monitoring and progress report submitted to the Regional Board. Consequently, no revisions to the Implementation Plan are necessary at this time.

1.3 Sources of Dissolved Copper

Based on the Regional Board's source analysis in the TMDL, the total mass load of dissolved copper to SIYB was estimated to be 2,163 kg/yr, of which 98 percent of inputs were attributable to (a) passive leaching of copper from copper-based hull paints on vessels, and (b) hull cleaning activities (Table 1-2).

Table 1-2.
Sources of Dissolved Copper to SIYB per the TMDL

Source	Estimated Mass Load (kg/yr)	Contribution (Dissolved Copper)
Passive Leaching	2,000	93%
Hull Cleaning	100	5%
Urban Runoff	30	1%
Background	30	1%
Direct Atmospheric Deposition	3	<1%
Sediment	0	0
Total	2,163	100%

Notes:

kg/yr = kilogram(s) per year

1.4 Water Quality Objective Criteria

The numeric water quality objective (WQO) for dissolved copper in SIYB is equal to the USEPA National Recommended Water Quality for Aquatic Life and California Toxics Rule (CTR) water quality values for dissolved copper in marine environments (USEPA, 2000). Continuous or chronic exposures may not exceed 3.1 micrograms per liter (µg/L) over a 4-day average; acute exposures should not exceed 4.8 µg/L over a 1-hour average. In addition, numeric WQOs must not be exceeded more than once every three years. Based on these numeric targets and existing monitoring data available at the time when the TMDL was implemented, the final waste load allocation was estimated to be 567 kg/yr. This includes a 10-percent margin of safety calculated to be 57 kg/yr.

In addition to numeric WQOs, the Basin Plan established narrative WQOs for toxicity and pesticides (Regional Board, 1994) as follows:

Toxicity Objective – All waters shall be maintained free of toxic substances in concentrations that are toxic to, or that produce detrimental physiological responses in, human, plant, animal, or aquatic life. Compliance with this objective will be determined by use of indicator organisms; analyses of species diversity, population density, and growth anomalies; bioassays of appropriate duration; or other appropriate methods as specified by the Regional Board.

Pesticide Objective – No individual pesticide or combination of pesticides shall be present in the water column, sediments, or biota at concentration(s) that adversely affect beneficial uses. Pesticides shall not be present at levels that will bioaccumulate in aquatic organisms to levels that are harmful to human health, wildlife or aquatic organisms.

Beneficial uses within SIYB threatened by elevated dissolved copper concentrations are MAR and WILD. The Regional Board indicated that if numeric WQOs are met for dissolved copper, then narrative WQOs will also be met.

1.5 Monitoring Purpose

Results of the vessel tracking program will be used to assess both interim and final compliance with the TMDL loading reduction requirements for dissolved copper into SIYB. Water quality monitoring will be used to annually assess dissolved copper concentrations and toxicity levels,

and also to determine progress towards final numeric and narrative objectives. These objectives are as defined in Resolution No. R9-2005-0019, in which the Regional Board incorporated the dissolved copper TMDL into the *Water Quality Control Plan for the San Diego Basin—Region 9* (Basin Plan; Regional Board, 2005). By annually tracking vessels and monitoring water quality monitoring, the program will eventually be able to evaluate the relationship between reducing loads and improving water quality. Additionally, this approach will provide the data needed to assess the overall effectiveness of the TMDL implementation in attaining both loading reductions and numeric WQOs that protect the basin's MAR and WILD beneficial uses.

2.0 BEST MANAGEMENT PRACTICE IMPLEMENTATION FOR SIYB

The Port has incorporated an adaptive management approach to reducing copper loads in SIYB and throughout San Diego Bay. This process is outlined in the SIYB TMDL Implementation Plan. The five elements of the Port's program are: (a) alternative hull paint testing and research, (b) hull paint transition, (c) policy development and legislation (e.g., required permits for in-water hull-cleaning businesses), (d) education of and outreach to boaters, and (e) monitoring and data assessment. The SIML TMDL Group was formed to represent the marinas and yacht clubs in SIYB. The group's purpose is to compile information from marinas and yacht clubs collected from the boat owners in each of their facilities for TMDL Investigative Order reporting requirements. In addition, the SIML TMDL Group has developed a BMP program specific to the marinas and yacht clubs in SIYB with similar components.

Over the course of developing the TMDL, multiple additional BMPs have been integrated to build on previous knowledge and to facilitate effective implementation of the SIYB TMDL program. Additional measures include meetings between the Port and other stakeholders in SIYB about the TMDL; increased scrutiny of water quality data and analytical methods; reassessment of field sampling techniques, including additional oversight of field procedures; and review of methods to track the type of bottom paints on vessels in SIYB. These measures were intended to collect relevant, quality data; enhance communication among all involved parties; and develop an iterative and collaborative process that provides both transparency to the process and a known and scientifically defensible dataset to support the TMDL compliance objectives.

The Port has developed a comprehensive copper reduction program and maintains a cumulative list of copper reduction BMPs implemented in support of the TMDL since 2007. In addition, the SIML TMDL Group is involved in selecting and implementing BMPs that contribute to the dissolved copper load reductions in SIYB. In compliance with Investigative Order reporting requirements, the SIML TMDL Group submits information annually to the Port detailing the BMPs and actions implemented throughout the year to reduce dissolved copper loads to SIYB. The various Port and SIML TMDL Group BMP activities undertaken throughout the year will be tracked and reported in detail in the annual monitoring and progress report. In addition, any updates of the copper reduction BMP strategies outlined in the TMDL Implementation Plan will be included in an appendix to the annual monitoring and progress report.

3.0 TRACKING VESSEL CONVERSIONS

Based on the Regional Board's TMDL source analysis, the vast majority (98 percent) of copper loading to SIYB was attributed to antifouling paints on vessels moored within the basin.

3.1 Vessel Tracking

Annual reduction of copper loading will be assessed by (a) tracking conversions of hull paints from copper to non-copper or lower copper (either DPR Category I paints or paints containing less than 40-percent copper) products, (b) identifying vessels with aged-copper paints, and (c) estimating the resultant contribution from in-water hull cleaning of copper paints for vessels moored within SIYB.

3.1.1 Tracking Approach

On an annual basis, marina and yacht club owners/operators are responsible for soliciting pertinent information from SIYB boat owners of the percent of time slips in their facilities are unoccupied or are occupied by vessels with copper, non-copper, lower copper paints, aged copper, and unknown hull paints. The information will be gathered by distributing a survey form prepared by the SIML TMDL Group to the SIYB yacht club and marina operators. It will be the responsibility of the operators to ensure the survey form is disseminated to individual vessel owners. The SIML TMDL Group will collect and compile the completed survey forms into a database. If no initial response is received, the SIML TMDL Group will follow up with telephone calls and emails to gather the requested information. An example of the current survey form is in Attachment A.

After compiling the information, the SIML TMDL Group will submit the vessel tracking information to the Port annually, no later than January 15 for the previous calendar year. The vessel tracking data requested is listed in Table 3-1. The tracking reports will be submitted to the Regional Board as an appendix to the annual monitoring and progress report.

Table 3-1.
Required Vessel Tracking Data

	Vessel Tracking Data Fields			
1.	Name of marina or yacht club			
2.	Date of report			
3.	Slip/Mooring reference number			
4.	Slip/mooring occupation data (percent of year occupied)			
5.	Vessel-specific information			
	a. Vessel type (sail, power, multi-hull, etc.)			
	b. Vessel length			
	c. Vessel beam width			
6.	Paint Type (copper, low copper, non-copper, no paint, etc.)			

As a data QA/QC and confirmation check, additional information on paint type will be required for vessels reported to have lower copper (either DPR Category I paints or paints containing less than 40 percent copper) or non-copper hull paints (Table 3-2).

Table 3-2.

Required Lower Copper and Non-Copper Hull Paint Vessel Data

Vessel Tracking Data Fields		
1.	Paint brand name	
2.	Product number	
3.	DPR Registration Number (if applicable)	
4.	Name of boatyard that applied paint or purchase date	
5.a	Painting date (month and year)	

Notes:

The Port will evaluate the vessel tracking data from the SIML TMDL Group to determine the percentage of time that slips are unoccupied or are occupied by vessels with copper, lower copper, aged-copper paint, non-copper, or unknown hull paints as required by the Investigative Order (Table 3-3). These data will be used to calculate the annual dissolved copper load to SIYB from vessels, the number of vessels converted from copper to lower copper or non-copper hull paints, and the reduction in dissolved copper loading achieved annually, as described in Section 3.2 (Annual Dissolved Copper Load Analysis). Estimates of the reductions in basin-wide loading and annual loading reductions will be presented in the annual monitoring and progress reports.

Table 3-3.
Vessel Tracking Data for Annual Monitoring as Required in Investigative Order

	Vessel Tracking Data Fields
1.	Total number of slips or buoys in facility available to be occupied by vessels
2.	Number of unoccupied slips or buoys and length of time unoccupied during each year
3.	Number of vessels confirmed with copper-based hull paints and approximate length of time occupying a slip or buoy in facility each year
4.a	Number of vessels confirmed with aged-copper hull paints and approximate length of time occupying a slip or buoy in facility each year
5.	Number of vessels confirmed with alternative hull paints, by hull paint type, and approximate length of time occupying a slip or buoy in facility each year
6.	Number of vessels with unconfirmed information about hull paints and approximate length of time occupying a slip or buoy in facility each year
7.	Estimate of the dissolved copper load reduction achieved for the year (kg/yr and percent)

Notes:

a. This information is required for determining whether a vessel has aged-copper paint.

a. This vessel tracking category was not included in the Investigative Order, but was added as a recommendation in the 2012 Monitoring and Progress Report. The recommendation was approved July 26, 2013, letter signed by David Gibson, executive officer of the San Diego Regional Water Quality Control Board titled, "Comments on 2012 Shelter Island Yacht Basin Total Maximum Daily Load Monitoring and Progress Report."

3.1.2 Tracking Templates

The SIML TMDL Group will coordinate with the marina and yacht club owners and operators, who are responsible for soliciting pertinent vessel information from SIYB boat owners. This includes tracking the number and paint types of all vessels moored at the respective marinas and/or yacht clubs within SIYB (if known and reported). The Port will be responsible for collecting vessel tracking information for the Port-operated facilities in SIYB, including the Harbor Police dock, transient vessel docks, and temporary anchorage. Vessel data submitted in the annual report will consist of (a) the information provided by the marina and yacht club owners and operators, and (b) the information gathered by the Port for the facilities it operates.

The vessel tracking templates are in a spreadsheet format and contain fields for required vessel tracking information such as facility name, slip reference number, type and size of vessel, boatyard used for hull painting, type of hull paint (brand and product number and DPR registration number, if applicable), the date (month and year) the hull was last painted (this information will be used to determine whether the vessel qualifies as having aged-copper paint), and approximate percentage of time occupying a slip in SIYB during the monitoring year. An example of the vessel tracking template is provided in Attachment A.

3.2 Annual Dissolved Copper Load Analysis

Compliance with interim and final TMDL loading reduction goals will be assessed through basin-wide vessel tracking. Annual dissolved copper loading will be assessed through tracking the number of vessel hulls with copper paint, lower copper paint, aged-copper paint, or non-copper paint, the number of slips using BMPs to isolate hulls from water (i.e., slip liners, Hydro Hoists®) as well as the number of vacant slips in SIYB and input from in-water hull cleaning. Vessels that have aged-copper paint are considered to be in the low-copper category, but will be tracked separately.

The annual tracking program will use a conservative approach to estimating loading reductions. If the hull paint name and type are unknown, the paint will be assumed to be copper-based. Additionally, if the occupancy time of a slip or mooring is not reported, the slip or mooring will be assumed to be occupied 100 percent of the time (i.e., 365 days). If the paint categories for transient vessels visiting the Port-operated transient vessel dock and temporary anchorage are not collected, these vessels will be assumed to have copper hull paints.

This annual assessment will incorporate the following assumptions that were used by the Regional Board in determining loading allocations (Regional Board 2005, Appendix 2).

- All 2,363 SIYB slips or buoys were occupied by vessels (N_v).
- All 2,363 recreational vessels moored within SIYB have copper-based paints 100 percent of the time.
- Annual loading from passive leaching basin-wide (L_p) equals 2,000 kilograms per year (kg/yr).
- Annual loading from hull cleaning (L_h) equals 100 kg/yr³.
- Average annual loading (L_v) per vessel with copper hull paint equals 0.9 kg/yr, where: $L_v = (L_p + L_h)/N_v$.

Based on the Regional Board assumptions in determining dissolved copper loading via passive leaching and hull cleaning combined, there will be an average loading reduction of 0.9 kg/yr for every vessel in SIYB that converts from copper-based to non-copper-based paint (a reduction of 0.86 kg/yr from passive leaching, and 0.04 kg/yr from the cleaning load). Beginning in 2015, the Regional Board recognized the use of DPR Category I hull paints (i.e., paints with leach rates ≤ 9.5 micrograms per square centimeter per day [µg/cm²/day]) as a viable means of reducing copper to the basin. This category coincides with the use of low-copper hull paints (i.e., hull coatings with less than 40-percent copper but leach rates greater than 9.5 µg/cm²/day). Category I hull paints and low-copper hull paints are grouped together to represent the lower copper group. This loading reduction analysis assumes that each vessel transitioned to low-copper hull paint will reduce (on average) annual dissolved copper loading by 0.45 kg/yr. Aged-copper paints (boat hulls that have not been repainted as of the cutoff date [Table 3-4]) will be considered to have low-copper hull paint (i.e., 0.45 kg/yr per vessel). Based upon these loading scenarios, calculations of annual dissolved copper loading will be based on the assumptions listed in Table 3-4.

Annual loading will be calculated for each slip by multiplying the reported dissolved annual loading for a given hull paint category by the percent of time a slip is reported to be occupied (e.g., the product of 0.9 kg/yr for copper hull paints and 90-percent occupancy results in an annual loading of 0.81 kg/yr). In the case of the Port-operated anchorage, data on the number of three-day permits issued weekly will be used to calculate annual occupancy and loading. For each issued permit, it will be assumed that the vessel occupied the anchorage for an average of two days. If no hull paint data is collected for a vessel that occupies the Port-operated anchorage, it will be assumed to have copper paint. Therefore, annual dissolved copper loading due to passive leaching is calculated by multiplying the annual dissolved copper load (0.9 kg/yr) by the average number of vessels occupying the anchorage on a weekly basis and the average percentage of time slips are occupied.

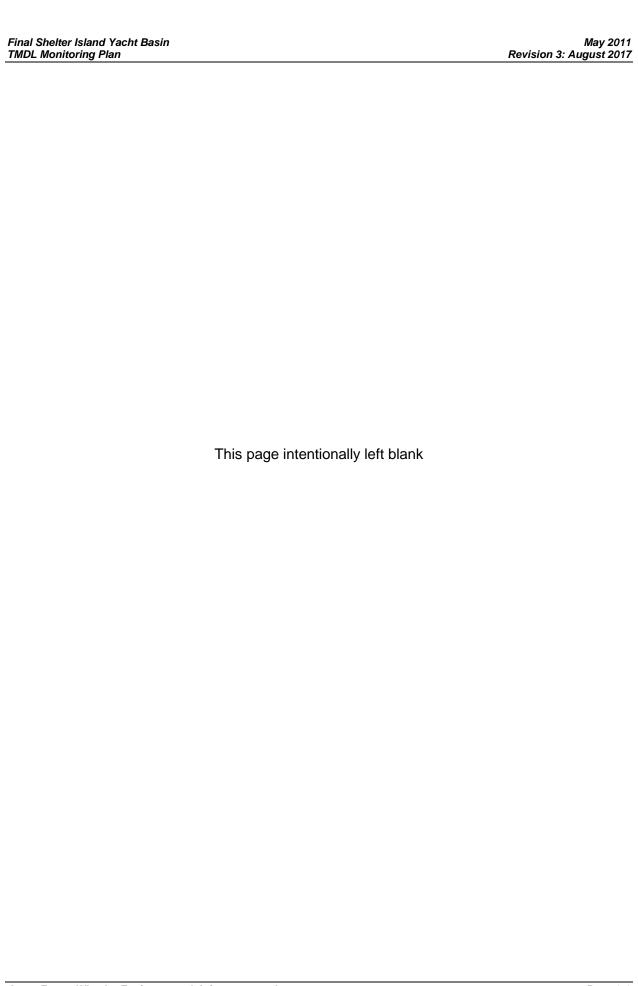

³ The TMDL assumed that 50 percent of the in-water hull cleaning in SIYB would be conducted using BMPs. The Port's hull cleaning ordinance requires 100 percent use of BMP; therefore, the load calculations assume that 100 percent of in-water hull cleaning is conducted using BMPs.

Table 3-4. Dissolved Copper Loading Calculation Assumptions

Dissolved Copper Loading Assumptions	
1.	All vessels moored in SIYB at the enactment of the TMDL had copper hull paints.
2.	Average annual dissolved copper load from a vessel with copper paint equals 0.9 kg/yr.
	a. The passive leaching load from a vessel with copper paint equals 0.86 kg/yr.
	b. The cleaning load from a vessel with copper paint equals 0.04 kg/yr.
3.	Vessels with unknown hull paints have copper paint
4.	Slips/moorings for which occupancy data are not provided are considered to be 100-percent occupied.
5.	Annual dissolved copper load from a vessel with non-copper hull paint equals 0 kg/yr.
6.	DPR Category I paints are paints with leach rates ≤9.5 μg/cm²/day. These paints are
	considered as lower copper.
7.	Low-copper hull paints are paints with less than 40-percent copper. These paints are also considered as lower copper.
8.	Average annual dissolved copper load from a vessel with lower copper paint equals 0.45 kg/yr
	a. The passive leaching load from a vessel with lower copper paint equals 0.43 kg/yr.
	b. The cleaning load from a vessel with lower copper paint equals 0.02 kg/yr.
9	Vessels determined to have aged-copper paint (i.e., copper paint applied to a vessel hull prior to December 31, 2014 ^a) will have an annual dissolved copper load equal to 0.45 kg/yr.
10.	Annual loads will be normalized by the percent of time vessels are docked in SIYB.

Notes:

a. December 31, 2014, is the cutoff date for vessels to be considered to have aged-copper paint for the 2017 annual monitoring and progress report load calculation. This cutoff date will advance by one -year for each subsequent annual load calculation. kg/yr = kilogram(s) per year; TMDL = total maximum daily load; µg/cm²/day = micrograms per square-centimeter per day

4.0 WATER QUALITY MONITORING

Water quality will be assessed annually to determine the average concentration of dissolved copper and toxicity levels in SIYB using a spatially representative sampling design. Water quality monitoring will supplement vessel tracking studies to assess long-term improvements in dissolved copper concentrations and toxicity levels that occur as a consequence of loading reductions throughout the interim stages. Water quality monitoring will also be used to determine attainment of final WQOs.

4.1 Water Quality Sampling and Analyses

Water quality will be sampled annually throughout SIYB to determine the average concentration of dissolved copper in the basin and to assess water quality trends over time. The monitoring will use methods consistent with prior studies conducted by the Regional Board in SIYB, which were used to establish the baseline copper levels and loading reduction requirements of the TMDL (Appendix 6 of the TMDL, Regional Board, 2005). To be consistent with studies conducted by the Regional Board, this monitoring program will include annual sampling at six stations and one reference station in the main channel of San Diego Bay adjacent to SIYB. These station locations are similar to those sampled by the Regional Board for development of the TMDL and meet the Investigative Order requirement of spatially representing dissolved copper concentrations in SIYB.

Based on an assessment of monitoring water quality data collected between 2005 and 2008 in SIYB from the Regional Harbor Monitoring Program (RHMP) Pilot Study (WESTON, 2008), the 2008 RHMP (WESTON, 2010), and the Neira et al. study (2009), surface water dissolved copper concentrations ranged from 3.4–13.5 micrograms per liter (μ g/L), and the average concentration was 8.28 \pm 1.36 μ g/L (mean \pm standard error). This average concentration was determined by using the surface water dissolved copper monitoring data collected from six stations in the immediate vicinity of the sampling stations that comprise the monitoring network.

4.1.1 SIYB Sample Locations

The annual monitoring program is conducted at six stations within SIYB and one station in the main channel of San Diego Bay (Table 4-1 and Figure 4-1). Monitoring was conducted at these stations for all SIYB TMDL monitoring events since 2011.

Table 4-1. Sampling Station Coordinates

Station	Target							
Station	Latitude	Longitude						
SIYB-1	32.71821	-117.22601						
SIYB-2	32.71412	-117.22921						
SIYB-3	32.71550	-117.22989						
SIYB-4	32.71683	-117.23203						
SIYB-5	32.71217	-117.23297						
SIYB-6	32.70858	-117.23514						
SIYB-REF	32.70406	-117.23232						

4.1.2 Frequency of Sampling

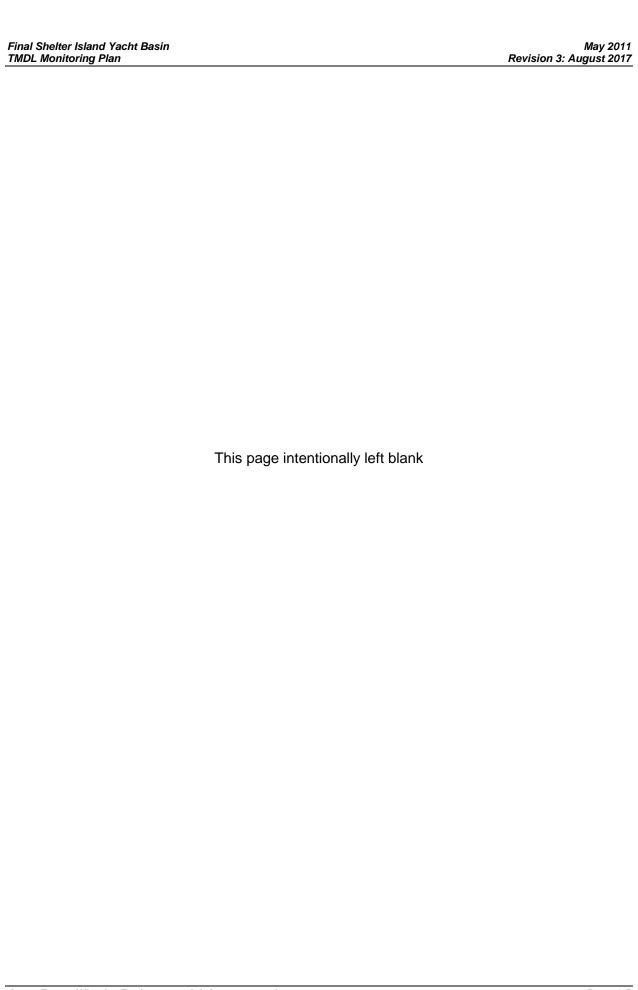
Sampling will be conducted at the seven water quality stations once per year during the summer (i.e., in August or September). By sampling in the summer, dissolved copper concentrations are likely to be at their highest level in the water column because the release rates of copper from antifouling paints is higher at warmer sea surface temperatures and with a greater frequency of hull cleaning. As a consequence, this sampling design will provide the most conservative estimate for dissolved copper concentrations for SIYB. In addition, annual monitoring during the summer will facilitate integration with the RHMP, which includes sampling of a broader range of chemical and biological parameters once every five years during the summer.

Sampling annually to bracket the slack high tide at the same station locations during the summer will allow repeated measurements and temporal trend analyses to determine changes in dissolved copper concentrations with time⁴. Revisiting the same spatially representative stations allows basin-wide assessments of water quality, limiting spatial variability and facilitating better detection of trends. Additionally, correlation analyses can be used to assess relationships between estimated loading reductions from vessel conversions with surface water dissolved copper concentrations to track progress of the TMDL.

4.1.3 Sample Collection

Sample collection will start at the Reference station (SIYB-REF) located in San Diego Bay and continue northward to Station SIYB-1 located near the head of basin. Samples will be collected in the following order: SIYB-REF, SIYB-6, SIYB-5, SIYB-4, SIYB-3, SIYB-2, and SIYB-1. Collection of the samples will be timed so that the midpoint of the collection (SIYB-4) will occur as close to the slack high tide as possible. This sample collection approach will be followed for all annual water quality monitoring events to ensure consistency and repeatability.

Discrete water samples will be collected at each station using the "clean hands" techniques with a Niskin bottle deployed from a sampling vessel. In addition, the field manager will ensure that the sample collection boat is painted with a non-copper or non-zinc-containing hull paint. All stations will be located using the differential Global Positioning System. Samples will be collected within one meter of the surface. Upon collection, water samples will be transferred to labeled containers for analysis of total and dissolved copper, total and dissolved zinc, total organic carbon (TOC), dissolved organic carbon (DOC), total suspended solids (TSS), and toxicity testing. Water samples collected for dissolved metals analyses will be filtered in the field and preserved immediately upon arrival to the analytical laboratory. DOC samples will be filtered in the field into a bottle with sulfuric acid. Field measurements of the hydrogen ion concentration (pH), temperature, and salinity of the surface water at each station (i.e., within 1 meter (m) of the surface), will be made using a YSI meter according to manufacturer's specifications.


Following the collection and preservation of water samples, Amec Foster Wheeler will use a Seabird Electronics SBE-19 Plus CTD instrument equipped with a YSI dissolved oxygen sensor

⁴ Sampling schedule is adjusted annually to ensure that station SIYB-4 is sampled during the slack high tide to ensure consistency between monitoring years.

(model SBE 43), a pH meter (model SBE 18 with Innovative pH Sensor), and a WET Labs C-Star laser transmissometer (25-centimeter [cm], 660-nanomether [nm]) to capture the profile of the entire water column at each station. The water quality characteristics collected by the CTD will be used for informational purposes only. For example, the CTD data can show how water quality parameters, such as water temperature and clarity, vary from top to bottom, at different locations in the basin, and from year to year.

Figure 4-1. Shelter Island Yacht Basin Monitoring Network

All water samples will be logged on a chain-of-custody (COC) form (Attachment B) and placed in a cooler on ice. Samples will be stored at 4 degrees Celsius (°C) in the dark until delivered to the appropriate laboratory for analysis.

4.1.4 Equipment Decontamination and Cleaning

The Niskin bottle will be cleaned prior to sampling using clean soapy water and thoroughly rinse with deionized water. Upon deployment, the Niskin bottle will be rinsed with site water prior to sample collection. After collection, water samples will be transferred from the Niskin bottle to laboratory-certified, contaminant-free bottles that are of the appropriate type and containing the appropriate preservative for the required analyses.

4.1.5 Chemical Analysis

Water samples will be analyzed for total and dissolved copper, total and dissolved zinc, TOC, DOC, TSS, salinity, temperature, pH, dissolved oxygen, and transmissivity (Table 4-2). Zinc is commonly used as an alternative biocide in antifouling paints; therefore, total and dissolved zinc levels will be measured to assess changes in the ambient zinc levels in SIYB as vessels are converted from copper-based to non-copper-based paints.

Surface water characteristics (salinity, temperature, pH, and visual observations of water clarity) will be collected to compare ambient conditions from year to year. All analytical methods will follow USEPA or Standard Methods (SM) of the American Public Health Association (APHA), 1998). Required analytical methods, detection, and reporting limits are presented in Table 4-2.

Table 4-2.

Laboratory Analytical Methods and Detection Limits

Water Quality Measurement	Method	Method Detection Limit	Reporting Limit
Total Copper	USEPA 1640	0.0038 μg/L	0.010 μg/L
Dissolved Copper	USEPA 1640	0.0038 μg/L	0.010 μg/L
Total Zinc	USEPA 1640	0.036 μg/L	0.20 μg/L
Dissolved Zinc	USEPA 1640	0.036 μg/L	0.20 μg/L
TOC	SM 5310 B	0.016 mg/L	0.10 mg/L
DOC	SM 5310 B	0.016 mg/L	0.10 mg/L
TSS	USEPA 2450 D	1.0 mg/L	5.0 mg/L
Salinity	SBE CTD and YSI Pro Plus	NA	± 0.1 ppt
Temperature	SBE CTD and YSI Pro Plus	NA	± 0.1 °C
рН	pH SBE CTD and YSI Pro Plus		± 0.1 pH unit
Dissolved Oxygen	SBE CTD	NA	± 0.1 mg/L
Light Transmittance	SBE CTD	NA	± 0.1 %

Notes:

μg/L = microgram(s) per liter; °C = degrees Celsius; DOC = dissolved organic carbon; mg/L = milligram(s) per liter; pH = hydrogen ion concentration; ppt = part(s) per thousand; SM = Standard Methods; TOC = total organic carbon; TSS = total suspended solids; USEPA = U.S. Environmental Protection Agency; YSI = YSI Incorporated; SBE = SeaBird Electronics; CTD = conductivity, temperature, and depth.

4.1.6 Toxicity Testing

Water column toxicity will be assessed at the six SIYB sampling stations and the reference station. Toxicity testing will consist of a 96-hour acute bioassay test using Pacific topsmelt (*Atherinops affinis*), consistent with the TMDL guidance (Regional Board, 2005). Additionally, a 48-hour chronic bioassay test using a mussel (*Mytilus galloprovincialis*) will also be conducted because previous studies have used the 48-hour mussel chronic test as the primary indicator of toxicity. Both tests will be used to assess the narrative toxicity objective described in Section 1.4 (Water Quality Objective Criteria) because both species have ecological relevance to the marina environment and have previously been found to be sensitive to dissolved copper.

The 96-hour acute bioassay with topsmelt will be conducted in accordance with procedures described in *Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms* (USEPA, 2002). Testing will be initiated within 36 hours of sample collection. Topsmelt will be exposed for 96 hours to three sample concentrations (25, 50, and 100 percent) and to a control. Each concentration will be tested with six replicates and five topsmelt per replicate. Water quality will be analyzed daily and include dissolved oxygen (DO), temperature, pH, and salinity. After 96 hours, percent survival will be calculated. The test will be considered acceptable if 90 percent or greater survive in the controls. Test conditions are summarized in Table 4-3.

A 96-hour reference toxicant test using copper chloride will be conducted concurrently with the SIYB project sample and using the same batch of test organisms to evaluate the relative sensitivity of test organisms as well as the laboratory's proficiency with the test procedure. The topsmelt reference toxicant test will be conducted with copper concentrations of 0, 50, 100, 200, 400 and 800 μ g/L. At test termination, the median lethal concentration (LC₅₀) will be calculated and compared to historical laboratory reference toxicant test data for this species. Test organisms will be considered to be responsive and appropriately sensitive if the test LC₅₀ is within two standard deviations of the historical mean from the previous 20 tests.

The 48-hour bivalve larvae test will be performed in accordance with procedures outlined in *Short Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms* (USEPA, 1995) and ASTM E724-98 (ASTM, 2006). Testing will be initiated within 36 hours of sample collection. The test will be run for 48 hours or up to 54 hours if necessary to ensure development of the bivalve larvae to the D-hinged stage in the control. Bivalves will be exposed to five sample concentrations (6.25, 12.5, 25, 50, and 100 percent), and a control. Each concentration will be run with six replicates and 150–300 larvae will be targeted for inoculation into each replicate. Water quality will include DO, temperature, pH, and salinity at test initiation and termination. The test will be considered acceptable if at least 50 percent of larvae survived and an average of 90 percent of surviving larvae developed normally in the controls. A combined endpoint of normal surviving embryos will be reported. Test conditions are summarized in Table 4-4.

Table 4-3.
Conditions for the 96-Hour Pacific Topsmelt Bioassay

	Test Conditions									
		r Acute Bioassay								
Te	st Species	Atherinops affinis								
Test	Procedures	EPA-821-R-02-012 (USEPA, 2002)								
Age a	nd Size Class	7–15 days								
Test Typ	pe and Duration	Acute static-renewal / 96-hours								
Sample S	torage Conditions	4°C, dark, minimal head space								
Но	lding Time	36 hours								
Control	Water Source	Scripps Pier seawater, 20 µm filtered								
	Temperature	21 ± 1°C								
Recommended Water Quality	Salinity	34 ± 2 ppt								
Parameters	Dissolved Oxygen	>4.0 mg/L								
T drameters	рН	Monitor for pH drift								
Pr	notoperiod	16 hours light, 8 hours dark								
Tes	st Chamber	500-mL beaker or plastic cup								
Con	centrations	3 (25, 50, and 100 percent) and a control								
Number of Re	eplicates per Sample	6								
Number of Org	ganisms per Replicate	5								
Expo	sure Volume	250 mL								
,	Aeration	None, unless DO falls below 4.0 mg/L								
	Feeding	once daily								
Wat	er Renewal	48 hours								
Statis	tical Analysis	Test of Significant Toxicity (TST) - Control and test sample comparisons								

Notes:

 μ g/L = microgram(s) per liter; μ m = micrometer; α C = degrees Celsius; μ g/L = milligram(s) per liter; α L = milliliter(s); α C = hydrogen ion concentration; α C = part(s) per thousand; USEPA = U.S. Environmental Protection Agency

A 48-hour reference toxicant test using copper chloride will be conducted concurrently with the SIYB project sample and using the same batch of test organisms; this test will evaluate the relative sensitivity of test organisms as well as the laboratory's proficiency with the test procedure. The bivalve reference toxicant test will be conducted with copper concentrations of 0, 2.5, 5.0, 10, 20 and 40 μ g/L. At test termination, the median effected concentration (EC₅₀) will be calculated and compared to historical laboratory reference toxicant test data for this species. Test organisms will be considered to be responsive and appropriately sensitive if the test EC₅₀ is within two standard deviations of the respective historical laboratory mean. At the termination of the study, survival and shell development will be compared between the control and test concentrations to determine whether significant mortality or reduction in normality exists.

A close look at the test receiving waters for any potentially interfering algal species is recommended prior to initiating tests with Mytilus embryos. If algae are prevalent and densities appear to be of concern, filtration of a subsample of water from each site through a 1-2-µm mesh filter to remove the algae is highly recommended. This filtered sample is then tested side-by-side to the unfiltered sample for comparison purposes.

Table 4-4. Conditions for the 48-Hour Mussel Development Bioassay

	Test Conditions 48-Hour Chronic Bioassay								
Te	st Species	Mytilus galloprovincialis							
Test	Procedures	EPA/600/R-95/136 (USEPA, 1995)							
Age a	nd Size Class	<4-hour-old embryos							
Test Typ	pe and Duration	Bivalve Larvae—Static / 48 hours							
Sample S	torage Conditions	4°C, dark, minimal head space							
Но	lding Time	36 hours							
Contro	l Water Source	Scripps Pier seawater, 20 µm filtered							
	Temperature	15 ± 1°C							
Recommended	Salinity	30 ± 2 ppt							
Water Quality Parameters	Dissolved Oxygen	> 4.0 mg/L							
, arametere	рН	6-9; monitor for pH drift							
Pł	notoperiod	16 hours light, 8 hours dark							
Tes	st Chamber	20-mL glass shell vials							
Cor	ncentrations	5 (6.25, 12.5, 25, 50, and 100 percent) and a control							
Replica	tes and Sample	5							
Number of C	Organisms/Replicate	Recommended: 15–30/mL							
Expo	sure Volume	10 mL							
	Feeding	None							
Wat	ter Renewal	None							
Statis	tical Analysis	TST - Control and test sample comparisons							
Notes:									

μm = micrometer; °C = degrees Celsius; mg/L = milligram(s) per liter; mL = milliliter(s); pH = hydrogen ion concentration; ppt = part(s) per thousand; USEPA = U.S. Environmental Protection Agency

4.1.7 Water Quality Analysis

4.1.7.1 Water Chemistry

The basin-wide dissolved copper results (excluding the Reference site) will be used to calculate an average dissolved copper concentration. This average will be used to determine basin-wide compliance with the CTR dissolved copper chronic target (3.1 µg/L) or a potential site-specific objective. Because the same station locations will be revisited annually, repeated measurements will be used to evaluate reductions in dissolved copper levels with time.

4.1.7.2 Toxicity

Toxicity will be statistically assessed using the software program Comprehensive Environmental Toxicity Information System[™] from Tidepool Scientific Software. With this software, survival of topsmelt fish and normal development of surviving mussel embryos in each test dilution from SIYB are compared to organism performance observed in control exposures to filtered clean seawater collected from the end of the pier at Scripps Institution of Oceanography in La Jolla, California. Results are used to determine LC₅₀ and EC₅₀ values. If fish survival and normal embryo development in the controls do not differ significantly from that of the treatments, then conditions are considered to be non-toxic at the station. The USEPA Test of Significant Toxicity⁵ (USEPA 2010) approach will be used to determine statistically significant effects for this study.

4.2 Field and Analytical QA/QC Procedures

Strict QA/QC procedures will be employed throughout the entire study, from mobilization through delivery of samples to the laboratories. Extra care will be taken to minimize the possibility of compromising sample integrity. The sample collection team will be trained in, and follow, field sampling standard operating procedures (SOPs), as described in the SIYB QAPP (AMEC 2012). As part of the field collection procedures identified in the 2012 and 2013 QAPP updates, a QA/QC reviewer from the Port and the field contractor will be present onboard the sampling vessel at all times to review each step of the sample and data collection process. Additionally, Port-approved field and QA/QC checklists will be used throughout the sampling event to ensure that all procedures are consistent at each location; samples are collected in exactly the same manner at every station; and all required field data are recorded correctly and completely.

Field staff members will take care to avoid contamination of samples at all times by employing the clean hands technique and will wear powder-free nitrile gloves during sample collection. In addition, the field manager will ensure that the sample collection boat is painted with a non-copper or non-zinc containing hull paint. All samples will be collected in laboratory-supplied, laboratory-certified, contaminant-free sample bottles containing the correct preservative (if applicable). The sampling team will be provided the updated QAPP and field sampling standard operating procedures (SOPs) to ensure all sampling personnel are trained accordingly. Additionally, the field staff will be made aware of the significance of the project's detection limits and the requirement to avoid contamination of samples at all times. Field measurement equipment will checked and calibrated for operation in accordance with the manufacturer's specifications (calibration records will be recorded and maintained), and will inspected for damage prior to use and when returned from use. Observations of activities surrounding the sampling area will be recorded on field data sheets at each station and during movement between stations (i.e., boat hull cleaning).

_

⁵ A recommendation was made by the Port to the Regional Board in the 2012 monitoring report to begin using this new statistical method in place of previous statistical tests. The Regional Board agreed with this recommendation in its July 26, 2013, letter regarding SIYB TMDL progress. The TST method was used to identify any samples that exhibited a statistically significant difference from the control.

As required by SWAMP protocols, the monitoring program will include the addition of a field replicate. The field replicate sample will consist of a second complete set of samples collected at one of the monitoring locations and will be analyzed for chemical constituents only (no toxicity analyses will be conducted on the field replicate sample). The purpose of the field replicate is to assess variability in sampling procedures as well as ambient conditions. In addition to the field replicate, each batch of samples that is submitted to the laboratories for analyses will be accompanied by an equipment rinse blank and field blank, as specified under SWAMP.

Chemistry and toxicity samples will be uniquely identified with sample labels in indelible ink. All sample containers will be identified with the project title, appropriate identification number, date and time of sample collection, and preservation method. Sample labels are inspected by a Port and contractor QA reviewers before and after bottles are filled at each station to ensure that every sample and analysis type are labeled correctly before moving to the next station; this information will be recorded on the field checklist. All samples will be kept on ice from the time of sample collection until delivery to the analytical laboratory for analysis within method-specified holding times (Table 4-5). Samples will be delivered by courier to the analytical laboratories following the day of collection. All analyses will be conducted by laboratories that are accredited by the California Environmental Laboratory Accreditation Program (ELAP) for the specific tests that are required to be performed at the time they are conducted.

Table 4-5. Sample Holding Times

Analyte	Holding Time					
TOC	28 days					
DOC	28 days ^a					
Total Copper	180 days					
Dissolved Copper	48 hours ^b					
Total Zinc	180 days					
Dissolved Zinc	48 hours ^b					
Total Suspended Solids	7 days					
48-hour acute bioassay	36 hours					
96-hour chronic bioassay	36 hours					

Notes:

- a The holding time is applicable to preserved sample. The sample will be filtered in the field into a bottle with sulfuric acid (H₂SO₄) preservative for DOC analysis.
- b The holding time for metals after preservation is 180 days. The dissolved fraction will be filtered in the field through a 0.45-micrometer (µm) glass fiber filter using a bottle top vacuum filtration system. Samples will be preserved at the laboratory immediately upon receipt from the courier, within 24 hours of sample collection.

DOC = dissolved organic carbon; TOC = total organic carbon

The annual TMDL monitoring program will include the following QA/QC elements:

- ✓ QAPP and SOP updates
- ✓ Verification of laboratory certifications
- Field mobilization and equipment checklists
- √ Field sampling QA/QC checklists
- √ Field equipment calibrations records
- Staff training on QAPP-required field procedures
- ✓ Field conditions and water quality data sheets
- ✓ On-board QA/QC oversight
- Observations for hull cleaning or other water-quality-impacting activities near sample collection locations

The analytical laboratory will (a) be certified to conduct the analyses for the constituents of concern for the SIYB TMDL study, (b) be certified for the specific analysis methods required for this program, and (c) hold a valid ELAP certificate at the time the monitoring program is initiated and the samples are analyzed. The QA objectives for chemical analysis to be followed by the participating analytical laboratories are detailed in their laboratory QA manuals and the QAPP. The objectives for accuracy and precision involve all aspects of the testing process, including the following:

- Methods and SOPs
- Calibration methods and frequency
- Data analysis, validation, and reporting
- Internal QC
- Preventive maintenance
- Procedures to ensure data accuracy and completeness

Results of all laboratory QC analyses will be reported with the final data. Any QC samples that fail to meet the specified QC criteria in the methodology or QAPP will be identified and the corresponding data will be appropriately qualified in the final report. The final report will include a separate section that discusses any QA/QC issues encountered during the monitoring event, as well as the corrective actions taken to satisfactorily address any issues.

All QA/QC records of the various testing programs will be kept on file for review by regulatory agency personnel.

4.3 Chain-of-Custody Procedures

Proper chain of custody (COC) procedures will be used throughout the sample collection, transport, and analytical process. The principal documents used to identify samples and to document possession are COC records, field logbooks, checklists, and field tracking forms. The COC process is initiated during sample collection. A COC record will be provided with each sample or group of samples. Each employee who has custody of the samples will sign the form and ensure that the samples are not left unattended and are properly secured.

Documentation of sample handling and custody included the following:

Client and project name

- Sample identifier
- Sample collection date and time
- Any special notations on sample characteristics or analysis
- Initials of the person collecting the sample
- Date the sample was sent to the analytical laboratory
- Shipping company and waybill information

Completed COC forms will be placed into a plastic envelope and kept inside the cooler containing the samples. If possible, field staff should physically courier the bay water samples from the dock at SIYB to the analytical laboratory on the same day as collection. This level of effort will provide an additional level of security to the chain of custody process as well as ensure that all holding times are met. Upon delivery to the analytical laboratory, the COC form will be signed by the person receiving the samples. Copies of the COC records will be included in the final reports prepared by the analytical laboratories.

4.3.1 Health and Safety

Because sampling will be conducted from a boat, dangerous situations can arise. Field personnel need to be aware of safety hazards and take appropriate precautions. A health and safety tailgate meeting will be held prior to any on-site activity. During this meeting, site-specific hazards will be discussed and addressed appropriately.

4.3.2 Use of Boats and Working over Water

Work will be conducted from a boat over and around SIYB; therefore, special considerations are required. All watercraft will be operated according to the applicable navigational rules and regulations. The boat will be operated by a certified captain with U.S. Coast Guard small vessel training. Personnel working on the boat will be trained according to internal SOPs. The hazards associated with the operation and use of boats include drowning, heat stress, and injuries from falling. An approved personal flotation device must be available for each person onboard. Wet conditions increase the chances of slipping; therefore, engineering controls such as guardrails will be used.

Sampling will be conducted in the summer, which increases the risk of heat stress. To reduce this risk, plenty of water will be made available to field staff and wearing short pants will be acceptable. A float plan will be prepared for each trip and submitted to the safety officer or project manager. At a minimum, it will include destination, expected time of return, personnel on board, and description of vessel. The float plan will be used if the field crew does not return or notify the shore contact at a specified time and a rescue is needed. A weather forecast will be reviewed prior to field sampling. High winds may pose potential hazardous conditions within the harbor.

5.0 DATA REVIEW AND MANAGEMENT

Field and laboratory data will be reviewed for completeness and accuracy prior to analysis and reporting, and are stored in a database, as described in the following sections.

5.1 Data Review

After each survey, field data sheets and checklists will be checked for completeness and accuracy by the field crew and the QA reviewers. In addition, all sample COCs will be checked against sample labels at the end of the day prior to samples being transported to the laboratories. In the laboratory, technicians will document sample receipt and sample preparation activities in laboratory logbooks or on bench sheets.

Data validation will include dated and signed entries by technicians on the data sheets and logbooks used for samples, the use of sample tracking and numbering systems to track the progress of samples through the laboratory, and the use of QC criteria to reject or accept specific data. Data for laboratory analyses will be entered directly onto data sheets. Data sheets will be filled out in ink and signed by the technician, who is responsible for checking the sheet to ensure completeness and accuracy. The technician who generated the data will have the prime responsibility for the accuracy and completeness of the data.

Each technician will review the data to ensure the following:

- Sample description information is correct and complete
- Analysis information is correct and complete
- Results are correct and complete
- Documentation is complete

All data will be reviewed and verified by participating team laboratories to determine whether data quality objectives have been met and that appropriate corrective actions have been taken, when necessary, as detailed in the QAPP.

5.2 Data Management

The chemistry and toxicity laboratories will supply analytical results in both hard copy and electronic formats. Laboratories will have the responsibility of ensuring that both forms are accurate. After completion of the data review by participating team laboratories, hard copy results will be placed in a project file; results in electronic format will be imported into a database system. Additional details regarding data management are provided in the project-specific QAPP.

5.3 Laboratory Quality Assurance and Quality Control

Analytical laboratories will provide a QA/QC narrative that describes the results of the standard QA/QC protocols that accompany analysis of field samples. All hard copies of results will be maintained in the project files. In addition, back-up copies of results generated by each laboratory will be maintained at their respective facilities. At a minimum, the laboratory reports will contain results of the laboratory analysis, QA/QC results, all protocols and any deviations from the project Monitoring Plan, and a case narrative of COC details.

6.0 REPORTING

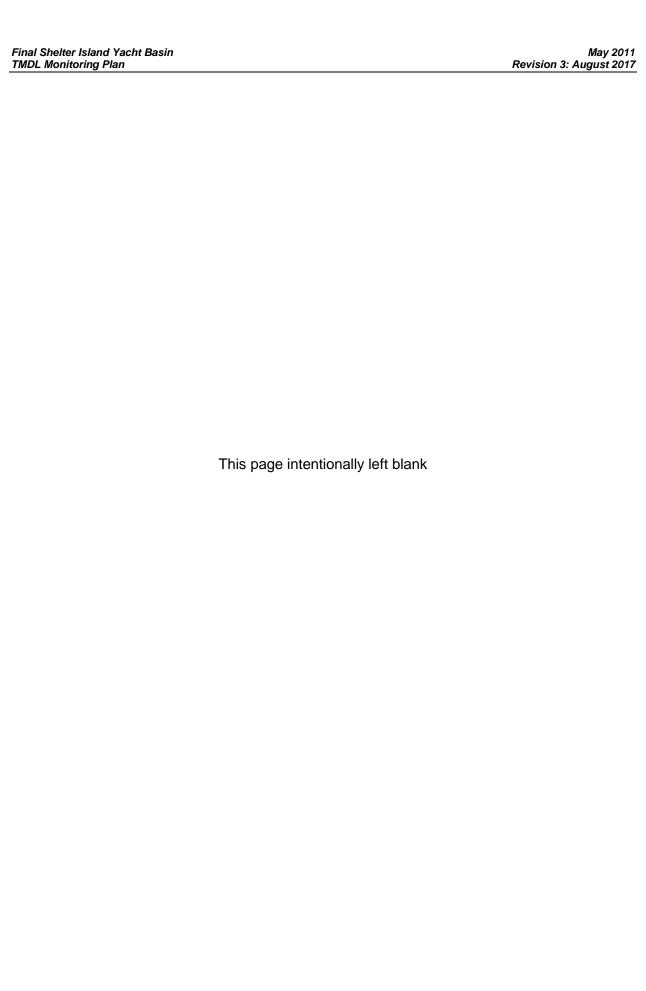
Reporting under the SIYB TMDL will include annual monitoring and progress reports to be submitted to the Regional Board by the Port no later than March 31 of each year. The purpose of the report is to document the methods and results of annual vessel tracking surveys and water quality monitoring. Reports will detail the number of vessels converted to non-copper or lower copper paints within SIYB to calculate loading reductions. Additionally, annual progress reports will describe water quality conditions, specifically focused on the concentrations of dissolved copper within the basin and observed toxicity levels.

At a minimum, the following information will be included in annual monitoring and progress reports.

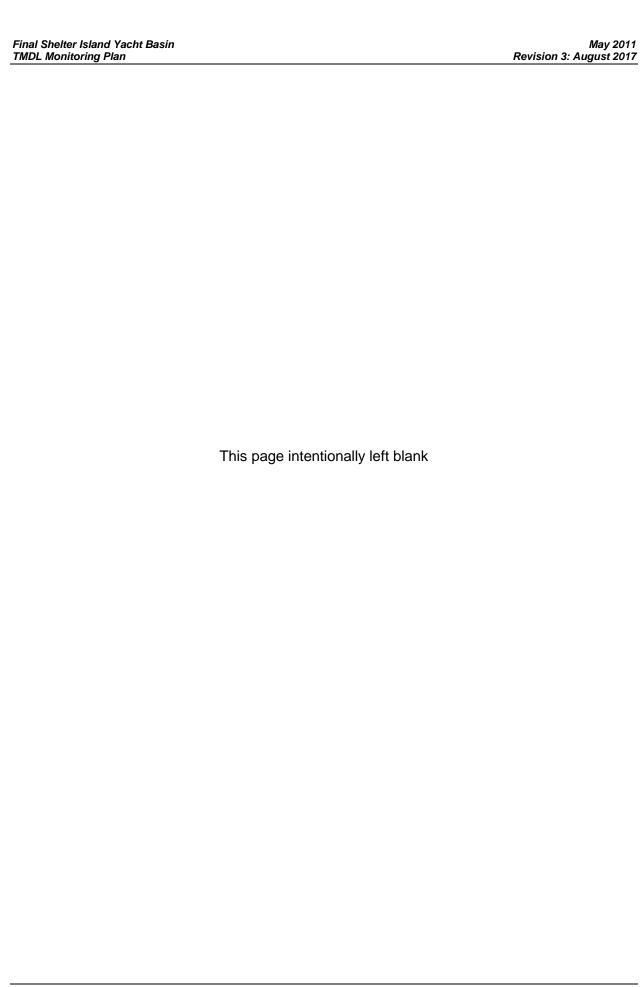
SIYB TMDL Implementation: An evaluation, interpretation, and tabulation of data and information on SIYB Dissolved Copper TMDL activities undertaken by the Named Parties.

- 1. Vessel Conversions. Assess vessel conversions from copper-based antifouling paints to non-copper and lower copper hull paints, including:
 - a. Total number of slips or buoys in SIYB available to be occupied by vessels
 - b. Number of unoccupied slips or buoys and length of time unoccupied during each year
 - c. Number of vessels confirmed with copper-based hull paint and approximate length of time occupying a slip or buoy in SIYB during each year
 - d. Number of vessels confirmed with alternative hull paints, by alternative hull paint type, and approximate length of time occupying a slip or buoy in SIYB during each year
 - e. Number of vessels with aged-copper paint and approximate length of time occupying a slip or buoy in SIYB during each year
 - f. Number of vessels with unconfirmed information about hull paint and approximate length of time occupying a slip or buoy in SIYB during each year;
 - g. An estimate of the dissolved copper load reduction achieved, in terms of kilograms and percent, for the year
 - h. Any other data or information relevant to annual tracking of vessels in SIYB occupying slips or buoys and conversions from copper-based hull paints to alternative (non-copper or lower copper) hull paints.

SIYB BMP Implementation. Describe BMPs or other actions that have been implemented by the Named Parties to reduce dissolved copper discharges from boat hulls into SIYB. BMPs and other actions implemented and required to be implemented by in-water hull cleaners are also described in the BMP section of the annual monitoring and progress report. In addition, any updates of the copper reduction BMP strategies outlined in the TMDL Implementation Plan will be included in an appendix to the annual monitoring and progress report.

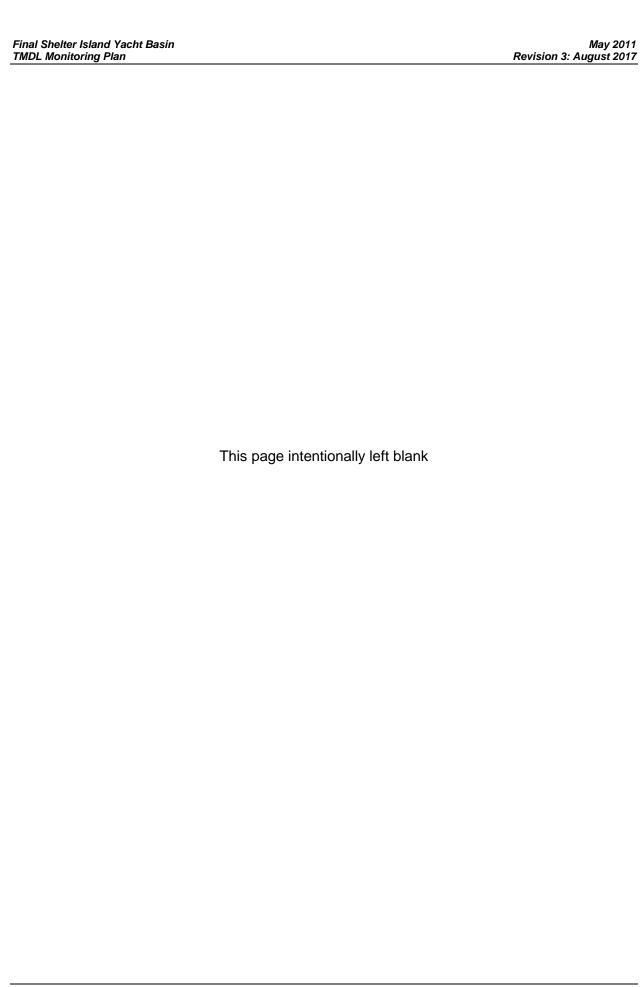

San Diego Baywide BMP Implementation. Describe BMPs or other actions that can be, will be, or have been implemented by the Port to reduce dissolved copper discharges from boat hulls into harbors or marinas, other than SIYB, within San Diego Bay.

SIYB TMDL Monitoring. An evaluation, interpretation, and tabulation of water quality sampling and analysis data, including:


- 2. Sampling Locations and Numbers. The locations, type, and number of samples must be identified and shown on a site map.
- Sample Analyses. The sample collection and laboratory analytical methods, QA/QC results, time and date of sample collection, and other pertinent information must be described.
- 4. *QA/QC Summary.* Discusses the adherence to project-specific QAPP requirements, QA/QC issues that needed to be addressed, and any necessary corrective actions.
- 5. Water Quality Trends. Interpretations and conclusions, as to whether the "trajectory" of the measured water quality values points toward attainment of the dissolved copper water quality objectives, must be provided.

7.0 REFERENCES

- AMEC Environmental & Infrastructure, Inc. (AMEC). 2013. 2012 Shelter Island Yacht Basin Dissolved Copper TMDL Monitoring and Progress Report.
- American Public Health Association (APHA). 1998. *Standard Methods for the Examination of Water and Wastewater*. 19th ed. Washington, D.C. 1325 pp.
- American Society for Testing and Materials (ASTM). 2006. E1367-03 Standard Guide for Conducting 10-Day Static Sediment Toxicity Tests with Marine and Estuarine Amphipods. *Annual Book of Standards, Water and Environmental Technology*, Vol. 11.05, West Conshohocken, PA.
- Neira, C., F. Delgadillo-Hinojosa, A. Zirino, G. Mendoza, L.A. Levin, M. Porrachia, M., and D.D. Deheyn. 2009. Spatial distribution of copper in relation to recreational boating in a California shallow-water basin. *Chemistry and Ecology* 25(6): 417-433.
- Regional Water Quality Control Board, San Diego Region (Regional Board). 1994. Water Quality Control Plan for San Diego Basin—Region 9 (Basin Plan).
- Regional Water Quality Control Board, San Diego Region (Regional Board). 2005. Total Maximum Daily Load for Dissolved Copper in Shelter Island Yacht Basin, San Diego Bay. Resolution No. R9-2005-0019. (Basin Plan Amendment and Technical Report.)
- U.S. Environmental Protection Agency (USEPA). 1995. Short-term Methods for Measuring the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms. EPA/600/R-95/136. EPA Office of Research and Development. Narragansett, RI.
- U.S. Environmental Protection Agency (USEPA). 2000. Water Quality Standards; Establishment of Numeric Criteria for Priority Toxic Pollutants for the State of California. *Federal Register*. Vol. 65. No. 97. May 18, 2000. Rules and Regulations.
- U.S. Environmental Protection Agency (USEPA). 2002. *Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms*, Fifth Edition. EPA-821-R-02-012. October.
- U.S. Environmental Protection Agency (USEPA). 2010. National Pollutant Discharge Elimination System Test of Significant Toxicity Implementation Document. EPA/833/R-10/003. June 2010.
- Weston Solutions, Inc. (WESTON). 2008. Regional Harbor Monitoring Program 2005–2007 Pilot Study Final Report. Prepared for the Port of San Diego, City of San Diego, City of Oceanside, and County of Orange. May 2008.
- Weston Solutions, Inc. (WESTON). 2010. *Regional Harbor Monitoring Program 2008 Final Report*. Prepared for the Port of San Diego, City of San Diego, City of Oceanside, and County of Orange. May.
- Weston. 2011. Shelter Island Yacht Basin TMDL Monitoring Plan. Prepared for the California Regional Water Quality Control Board, San Diego Region. May.


ATTACHMENT A VESSEL TRACKING DATABASE TEMPLATE

Attachment A SIYB Dissolved Copper TMDL Vessel Tracking Template Form

Facility (Marina or Yacht Club)	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type (Copper, Low, or Non, No Paint)	Paint Product Name	Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	DPR Category I Registration Number
-													

ATTACHMENT B CHAIN-OF-CUSTODY FORMS

Weck Laboratories, Inc.

Analytical Laboratory Services - Since 1964

										_
TL	ΙЛ		I OF		ICT	\mathbf{O}	V D		\mathbf{C}	רונ
٦٠,	1 /4	м,	ILIT	1.1	וכו	THE STATE OF THE S	IK	Γ	LJD	ĹIJ

STANDARD 14859 East Clark Avenue: Industry: CA 91745 Tol. 626 226 2120 A. Fay 626 226 2624 A. www.wooklabs.com

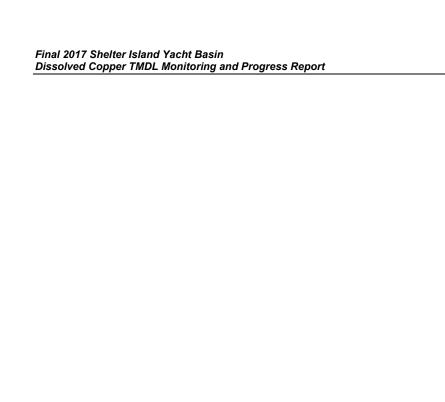
Tel 626-336-2139	▼ rax 020-	-330-2034	▼ VV VV V	w.weckiabs.com													Page		_OI <u>_5</u>
CLIENT NAME:					AN	ALYS	SES I	REQL	JEST	ED			SPECIA	AL HAN	IDLING				
ADDRESS:				Port of San Diego - Shelt PHONE: FAX: EMAIL:	004 µg/L, RL= 0.01 µg/L	004 μg/L, RL= 0.01 μg/L	036 μg/L, RL= 0.20 μg/L	036 µg/L, RL= 0.20 µg/L	n (TOC) DL = 0.016 mg/L, RL = 0.10 mg/L	Dissolved Organic Carbon (DOC) ¹ Method USEPA 5310B MDL = 0.016 mg/L, RL = 0.10 mg/L						24 Hour 48-72 H 4 - 5 Da Rush Ex	ay Rush 150% Rush 100% our Rush 75% y Rush 30% tractions 50% ness Days		
PROJECT MANAGER	Rolf Schottle			SAMPLER			O MDL 0	pper 2 0 MDL 0.	0 MDL 0.	o MDL 0.	Total Organic Carbon Method USEPA 5310B MDL	ganic C					V	QA/QC	Data Package
15.0			T			I	pper A 164	d Co A 164	c A 164	d Zir A 164	ganic EPA (d Or							r weekends/holidays
ID# (For lab Use Only)	DATE SAMPLED	TIME SAMPLED	SMPL	SAMPLE IDENTIFICATION/S	SITE LOCATION	# OF CONT.	8 E	Dissolved Method EPA	Total Zinc Method EPA	Dissolved Method EPA	od US	solve od US					Method of S	nipment	
(i or lab ose orliy)	SAMPLED	SAIVIFLED	TYPE			CONT.	Tota Meth	Diss Meth	Tot a Meth	Diss Meth	Tota Meth	Diss Meth					COMMENTS	3	
RELINQUISHED B	Y		DATE	E / TIME	RECEIVED	BY								_	AMPI I Temp		ONDITION: e:		SAMPLE TYPE CODE: AQ=Aqueous NA= Non Aqueous SL = Sludge
RELINQUISHED B	Y		DATE / TIME RECEIVED BY										Prese Evide	ved Or rved nce Se iner In	eals Pr	esent	Y / N Y / N Y / N Y / N	DW = Drinking Water WW = Waste Water RW = Rain Water GW = Ground Water	
RELINQUISHED B	Y		DATE	E / TIME	RECEIVED BY									Prese	rved a	t Lab		Y / N	SO = Soil SW = Solid Waste OL = Oil OT = Other Matrix
CDECIAL DECLUDEMEN	VITO / DILL INO	INICODATATIO																	OT - OTHER IMATIN

SPECIAL REQUIREMENTS / BILLING INFORMATION

- 1) DOC samples were field filtered through 0.45 um Teflon filters, 2) LAB ACTION UPON RECEIPT:FILTER/PRESERVE DISSOLVED Cu/Zn IMMEDIATELY- 24hr HT; 3) 10 working day TAT;
- 4) FB = Field Blank; 5) ER = Equipment Rinsate (Equipment Blank); 6) Organic carbon will be measured by Weck using High Temperature Combustion Method (SM 5310 B)
- 7) Please see attached CAR for metals analysis / acid washing filters. Preserve extra of each sample for total copper and zinc AND filter and preserve extra for dissolved metals to archive
- 8) WECK will contact AMEC PM within 24 hours if any sample anomalies are found. 9) SPIKE level at the following amounts = Copper = 10 ug/L; Zinc = 30 ug/L; TOC/DOC = 2.0 mg/L
- 10) Select pages from AMEC QAPP included for reference; 11) HDPE Metals Bottles were provided to AMEC with NO acid (HNO3) in bottle. WECK to add acid in-house at appropriate time.

Nautilus Environmental

Chain of Custody (electronic)


4340 Vandever Ave. San Diego, CA 92120

Date	Page_	of
Date	i ago	O.

Sample Collection By:	AMEC En	vironment &	Infrastructu	re						ANAL	YSES	REQ	UIREI)	
	Report to	:			Invoice to:			ल	Dev.						
Company								Survival	Дp						ပ္ပ
Address									and						ē.
City/State/Zip								96-hr Acute	Survival						atu
Contact								۲Ā	Sur						bei
Phone								36-r	Ļ						e.
Email			<u> </u>					nelt (1 48						ipt T
SAMPLE ID	DATE	TIME	MATRIX	CONTAINER TYPE	# OF CONTAINERS	COMMENTS		Topsmelt	Mussel 48-hr						Receipt Temperature (°C)
PROJECT INFORM	MATION		SAMPLE R	ECEIPT	Relinquished	d By:		Rece	ived I	Зу (со	urier)	:			
Client:		Total # Co	ntainers:		Signature:		Date	Sign	ature:						Date
P.O. No.:		Good Con	dition?		Print Name:		Time	Print	Nam	e:					Time
Chinned Min		Matches T	est		Company:			Com	pany:						
Shipped Via:		Schedule?	?		Relinquished	d By (courier):		Rece	ived I	By Lal	b:				
Comments: Concurrent reference to	nxicant test	for both spe	ecies		Signature:		Date	Signa	ature:	-					Date
Consultant follower	CAIGUIT TOST	ioi botti apt	30100		Print Name:				Name						
							rime								Time
					Company:			Com	pany:						

Additional costs may be required for sample disposal or storage. Net 30 unless otherwise contracted.

APPENDIX B BEST MANAGEMENT PRACTICE PLANS

This page intentionally left blank

March 2018

BEST MANAGEMENT PRACTICE PLANS PORT OF SAN DIEGO

BMP TYPE	PROJECT NAME /	LOCATION	PURPOSE(S)	TARGETED OUTCOME(S)	ASSESSMENT	SCHEDULE /	FINDINGS / ACCOMPLISHMENTS
Defined Duciests fo	DESCRIPTION		.,	()	MECHANISM	STATUS	· · · · · · · · · · · · · · · · · · ·
Policy/ Regulation	Copper Hull Paint Legislation AB 425 (Atkins): The Port sponsored state legislation that required the Dept. of Pesticide Regulation to adopt a leach rate that is protective of aquatic environments.	State-wide	This bill supports the Port's efforts to reduce copper pollution in San Diego Bay marinas by controlling copper loading throughout the state.	Completeness: Adoption of bill Load Reduction: (1) establish leach rate that is protective of aquatic environments. (2) Limit paints to only those meeting the leach rate.		Start Date: Feb 2013 Completion Date: (1) Bill Complete – Oct 2013 (2) Establish Leach Rate – Feb 2014 (3)Leach Rate Use – Adopted Rule August 2017, Status: Legislation Complete	 AB425 was signed in October 2013. The final DPR report was completed on January 30, 2014, and established the following: Max Leach Rate of 9.5 μg/cm2/day for paints w/ monthly soft carpet. 7 additional mitigation measures identified to be implemented. Leach Rate Use Adopted Rule- August 2017
Policy/Regulation	Copper Hull Paint Legislation AB 425 (Atkins): The Port sponsored state legislation that created a requirement for the Dept. of Pesticide Regulation to adopt a leach rate that is protective of aquatic environments.	State-wide	This bill supports the Port's efforts to reduce copper pollution in San Diego Bay marinas by controlling copper loading throughout the state.	Completeness: Adopted Bill Implemented Implementation: (1) Adoption of Bill (2) Implementation of Adopted Bill		Start Date: August 2017 – Leach Rate Use Rule adopted Status: Adopted rule to be implemented starting July 1, 2018	 Leach Rate Use Adopted Rule- August 2017 Adopted Rule to become effective on July 1, 2018
Policy/ Regulation	In-water Hull Cleaning Regulations – New Permits Issued	Bay-wide	In-Water Hull Cleaning regulations are intended to reduce or eliminate copper pollution caused by hull cleaning activities in San Diego Bay.	Completeness: Issue Permits to 100% of In- Water Hull Cleaning businesses operating in San Diego Bay. Load reduction: All hull cleaning businesses operating on Port Tidelands have obtained permits & use BMPs.	# of permitted in- water hull cleaning businesses/ total in- water hull cleaning businesses known to operate.	Start Date: FY10 Status: Ongoing Annually	 81 permits issued since onset of regulation. 50 active permits as of December 2017. 2 new hull cleaning permits issued in 2017.

Page **1** of **14**

ВМР ТҮРЕ	PROJECT NAME / DESCRIPTION	LOCATION	PURPOSE(S)	TARGETED OUTCOME(S)	ASSESSMENT MECHANISM	SCHEDULE / STATUS	FINDINGS / ACCOMPLISHMENTS
Policy/ Regulation	In-water Hull Cleaning- Permit Renewals	Bay-wide	In-Water Hull Cleaning Permit renewals are required every two years. A regular renewal process is intended to ensure divers stay up to date on education and training.	Completeness: Permit renewals issued Load reduction: All hull cleaning businesses operating on Port Tidelands possess valid permits & use BMPs.	# of permitted in- water hull cleaning businesses having permits expiring in 2017/ total #in-water hull cleaning businesses	Start Date: Jan 2013 Completion Date: Annually Status: Ongoing annually	 30 Hull cleaning businesses renewed permits in 2017. 6 expired permits (no longer in business or will not be renewed).
Policy/ Regulation	In-water Hull Cleaning – Diver/Marina Inspections	Bay-wide	Inspections for IWHC activities and review of marina's check-in practices are intended to verify whether businesses are complying with permit requirements. In general, compliance with permit requirements is indicative of divers using BMPs and controlling their pollution to the MEP.	Completeness: compliance with regulations confirmed through visual inspections. Load reduction: All hull cleaning businesses operating on Port Tidelands have obtained permits & use BMPs.	# of inspections conducted/ # of citations/warnings issued	Start Date: FY10 Status: Ongoing Annually	 43 Hull cleaning inspections in 2017. 1 diver cited in 2017 for lack of permit. 1 marina cited in 2017 for admitting divers operating under an expired permit to its leasehold 1 marina given verbal warning in 2017 for admitting unpermitted diver to train with permitted diver in marina 1 company given verbal warning in 2017 for entering marina with unpermitted diver to perform in-water training with permitted diver 4 companies cited in 2017-1 for creating a paint plume, 3 for operating without a valid permit (or proof of a valid permit)
Policy/ Regulation	Correspondence with State & Federal Agencies	State-wide	Promote consistency in requirements being developed across the state; discuss strategies for implementation activities, lessons learned, and build upon successful activity models.	Completeness: submittal of letters; response to request(s)	# of letters sent / # of requests satisfied	Ongoing Annually	 The Port submitted a comment letter to the DPR regarding the leach rate rule Initial Statement of Reasons, supporting the July 1, 2018 date and encouraging using additional mitigation measures (January 31, 2017). The Port submitted a comment letter to the U.S. EPA regarding the use of sound science and leach rate reviews for interim decisions for copper compounds, specifically ecological-antimicrobial uses- anti-foulant paints and coatings. The comment letter addressed Docket ID No. EPA-HQ-QPP-2010-0212 (November 2017). DPR released an updated list of paints meeting the AB425 leach rate criteria (July 2017). Port staff and DPR staff continued their on-going collaborative partnership by holding a conference call to discuss on-going copper

Page **2** of **14**

ВМР ТҮРЕ	PROJECT NAME / DESCRIPTION	LOCATION	PURPOSE(S)	TARGETED OUTCOME(S)	ASSESSMENT MECHANISM	SCHEDULE / STATUS	FINDINGS / ACCOMPLISHMENTS
							related issues and missing leach rate data for certain paints (November 2017)
Testing and Research	Hull Paint Research Grants	State-wide	Projects advance the understanding of available alternative technologies; 3 new technologies being tested (nanotechnology, surface adhesion, natural antifouling compounds.	Completeness: Development of test products	Deliverable of final report and ability to test product in Port panel testing.	Start Date: FY11 Completion Date: FY13 Status: Completed	 ePaint - Completed 2012 University of Washington – Completed March 2013 Xurex – Completed July 2013
Testing and Research	Hull Paint Testing Program: Development of a testing program to evaluate new and emerging coatings	SIYB	The objective of the project was to identify effective non-copper antifouling paints through panel testing.	Completeness/Change in Awareness	Identification of alternative hull paints that are comparable to copper hull paints.	Start Date: FY09 Status: Complete Annual Totals: 2011: Five of 17 non-copper hull paints identified to be effective 2010: Four of 21 non-copper hull paints identified to be effective.	Paint testing efforts have been completed; no new work anticipated for the paint testing program.
Testing and Research	Pilot projects for concepts to mitigate copper in San Diego Bay	SIYB	Test/implement potentially useful copper reduction technologies. These efforts are being coordinated through the Port Blue Economy Incubator (BEI).	Successful trials and subsequent installations of demonstrated technologies.	Measured reduction in copper concentrations in the water column.	2016: BEI establishe d and project proposals are reviewed annually	 In 2017, two companies were awarded agreements to conduct copper-related pilot projects through the Blue Economy Incubator Red Lion Chem Tech will demonstrate their core technology to remove soluble copper in seawater via active and passive filtration Rentunder Boat Wash will utilize a new enclosed-system approach to in-water hull cleaning, which may help reduce dissolved copper and copper particulates released into the water
Hull Paint Transition	Transition of Port Fleet to Non-copper Hull Paints	SIYB/Bay-wide	To facilitate the reduction of copper loading to SIYB in compliance with interim and final loading reduction targets.	Load reduction: 100% of fleet transitioned to non- copper hull paints Completeness: conversion of entire Port fleet	# converted/ total	Start Date: FY09 Completion Date: FY11 Status: Complete. 16 of 16 converted	 All 16 Port boats have been converted, resulting in an 11.01 kg/yr load reduction. Project completed ahead of schedule.
Hull Paint Transition	Vessel Tracking Templates	SIYB/Bay-wide	Excel-based data sheets for marinas and yacht clubs to use to track hull paint in a consistent manner for reporting purposes.	Completeness/Change in Behavior	# of facilities using templates and tracking hull paint information	Start Date: FY11 Completion Date: FY13 Status: complete	The Port and all 11 facilities are currently using template to track hull paint.

Page **3** of **14**

ВМР ТҮРЕ	PROJECT NAME / DESCRIPTION	LOCATION	PURPOSE(S)	TARGETED OUTCOME(S)	ASSESSMENT MECHANISM	SCHEDULE / STATUS	FINDINGS / ACCOMPLISHMENTS
Hull Paint Transition	Comprehensive Paint List	SIYB/Bay-wide	Development of a comprehensive list of copper, non-copper, and non-biocide paints that includes paint names, product numbers, and(for copper products) AB425 leach rate categories for each paint product.	Completeness	Creation of a list	Start Date: FY15 Completion Date: Dec 2015 Status: Complete	A paint list was completed and was used to validate the vessel data in this annual report.
Hull Paint Transition	Web-based Vessel Tracking System	SIYB/Bay-wide	A web-based database to track vessel paint information for District and tenant facilities.	Completeness/Change in Behavior	Presence/absence of usable/accessible online vessel tracking database that calculates annual loading reductions.	Start Date: FY12 Completion Date: FY13 Status: Database complete, enhancements in progress	Database completed but not currently being used by stakeholder groups
Grant Funding/ Incentives	319h Hull Paint Conversion Project	SIYB	The project is designed to reduce the levels of copper in Shelter Island Yacht Basin by incentivizing boaters to switch from copper to non-biocide hull paint.	Load reduction targets (as of 2012 cost reallocation): 107 vessels converted to non-toxic hull paints and estimated 96.3 kg/yr copper load reduction	# of vessels converted and loading reduction as compared to targets.	Start Date: FY11 Completion Date: May 30, 2015 Status: Completed Past Annual Totals: 2011 to 2014 – 34 boats, 32.25 kg/yr total load reduction	 7 boats converted in 2015 41 vessels converted overall 2015 Load reduction = 6.26 kg/yr Overall load reduction = 38.51 kg/yr Final report submitted to State Board on May 30, 2015, 2015 Report posted to website at https://www.portofsandiego.org/environment/copper-reduction-program/hull-paint-transition.html
Education/ Outreach	Workshops/seminars to boating community & Stakeholders	SIYB/Bay-wide	Educate boat owners on environmental impacts of copper-based hull paints; Provide information on alternative hull paints; Inform boat owners of the Hull Paint Conversion Project; Inform stakeholders of programs or policies.	Change in Awareness/Change in Behavior	# of people attending; Results from public opinion/awareness surveys or pre/post- tests (as applicable)	Start Date: FY 09 Status: On-going Past Annual Totals: • 2016 – 6 events • 2015 – 5 events • 2014 – 6 events • 2013 – 1 event • 2012 – 3 events	 Conferences: April 27-28, 2017: Southern California Society of Environmental Toxicology and Chemistry, Dana Point, CA. topics covered water and sediment quality in southern California with both scientific and regulatory focuses

Page **4** of **14**

ВМР ТҮРЕ	PROJECT NAME / DESCRIPTION	LOCATION	PURPOSE(S)	TARGETED OUTCOME(S)	ASSESSMENT MECHANISM	SCHEDULE / STATUS	FINDINGS / ACCOMPLISHMENTS
						 2011 – 2 events 2010 – 1 event 	 Blue Economy Incubator Pilot Project Update (June 8, 2017). Port Board Meeting Agendas 3 Board Agendas Blue Economy Incubator Presentation on Red Lion Chem Tech and RentUnder Remediation Applications (April 11, 2017). Presentation on the 2016 Copper Load Reduction Efforts Related to the Shelter Island Yacht Basin Total Maximum Daily Load (TMDL) (June 20, 2017). Resolution Authorizing the Executive Director to Enter into Blue Economy Agreements – Copper Remediation Applications (June 20, 2017).
Education/ Outreach	Booths at Outreach Events:	SIYB/Bay-wide	The Port hosts booths at various boating relating events, such as the Sunroad Boat Show or Day at the Docks. The purpose is to educate boating community on environmental impacts of copper-based hull paints; Provide information on alternative hull paints; Inform boat owners of the Hull Paint Conversion Project.	Change in Awareness/Change in Behavior	# of attendees; # of posted advertisements or pamphlets distributed Results from public opinion/awareness surveys (as applicable)	Start Date: FY 09 Status: On-going Past Annual Totals:	The Port Environmental Staff did not host any booths this year due to staff resource limitations.

Page **5** of **14**

ВМР ТҮРЕ	PROJECT NAME / DESCRIPTION	LOCATION	PURPOSE(S)	TARGETED OUTCOME(S)	ASSESSMENT MECHANISM	SCHEDULE / STATUS	FINDINGS / ACCOMPLISHMENTS
Education/ Outreach	Develop Partnerships/ Collaboration	SIYB/Bay-wide	Identify opportunities to collaborate with tenants, academia, and other agencies to develop and provide outreach, testing opportunities, funding opportunities, and policies.	Change in Awareness/Change in Behavior	# partnerships developed	Start Date: FY 09 Completion Date: On-going Status: In progress:	 Coordination with hull cleaners on In-Water Hull-Cleaning Regulations via IWHC regulation processes. Coordination with SIMLG on SIYB TMDL annual report. Coordination with other agencies (such as Newport Beach and Marina Del Rey) on regional information sharing regarding Copper TMDL issues. Regular participation in state-led Interagency Coordinating Committee (IACC) meetings for antifouling and marina-related topics. Regular meetings with tenants to discuss reports and TMDL status.
Education/ Outreach	Website Development	SIYB/Bay-wide	Be an information source for staying up-to-date with boating trends, news, events and environmental issues. Provide tenants, stakeholders, and public information on copper hull paint related projects, policies and other items.	Change in Awareness/Change in Behavior	Web pages created and posted. Periodic updates to webpages (as necessary)	Start Date: FY 10 Status: - On-going Past Annual Totals: • 2016 – 2 updates • 2015 - 2 updates • 2014 – 1 update • 2013 - 2 updates • 2012 – 2 updates • 2011 – 1 update	 The website was routinely checked to ensure content was available to the public and that information remained current and easy to find. 36 Updates to In-Water Hull Cleaning permitted divers list (the list is updated and distributed to marinas and yacht clubs weekly, unless there are not changes to the list from the previous week).

Page **6** of **14**

BMP TYPE	PROJECT NAME / DESCRIPTION	LOCATION	PURPOSE(S)	TARGETED OUTCOME(S)	ASSESSMENT MECHANISM	SCHEDULE / STATUS	FINDINGS / ACCOMPLISHMENTS
Education/ Outreach	Literature Development: (brochures, handouts, print materials)	Bay-wide	Development and distribution of brochures and other educational materials for the public addressing the bay's copper problems and providing information on non-copper hull paint alternative hull paints.	Change in awareness	# of brochures or pamphlets created	Start Date: FY 10 Past Annual Totals: 2016 – 1 item 2015 - 1 item 2014 – 2 items 2013 - 4 items 2012 – 1 item 2011 – 2 items	New information was not developed this fiscal year, previously developed material remained readily available via both web and print.
Education/ Outreach	Media Development: (Videos, Web tools, Testimonials, Press releases)	SIYB/Bay-wide	Development and distribution of information for the public addressing the bay's copper problems, non-copper hull paints, policies, and testimonials from boaters/tenants using non-copper hull paints.	Change in awareness	# of press releases or videos created	Start Date: FY 09 Status: On-going Past Annual Totals: 2016 – 1 press release; 3 items completed 2015 – 1 press release; 2 items completed 2014 – 7 press releases; 1 item completed 2013 - 5 press releases, 3 items completed; 2012 – 9 press releases; 1 video, 2 posters 2011 – 7 press releases 2010 – 5 press releases 2009 – 2 press releases	 1 press release: "Port Launches Four 'Blue Economy' Pilot Projects" (June 28, 2017). The Port's Blue Economy incubator is entering into agreements for four pilot projects, two of which relate to copper mitigation throughout the bay. The Log Newspaper article Article discussing the Port entering the final phase of the copper reduction mandate titled "Port of San Diego enters final phase of copper reduction mandate" (July 20, 2017). http://www.thelog.com/local/port-of-san-diego-enters-final-phase-of-copper-reduction-mandate/

Page **7** of **14**

BMP TYPE	PROJECT NAME /	LOCATION	PURPOSE(S)	TARGETED OUTCOME(S)	ASSESSMENT	SCHEDULE /	FINDINGS / ACCOMPLISHMENTS
Additional Efforts (Companion Programs)	Construction Site Inspections	Bay-wide	Construction inspections ensure that sites undergoing (re-)development control pollution and prevent discharges. For construction sites and facilities that do not	Change in Behavior	Total #sites, # Inspections; # of follow up inspections Overall BMP rate	Status: On-going	 23¹ construction projects. 237¹ inspections and 90 follow-up inspections. 93.5%¹ BMP implementation rate overall. ¹Data gathered from the Jurisdictional Runoff Management Program (JRMP), which has a permit-required data collection period of October 1, 2016-September 30, 2017. To stay consistent with previous SIYB BMP workplan reporting, these dates were used for this report.
Additional Efforts (Companion Programs)	Commercial Business Inspections Program	Bay-wide	comply, the Port will take enforcement action. The Port inspects commercial facilities per the Municipal Permit in the SIYB and bay-wide. One particular component, the Port's marina inspection program, has been an effort to educate boat owners about pollution prevention, focusing on visual observations designed to identify sources of pollution and the pollution prevention practices being implemented at the marinas.	Change in Behavior	Total # Inspections; # of follow up inspections	Status: On-going Past Annual Totals: 2015:57 inspection baywide, 16 follow-ups required. 2014: 45 inspections bay-wide; 18 follow-ups required. 2013 - 26 inspections bay-wide; 4 follow-ups required. 2012 - 9 inspections bay-wide, 0 follow-ups required.	 Bay-wide 77 inspections and 38 follow-up inspections bay-wide in 2017. Bay-wide - 28 administrative citations and 6 written warnings were issued to facilities to resolve deficiencies. SIYB 8 facilities received written warnings (sometimes more than 1 deficiency), 6 had no issues (14 total were inspected). 4 facilities received written warnings for the lack of properly stored hazardous materials. 5 facilities received written warnings for trash. 2 administrative citations were issued: one for an abundance of trash and a lack of sweeping , and one for downspout installation issues as part of a PDP BMP.
Additional Efforts (Companion Programs)	SUSMP and Development Regulations	Bay-wide	The Port incorporates SUSMP requirements on applicable development and redevelopment projects bay-wide. Depending on the type and size of the projects, SUSMP requirements could include site design, source controls, and treatment controls such	Change in Behavior: Compliance	# of projects having metals as priority pollutant / # of completed SUSMP BMPs / # acres(sq ft)	Status: On-going	No new projects occurred in SIYB in 2017 having metals as priority pollutant.

Page **8** of **14**

ВМР ТҮРЕ	PROJECT NAME / DESCRIPTION	LOCATION	PURPOSE(S)	TARGETED OUTCOME(S)	ASSESSMENT MECHANISM	SCHEDULE / STATUS	FINDINGS / ACCOMPLISHMENTS
Monitoring/ Reporting	SIYB Special Study – Enhanced Water Quality Special Study	SIYB	as LID. Gain a better understanding of what water quality looks like at additional sampling locations throughout SIYB, as well as throughout the water column at the selected	Change in SIYB water quality concentrations at both TMDL stations and additional sampling locations as well as at different depths at each location.	Completeness: Assess water quality monitoring data and complete report.	Status: Completed and reported in the 2016 Annual Monitoring Report (March 2017)	 18 Total Enhanced Study Stations (6 TMDL Compliance Stations and 12 New Stations). A Surface, Mid-Depth, and Bottom Sample was collected and analyzed at each of the 18 stations. Reporting included as part of the 2016 Dissolved Copper TMDL
Monitoring/ Reporting	SIYB Special Study – Time Series Special Study	SIYB	Gain a better understanding on the effects tidal variations may have on concentrations of dissolved copper in surface waters at SIYB	Change in SIYB water quality concentrations during different stages of a full mixed semidiurnal tidal cycle.	Completeness: Assess water quality monitoring data and complete report.	Status: Final Report anticipated March 2018	 Monitoring and Progress Report (March 2017). 3 Special Study sites were located throughout SIYB and sampled every 2 hours for an entire mixed semidiurnal tidal cycle (26 hours). Work plan and QAPP completed in December 2017, Samples collected in January 2018 at mouth, mid basin and back basin. Reporting to be finalized in early 2018.
Monitoring/ Reporting	Conduct annual SIYB TMDL Water Quality Monitoring	SIYB	Assess water quality in SIYB basin; determine when vessel conversion starts to show water quality improvements	Completeness	Completed Report	Status: Monitoring Complete	 For 2017: Basin average for dissolved copper was 7.9 μg/L, a decrease of 9.5% from the 2005-2008 baseline basin average of 8.3 μg/L.
Monitoring/ Reporting	Revisions to QAPP & Monitoring Plan	SIYB	Develop a water sampling and vessel tracking program to 1) use annually to assess conditions in SIYB, and 2) determine compliance with the TMDL.	Completeness	Submittal of plan updates	-Start Date: July 2017 Completion Date: November 2017 Start Date: March 2013 Completion Date: Dec 2013 Status: 2017	Revisions to both plans occur annually and are submitted with the Annual Report

Page **9** of **14**

ВМР ТҮРЕ	PROJECT NAME / DESCRIPTION	LOCATION	PURPOSE(S)	TARGETED OUTCOME(S)	ASSESSMENT MECHANISM	SCHEDULE / STATUS	FINDINGS / ACCOMPLISHMENTS
			Update model using accepted modeling techniques that can			Revisions Complete	Data from DPR Report was included in conceptual model.
Monitoring/ Reporting	Updates to SIYB TMDL Conceptual Model (as-needed)	SIYB	predict current conditions and copper loading changes as paints are transitioned from current leach rates to AB425 Category 1leach rates. Updates would include list of data inputs and comparisons to existing modeling efforts and data.	Completeness; annual review and update (when applicable)	Completed report; updates as needed	Start Date: March 2013 Completion Date: By March 2016 Status: Completed	 SIYB-Specific MAMPEC model study completed; Identification of recent studies to fill data gaps and uncertainties completed. Information provided in the SIYB 2015 Annual Report as Appendix E. (March 2016; see link below) https://www.portofsandiego.org/environment/copper-reduction-program/monitoring-and-data-assessment/shelter-island-yacht-basin-tmdl-annual-reports/7286-shelter-island-yacht-basin-tmdl-annual-report-2015.html
Monitoring/ Reporting	Regional Harbor Monitoring Program (RHMP): 2018 Core Monitoring Program	Bay-wide	Assesses conditions found in San Diego Bay based on comparisons to historical data and comparisons to contaminant concentrations to known surface water and sediment thresholds.	Completeness	Water, sediment, & fish sampling in bay Report on findings of the study	Start Date: FY17 Completion Date: FY22 Status: Ongoing	Planning for the 2018 Core Monitoring event resulted in 4 planning meetings held between September-December 2017.
Monitoring/ Reporting	Regional Harbor Monitoring Program (RHMP): 2013 Core Monitoring Program	Bay-wide	Assesses conditions found in San Diego Bay based on comparisons to historical data and comparisons to contaminant concentrations to known surface water and sediment thresholds.	Completeness	Water, sediment, & fish sampling in bay Report on findings of the study	Start Date: FY13 Completion Date: FY15 Status: 2013 Completed	Final report completed January 2016 (see link below) https://www.portofsandiego.org/document/environment/regional-harbor-monitoring-program/rhmp-2013.html

Page **10** of **14**

ВМР ТҮРЕ	PROJECT NAME / DESCRIPTION	LOCATION	PURPOSE(S)	TARGETED OUTCOME(S)	ASSESSMENT MECHANISM	SCHEDULE / STATUS	FINDINGS / ACCOMPLISHMENTS
Monitoring/ Reporting	SIYB Hydrology Study	SIYB	Evaluate the potential for enhanced flushing of SIYB by adding culverts or pipes through to America's Cup Harbor or directly to the bay's main channel. Develop a preliminary engineering feasibility and cost assessment for the modeled scenarios.	Completeness	Completed report	Start Date: FY11 Completion Date: FY13 Status: Completed Feb 2013	A culvert between SIYB and ACH was modeled to provide the greatest benefit in reducing copper in SIYB. The study predicted a potential 17% reduction on average throughout the basin and 21% reduction at the head (or enclosed end) of the basin.
Potential Projects/	Initiatives for Stage 4 (2018	-2022)					
Policy/ Regulation	Legislative or Policy Efforts	State-wide	Seek options for state controls on copper through legislative efforts.	Completeness: Adoption of bill Load Reduction: TBD dependent on bill content		Start Date: FY11 Completion Date: TBD Status: pending	Will be provided as needed.
Policy/Regulation	Support for DPR Paint Reformulation	State-wide	Establish timeline to phase-out high leach copper paint.	Completeness	Verification of Policy Notifications to Boatyards Removal of high leach products from the market	Start Date: FY18	Per DPR Rule adopted August 2017, with an anticipated start date effective July 1, 2018
Policy/ Regulation	Policy Efforts as deemed applicable and appropriate	SIYB/Regionally/ State-wide	Evaluate potential policy efforts locally, regionally and statewide, as deemed appropriate.		Policy development	Will be completed as needed	 Explore collaborations between Port and other agencies regarding Copper TMDLs
Testing and Research	Blue Tech Pilot Studies	SIYB	Further utilize the Port's Blue Tech business incubator to discover and test potentially useful copper reduction technologies.	Further development of technologies exhibiting successful trials.	Measured reduction in copper concentrations in the water column.	Status: Ongoing	Further develop potential partnerships between the Port and companies proposing copper reducing technologies through the Blue Economy Incubator.

Page **11** of **14**

ВМР ТҮРЕ	PROJECT NAME / DESCRIPTION	LOCATION	PURPOSE(S)	TARGETED OUTCOME(S)	ASSESSMENT MECHANISM	SCHEDULE / STATUS	FINDINGS / ACCOMPLISHMENTS
Testing and Research	Long-term Hull Paint Testing Program Development: Development of a testing program to evaluate new and emerging coatings	SIYB	The objective of the project was to identify effective non-copper antifouling paints through panel testing.	Completeness/Change in Awareness	A standardized protocol for testing the effectiveness of new coatings has been developed.	Start Date: FY09 Completion Date: On-going	Testing will occur as budget allows.
Education/ Outreach	Presentations to Stakeholder Groups	SIYB/Bay-wide	Educate boating community on environmental impacts of copper-based hull paints; Provide information on alternative hull paints; Inform stakeholders of programs or policies.	Change in Awareness/Change in Behavior	# of attendees and/or pamphlets distributed	Status: Ongoing	 Will be provided as needed. Annual reports will identify efforts conducted during the reporting period.
Education/ Outreach	Booths at Outreach Events: The Port annually sponsors booths at various boating relating events, such as the Sunroad Boat Show or Day at the Docks.	SIYB/Bay-wide	Educate boating community on environmental impacts of copper-based hull paints; Provide information on alternative hull paints; Inform boat owners of the Hull Paint Conversion Project.	Change in Awareness/Change in Behavior	# of posted advertisements or pamphlets distributed; # of attendees Results from public opinion/awareness surveys (as applicable)	Status: Ongoing	 Will be provided as needed. Annual reports will identify efforts conducted during the reporting period.
Education/ Outreach	Literature Development: (brochures, handouts, print materials)	SIYB/Bay-wide	Development and distribution of brochures and other educational materials for the public addressing the bay's copper problems and providing information on non-copper hull paint alternative hull paints.	Change in awareness	# of brochures or pamphlets created & # distributed	Status: Ongoing	Proposed collateral: TBD
Education/ Outreach	Media Development: (Videos, Testimonials, Press releases) – Ongoing task	SIYB/Bay-wide	Development and distribution of information for the public addressing the bay's copper problems, non-copper hull paints, policies, and testimonials from boaters/tenants using non-copper hull	Change in Awareness/Change in Behavior	# of press releases or videos created	Status: Ongoing	

Page **12** of **14**

ВМР ТҮРЕ	PROJECT NAME / DESCRIPTION	LOCATION	PURPOSE(S)	TARGETED OUTCOME(S)	ASSESSMENT MECHANISM	SCHEDULE / STATUS	FINDINGS / ACCOMPLISHMENTS
			paints.				
Monitoring/ Reporting	Conduct annual SIYB TMDL Water Quality Monitoring	SIYB	Assess water quality in SIYB basin; determine when vessel conversion starts to show water quality improvement.	Completeness	Completed Report	Status: Annually	
Monitoring/ Reporting	Regional Harbor Monitoring Program (RHMP): Core Monitoring Program	Bay-wide		Completeness	Report on findings of the study results completed by Weston for RHMP	Start Date: FY17 Completion Date: FY22	Project partners include City of San Diego, City of Oceanside, County of Orange.
Grant Funding/ Incentives	Explore grant opportunities for construction of a culvert between SIYB and America's Cup Harbor	SIYB	Increase water movement within the SIYB	Grant award	Completion of grant agreement	Start Date: TBD pending potential grants	

Ongoing Partnersh	Ongoing Partnerships & Cooperative Efforts								
Policy/ Regulation	Coordination with other Regions on Copper TMDLs/impairments	Statewide	Promote consistency in requirements being developed across the state; discuss strategies for implementation activities, lessons learned, and build upon successful activity models.	Consistency in regulations	Assessment mechanism is dependent on information being considered.	As-needed coordination	•	TBD	
Vessel Tracking Program	Track vessel conversion from copper to non- copper and low-copper hull paints to determine	SIYB	Monitor implementation progress and assess progress towards interim and final loading targets	Interim and final loading reduction targets	Annual basin-wide vessel tracking assessments and loading reduction	Annually beginning in 2011; reporting to Regional Board March 31 annually	•	All Named Parties.	

Page **13** of **14**

ВМР ТҮРЕ	PROJECT NAME / DESCRIPTION	LOCATION	PURPOSE(S)	TARGETED OUTCOME(S)	ASSESSMENT MECHANISM	SCHEDULE / STATUS	FINDINGS / ACCOMPLISHMENTS
	annual loading reductions				calculations		
Water Quality Monitoring	Monitor water quality basin wide to assess long term trends in dissolved copper levels and attainment of WQOs	SIYB	Monitor implementation progress and assess progress towards attaining dissolved copper concentrations protective of SIYB beneficial uses	Water quality conditions protective of beneficial uses	Annual basin-wide chemistry and toxicity assessments	Annually beginning August 2011; reporting to Regional Board March 31 annually	All Named Parties.
Education/ Outreach	IACC Meetings	Statewide	Promote consistency in requirements being developed across the state; discuss strategies for implementation activities, lessons learned, and build upon successful activity models.	Information transfer; consistency in messaging	Assessment mechanism is dependent on information being considered.	As-needed coordination	• TBD

^{*} This list is subject to modification based on the availability of resources and results from other projects.

Page **14** of **14**

^{**}Projects in bold italics denote projects completed during this reporting period

BEST MANAGEMENT PRACTICE PLANS SHELTER ISLAND MASTER LEASEHOLDERS

2017

BEST MANAGEMENT PRACTICES AND RECOMMENDED ACTIONS FOR SHELTER ISLAND MARINAS AND YACHT CLUBS

Prepared by:

Shelter Island Master Leaseholder TMDL Group For the Marinas and Yacht Clubs in Shelter Island Yacht Basin

Table of Contents

MISSION STATEMENT	Page 3
DEFINITIONS	Page 3
BACKGROUND	Page 4
GUIDELINES	
Marina Managers	Page 5
Vessel Tracking	•
Port of San Diego	9
Staff	_
Divers	•
Boaters	<u> </u>
RECORD KEEPING	
Sign-In Sheets	Page 11
Staff Training	_
Boater Education	
Meetings	_
STAFF TRAINING/BOATER EDUCATION	
Staff Training	Page 15
Boater Education	_
APPENDIX	Page 17
Bottom Paint Survey Form	
Important Links	
Vessel Tracking Template	
Guidelines for Vessel Tracking	
Port Diver Card	
BMP Tracking and Self-Certification Form	
Boater's Guide to Using Hull Paint in Californ	nia
Diver BMP Notice	
Example Sign-In Sheet for Divers	

This document is prepared solely for exclusive use by participating members of the Shelter Island Master Leaseholders TMDL Group

MISSION STATEMENT

Our goal is to apply Best Management Practices to marinas and yacht clubs to help reduce non-point sources of copper.

DEFINITIONS

- SIMLG- In an effort to comply with the TMDL, the Shelter Island Master Leaseholders TMDL Group (SIMLG) was formed in 2007. This group, which has proven to be an extremely important tool for compliance, unifying numerous individual efforts so that a single entity does not fail to comply. While participation in the group is voluntary, all MO's working in the SIYB are strongly urged to participate as much as possible. The following entities make up the leaseholders in SIYB: Kona Kai Marina, Shelter Island Marina, Silver Gate Yacht Club, Bay Club Hotel and Marina, Humphrey's Half Moon Inn, Gold Coast Marina, Tonga Landing, Crow's Nest, San Diego Yacht Club, Southwestern Yacht Club, and La Playa Yacht Club.
- **BMP's** Best Management Practices.

BMPs are practices or procedures. They include methods to lessen or prevent identified substances from reaching receiving waters. A BMP plan organizes these actions, identifies goals, documents implementation, and evaluates progress and thereby assures effective use.

BMPs are qualitative.

They are designed to address a particular goal and the identification of that goal is a crucial part of the guidance plan.

BMPs are flexible.

Similar environmentally protective results can be achieved by multiple differing different practices. Marinas may elect to either use BMPs recommended by this guidance or selected by the marina.

BMPs fill an unfilled role.

Copper antifouling paints are legally sold for use in California. The use of these coatings however has been identified as a source of water quality impairment. Marinas have been identified as a responsible party in this impairment. Communicating this possible impairment seems to have been placed upon the shoulders of marina operators.

Background

Impairment of water quality due to dissolved copper, SIYB TMDL Resolution No. R9-2005-0019 amended the Water Quality Control Plan for the San Diego Basin (Basin Plan) to incorporate the SIYB TMDL, on February 9, 2005. The purpose of the TMDL is to identify and implement actions to reduce dissolved copper loads discharging into the SIYB to attain numeric water quality objectives for dissolved copper in San Diego Bay, which are equal to the California Toxics Rule (CTR) water quality values for dissolved copper in sea water. Chronic exposure concentrations must not exceed 3.1 micrograms per liter (μ g/L) over a 4-day average, and acute exposure concentrations must not exceed 4.8 μ g/L over a 1-hour average.

The SIYB TMDL requires that loading of dissolved copper into the water column be reduced by 76 percent to 567 kg/yr over a 17-year period (Regional Board, 2005). A 10 percent reduction in dissolved copper loading is required within seven years (December 2012); a 40 percent reduction in loading is required within 12 years, and a 76 percent reduction within 17 years (December 2022).

BMPs and the Investigative Order

Investigative Order, No. R9-2011-0036, issued to the Port on March 11, 2011, requires that the Port prepare and submit designated plans and annual technical reports on the progress of the SIYB TMDL implementation.

- The order states that data on the number of boat hulls converted from copper to
 alternative hull paints are needed to monitor the progress of implementing the
 SIYB Dissolved Copper TMDL and achieving the required dissolved copper load
 reductions.
- Water quality monitoring data are needed to quantify the dissolved copper concentrations in the water column in SIYB to determine when the water quality objectives are attained and beneficial uses restored.
- "Annual monitoring and progress reports must include a discussion of any BMPs or other actions that have been implemented by the Dischargers to reduce dissolved copper discharges from boat hulls into SIYB."

BMPs selection and use under Section 319

Amendments to the Clean Water Act (CWA) established the Section 319 Nonpoint Source Management Program. Under this program, parties must identify best management practices and measures for impaired non-point sources, along with an implementation plan.

GUIDELINES

BMP 1-Marina Operators: TMDL Introduction, Compliance, Shelter Island Master Leaseholders Group (SIMLG), and Key Reference Articles

- **OVERVIEW-**The Total Maximum Daily Load (TMDL) for copper in Shelter Island Yacht Basin (SIYB) was adopted by the California Regional Water Quality Control Board (CRWQCB) in 2005, and over the years its implications have grown in complexity. The document adopting the CRWQCB's efforts is known as Resolution R9-2005-0019. Among many other important issues, the Resolution named Marina Operators (MO's), marina owners, boat owners, the Unified Port of San Diego (Port), and underwater hull cleaners (Divers) as "Dischargers."
- **VESSEL TRACKING-** Each MO is ultimately responsible for reporting the composition of hulls painted using copper, non-copper, and low-copper paint to the Port. The SIMLG offers a great deal of help on this submission, mainly through the hiring of a consultant, John Adriany, who is the Principal Scientist at ChemMetrics. The importance of complying with this aspect of the TMDL cannot be overstated. Completion and submission of an accurate report to the Port is mandatory for all MO's. Each year, our report is due by approximately January 15th. At this time, our report of BMP's is also submitted. A sheet of Guidelines can be found in the Appendix.
- **COMPLIANCE** -As "dischargers accountable for copper load and wasteload reductions" (R9-2005-0019 Technical Report), it is imperative that all MO's in Shelter Island Yacht Basin understand specific components of the TMDL. Examples of these components include surveying boaters, meeting copper loading reduction timelines, and the utilization of Best Management Practices (BMP's) in an effort to voluntarily comply with the TMDL.
- **TIMELINE-** As of the date of this document, the TMDL is in stage three, of four (Port Presentation, 2007). Stage three entails meeting a benchmark of a 40% reduction of the number of hulls in our marina with copper paint by the end of 2017. The next and final stage involves a 76% reduction in the number of hulls, *and* a measurement of 3.1 parts per billion (ppb), or less, of copper in the water column. Stage four ends in 2022.

BMP 2-Port of San Diego: Port's Role, Grant, Expectations, and Diver Regulations

- **OVERVIEW-**SIYB, which consists of 153 acres, was placed onto the 303(d) Impaired Water Bodies List in 1996. This List currently categorizes our TMDL as a "high" priority.
- **TECHNICAL REPORT-** The 2005 Technical Report directed the Port to develop an Implementation Plan. A draft of this Plan was developed in 2009, and a final draft was submitted in May, 2011. This Plan pointed to BMP's to facilitate the conversion of boat hulls with copper anti-fouling paints (AFP) to AFP's with little or no copper.
- INVESTIGATIVE ORDER On March 11, 2011, an Investigative Order (R9-2011-0036) was issued by the Water Board to the Port. This Order dictates that the Port reports to the Board measurements toward successful compliance by monitoring and tracking data on the number of hulls that have converted from copper to a non-copper or low-copper alternative, and monitoring the concentrations of dissolved copper and levels of toxicity in the water. This Order also requires the Port to submit BMP's as part of their report. Accordingly, this document will be updated as necessary and submitted to the Port each year.
- **IMPLEMENTATION PLAN-** In May, 2011 the Port submitted their Implementation Plan to the Water Board. This document contains the quality assurance plan lays the groundwork for the efforts made to achieve appropriate reductions of copper in SIYB (Shelter Island Yacht Basin Dissolved Copper TMDL Implementation Plan, May, 2011).
- **MONITORING PLAN-** The Monitoring plan, which includes a quality assurance plan described below, and a Conceptual Model, details the annual water quality testing conducted by the Port.
- **QAPP-** The Quality Assurance Project Plan (QAPP), which is part of the Implementation Plan, provides details for the methods used to assess reductions of dissolved copper by tracking the number of hulls converted from copper to non-copper paint. In addition, this document details the project's objectives and quality assurance (QAPP, 2017).
- **DISCHARGERS-** The 2005 Technical Report within Resolution R9-2005-19 named the Port of San Diego (Port) a Discharger. Due to the Port's role in managing the tidelands around San Diego Bay, the Water Board recognized their ability to regulate the environmental impact of copper. The Board points to the Port to manage the TMDL in SIYB, and reiterates their authority to hold MO's, owners, divers, and boat owners accountable for reducing copper loading.
- **REGULATIONS-** According to the Port's 2007 presentation of a plan to reduce copper in Shelter Island Yacht Basin (SIYB), regulatory mechanisms may be put in place to ensure compliance of the aforementioned benchmark. It is our intention to avoid such measures by voluntarily complying; and creating, following, and submitting BMP's is necessary to comply.

- **GRANT-** In an effort to increase the number of hulls converted to non-copper, the Port applied for and won grant monies (\$600,000) to offset the cost of such conversion for boaters. With the help of the grant, 41 hulls were converted from 2012 through 2015.
- **DIVER ORDINANCE-** Port Ordinance 2681 originated in July, 2011, and became enforceable following a 90-day grace period that ended in November of the same year. This ordinance mandates Divers obtain a permit from the Port in order to clean hulls. In order to obtain a permit, Divers must display working knowledge of BMP's related to cleaning hulls in the SIYB. One example of these BMP's is Divers are supposed to use the least abrasive cleaning method possible to accomplish the job of cleaning the hull. The Port sends a list of Divers who are permitted to each MO in the SIYB. It is incumbent upon the MO's to disallow any Diver without a valid permit to work in their marina. Once permitted, a Diver will receive from the Port a card, which has green trim and a photo of the Diver. This card shall be displayed in a place where it can be observed by an MO or the Port.

BMP 3-Staff: Training Staff on Basic TMDL Fundamentals, Essential Information, and BMP's

- **OVERVIEW-** In general, compliance efforts have proven to be demanding. And if your office has the ability to dedicate a staff person(s) to assist with the efforts, it is suggested that they undergo thorough and ongoing training, and receive updates regarding the TMDL and BMP's. Marina staff should be made available and become familiarized with this BMP document, Port deadlines, and have input on expanding BMP's.
- **DISSEMINATING GENERAL INFORMATION-** Having a staff that is informed about the TMDL can be very helpful. A MO may or may not be the first person a boater reaches out to about their questions regarding the TMDL and their bottom paint. And it is important that the correct information is disseminated, whether a tenant or member reaches the MO or someone else on their staff.
- **DISSEMINATING PORT INFORMATION-** Staff should be encouraged to assist, whenever possible, efforts made by the Port to educate boaters on the TMDL. From "literature and print media" to "booths at local events," and "internal education" to an "Eco-friendly hull paint expo," the Port has made a concerted effort to inform and assist boaters who are moored in the SIYB switch to non-copper paint (Shelter Island Yacht Basin Hull Paint Conversion Project, 2015). These efforts, which began in 2011, should be clearly, routinely and effectively communicated to boaters in our marinas. Staff in a marina office should remain current with knowledge related to such efforts, so they can refer boaters to the appropriate materials.

BMP 4- Divers: Check-In/Check-Out Procedures, Permits, and Monitoring

- WARNING- It is ultimately the job of the MO to ensure no work takes place in our marinas by unpermitted Divers. If work is taking place by an unpermitted Diver, and said Diver is noticed by the Port during an inspection, adverse action against your marina by the Port could take place. If a MO or their staff knew that the Diver did not have their permit, you can count on action being taken against your marina.
- SIGNAGE- It is helpful to convey messages to divers in English and Spanish. And signage can help facilitate the exchange with a Diver. This is especially true if you are unable to allow a Diver to work on a particular day because they do not have their card from the Port, discussed in BMP 2 above. You may be able to curtail any above occurrences by placing signage at the desk where Divers sign in. There are at least three reasons for having signs notifying Divers of the fact that they cannot work without a permit. First, signs offer a clear statement to Divers about your office's policy. Second, if anyone on your staff is uncomfortable disallowing a Diver to work, they can more easily adhere to your office's policy if it is in writing, in front of both them and the Diver. Finally, if the Port were to reach an unpermitted Diver working, having a sign that the Diver must've passed when signing in could go a long way in convincing the Port that your office genuinely tries to manage this practice.
- **SIGN IN SHEETS-**Sign in sheets should be used in order to track Diver activity. For reasons beyond the TMDL, MO's should know who is in their marina working on boats or conducting business. Regarding the TMDL, the sign-in process is a great time to verify the Diver has their valid permit with them.
- **DOCK WALKS-** While on dock walks it is important to check for permits. We recognize that the sign-in process can be skirted when vendors walk through our entrance gates behind boaters, etc. And this is especially true of Divers who arrive by water. Just because a Diver arrives by water does not mean they are skirting the sign-in process; they may not know a policy is in place. By walking the docks, you can inspect permits for yourself, and direct any Diver arriving by water to visit your office.

BMP 5- Boaters: Communicating TMDL Basics to Boaters and Slip Holders.

- **OVERVIEW-** One BMP that is imperative to accomplish is communicating the latest news and information concerning the TMDL to your marina tenants or yacht club members. Choosing the medium for accomplishing this rests on the individual MO's, however it is very important that communication occurs. It is important to remember that, while MO's and long-time tenants/members may be familiar with this topic, it is likely to be a foreign topic to new boaters. And new boaters may be just as likely to convert their paint to non-copper; painting their bottom is sometimes one of the first moderately large maintenance tasks taken on.
- **NEWSLETTERS-** In general, newsletters are a great way to communicate with your boaters. Most marinas send them via email on a monthly basis. The SIMLG suggests mentioning the latest news concerning TMDL monthly. It can also be done via emails, events aimed at boater education, wharfage agreements, personal conversations, etc.
- **EMAILS-** Dedicated emails are effective because sending an email blast to tenants/members is usually a relatively easy task nowadays. News and updates are easily conveyed in emails dedicated to the TMDL.
- **EVENTS-** Hosting tenant events, such as potlucks, tenant appreciation parties, and picnics is a good idea. You may benefit from grabbing some of your tenants' attention at such events to discuss the TMDL.
- **SIGNAGE-** Wharfage contracts or Slip agreements set forth the arrangement you have with your tenants or members. As such, they may be an effective source for requiring bottom paint that is non-copper or low-copper. Or incentives, such as wait list priority or discounts, can be outlined in the slip agreement. At a minimum, each tenant should sign an agreement, whether it is in their contract or a supplemental contract, stating they will supply the TMDL Survey prior to November 1st each year.

DATE	TOPIC/SUBJECT	EMPLOYEE NAME	SIGNATURE

RECORD KEEPING

BMP 1- Sign-In Sheets

- **DIVER INFO-** All divers must sign in with their business name, diver name, date, time, slip locations. They should also sign out when done. The sign in sheet should include basic diver BMP info, such as no hard scrapers, no abrasives, no plumes, etc. Some marinas and yacht clubs will also require independent contractors, such as divers, to sign other documents and waivers, as needed. A copy of a sign in sheet can be found in the appendix. A web link to the Port of San Diego's In Water Hull Cleaning Permit program can be found in the Appendix on page 18.
- **PAPERWORK-** All paperwork such as sign in sheets and other paperwork should be kept in file for a minimum of 7 years.
- **SIGN IN SHEET-** Sign in sheets and other paperwork will help the Port of San Diego track divers permitted by the Port in addition to ensure they are following Port and diver established BMPs.
- **SIGN IN SHEETS FOR TRAINING-** Sign in sheets should be used in staff training, to help the employee understand the impact of diver activity at their marina/yacht club. Understanding which divers are on property, for which company they are working and if they have a Port issued diver ID card.
- **SIGN IN SHEETS FOR TMDL COMPLIANCE-** Sign in sheets help individual marinas and yacht clubs establish TMDL compliance as it relates to tracking the divers, who they work for, which boats they are working on and how often. This info should be used with dock walks and other interactions with divers and tenants.

BMP 2- Staff Training

- **DOCUMENT BMP TRAINING-** All marinas and yacht clubs should be documenting BMP training of their staff. This can be done by using this document as a guideline for individual training records as well as TMDL compliance. At the bottom of each page of this document, as an example, is a place for each employee to sign off they have reviewed the page and understand the contents. A copy of training records can be found in the appendix.
- **DOCUMENT DIVER POLICY/INTERACTIONS-** It is also important to document diver policy education and interactions. This includes the sign in sheets, independent contractor rules and policies, property waivers, other documentation given to divers. Other training can involve dock walks, diver interactions at the slips, other handouts and brochures given to divers, etc. Dates, times, locations and the diver info should all be kept in written form and on file in the marina manager/dockmaster office.
- VESSEL TRACKING SURVEYS- Another source of staff training can include boater/tenant vessel hull paint tracking surveys (used to collect hull paint data and diver information). Surveys can include items like type of bottom paint used, last date applied, boatyard who applied paint, dive company used and many other sources of data. The annual vessel tracking survey should be used as a training tool as well, as it can give a great overview of how the bottom paint and diver activity at your location is impacting the water. A copy of the vessel tracking survey is in the appendix.

BMP 3- Boater Education

- **EMAIL-** There are many ways to document how you educate and inform your tenants of the ever changing hull paint choices and their impacts on the water and your marina/yacht club. All emails sent to your tenants/members should be kept on file in their individual folders. Emails may contain info about the various hull paint options, current strategies to minimize copper loading of our waterways, upcoming events in the area focusing on hull paint applications and diver information, such as BMPs and your marina's/yacht club's approach to tracking and educating divers.
- MARINA/YC EVENTS- Another great option is to document tenant events at your location. These can be during other events, such as seasonal parties, clean up days, national marina day or other events. You can have local yard representatives on hand to help answer boater questions re bottom paint choices and cost estimates. If you have never had a tenant event, reach out to your marina/YC manager/dockmaster as many have done them in the past and may be able to give some ideas. Dates, times, who spoke at the event and who attended needs to be recorded.
- HANDOUTS- Tenant handouts can provide simple, relevant information about hull paint options and costs as well as who to contact for more information. Handouts are available from the Port of SD, hull paint manufacturers and boatyards. Keeping track of what is being handed out and how often can help show you are educating boaters on a regular basis.
- MARKETING- Keeping records of marketing done by the marina to your tenants/members helps to show a continual effort to educate. Keeping copies of the marketing materials and who received them is a good idea. Marketing could include discounts at local boatyards, slip fee reductions, wait list priorities for slip applicants, etc.

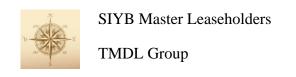
BMP 4- Meetings

- **INTERNAL/STAFF MEETINGS-** Internal organizational meetings should be documented with topics, date, time, who attended and any goals set.
- EXTERNAL/PORT/CITY MEETINGS- Document other meetings times, locations and items discussed. These could be local group meetings, dockmaster group meetings and other meetings with local boatyards, etc.

DATE	TOPIC/SUBJECT	EMPLOYEE NAME	SIGNATURE

STAFF TRAINING/BOATER EDUCATION

BMP 1- Staff Training


- **OVERVIEW-** Staff training should include a review of office procedures, marina/YC policies/bylaws, and policies for allowing independent contractors/divers on property and associated documents.
- **RECORDING INFORMATION-** All employees should be shown how to properly record important information and where that information is kept. Training should include reviewing past training efforts to other staff.
- **ROLES-** Part of the employee training should include their role in the TMDL process. Information should include TMDL history, impacts to local waterways, impacts to the tenants and marina/YC, efforts to comply with the TMDL as well as future regulations/fines if TMDL compliance is not met.
- BOATERS AND DIVERS- TMDL regulations have changed how boaters interact with their divers and the boatyards as well as the myriad of new hull paints being brought to market. This impacts the boaters not only from a time stand point (more time devoted to speaking with their hull cleaners, the boat yards and possibly local stores selling hull paints), but also the economics of annual boating costs. These additional expenses may play into where a boater decides to moor their boats, which impacts every marina. Divers are impacted as they are regulated by the Port of SD and must show they are using BMPs in their daily operations and to minimize copper loading from their in-water activities. Staff training should take this into account.

BMP 2 – Boater Education

- **EMAILS-** Email blasts are a great way to "get the word out" quickly and cheaply to your boaters. Email can be used as a marketing tool as well as an educational tool. These emails can be to the entire marina/YC, small groups of boaters or even to individual boaters. Email also allows quick interactions as well as Q&A with your boat owners.
- MAILINGS- Next step up from an email is a mailing. This obviously costs more and takes longer, but is also a great way to reach out. Sometimes sending a letter is taken as a more formal way to notify your tenants/members about important news or other education information. It lacks a quick way to get more immediate feedback, but may give a longer lasting impression of the information sent.
- **MEETINGS-** Sometimes face to face meetings with your boaters is the best way to communicate news and educate them on topics such as hull paints, local water quality studies and other pertinent information. It allows for immediate Q&A as well as an avenue to hand out new marketing/educational materials. Having speakers from the local boatyards and chandleries may help boat owners a more personal educational experience. Port of SD hull paint expos and marina events are great ways to gather your boaters together.
- MARKETING- Internal and external marketing is another way to reach out to your boaters and educate them on issues impacting the boating community. Marketing could include bottom paints, boat yard discounts, marina/YC incentives, etc.
- ONE ON ONE- Day to day conversations with tenants allows a more "one on one" experience. This allows the boat owner to ask specific questions and take the time needed to help them understand their bottom paint choices and maybe even make recommendations, such as category 1 hull paints (noncopper, biocide free and low leach copper bottom paints). A web link to the Port's list of alternative hull paint can be found in the Appendix on page 18. Also, a link to the Port's Alternative Hull Paint website can be found on the same page.

DATE	TOPIC/SUBJECT	EMPLOYEE NAME	SIGNATURE

APPENDIX

BOTTOM PAINT SURVEY FORM

The California Regional Water Quality Control Board has stipulated that the Marinas and Yacht Clubs of Shelter Island Yacht Basin are legally required to reduce copper concentrations in our basin. Please help us complete our annual report, in order to fulfill our legal obligation, for the Port of San Diego by completing this questionnaire ASAP and returning it to your Marina or Club office by (date).

upied:			
Power	Sail	Multi-hull	
	Vessel Beam: _		
Copper Lo	ow Copper (<36%)	Non-Copper	
Produc	ct Number:	Color:	
Month	Year		
int:			
cent purchase, please	e provide purchase dat	e: Month Year	
will remain confide	ntial and is not subm	itted in our report)	
Boat Name	e	Make	
	Data		
1	Power Copper Legaring Product Month int: cent purchase, please will remain confideBoat Nam	Copper Low Copper (<36%) Product Number: MonthYear int:cent purchase, please provide purchase dat will remain confidential and is not subm Boat Name	Power Sail Multi-hull

Thank you for your cooperation completing and returning this required survey. Please contact the marina office

if you have any questions...619-999-9999 or email@yourmarina.com.

Attachment I SIYB Dissolved Copper TMDL Hull Tracking Template Form

Facilit y Slip/Moori ng Reference Number ed ed er or Sail) Vesse 1 Vesse 1 Type Coppe r, Low or Non	Painti ng Date Year (yyyy)	% Coppe r

All hulls with paint greater than 40% copper are counted as high-copper
All hulls equal to zero are counted as non-copper
All hulls between 1 and 39.9% copper are counted as low-copper
Non and low-copper paint types are considered "confirmed" if the paint brand and product number is listed and can be cross checked with the SIML TMDL Group and/or Port paint list
Hulls with aged-copper paint are considered low-copper

Guidelines to Port's Vessel Tracking Template

COMPLETENESS. ACCUARACY. CONSISTENCY.

DO NOT FORMAT ANY CELLS. TO ENABLE US TO MERGE ALL DOCUMENTS SUCCESSFULLY FOR FINAL SUBMISSION, PLEASE FOLLOW THESE GUIDELINES-

- 1) **FACILITY** Your marina or yacht club name or abbreviation
- 2) **SLIP/MOORING REFERENCE NUMBER** Use the correct slip number according your slip assignments. We will assign reference numbers for privacy reasons before we submit merged data.
- 3) **PERCENTAGE OF TIME OCCUPIED** Do not format cell. Example For 98% occupied, use 98, if left blank, the Port will default it to 100 percent occupied. Make sure you calculate in vacant slips here.
- 4) **VESSEL TYPE (POWER OR SAIL)** Use a P or S
- 5) **VESSEL LENGTH** Use what you have
- 6) **VESSEL BEAM** Use what you have

7) PAINT TYPE: COPPER, LOW OR NON

- All hulls with paint greater than 40% copper are reported as Copper
- All hulls equal to zero are counted as non-copper and reported as **Non**
- All hulls between 1 and 39.9% copper are counted as low-copper and reported as Low
- No-copper and low-copper paint types are considered "confirmed" if the paint brand and product number is listed and can be cross-checked with Port paint lists
- Aged paints are calculated by painting date Month and Year and must have the Boatyard name to qualify. Do not write LOW for aged paints. You must include the painting date with the month, year and name of boat yard or purchase date to qualify the data.
- 8) **PAINT PRODUCT NAME** Please spell out the word, do not abbreviate.
- 9) **PRODUCT NUMBER** To qualify for non-copper or low-copper, you must record this information.
- 10) **BOATYARD NAME or PURCHASE DATE** Necessary to qualify aged paints.
- 11) **PAINTING DATE MONTH MM** Use 2 digits such as 01 for January or 02 for February, etc.
- 12) **PAINTING YEAR YYYY** Use 4 digits such as 2005.
- 13) **PERCENTAGE OF COPPER** Do not format cells. If you have the paint product information record the % associated with that product. If the product is unknown leave the space blank.

Important Links

Port Alternative Hull Paint Website:

http://www.sandiegobaycopperreduction.org/

February 2005 Technical Report

https://www.portofsandiego.org/document/environment/alternative-hull-paint/3061-total-maximum-daily-load-for-dissolved-copper-in-shelter-island-yacht-basin-technical-report/file.html


March 2013 Annual Monitoring Report

https://www.portofsandiego.org/environmental/copper-reduction-program/monitoring-and-data-assessment/shelter-island-yacht-basin-tmdl-annual-reports/7283-shelter-island-yacht-basin-tmdl-annual-report-2012/file.html

Port Alternative Hull Paint Partial List

https://www.portofsandiego.org/environment/environmental-downloads/copper-reduction-program/3530-how-to-select-an-alternative-hull-paint/file.html

Port of San Diego Issued Diver Permit Card*

Back

^{*}Note: Diver, Juan Aravena furnished Joe Ravitch, of Shelter Island Marina permission to use his Diver card as an example on Friday, January 13, 2017.

BMP Tracking and Self-Certification

ВМР Туре	Project Name Description	Purpose	Participant	Manager	Start Date	Assessment Mechanism	Results	Modifications	End Date
Education	communicate the availability of low leach copper paints	Reduce copper load							

Port of San Diego Alternative Hull Paint Options Brochure

BOATER'S GUIDE TO USING HULL PAINT IN CALIFORNIA

PAINT OPTIONS

Non-Biocide Paints The most environmentally friendly approach

- · Hull paints that do not contain metals (such as copper or zinc) or other active
- Estimated average useful life² 5-10 years
- Recommended cleaning: Every 2 to 4 weeks (frequency and method vary by product and season)
- Long term benefits include longer useful life (reduced haul outs). This may offset higher upfront application cost when compared to copper paints.
- Use of non-biocide paints is encouraged statewide, especially in waters impacted by copper pollution.

Paint Examples⁴

- International Paint Intersleek 900
- Interlux VC Performance Epoxy
- Ram Protective Coatings CeRam-Kote

Non-Copper Biocide Paints

- · Hull paints containing zinc or other noncopper active ingredients (e.g., Econea) to prevent marine growth on boat hulls.
- Estimated average useful life² up to 2 years
- · Recommended cleaning: Every 3 to 4 weeks (frequency and method vary by product and season)
- · Non-copper biocide paints do not result in the release of copper. However, these paints release other active ingredients that may lead to future water quality impacts

Paint Examples⁴

- Epaint Ecominder
- Interlux Interspeed 5640
- Pettit Hydrocoat Eco
- Sherwin Williams Seaguard HMF

Lower Leach Rate **Copper Paints**

- · Hull paints with leach rates at or below 9.5 µg/cm²/day
- Estimated average useful life: 2-3 years
- Recommended cleaning: Wait a minimum of 90 days after applying new hull paint before initiating cleaning. Boaters are encouraged to clean these hull paints only when needed, no more frequently than once every 30 days.3
- Use of lower leach rate copper paints is encouraged statewide, especially in waters impacted by copper pollution.

Paint Examples⁴

- Nautical Super ProGuard
- Pettit Trinidad Pro
- Pettit Vivid Antifouling Marine Paint
- Seahawk Sharkskin

Higher Leach Rate **Copper Paints**

Use of higher leach rate copper paints is discouraged statewide

- Hull paints with leach rates above 9.5 µg/cm²/day
- Estimated average useful life: 2-3 years
- · These paints may be discontinued in the future due to leaching concerns.
- Frequent and aggressive cleaning of higher leach rate copper paints is discouraged, as cleaning increases the release of copper into the water.

Paint Examples⁴

- Interlux Ultra
- Kop-Coat ZSpar The Protector VOC
- Sherwin Williams Pro-line 1088

The mention of trade names or commercial products here does not

constitute endorsement or recommendation for use For a more complete list of available copper hull paints and more information on DPR's mitigation efforts, visit the website:

http://www.cdpr.ca.gov/docs/registration/reevaluatio January 2016

¹California Department of Pesticide Regulation (DPR) has categorized registered copper paints into two categories (≤9.5 and >9.5 µg/cm²/day) based on their

roduct-specific leach rates.

Flull paint life expectancies based on paint manufacturers' claims.

Cleaning frequency recommendation based on use of soft-pile carpet for hull cleaning and Southern California fouling conditions.

Paints are listed by manufacturer and paint name. Paint examples represent products known to be used by California boatyards.

What is the difference between biocide hull paint and non-biocide hull paint?

Biocide hull paints are toxic and act similarly to pesticides that prevent infestations of insects or weeds on your lawns.

Biocide paints contain copper or zinc or other active ingredients (e.g., Econea or Irgarol) to prevent fouling on boat hulls. However, biocide paints are also known to be toxic to marine organisms

Non-biocide paints do not contain active ingredients, making them more environmentally friendly These paints are typically made of silicone, ceramic or epoxy materials

Marinas in Southern California impacted by copper pollution include Marina del Rev. Newport Bay, and Shelter Island Yacht Basin. For more information on the regulations and requirements in these areas, contact the local Regional Water Quality Control Board.

LOS ANGELES REGION (4) http://www.waterboards.ca.gov/losange water_issues/programs/tmdl/

Newport Bay SANTA ANA REGION (8) http://www.waterboards.ca.gov/santaana/wa er_issues/programs/tmdl/tmdl_metals.shtml

Shelter Island Yacht Basin SAN DIEGO REGION (9)

ater_issues/programs/watershed/souwater shed.shtml#siybtmdl

This material was prepared by the Port of San Diego, in collaboration with the County of Los Angeles, Department of Beaches and Harbors.

Are you looking to re-paint your boat hull?

Selecting a paint for your boat is far from a one-size-fits-all strategy. Key considerations include available hull paints, paint longevity, cleaning needs, and potential environmental concerns

Copper is commonly used in hull paint to slow or stop the growth of marine life (fouling) on boat hulls by releasing copper (leaching), However, copper hull paints have been identified as the largest source of copper pollution in marinas.

Be a part of the solution! Use this guide to select a hull paint that eliminates (e.g., non-biocide paints) or reduces (lower leach rate copper paints) the release of copper into the local waters.

Port of San Diego Diver BMP Notice for Marina Offices

ATTENTION DIVERS & BOAT OWNERS

Please help reduce pollution from bottom paints containing copper, zinc, blocides or any other toxic substance by following these basic best management practices when cleaning bottom paint.

This marina and the other California marinas have established the following Rules for in-Water Hull Cleaning

For Bottom Paints Containing Copper, Zinc, Biocides, or any other toxic substance:

- All in-water hull cleaning must be done by hand only no power equipment allowed.
- > The Marina shall prohibit in-the-water hull scraping or any process that occurs under water which results in the removal of paint from boat hulls. This does not apply to bare metal parts.

Remember:

- . NO Scrapers (metal/plastic/wood)
- NO Abrasives (sandpaper/cleanser/soft scrub)
- . NO Scotchbrite®/3M® pads except the White pad
- . NO Powered Rotary Brushes
- . USE soft cloth or fleece mitt only

According to paint manufacturers, properly functioning antifouling paint will repel all hard growth and requires only occasional [ight wiping with a soft cloth to remove slime. Use only soft rags or a sponge or fleece mitt when light wiping is required.

Thank you for your cooperation.

Marina Office Sign In Sheet Example

Diver Sign in Sheet

By signing below I agree to assume all risk of working on marine property, including, but not limited to work in the water, and I agree, in the absence of gross negligence or willful misconduct by the marina, to indemnify, protect, defend, and hold the marina harmless from and against all actual or potential liability for personal injury, death or property damage, suffered by me or any other person.

DATE	PRINT NAME	SIGNATURE	COMPANY	SLIP#	TIME	
					IN	OUT

PLEASE PRINT CLEARLY

Divers: You must be on file with us to work in our marina! We require:

- *Proof of Ship Repairers Legal Liability insurance with \$500,000 minimum. Marina must be listed as additional insured)
- *A signed copy of our vendor policy
- *A copy of your current business license tax
- *Proof of workman's comp insurance and a list of your employees

If you're not sure, please ask an office staff member. Thank You!

^{*}Valid/current Port of San Diego Diver ID Card

APPENDIX C VESSEL TRACKING DATA

Final 2017 Shelter Island Yacht Basin Dissolved Copper TMDL Monitoring and Progress Report

This page intentionally left blank

VESSEL TRACKING PORT OF SAN DIEGO

Port Fleet Hull Paint Information

							t iiiioiiiiat						
Date	Facility	Slip / Mooring Number	Percent of Time Occupied	Vessel Document # or Registration #	Vessel Type	Vessel Length	Vessel Beam	Paint Type	Paint Name	Product Number	Boatyard	Painting Date	% Copper
01/17/18	HPD		100	Marine 1 (# 9157)	P - Fire Boat	39.1'	13'	Org	Interspeed 5640	BZA646	Driscoll	2017	N/A
01/17/18	HPD		100	Marine 2 (#9162)	P - Fire Boat	39.1'	13'	Org	Interspeed 5640	BZA646	Driscoll	2017	N/A
01/17/18	HPD		100	Marine 3 (# 9139)	P - Fire Boat	39.1'	13'	Org	Interspeed 5640	BZA646	Driscoll	2017	N/A
01/17/18	HPD		100	Marine 4 (# 9138)	P - Fire Boat	39.1'	13'	Org	Interspeed 5640	BZA646	Driscoll	2017	N/A
01/17/18	HPD		100	Marine 5 (#9163)	P - Fire Boat	39.1'	13'	Org	Interspeed 5640	BZA646	Driscoll	2017	N/A
01/17/18	HPD		100	Marine 6 (# 7762)	P - Patrol Boat	31'	10'	Org	Interspeed 5640	BZA646	Driscoll	2017	N/A
01/17/18	HPD		100	Marine 7 (# 7763)	P - Patrol Boat	31'	10'	Org	Interspeed 5640	BZA646	Driscoll	2017	N/A
01/17/18	HPD		100	Marine 8 (# 9066)	P - Patrol Boat	36'	10'	Org	Interspeed 5640	BZA646	Driscoll	2017	N/A
01/17/18	HPD	23	100	Phoenix (# 7730)	P - GS Dive Boat	34'	8'	Org	Interspeed 5640	BZA646	Driscoll	2017	N/A
01/17/18	HPD	24	100	Coral Reef (# 7708)	P - GS Work Boat	40'	14'	Org	Interspeed 5640	BZA646	Driscoll	2017	N/A
01/17/18	HPD		100	Bay Shore 1 (7712)	P - GS Work Boat	17'	12'	Non	VC Performance Epoxy	V127/A	SIBY	2011	N/A
01/17/18	HPD		on trailer	Marine 10 (9079)	P - Patrol Boat	22		Non	No bottom paint	N/A	N/A	N/A	N/A
01/17/18	GST		100	Enviro (# 7720)	P - Work Boat	20'	7'	Non	Intersleek 900	FXA972/A	SIBY	2010	N/A
01/17/18	GST		100	Tsunamii II (# 9144)	P - GS Boat	20'	6'	Non	Intersleek 900	FXA972/A	SIBY	2011	N/A
01/17/18	GST		on trailer	Surveyors boat (7702)	P - GS Boat	12		Non	No bottom paint	N/A	N/A	N/A	N/A
01/17/18	HPD		100	Marine 9 (#9229)	P - Patrol Boat	39'	11'	Org	Interspeed 5640	BZA646	Driscoll	2017	N/A

			-aaya .	nooring 20				
Date	Facility	Slip / Mooring Number	Percent of Time Occupied	Vessel Type	Vessel Length	Vessel Beam	Length of Stay (nights)	Paint Type
1/6/2017	A1 Anchorage	Mooring			37'		3	Cu
1/6/2017	A1 Anchorage	Mooring			47'		3	Cu
1/6/2017	A1 Anchorage	Mooring			27'		3	Cu
1/6/2017	A1 Anchorage	Mooring			27'		3	Cu
1/6/2017	A1 Anchorage	Mooring			29'		3	Cu
1/6/2017	A1 Anchorage	Mooring			30'		3	Cu
1/6/2017	A1 Anchorage	Mooring			30'		3	Cu
1/6/2017	A1 Anchorage	Mooring			33'		3	Cu
1/6/2017	A1 Anchorage	Mooring			34'		3	Cu
1/6/2017	A1 Anchorage	Mooring			42'		3	Cu
1/6/2017	A1 Anchorage	Mooring			42'		3	Cu
1/6/2017	A1 Anchorage	Mooring			44'		3	Cu
1/6/2017	A1 Anchorage	Mooring			47'		3	Cu
1/6/2017	A1 Anchorage	Mooring			32'		3	Cu
1/6/2017	A1 Anchorage	Mooring			27'		3	Cu
1/13/2017	A1 Anchorage	Mooring			27'		3	Cu
1/13/2017	A1 Anchorage	Mooring			28'		3	Cu
1/13/2017	A1 Anchorage	Mooring			30'		3	Cu
1/13/2017	A1 Anchorage	Mooring			30'		3	Cu
1/13/2017	A1 Anchorage	Mooring			35'		3	Cu
1/13/2017	A1 Anchorage	Mooring			37'		3	Cu
1/13/2017	A1 Anchorage	Mooring			40'		3	Cu
1/13/2017	A1 Anchorage	Mooring			42'		3	Cu
1/13/2017	A1 Anchorage	Mooring			47'		3	Cu
1/13/2017	A1 Anchorage	Mooring			43'		3	Cu
1/20/2017	A1 Anchorage	Mooring			30'		3	Cu
1/20/2017	A1 Anchorage	Mooring			32'		3	Cu
1/20/2017	A1 Anchorage	Mooring			34'		3	Cu
1/20/2017	A1 Anchorage	Mooring			37'		3	Cu
1/20/2017	A1 Anchorage	Mooring			37'		3	Cu
1/20/2017	A1 Anchorage	Mooring			38'		3	Cu
1/20/2017	A1 Anchorage	Mooring			40'		3	Cu
1/20/2017	A1 Anchorage	Mooring			41'		3	Cu
1/20/2017	A1 Anchorage	Mooring			42'		3	Cu
1/20/2017	A1 Anchorage	Mooring			42'		3	Cu
1/20/2017	A1 Anchorage	Mooring			45'		3	Cu
1/20/2017	A1 Anchorage	Mooring			48'		3	Cu
1/20/2017	A1 Anchorage	Mooring			50'		3	Cu
1/20/2017	A1 Anchorage	Mooring			56'		3	Cu
1/20/2017	A1 Anchorage	Mooring			29'		3	Cu
1/27/2017	A1 Anchorage	Mooring			22'		3	Cu
	A1 Anchorage	Mooring			27'		3	Cu
1/27/2017	A1 Anchorage	Mooring			27'		3	Cu

	La Piaya Wooring 2017											
Date	Facility	Slip / Mooring Number	Percent of Time Occupied	Vessel Type	Vessel Length	Vessel Beam	Length of Stay (nights)	Paint Type				
1/27/2017	A1 Anchorage	Mooring			30'		3	Cu				
	A1 Anchorage	Mooring			30'		3	Cu				
1/27/2017	A1 Anchorage	Mooring			32'		3	Cu				
1/27/2017	A1 Anchorage	Mooring			34'		3	Cu				
1/27/2017	A1 Anchorage	Mooring			34'		3	Cu				
1/27/2017	A1 Anchorage	Mooring			35'		3	Cu				
1/27/2017	A1 Anchorage	Mooring			35'		3	Cu				
1/27/2017	A1 Anchorage	Mooring			36'		3	Cu				
1/27/2017	A1 Anchorage	Mooring			36'		3	Cu				
1/27/2017	A1 Anchorage	Mooring			37'		3	Cu				
1/27/2017	A1 Anchorage	Mooring			37'		3	Cu				
1/27/2017	A1 Anchorage	Mooring			38'		3	Cu				
1/27/2017	A1 Anchorage	Mooring			41'		3	Cu				
1/27/2017	A1 Anchorage	Mooring			44'		3	Cu				
1/27/2017	A1 Anchorage	Mooring			47'		3	Cu				
1/27/2017	A1 Anchorage	Mooring			49'		3	Cu				
1/27/2017	A1 Anchorage	Mooring			52'		3	Cu				
1/27/2017	A1 Anchorage	Mooring			60'		3	Cu				
2/3/2017	A1 Anchorage	Mooring			44'		3	Cu				
2/3/2017	A1 Anchorage	Mooring			27'		3	Cu				
2/3/2017	A1 Anchorage	Mooring			27'		3	Cu				
2/3/2017	A1 Anchorage	Mooring			27'		3	Cu				
2/3/2017	A1 Anchorage	Mooring			28'		3	Cu				
2/3/2017	A1 Anchorage	Mooring			30'		3	Cu				
2/3/2017	A1 Anchorage	Mooring			30'		3	Cu				
2/3/2017	A1 Anchorage	Mooring			33'		3	Cu				
2/3/2017	A1 Anchorage	Mooring			37'		3	Cu				
2/3/2017	A1 Anchorage	Mooring			37'		3	Cu				
2/3/2017	A1 Anchorage	Mooring			41'		3	Cu				
2/3/2017	A1 Anchorage	Mooring			41'		3	Cu				
2/3/2017	A1 Anchorage	Mooring			49'		3	Cu				
2/3/2017	A1 Anchorage	Mooring			52'		3	Cu				
2/3/2017	A1 Anchorage	Mooring			58'		3	Cu				
2/3/2017	A1 Anchorage	Mooring			32'		3	Cu				
2/3/2017	A1 Anchorage	Mooring			43'		3	Cu				
2/7/2017	A1 Anchorage	Mooring			57'		3	Cu				
2/10/2017	A1 Anchorage	Mooring			26'		3	Cu				
2/10/2017	A1 Anchorage	Mooring			27'		3	Cu				
2/10/2017	A1 Anchorage	Mooring			29'		3	Cu				
2/10/2017	A1 Anchorage	Mooring			30'		3	Cu				
2/10/2017	A1 Anchorage	Mooring			30'		3	Cu				
	A1 Anchorage	Mooring			30'		3	Cu				
2/10/2017	A1 Anchorage	Mooring			30'		3	Cu				

			_	nooring 20				
Date	Facility	Slip / Mooring Number	Percent of Time Occupied	Vessel Type	Vessel Length	Vessel Beam	Length of Stay (nights)	Paint Type
2/10/2017	A1 Anchorage	Mooring			32'		3	Cu
	A1 Anchorage	Mooring			32'		3	Cu
	A1 Anchorage	Mooring			32'		3	Cu
	A1 Anchorage	Mooring			32'		3	Cu
	A1 Anchorage	Mooring			32'		3	Cu
	A1 Anchorage	Mooring			33'		3	Cu
2/10/2017	A1 Anchorage	Mooring			35'		3	Cu
2/10/2017	A1 Anchorage	Mooring			35'		3	Cu
2/10/2017	A1 Anchorage	Mooring			35'		3	Cu
2/10/2017	A1 Anchorage	Mooring			36'		3	Cu
2/10/2017	A1 Anchorage	Mooring			36'		3	Cu
2/10/2017	A1 Anchorage	Mooring			36'		3	Cu
2/10/2017	A1 Anchorage	Mooring			37'		3	Cu
2/10/2017	A1 Anchorage	Mooring			40'		3	Cu
2/10/2017	A1 Anchorage	Mooring			40'		3	Cu
2/10/2017	A1 Anchorage	Mooring			40'		3	Cu
2/10/2017	A1 Anchorage	Mooring			41'		3	Cu
2/10/2017	A1 Anchorage	Mooring			43'		3	Cu
2/10/2017	A1 Anchorage	Mooring			44'		3	Cu
2/10/2017	A1 Anchorage	Mooring			47'		3	Cu
2/10/2017	A1 Anchorage	Mooring			47'		3	Cu
2/10/2017	A1 Anchorage	Mooring			49'		3	Cu
2/10/2017	A1 Anchorage	Mooring			29'		3	Cu
2/17/2017	A1 Anchorage	Mooring			27'		3	Cu
2/17/2017	A1 Anchorage	Mooring			29'		3	Cu
2/17/2017	A1 Anchorage	Mooring			32'		3	Cu
2/17/2017	A1 Anchorage	Mooring			35'		3	Cu
2/17/2017	A1 Anchorage	Mooring			35'		3	Cu
2/17/2017	A1 Anchorage	Mooring			35'		3	Cu
2/17/2017	A1 Anchorage	Mooring			36'		3	Cu
2/17/2017	A1 Anchorage	Mooring			37'		3	Cu
	A1 Anchorage	Mooring			37'			
	A1 Anchorage	Mooring			37'			Cu
	A1 Anchorage	Mooring			38'			Cu
	A1 Anchorage	Mooring			39'		3	Cu
	A1 Anchorage	Mooring			40'		.	Cu
	A1 Anchorage	Mooring			41'		3	Cu
	A1 Anchorage	Mooring			45'			Cu
	A1 Anchorage	Mooring			46'			Cu
	A1 Anchorage	Mooring			48'		3	Cu
	A1 Anchorage	Mooring			48'			Cu
	A1 Anchorage	Mooring			50'			Cu
2/17/2017	A1 Anchorage	Mooring			53'		3	Cu

			Lariayan	nooring 20	- /			
Date	Facility	Slip / Mooring Number	Percent of Time Occupied	Vessel Type	Vessel Length	Vessel Beam	Length of Stay (nights)	Paint Type
2/17/2017	A1 Anchorage	Mooring			59'		3	Cu
2/17/2017	A1 Anchorage	Mooring			60'		3	Cu
2/24/2017	A1 Anchorage	Mooring			26'		3	Cu
2/24/2017	A1 Anchorage	Mooring			26'		3	Cu
2/24/2017	A1 Anchorage	Mooring			26'		3	Cu
2/24/2017	A1 Anchorage	Mooring			27'		3	Cu
2/24/2017	A1 Anchorage	Mooring			27'		3	Cu
2/24/2017	A1 Anchorage	Mooring			29'		3	Cu
2/24/2017	A1 Anchorage	Mooring			30'		3	Cu
2/24/2017	A1 Anchorage	Mooring			30'		3	Cu
2/24/2017	A1 Anchorage	Mooring			31'		3	Cu
2/24/2017	A1 Anchorage	Mooring			32'		3	Cu
2/24/2017	A1 Anchorage	Mooring			32'		3	Cu
2/24/2017	A1 Anchorage	Mooring			34'		3	Cu
2/24/2017	A1 Anchorage	Mooring			34'		3	Cu
2/24/2017	A1 Anchorage	Mooring			35'		3	Cu
2/24/2017	A1 Anchorage	Mooring			40'		3	Cu
2/24/2017	A1 Anchorage	Mooring			47'		3	Cu
2/24/2017	A1 Anchorage	Mooring			50'		3	Cu
2/24/2017	A1 Anchorage	Mooring			59'		3	Cu
2/24/2017	A1 Anchorage	Mooring			29'		3	Cu
3/3/2017	A1 Anchorage	Mooring			51'		3	Cu
3/3/2017	A1 Anchorage	Mooring			27'		3	Cu
3/3/2017	A1 Anchorage	Mooring			27'		3	Cu
3/3/2017	A1 Anchorage	Mooring			30'		3	Cu
3/3/2017	A1 Anchorage	Mooring			30'		3	Cu
3/3/2017	A1 Anchorage	Mooring			32'		3	Cu
3/3/2017	A1 Anchorage	Mooring			34'		3	Cu
3/3/2017	A1 Anchorage	Mooring			35'		3	Cu
3/3/2017	A1 Anchorage	Mooring			37'		3	Cu
3/3/2017	A1 Anchorage	Mooring			40'		3	Cu
3/3/2017	A1 Anchorage	Mooring			40'		3	Cu
3/3/2017	A1 Anchorage	Mooring			43'		3	Cu
3/3/2017	A1 Anchorage	Mooring			44'		3	Cu
3/3/2017	A1 Anchorage	Mooring			47'		3	Cu
3/3/2017	A1 Anchorage	Mooring			49'		3	Cu
3/3/2017	A1 Anchorage	Mooring			60'		3	Cu
3/3/2017	A1 Anchorage	Mooring			32'		3	Cu
3/10/2017	A1 Anchorage	Mooring			29'		3	Cu
3/10/2017	A1 Anchorage	Mooring			29'		3	Cu
3/10/2017	A1 Anchorage	Mooring			30'		3	Cu
3/10/2017	A1 Anchorage	Mooring			32'		3	Cu
3/10/2017	A1 Anchorage	Mooring			35'		3	Cu

			-a i iaya i	nooring 20				
Date	Facility	Slip / Mooring Number	Percent of Time Occupied	Vessel Type	Vessel Length	Vessel Beam	Length of Stay (nights)	Paint Type
3/10/2017	A1 Anchorage	Mooring			35'		3	Cu
3/10/2017	A1 Anchorage	Mooring			36'		3	Cu
3/10/2017	A1 Anchorage	Mooring			37'		3	Cu
3/10/2017	A1 Anchorage	Mooring			37'		3	Cu
3/10/2017	A1 Anchorage	Mooring			39'		3	Cu
3/10/2017	A1 Anchorage	Mooring			40'		3	Cu
3/10/2017	A1 Anchorage	Mooring			41'		3	Cu
3/10/2017	A1 Anchorage	Mooring			42'		3	Cu
3/10/2017	A1 Anchorage	Mooring			42'		3	Cu
3/10/2017	A1 Anchorage	Mooring			43'		3	Cu
3/10/2017	A1 Anchorage	Mooring			43'		3	Cu
3/10/2017	A1 Anchorage	Mooring			49'		3	Cu
3/10/2017	A1 Anchorage	Mooring			59'		3	Cu
3/17/2017	A1 Anchorage	Mooring			27'		3	Cu
3/17/2017	A1 Anchorage	Mooring			27'		3	Cu
3/17/2017	A1 Anchorage	Mooring			27'		3	Cu
3/17/2017	A1 Anchorage	Mooring			29'		3	Cu
3/17/2017	A1 Anchorage	Mooring			30'		3	Cu
3/17/2017	A1 Anchorage	Mooring			32'		3	Cu
3/17/2017	A1 Anchorage	Mooring			32'		3	Cu
3/17/2017	A1 Anchorage	Mooring			32'		3	Cu
3/17/2017	A1 Anchorage	Mooring			33'		3	Cu
3/17/2017	A1 Anchorage	Mooring			35'		3	Cu
3/17/2017	A1 Anchorage	Mooring			35'		3	Cu
3/17/2017	A1 Anchorage	Mooring			36'		3	Cu
3/17/2017	A1 Anchorage	Mooring			36'		3	Cu
3/17/2017	A1 Anchorage	Mooring			37'		3	Cu
3/17/2017	A1 Anchorage	Mooring			39'		3	Cu
3/17/2017	A1 Anchorage	Mooring			40'		3	
3/17/2017	A1 Anchorage	Mooring			41'		3	Cu
3/17/2017	A1 Anchorage	Mooring			42'		3	Cu
3/17/2017	A1 Anchorage	Mooring			42'		3	Cu
3/17/2017	A1 Anchorage	Mooring			44'		3	Cu
3/17/2017	A1 Anchorage	Mooring			45'		3	Cu
3/17/2017	A1 Anchorage	Mooring			47'		3	Cu
3/17/2017	A1 Anchorage	Mooring			49'		3	Cu
3/17/2017	A1 Anchorage	Mooring			50'		3	Cu
3/24/2017	A1 Anchorage	Mooring			21'		3	Cu
3/24/2017	A1 Anchorage	Mooring			27'		3	Cu
3/24/2017	A1 Anchorage	Mooring			30'		3	Cu
3/24/2017	A1 Anchorage	Mooring			32'		3	Cu
	A1 Anchorage	Mooring			33'		3	Cu
3/24/2017	A1 Anchorage	Mooring			35'		3	Cu

			Lariayan	nooring 20				
Date	Facility	Slip / Mooring Number	Percent of Time Occupied	Vessel Type	Vessel Length	Vessel Beam	Length of Stay (nights)	Paint Type
3/24/2017	A1 Anchorage	Mooring			38'		3	Cu
3/24/2017	A1 Anchorage	Mooring			39'		3	Cu
3/24/2017	A1 Anchorage	Mooring			44'		3	Cu
3/24/2017	A1 Anchorage	Mooring			45'		3	Cu
3/24/2017	A1 Anchorage	Mooring			51'		3	Cu
3/31/2017	A1 Anchorage	Mooring			26'		3	Cu
3/31/2017	A1 Anchorage	Mooring			27'		3	Cu
3/31/2017	A1 Anchorage	Mooring			27'		3	Cu
3/31/2017	A1 Anchorage	Mooring			27'		3	Cu
3/31/2017	A1 Anchorage	Mooring			28'		3	Cu
3/31/2017	A1 Anchorage	Mooring			29'		3	Cu
3/31/2017	A1 Anchorage	Mooring			30'		3	Cu
3/31/2017	A1 Anchorage	Mooring			30'		3	Cu
3/31/2017	A1 Anchorage	Mooring			30'		3	Cu
3/31/2017	A1 Anchorage	Mooring			30'		3	Cu
3/31/2017	A1 Anchorage	Mooring			30'		3	Cu
3/31/2017	A1 Anchorage	Mooring			33'		3	Cu
3/31/2017	A1 Anchorage	Mooring			34'		3	Cu
3/31/2017	A1 Anchorage	Mooring			34'		3	Cu
3/31/2017	A1 Anchorage	Mooring			35'		3	Cu
3/31/2017	A1 Anchorage	Mooring			36'		3	Cu
3/31/2017	A1 Anchorage	Mooring			36'		3	Cu
3/31/2017	A1 Anchorage	Mooring			37'		3	Cu
3/31/2017	A1 Anchorage	Mooring			40'		3	Cu
3/31/2017	A1 Anchorage	Mooring			40'		3	Cu
3/31/2017	A1 Anchorage	Mooring			40'		3	Cu
3/31/2017	A1 Anchorage	Mooring			41'		3	Cu
3/31/2017	A1 Anchorage	Mooring			42'		3	Cu
3/31/2017	A1 Anchorage	Mooring			42'		3	Cu
3/31/2017	A1 Anchorage	Mooring			48'		3	Cu
3/31/2017	A1 Anchorage	Mooring			49'		3	Cu
3/31/2017	A1 Anchorage	Mooring			49'		3	Cu
3/31/2017	A1 Anchorage	Mooring			49'		3	Cu
3/31/2017	A1 Anchorage	Mooring			50'		3	Cu
3/31/2017	A1 Anchorage	Mooring			50'		3	Cu
3/31/2017	A1 Anchorage	Mooring			26'		3	Cu
3/31/2017	A1 Anchorage	Mooring			36'		3	Cu
3/31/2017	A1 Anchorage	Mooring			51'		3	Cu
4/7/2017	A1 Anchorage	Mooring			27'		3	Cu
4/7/2017	A1 Anchorage	Mooring			29'		3	Cu
4/7/2017	A1 Anchorage	Mooring			30'		3	Cu
	A1 Anchorage	Mooring			30'		3	Cu
4/7/2017	A1 Anchorage	Mooring			32'		3	Cu

	La Piaya Wooring 2017											
Date	Facility	Slip / Mooring Number	Percent of Time Occupied	Vessel Type	Vessel Length	Vessel Beam	Length of Stay (nights)	Paint Type				
4/7/2017	A1 Anchorage	Mooring			32'		3	Cu				
4/7/2017	A1 Anchorage	Mooring			33'		3	Cu				
4/7/2017	A1 Anchorage	Mooring			35'		3	Cu				
4/7/2017	A1 Anchorage	Mooring			37'		3	Cu				
4/7/2017	A1 Anchorage	Mooring			39'		3	Cu				
4/7/2017	A1 Anchorage	Mooring			40'		3	Cu				
4/7/2017	A1 Anchorage	Mooring			42'		3	Cu				
4/7/2017	A1 Anchorage	Mooring			42'		3	Cu				
4/7/2017	A1 Anchorage	Mooring			46'		3	Cu				
4/7/2017	A1 Anchorage	Mooring			52'		3	Cu				
4/7/2017	A1 Anchorage	Mooring			55'		3	Cu				
4/11/2017	A1 Anchorage	Mooring			32'		3	Cu				
4/14/2017	A1 Anchorage	Mooring			25'		3	Cu				
4/14/2017	A1 Anchorage	Mooring			25'		3	Cu				
4/14/2017	A1 Anchorage	Mooring			27'		3	Cu				
4/14/2017	A1 Anchorage	Mooring			27'		3	Cu				
4/14/2017	A1 Anchorage	Mooring			30'		3	Cu				
4/14/2017	A1 Anchorage	Mooring			30'		3	Cu				
4/14/2017	A1 Anchorage	Mooring			30'		3	Cu				
4/14/2017	A1 Anchorage	Mooring			33'		3	Cu				
4/14/2017	A1 Anchorage	Mooring			34'		3	Cu				
4/14/2017	A1 Anchorage	Mooring			34'		3	Cu				
4/14/2017	A1 Anchorage	Mooring			35'		3	Cu				
4/14/2017	A1 Anchorage	Mooring			35'		3	Cu				
4/14/2017	A1 Anchorage	Mooring			36'		3	Cu				
4/14/2017	A1 Anchorage	Mooring			36'		3	Cu				
4/14/2017	A1 Anchorage	Mooring			40'		3	Cu				
	A1 Anchorage	Mooring			40'		3	Cu				
4/14/2017	A1 Anchorage	Mooring			42'		3	Cu				
4/14/2017	A1 Anchorage	Mooring			44'		3	Cu				
4/14/2017	A1 Anchorage	Mooring			44'		3	Cu				
4/14/2017	A1 Anchorage	Mooring			46'		3	Cu				
4/14/2017	A1 Anchorage	Mooring			47'		3	Cu				
4/14/2017	A1 Anchorage	Mooring			47'		3	Cu				
4/14/2017	A1 Anchorage	Mooring			49'		3	Cu				
4/14/2017	A1 Anchorage	Mooring			52'		3	Cu				
4/14/2017	A1 Anchorage	Mooring			55'		3	Cu				
4/14/2017	A1 Anchorage	Mooring			57'		3	Cu				
4/14/2017	A1 Anchorage	Mooring			60'		3	Cu				
4/21/2017	A1 Anchorage	Mooring			25'		3	Cu				
4/21/2017	A1 Anchorage	Mooring			27'		3	Cu				
	A1 Anchorage	Mooring			30'		3	Cu				
4/21/2017	A1 Anchorage	Mooring			30'		3	Cu				

	La Piaya Wooring 2017										
Date	Facility	Slip / Mooring Number	Percent of Time Occupied	Vessel Type	Vessel Length	Vessel Beam	Length of Stay (nights)	Paint Type			
4/21/2017	A1 Anchorage	Mooring			30'		3	Cu			
4/21/2017	A1 Anchorage	Mooring			32'		3	Cu			
4/21/2017	A1 Anchorage	Mooring			33'		3	Cu			
4/21/2017	A1 Anchorage	Mooring			34'		3	Cu			
4/21/2017	A1 Anchorage	Mooring			34'		3	Cu			
4/21/2017	A1 Anchorage	Mooring			35'		3	Cu			
4/21/2017	A1 Anchorage	Mooring			38'		3	Cu			
4/21/2017	A1 Anchorage	Mooring			39'		3	Cu			
4/21/2017	A1 Anchorage	Mooring			40'		3	Cu			
4/21/2017	A1 Anchorage	Mooring			40'		3	Cu			
4/21/2017	A1 Anchorage	Mooring			42'		3	Cu			
4/21/2017	A1 Anchorage	Mooring			42'		3	Cu			
4/21/2017	A1 Anchorage	Mooring			49'		3	Cu			
4/21/2017	A1 Anchorage	Mooring			50'		3	Cu			
4/21/2017	A1 Anchorage	Mooring			60'		3	Cu			
4/21/2017	A1 Anchorage	Mooring			62'		3	Cu			
4/28/2017	A1 Anchorage	Mooring			21'		3	Cu			
4/28/2017	A1 Anchorage	Mooring			25'		3	Cu			
4/28/2017	A1 Anchorage	Mooring			27'		3	Cu			
4/28/2017	A1 Anchorage	Mooring			29'		3	Cu			
4/28/2017	A1 Anchorage	Mooring			30'		3	Cu			
4/28/2017	A1 Anchorage	Mooring			30'		3	Cu			
4/28/2017	A1 Anchorage	Mooring			33'		3	Cu			
4/28/2017	A1 Anchorage	Mooring			35'		3	Cu			
4/28/2017	A1 Anchorage	Mooring			36'		3	Cu			
4/28/2017	A1 Anchorage	Mooring			42'		3	Cu			
4/28/2017	A1 Anchorage	Mooring			44'		3	Cu			
4/28/2017	A1 Anchorage	Mooring			49'		3	Cu			
4/28/2017	A1 Anchorage	Mooring			49'		3				
4/28/2017	A1 Anchorage	Mooring			49'		3	Cu			
4/28/2017	A1 Anchorage	Mooring			50'		3	Cu			
4/28/2017	A1 Anchorage	Mooring			50'		3	Cu			
4/28/2017	A1 Anchorage	Mooring			53'		3	Cu			
4/28/2017	A1 Anchorage	Mooring			54'		3	Cu			
4/28/2017	A1 Anchorage	Mooring			60'		3	Cu			
4/28/2017	A1 Anchorage	Mooring			62'		3	Cu			
4/28/2017	A1 Anchorage	Mooring			46'		3	Cu			
4/28/2017	A1 Anchorage	Mooring			32'		3	Cu			
4/28/2017	A1 Anchorage	Mooring			50'		3	Cu			
5/5/2017	A1 Anchorage	Mooring			25'		3	Cu			
5/5/2017	A1 Anchorage	Mooring			27'		3	Cu			
5/5/2017	A1 Anchorage	Mooring			28'		3	Cu			
5/5/2017	A1 Anchorage	Mooring			30'		3	Cu			

	La Piaya Wooring 2017											
Date	Facility	Slip / Mooring Number	Percent of Time Occupied	Vessel Type	Vessel Length	Vessel Beam	Length of Stay (nights)	Paint Type				
5/5/2017	A1 Anchorage	Mooring			30'		3	Cu				
5/5/2017	A1 Anchorage	Mooring			32'		3	Cu				
5/5/2017	A1 Anchorage	Mooring			32'		3	Cu				
5/5/2017	A1 Anchorage	Mooring			33'		3	Cu				
5/5/2017	A1 Anchorage	Mooring			34'		3	Cu				
5/5/2017	A1 Anchorage	Mooring			34'		3	Cu				
5/5/2017	A1 Anchorage	Mooring			40'		3	Cu				
5/5/2017	A1 Anchorage	Mooring			44'		3	Cu				
5/5/2017	A1 Anchorage	Mooring			50'		3	Cu				
5/5/2017	A1 Anchorage	Mooring			32'		3	Cu				
5/12/2017	A1 Anchorage	Mooring			27'		3	Cu				
5/12/2017	A1 Anchorage	Mooring			29'		3	Cu				
5/12/2017	A1 Anchorage	Mooring			30'		3	Cu				
5/12/2017	A1 Anchorage	Mooring			30'		3	Cu				
5/12/2017	A1 Anchorage	Mooring			30'		3	Cu				
5/12/2017	A1 Anchorage	Mooring			32'		3	Cu				
5/12/2017	A1 Anchorage	Mooring			32'		3	Cu				
5/12/2017	A1 Anchorage	Mooring			33'		3	Cu				
5/12/2017	A1 Anchorage	Mooring			33'		3	Cu				
5/12/2017	A1 Anchorage	Mooring			36'		3	Cu				
5/12/2017	A1 Anchorage	Mooring			38'		3	Cu				
5/12/2017	A1 Anchorage	Mooring			40'		3	Cu				
5/12/2017	A1 Anchorage	Mooring			43'		3	Cu				
5/16/2017	A1 Anchorage	Mooring			42'		3	Cu				
5/19/2017	A1 Anchorage	Mooring			27'		3	Cu				
5/19/2017	A1 Anchorage	Mooring			27'		3	Cu				
5/19/2017	A1 Anchorage	Mooring			28'		3	Cu				
5/19/2017	A1 Anchorage	Mooring			30'		3	Cu				
5/19/2017	A1 Anchorage	Mooring			30'		3	Cu				
5/19/2017	A1 Anchorage	Mooring			30'		3	Cu				
5/19/2017	A1 Anchorage	Mooring			30'		3	Cu				
5/19/2017	A1 Anchorage	Mooring			30'		3	Cu				
5/19/2017	A1 Anchorage	Mooring			32'		3	Cu				
5/19/2017	A1 Anchorage	Mooring			32'		3	Cu				
5/19/2017	A1 Anchorage	Mooring			33'		3	Cu				
5/19/2017	A1 Anchorage	Mooring			33'		3	Cu				
5/19/2017	A1 Anchorage	Mooring			34'		3	Cu				
5/19/2017	A1 Anchorage	Mooring			34'		3	Cu				
5/19/2017	A1 Anchorage	Mooring			34'		3	Cu				
5/19/2017	A1 Anchorage	Mooring			34'		3	Cu				
5/19/2017	A1 Anchorage	Mooring			35'		3	Cu				
	A1 Anchorage	Mooring			36'		3	Cu				
5/19/2017	A1 Anchorage	Mooring			36'		3	Cu				

La Piaya Mooring 2017									
Date	Facility	Slip / Mooring Number	Percent of Time Occupied	Vessel Type	Vessel Length	Vessel Beam	Length of Stay (nights)	Paint Type	
5/19/2017	A1 Anchorage	Mooring			37'		3	Cu	
5/19/2017	A1 Anchorage	Mooring			38'		3	Cu	
5/19/2017	A1 Anchorage	Mooring			38'		3	Cu	
5/19/2017	A1 Anchorage	Mooring			40'		3	Cu	
5/19/2017	A1 Anchorage	Mooring			43'		3	Cu	
5/19/2017	A1 Anchorage	Mooring			43'		3	Cu	
5/19/2017	A1 Anchorage	Mooring			44'		3	Cu	
5/19/2017	A1 Anchorage	Mooring			45'		3	Cu	
5/19/2017	A1 Anchorage	Mooring			45'		3	Cu	
5/19/2017	A1 Anchorage	Mooring			46'		3	Cu	
5/19/2017	A1 Anchorage	Mooring			49'		3	Cu	
5/19/2017	A1 Anchorage	Mooring			49'		3	Cu	
5/19/2017	A1 Anchorage	Mooring			49'		3	Cu	
5/19/2017	A1 Anchorage	Mooring			50'		3	Cu	
5/19/2017	A1 Anchorage	Mooring			54'		3	Cu	
5/26/2017	A1 Anchorage	Mooring			25'		3	Cu	
5/26/2017	A1 Anchorage	Mooring			30'		3	Cu	
5/26/2017	A1 Anchorage	Mooring			30'		3	Cu	
5/26/2017	A1 Anchorage	Mooring			32'		3	Cu	
5/26/2017	A1 Anchorage	Mooring			33'		3	Cu	
5/26/2017	A1 Anchorage	Mooring			34'		3	Cu	
5/26/2017	A1 Anchorage	Mooring			34'		3	Cu	
5/26/2017	A1 Anchorage	Mooring			34'		3	Cu	
5/26/2017	A1 Anchorage	Mooring			36'		3	Cu	
5/26/2017	A1 Anchorage	Mooring			36'		3	Cu	
5/26/2017	A1 Anchorage	Mooring			37'		3	Cu	
5/26/2017	A1 Anchorage	Mooring			37'		3	Cu	
5/26/2017	A1 Anchorage	Mooring			37'		3	Cu	
5/26/2017	A1 Anchorage	Mooring			37'		3	Cu	
5/26/2017	A1 Anchorage	Mooring			39'		3	Cu	
5/26/2017	A1 Anchorage	Mooring			40'		3	Cu	
5/26/2017	A1 Anchorage	Mooring			40'		3	Cu	
5/26/2017	A1 Anchorage	Mooring			40'		3	Cu	
5/26/2017	A1 Anchorage	Mooring			40'		3	Cu	
5/26/2017	A1 Anchorage	Mooring			41'		3	Cu	
5/26/2017	A1 Anchorage	Mooring			42'		3	Cu	
5/26/2017	A1 Anchorage	Mooring			42'		3	Cu	
5/26/2017	A1 Anchorage	Mooring			43'		3	Cu	
5/26/2017	A1 Anchorage	Mooring			43'		3	Cu	
5/26/2017	A1 Anchorage	Mooring			43'		3	Cu	
5/26/2017	A1 Anchorage	Mooring			44'		3	Cu	
	A1 Anchorage	Mooring			47'		3	Cu	
5/26/2017	A1 Anchorage	Mooring			47'		3	Cu	

Date	Facility	Slip / Mooring Number	Percent of Time Occupied	Vessel Type	Vessel Length	Vessel Beam	Length of Stay (nights)	Paint Type
5/26/2017	A1 Anchorage	Mooring			47'		3	Cu
5/26/2017	A1 Anchorage	Mooring			49'		3	Cu
5/26/2017	A1 Anchorage	Mooring			49'		3	Cu
5/26/2017	A1 Anchorage	Mooring			50'		3	Cu
5/26/2017	A1 Anchorage	Mooring			50'		3	Cu
5/26/2017	A1 Anchorage	Mooring			52'		3	Cu
5/26/2017	A1 Anchorage	Mooring			56'		3	Cu
5/26/2017	A1 Anchorage	Mooring			56'		3	Cu
5/26/2017	A1 Anchorage	Mooring			59'		3	Cu
5/26/2017	A1 Anchorage	Mooring			62'		3	Cu
5/26/2017	A1 Anchorage	Mooring					3	Cu
6/2/2017	A1 Anchorage	Mooring			27'		3	Cu
6/2/2017	A1 Anchorage	Mooring			27'		3	Cu
6/2/2017	A1 Anchorage	Mooring			29'		3	Cu
6/2/2017	A1 Anchorage	Mooring			30'		3	Cu
6/2/2017	A1 Anchorage	Mooring			30'		3	Cu
	A1 Anchorage	Mooring			33'		3	Cu
6/2/2017	A1 Anchorage	Mooring			34'		3	Cu
6/2/2017	A1 Anchorage	Mooring			34'		3	Cu
6/2/2017	A1 Anchorage	Mooring			34'		3	Cu
	A1 Anchorage	Mooring			34'		3	Cu
	A1 Anchorage	Mooring			35'		3	Cu
6/2/2017	A1 Anchorage	Mooring			36'		3	Cu
6/2/2017	A1 Anchorage	Mooring			36'		3	Cu
6/2/2017	A1 Anchorage	Mooring			37'		3	Cu
6/2/2017	A1 Anchorage	Mooring			38'		3	Cu
6/2/2017	A1 Anchorage	Mooring			38'		3	Cu
6/2/2017	A1 Anchorage	Mooring			39'		3	Cu
	A1 Anchorage	Mooring			40'		3	Cu
6/2/2017	A1 Anchorage	Mooring			41'		3	Cu
	A1 Anchorage	Mooring			41'		3	Cu
6/2/2017	A1 Anchorage	Mooring			42'		3	Cu
6/2/2017	A1 Anchorage	Mooring			42'		3	Cu
	A1 Anchorage	Mooring			43'		3	Cu
6/2/2017	A1 Anchorage	Mooring			47'		3	Cu
	A1 Anchorage	Mooring			48'		3	Cu
6/2/2017	A1 Anchorage	Mooring			60'		3	Cu
6/2/2017	A1 Anchorage	Mooring			32'		3	Cu
	A1 Anchorage	Mooring			27'		3	Cu
	A1 Anchorage	Mooring			36'		3	Cu
	A1 Anchorage	Mooring			25'		3	Cu
	A1 Anchorage	Mooring			27'		3	Cu
	A1 Anchorage	Mooring			28'		3	Cu

La Piaya Wooting 2017									
Date	Facility	Slip / Mooring Number	Percent of Time Occupied	Vessel Type	Vessel Length	Vessel Beam	Length of Stay (nights)	Paint Type	
6/9/2017	A1 Anchorage	Mooring			30'		3	Cu	
6/9/2017	A1 Anchorage	Mooring			30'		3	Cu	
6/9/2017	A1 Anchorage	Mooring			32'		3	Cu	
6/9/2017	A1 Anchorage	Mooring			32'		3	Cu	
6/9/2017	A1 Anchorage	Mooring			33'		3	Cu	
6/9/2017	A1 Anchorage	Mooring			34'		3	Cu	
6/9/2017	A1 Anchorage	Mooring			35'		3	Cu	
6/9/2017	A1 Anchorage	Mooring			36'		3	Cu	
6/9/2017	A1 Anchorage	Mooring			36'		3	Cu	
6/9/2017	A1 Anchorage	Mooring			40'		3	Cu	
6/9/2017	A1 Anchorage	Mooring			44'		3	Cu	
6/9/2017	A1 Anchorage	Mooring			45'		3	Cu	
6/9/2017	A1 Anchorage	Mooring			46'		3	Cu	
6/9/2017	A1 Anchorage	Mooring			47'		3	Cu	
6/9/2017	A1 Anchorage	Mooring			47'		3	Cu	
6/9/2017	A1 Anchorage	Mooring			49'		3	Cu	
6/9/2017	A1 Anchorage	Mooring			49'		3	Cu	
6/9/2017	A1 Anchorage	Mooring			50'		3	Cu	
6/9/2017	A1 Anchorage	Mooring			50'		3	Cu	
6/13/2017	A1 Anchorage	Mooring			40'		3	Cu	
6/16/2017	A1 Anchorage	Mooring			25'		3	Cu	
6/16/2017	A1 Anchorage	Mooring			26'		3	Cu	
6/16/2017	A1 Anchorage	Mooring			26'		3	Cu	
6/16/2017	A1 Anchorage	Mooring			26'		3	Cu	
6/16/2017	A1 Anchorage	Mooring			27'		3	Cu	
6/16/2017	A1 Anchorage	Mooring			30'		3	Cu	
6/16/2017	A1 Anchorage	Mooring			30'		3	Cu	
6/16/2017	A1 Anchorage	Mooring			32'		3	Cu	
6/16/2017	A1 Anchorage	Mooring			33'		3	Cu	
6/16/2017	A1 Anchorage	Mooring			33'		3	Cu	
6/16/2017	A1 Anchorage	Mooring			34'		3	Cu	
6/16/2017	A1 Anchorage	Mooring			35'		3	Cu	
6/16/2017	A1 Anchorage	Mooring			35'		3	Cu	
6/16/2017	A1 Anchorage	Mooring			36'		3	Cu	
6/16/2017	A1 Anchorage	Mooring			36'		3	Cu	
6/16/2017	A1 Anchorage	Mooring			37'		3	Cu	
6/16/2017	A1 Anchorage	Mooring			38'		3	Cu	
6/16/2017	A1 Anchorage	Mooring			38'		3	Cu	
6/16/2017	A1 Anchorage	Mooring			41'		3	Cu	
6/16/2017	A1 Anchorage	Mooring			42'		3	Cu	
6/16/2017	A1 Anchorage	Mooring			44'		3	Cu	
	A1 Anchorage	Mooring			47'		3	Cu	
6/16/2017	A1 Anchorage	Mooring			48'		3	Cu	

La Piaya Moorilig 2017									
Date	Facility	Slip / Mooring Number	Percent of Time Occupied	Vessel Type	Vessel Length	Vessel Beam	Length of Stay (nights)	Paint Type	
6/16/2017	A1 Anchorage	Mooring			49'		3	Cu	
6/16/2017	A1 Anchorage	Mooring			50'		3	Cu	
6/16/2017	A1 Anchorage	Mooring			50'		3	Cu	
6/16/2017	A1 Anchorage	Mooring			50'		3	Cu	
6/16/2017	A1 Anchorage	Mooring			42'		3	Cu	
6/20/2017	A1 Anchorage	Mooring			41'		3	Cu	
6/23/2017	A1 Anchorage	Mooring			26'		3	Cu	
6/23/2017	A1 Anchorage	Mooring			27'		3	Cu	
6/23/2017	A1 Anchorage	Mooring			27'		3	Cu	
6/23/2017	A1 Anchorage	Mooring			30'		3	Cu	
6/23/2017	A1 Anchorage	Mooring			32'		3	Cu	
6/23/2017	A1 Anchorage	Mooring			32'		3	Cu	
6/23/2017	A1 Anchorage	Mooring			32'		3	Cu	
6/23/2017	A1 Anchorage	Mooring			35'		3	Cu	
6/23/2017	A1 Anchorage	Mooring			36'		3	Cu	
6/23/2017	A1 Anchorage	Mooring			37'		3	Cu	
6/23/2017	A1 Anchorage	Mooring			37'		3	Cu	
6/23/2017	A1 Anchorage	Mooring			37'		3	Cu	
6/23/2017	A1 Anchorage	Mooring			37'		3	Cu	
6/23/2017	A1 Anchorage	Mooring			37'		3	Cu	
6/23/2017	A1 Anchorage	Mooring			40'		3	Cu	
6/23/2017	A1 Anchorage	Mooring			40'		3	Cu	
6/23/2017	A1 Anchorage	Mooring			40'		3	Cu	
6/23/2017	A1 Anchorage	Mooring			41'		3	Cu	
6/23/2017	A1 Anchorage	Mooring			45'		3	Cu	
6/23/2017	A1 Anchorage	Mooring			46'		3	Cu	
6/23/2017	A1 Anchorage	Mooring			46'		3	Cu	
6/23/2017	A1 Anchorage	Mooring			50'		3	Cu	
6/23/2017	A1 Anchorage	Mooring			50'		3		
6/23/2017	A1 Anchorage	Mooring			50'		3	Cu	
6/23/2017	A1 Anchorage	Mooring			59'		3	Cu	
6/23/2017	A1 Anchorage	Mooring			60'		3	Cu	
6/30/2017	A1 Anchorage	Mooring			24'		3	Cu	
6/30/2017	A1 Anchorage	Mooring			27'		3	Cu	
6/30/2017	A1 Anchorage	Mooring			30'		3	Cu	
6/30/2017	A1 Anchorage	Mooring			30'		3	Cu	
6/30/2017	A1 Anchorage	Mooring			30'		3	Cu	
6/30/2017	A1 Anchorage	Mooring			30'		3	Cu	
6/30/2017	A1 Anchorage	Mooring			30'		3	Cu	
6/30/2017	A1 Anchorage	Mooring			30'		3	Cu	
6/30/2017	A1 Anchorage	Mooring			31'		3	Cu	
	A1 Anchorage	Mooring			31'		3	Cu	
6/30/2017	A1 Anchorage	Mooring			32'		3	Cu	

La Piaya Mooriilg 2017									
Date	Facility	Slip / Mooring Number	Percent of Time Occupied	Vessel Type	Vessel Length	Vessel Beam	Length of Stay (nights)	Paint Type	
6/30/2017	A1 Anchorage	Mooring			34'		3	Cu	
6/30/2017	A1 Anchorage	Mooring			34'		3	Cu	
6/30/2017	A1 Anchorage	Mooring			35'		3	Cu	
6/30/2017	A1 Anchorage	Mooring			36'		3	Cu	
6/30/2017	A1 Anchorage	Mooring			38'		3	Cu	
6/30/2017	A1 Anchorage	Mooring			38'		3	Cu	
6/30/2017	A1 Anchorage	Mooring			40'		3	Cu	
6/30/2017	A1 Anchorage	Mooring			41'		3	Cu	
6/30/2017	A1 Anchorage	Mooring			41'		3	Cu	
6/30/2017	A1 Anchorage	Mooring			42'		3	Cu	
6/30/2017	A1 Anchorage	Mooring			42'		3	Cu	
6/30/2017	A1 Anchorage	Mooring			42'		3	Cu	
6/30/2017	A1 Anchorage	Mooring			44'		3	Cu	
6/30/2017	A1 Anchorage	Mooring			47'		3	Cu	
6/30/2017	A1 Anchorage	Mooring			47'		3	Cu	
6/30/2017	A1 Anchorage	Mooring			47'		3	Cu	
6/30/2017	A1 Anchorage	Mooring			48'		3	Cu	
6/30/2017	A1 Anchorage	Mooring			49'		3	Cu	
6/30/2017	A1 Anchorage	Mooring			49'		3	Cu	
6/30/2017	A1 Anchorage	Mooring			49'		3	Cu	
6/30/2017	A1 Anchorage	Mooring			49'		3	Cu	
6/30/2017	A1 Anchorage	Mooring			50'		3	Cu	
6/30/2017	A1 Anchorage	Mooring			50'		3	Cu	
6/30/2017	A1 Anchorage	Mooring			53'		3	Cu	
6/30/2017	A1 Anchorage	Mooring			56'		3	Cu	
6/30/2017	A1 Anchorage	Mooring			62'		3	Cu	
6/30/2017	A1 Anchorage	Mooring			45'		3	Cu	
6/30/2017	A1 Anchorage	Mooring			25'		3	Cu	
6/30/2017	A1 Anchorage	Mooring			42'		3		
7/7/2017	A1 Anchorage	Mooring			27'		3	Cu	
7/7/2017	A1 Anchorage	Mooring			27'		3	Cu	
7/7/2017	A1 Anchorage	Mooring			30'		3	Cu	
7/7/2017	A1 Anchorage	Mooring			30'		3	Cu	
7/7/2017	A1 Anchorage	Mooring			32'		3	Cu	
7/7/2017	A1 Anchorage	Mooring			33'		3	Cu	
7/7/2017	A1 Anchorage	Mooring			33'		3	Cu	
7/7/2017	A1 Anchorage	Mooring			34'		3	Cu	
7/7/2017	A1 Anchorage	Mooring			34'		3	Cu	
7/7/2017	A1 Anchorage	Mooring			36'		3	Cu	
7/7/2017	A1 Anchorage	Mooring			37'		3	Cu	
7/7/2017	A1 Anchorage	Mooring			38'		3	Cu	
7/7/2017	A1 Anchorage	Mooring			38'		3	Cu	
7/7/2017	A1 Anchorage	Mooring			39'		3	Cu	

La Piaya Mooring 2017									
Date	Facility	Slip / Mooring Number	Percent of Time Occupied	Vessel Type	Vessel Length	Vessel Beam	Length of Stay (nights)	Paint Type	
7/7/2017	A1 Anchorage	Mooring			40'		3	Cu	
7/7/2017	A1 Anchorage	Mooring			40'		3	Cu	
7/7/2017	A1 Anchorage	Mooring			41'		3	Cu	
7/7/2017	A1 Anchorage	Mooring			41'		3	Cu	
7/7/2017	A1 Anchorage	Mooring			42'		3	Cu	
7/7/2017	A1 Anchorage	Mooring			42'		3	Cu	
7/7/2017	A1 Anchorage	Mooring			44'		3	Cu	
7/7/2017	A1 Anchorage	Mooring			46'		3	Cu	
7/7/2017	A1 Anchorage	Mooring			46'		3	Cu	
7/7/2017	A1 Anchorage	Mooring			48'		3	Cu	
7/7/2017	A1 Anchorage	Mooring			49'		3	Cu	
7/7/2017	A1 Anchorage	Mooring			50'		3	Cu	
7/7/2017	A1 Anchorage	Mooring			50'		3	Cu	
7/7/2017	A1 Anchorage	Mooring			50'		3	Cu	
7/11/2017	A1 Anchorage	Mooring			40'		3	Cu	
7/14/2017	A1 Anchorage	Mooring			22'		3	Cu	
7/14/2017	A1 Anchorage	Mooring			26'		3	Cu	
7/14/2017	A1 Anchorage	Mooring			26'		3	Cu	
7/14/2017	A1 Anchorage	Mooring			27'		3	Cu	
7/14/2017	A1 Anchorage	Mooring			27'		3	Cu	
7/14/2017	A1 Anchorage	Mooring			29'		3	Cu	
7/14/2017	A1 Anchorage	Mooring			30'		3	Cu	
7/14/2017	A1 Anchorage	Mooring			30'		3	Cu	
7/14/2017	A1 Anchorage	Mooring			32'		3	Cu	
7/14/2017	A1 Anchorage	Mooring			32'		3	Cu	
7/14/2017	A1 Anchorage	Mooring			32'		3	Cu	
7/14/2017	A1 Anchorage	Mooring			32'		3	Cu	
7/14/2017	A1 Anchorage	Mooring			33'		3	Cu	
7/14/2017	A1 Anchorage	Mooring			33'		3	Cu	
7/14/2017	A1 Anchorage	Mooring			34'		3	Cu	
7/14/2017	A1 Anchorage	Mooring			34'		3	Cu	
7/14/2017	A1 Anchorage	Mooring			35'		3	Cu	
7/14/2017	A1 Anchorage	Mooring			36'		3	Cu	
7/14/2017	A1 Anchorage	Mooring			36'		3	Cu	
7/14/2017	A1 Anchorage	Mooring			37'		3	Cu	
7/14/2017	A1 Anchorage	Mooring			40'		3	Cu	
7/14/2017	A1 Anchorage	Mooring			40'		3	Cu	
7/14/2017	A1 Anchorage	Mooring			40'		3	Cu	
7/14/2017	A1 Anchorage	Mooring			41'		3	Cu	
7/14/2017	A1 Anchorage	Mooring			41'		3	Cu	
7/14/2017	A1 Anchorage	Mooring			42'		3	Cu	
	A1 Anchorage	Mooring			43'		3	Cu	
7/14/2017	A1 Anchorage	Mooring			44'		3	Cu	

La Piaya Moorilig 2017									
Date	Facility	Slip / Mooring Number	Percent of Time Occupied	Vessel Type	Vessel Length	Vessel Beam	Length of Stay (nights)	Paint Type	
7/14/2017	A1 Anchorage	Mooring			44'		3	Cu	
7/14/2017	A1 Anchorage	Mooring			46'		3	Cu	
7/14/2017	A1 Anchorage	Mooring			47'		3	Cu	
7/14/2017	A1 Anchorage	Mooring			47'		3	Cu	
7/14/2017	A1 Anchorage	Mooring			49'		3	Cu	
7/14/2017	A1 Anchorage	Mooring			49'		3	Cu	
7/14/2017	A1 Anchorage	Mooring			50'		3	Cu	
7/14/2017	A1 Anchorage	Mooring			50'		3	Cu	
7/14/2017	A1 Anchorage	Mooring			50'		3	Cu	
7/14/2017	A1 Anchorage	Mooring			52'		3	Cu	
7/14/2017	A1 Anchorage	Mooring			56'		3	Cu	
7/18/2017	A1 Anchorage	Mooring			42'		3	Cu	
7/21/2017	A1 Anchorage	Mooring			26'		3	Cu	
7/21/2017	A1 Anchorage	Mooring			27'		3	Cu	
7/21/2017	A1 Anchorage	Mooring			27'		3	Cu	
7/21/2017	A1 Anchorage	Mooring			30'		3	Cu	
7/21/2017	A1 Anchorage	Mooring			30'		3	Cu	
7/21/2017	A1 Anchorage	Mooring			30'		3	Cu	
7/21/2017	A1 Anchorage	Mooring			30'		3	Cu	
7/21/2017	A1 Anchorage	Mooring			30'		3	Cu	
7/21/2017	A1 Anchorage	Mooring			32'		3	Cu	
7/21/2017	A1 Anchorage	Mooring			32'		3	Cu	
7/21/2017	A1 Anchorage	Mooring			32'		3	Cu	
7/21/2017	A1 Anchorage	Mooring			32'		3	Cu	
7/21/2017	A1 Anchorage	Mooring			35'		3	Cu	
7/21/2017	A1 Anchorage	Mooring			35'		3	Cu	
7/21/2017	A1 Anchorage	Mooring			36'		3	Cu	
7/21/2017	A1 Anchorage	Mooring			36'		3	Cu	
7/21/2017	A1 Anchorage	Mooring			37'		3	Cu	
7/21/2017	A1 Anchorage	Mooring			37'		3	Cu	
7/21/2017	A1 Anchorage	Mooring			38'		3	Cu	
7/21/2017	A1 Anchorage	Mooring			40'		3	Cu	
7/21/2017	A1 Anchorage	Mooring			40'		3	Cu	
7/21/2017	A1 Anchorage	Mooring			41'		3	Cu	
7/21/2017	A1 Anchorage	Mooring			42'		3	Cu	
7/21/2017	A1 Anchorage	Mooring			42'		3	Cu	
7/21/2017	A1 Anchorage	Mooring			44'		3	Cu	
7/21/2017	A1 Anchorage	Mooring			46'		3	Cu	
7/21/2017	A1 Anchorage	Mooring			47'		3	Cu	
7/21/2017	A1 Anchorage	Mooring			49'		3	Cu	
7/21/2017	A1 Anchorage	Mooring			50'		3	Cu	
7/21/2017	A1 Anchorage	Mooring			50'		3	Cu	
7/21/2017	A1 Anchorage	Mooring			56'		3	Cu	

La Piaya Moorilig 2017									
Date	Facility	Slip / Mooring Number	Percent of Time Occupied	Vessel Type	Vessel Length	Vessel Beam	Length of Stay (nights)	Paint Type	
7/21/2017	A1 Anchorage	Mooring			60'		3	Cu	
7/21/2017	A1 Anchorage	Mooring			65'		3	Cu	
7/25/2017	A1 Anchorage	Mooring			43'		3	Cu	
7/28/2017	A1 Anchorage	Mooring			25'		3	Cu	
7/28/2017	A1 Anchorage	Mooring			27'		3	Cu	
7/28/2017	A1 Anchorage	Mooring			27'		3	Cu	
7/28/2017	A1 Anchorage	Mooring			30'		3	Cu	
7/28/2017	A1 Anchorage	Mooring			30'		3	Cu	
7/28/2017	A1 Anchorage	Mooring			30'		3	Cu	
7/28/2017	A1 Anchorage	Mooring			31'		3	Cu	
7/28/2017	A1 Anchorage	Mooring			31'		3	Cu	
7/28/2017	A1 Anchorage	Mooring			32'		3	Cu	
7/28/2017	A1 Anchorage	Mooring			34'		3	Cu	
7/28/2017	A1 Anchorage	Mooring			35'		3	Cu	
7/28/2017	A1 Anchorage	Mooring			35'		3	Cu	
7/28/2017	A1 Anchorage	Mooring			35'		3	Cu	
7/28/2017	A1 Anchorage	Mooring			36'		3	Cu	
7/28/2017	A1 Anchorage	Mooring			36'		3	Cu	
7/28/2017	A1 Anchorage	Mooring			37'		3	Cu	
7/28/2017	A1 Anchorage	Mooring			38'		3	Cu	
7/28/2017	A1 Anchorage	Mooring			40'		3	Cu	
7/28/2017	A1 Anchorage	Mooring			40'		3	Cu	
7/28/2017	A1 Anchorage	Mooring			41'		3	Cu	
7/28/2017	A1 Anchorage	Mooring			42'		3	Cu	
7/28/2017	A1 Anchorage	Mooring			42'		3	Cu	
7/28/2017	A1 Anchorage	Mooring			42'		3	Cu	
7/28/2017	A1 Anchorage	Mooring			42'		3	Cu	
7/28/2017	A1 Anchorage	Mooring			42'		3	Cu	
7/28/2017	A1 Anchorage	Mooring			44'		3		
7/28/2017	A1 Anchorage	Mooring			46'		3	Cu	
7/28/2017	A1 Anchorage	Mooring			46'		3	Cu	
7/28/2017	A1 Anchorage	Mooring			47'		3	Cu	
7/28/2017	A1 Anchorage	Mooring			48'		3	Cu	
7/28/2017	A1 Anchorage	Mooring			49'		3	Cu	
7/28/2017	A1 Anchorage	Mooring			50'		3	Cu	
7/28/2017	A1 Anchorage	Mooring			50'		3	Cu	
7/28/2017	A1 Anchorage	Mooring			50'		3	Cu	
8/4/2017	A1 Anchorage	Mooring			27'		3	Cu	
8/4/2017	A1 Anchorage	Mooring			28'		3	Cu	
8/4/2017	A1 Anchorage	Mooring			30'		3	Cu	
8/4/2017	A1 Anchorage	Mooring			30'		3	Cu	
8/4/2017	A1 Anchorage	Mooring			32'		3	Cu	
8/4/2017	A1 Anchorage	Mooring			33'		3	Cu	

La Playa Mooring 2017									
Date	Facility	Slip / Mooring Number	Percent of Time Occupied	Vessel Type	Vessel Length	Vessel Beam	Length of Stay (nights)	Paint Type	
8/4/2017	A1 Anchorage	Mooring			33'		3	Cu	
8/4/2017	A1 Anchorage	Mooring			33'		3	Cu	
8/4/2017	A1 Anchorage	Mooring			34'		3	Cu	
8/4/2017	A1 Anchorage	Mooring			34'		3	Cu	
8/4/2017	A1 Anchorage	Mooring			34'		3	Cu	
8/4/2017	A1 Anchorage	Mooring			35'		3	Cu	
8/4/2017	A1 Anchorage	Mooring			35'		3	Cu	
8/4/2017	A1 Anchorage	Mooring			35'		3	Cu	
8/4/2017	A1 Anchorage	Mooring			36'		3	Cu	
8/4/2017	A1 Anchorage	Mooring			37'		3	Cu	
8/4/2017	A1 Anchorage	Mooring			38'		3	Cu	
8/4/2017	A1 Anchorage	Mooring			40'		3	Cu	
8/4/2017	A1 Anchorage	Mooring			40'		3	Cu	
8/4/2017	A1 Anchorage	Mooring			42'		3	Cu	
8/4/2017	A1 Anchorage	Mooring			42'		3	Cu	
8/4/2017	A1 Anchorage	Mooring			43'		3	Cu	
8/4/2017	A1 Anchorage	Mooring			43'		3	Cu	
8/4/2017	A1 Anchorage	Mooring			43'		3	Cu	
8/4/2017	A1 Anchorage	Mooring			46'		3	Cu	
8/4/2017	A1 Anchorage	Mooring			46'		3	Cu	
8/4/2017	A1 Anchorage	Mooring			47'		3	Cu	
8/4/2017	A1 Anchorage	Mooring			47'		3	Cu	
8/4/2017	A1 Anchorage	Mooring			49'		3	Cu	
8/4/2017	A1 Anchorage	Mooring			50'		3	Cu	
8/4/2017	A1 Anchorage	Mooring			57'		3	Cu	
8/4/2017	A1 Anchorage	Mooring			32'		3	Cu	
8/4/2017	A1 Anchorage	Mooring			48'		3	Cu	
8/4/2017	A1 Anchorage	Mooring			27'		3	Cu	
8/8/2017	A1 Anchorage	Mooring			40'		3	Cu	
8/11/2017	A1 Anchorage	Mooring			26'		3	Cu	
8/11/2017	A1 Anchorage	Mooring			28'		3	Cu	
8/11/2017	A1 Anchorage	Mooring			29'		3	Cu	
8/11/2017	A1 Anchorage	Mooring			30'		3	Cu	
8/11/2017	A1 Anchorage	Mooring			30'		3	Cu	
8/11/2017	A1 Anchorage	Mooring			30'		3	Cu	
8/11/2017	A1 Anchorage	Mooring			30'		3	Cu	
8/11/2017	A1 Anchorage	Mooring			32'		3	Cu	
8/11/2017	A1 Anchorage	Mooring			32'		3	Cu	
8/11/2017	A1 Anchorage	Mooring			32'		3	Cu	
8/11/2017	A1 Anchorage	Mooring			34'		3	Cu	
8/11/2017	A1 Anchorage	Mooring			34'		3	Cu	
8/11/2017	A1 Anchorage	Mooring			35'		3	Cu	
8/11/2017	A1 Anchorage	Mooring			35'		3	Cu	

Data								
Date	Facility	Slip / Mooring Number	Percent of Time Occupied	Vessel Type	Vessel Length	Vessel Beam	Length of Stay (nights)	Paint Type
8/11/2017	A1 Anchorage	Mooring			35'		3	Cu
8/11/2017	A1 Anchorage	Mooring			35'		3	Cu
8/11/2017	A1 Anchorage	Mooring			36'		3	Cu
8/11/2017	A1 Anchorage	Mooring			36'		3	Cu
8/11/2017	A1 Anchorage	Mooring			36'		3	Cu
8/11/2017	A1 Anchorage	Mooring			36'		3	Cu
8/11/2017	A1 Anchorage	Mooring			36'		3	Cu
8/11/2017	A1 Anchorage	Mooring			37'		3	Cu
8/11/2017	A1 Anchorage	Mooring			38'		3	Cu
8/11/2017	A1 Anchorage	Mooring			38'		3	Cu
8/11/2017	A1 Anchorage	Mooring			40'		3	Cu
8/11/2017	A1 Anchorage	Mooring			40'		3	Cu
8/11/2017	A1 Anchorage	Mooring			40'		3	Cu
8/11/2017	A1 Anchorage	Mooring			40'		3	Cu
8/11/2017	A1 Anchorage	Mooring			42'		3	Cu
8/11/2017	A1 Anchorage	Mooring			42'		3	Cu
	A1 Anchorage	Mooring			46'		3	Cu
8/11/2017	A1 Anchorage	Mooring			48'		3	Cu
	A1 Anchorage	Mooring			48'		3	Cu
8/11/2017	A1 Anchorage	Mooring			49'		3	Cu
	A1 Anchorage	Mooring			53'		3	Cu
	A1 Anchorage	Mooring			54'		3	Cu
8/11/2017	A1 Anchorage	Mooring			55'		3	Cu
8/11/2017	A1 Anchorage	Mooring			60'		3	Cu
8/15/2017	A1 Anchorage	Mooring			27'		3	Cu
8/18/2017	A1 Anchorage	Mooring			25'		3	Cu
8/18/2017	A1 Anchorage	Mooring			25'		3	Cu
	A1 Anchorage	Mooring			27'		3	Cu
	A1 Anchorage	Mooring			27'		3	Cu
8/18/2017	A1 Anchorage	Mooring			27'		3	Cu
8/18/2017	A1 Anchorage	Mooring			28'		3	Cu
8/18/2017	A1 Anchorage	Mooring			28'		3	Cu
	A1 Anchorage	Mooring			30'			Cu
	A1 Anchorage	Mooring			30'		3	Cu
	A1 Anchorage	Mooring			30'		3	Cu
	A1 Anchorage	Mooring			30'		3	Cu
8/18/2017	A1 Anchorage	Mooring			30'		3	Cu
	A1 Anchorage	Mooring			32'		3	Cu
	A1 Anchorage	Mooring			33'		3	Cu
	A1 Anchorage	Mooring			33'		3	Cu
	A1 Anchorage	Mooring			34'		3	Cu
	A1 Anchorage	Mooring			34'		3	Cu
	A1 Anchorage	Mooring			35'			Cu

			_	nooring 20				
Date	Facility	Slip / Mooring Number	Percent of Time Occupied	Vessel Type	Vessel Length	Vessel Beam	Length of Stay (nights)	Paint Type
8/18/2017	A1 Anchorage	Mooring			35'		3	Cu
8/18/2017	A1 Anchorage	Mooring			37'		3	Cu
8/18/2017	A1 Anchorage	Mooring			37'		3	Cu
8/18/2017	A1 Anchorage	Mooring			38'		3	Cu
	A1 Anchorage	Mooring			38'		3	Cu
8/18/2017	A1 Anchorage	Mooring			40'		3	Cu
8/18/2017	A1 Anchorage	Mooring			40'		3	Cu
8/18/2017	A1 Anchorage	Mooring			40'		3	Cu
8/18/2017	A1 Anchorage	Mooring			42'		3	Cu
8/18/2017	A1 Anchorage	Mooring			42'		3	Cu
8/18/2017	A1 Anchorage	Mooring			46'		3	Cu
8/18/2017	A1 Anchorage	Mooring			46'		3	Cu
8/18/2017	A1 Anchorage	Mooring			47'		3	Cu
8/18/2017	A1 Anchorage	Mooring			53'		3	Cu
	A1 Anchorage	Mooring			56'		3	Cu
8/18/2017	A1 Anchorage	Mooring			57'		3	Cu
8/18/2017	A1 Anchorage	Mooring			60'		3	Cu
	A1 Anchorage	Mooring			64'		3	Cu
8/25/2017	A1 Anchorage	Mooring			32'		3	Cu
8/25/2017	A1 Anchorage	Mooring			21'		3	Cu
8/25/2017	A1 Anchorage	Mooring			25'		3	Cu
8/25/2017	A1 Anchorage	Mooring			27'		3	Cu
8/25/2017	A1 Anchorage	Mooring			27'		3	Cu
8/25/2017	A1 Anchorage	Mooring			27'		3	Cu
8/25/2017	A1 Anchorage	Mooring			28'		3	Cu
8/25/2017	A1 Anchorage	Mooring			30'		3	Cu
8/25/2017	A1 Anchorage	Mooring			30'		3	Cu
8/25/2017	A1 Anchorage	Mooring			30'		3	Cu
8/25/2017	A1 Anchorage	Mooring			32'		3	Cu
8/25/2017	A1 Anchorage	Mooring			33'		3	Cu
8/25/2017	A1 Anchorage	Mooring			33'		3	Cu
	A1 Anchorage	Mooring			33'		3	Cu
	A1 Anchorage	Mooring			33'			Cu
8/25/2017	A1 Anchorage	Mooring			35'		3	Cu
	A1 Anchorage	Mooring			35'		3	Cu
8/25/2017	A1 Anchorage	Mooring			37'		3	Cu
8/25/2017	A1 Anchorage	Mooring			37'		3	Cu
8/25/2017	A1 Anchorage	Mooring			38'		3	Cu
8/25/2017	A1 Anchorage	Mooring			38'		3	Cu
8/25/2017	A1 Anchorage	Mooring			38'		3	Cu
	A1 Anchorage	Mooring			38'			Cu
	A1 Anchorage	Mooring			38'			Cu
8/25/2017	A1 Anchorage	Mooring			40'		3	Cu

La Piaya Wooting 2017									
Date	Facility	Slip / Mooring Number	Percent of Time Occupied	Vessel Type	Vessel Length	Vessel Beam	Length of Stay (nights)	Paint Type	
8/25/2017	A1 Anchorage	Mooring			44'		3	Cu	
8/25/2017	A1 Anchorage	Mooring			44'		3	Cu	
8/25/2017	A1 Anchorage	Mooring			47'		3	Cu	
8/25/2017	A1 Anchorage	Mooring			48'		3	Cu	
8/25/2017	A1 Anchorage	Mooring			50'		3	Cu	
8/25/2017	A1 Anchorage	Mooring			50'		3	Cu	
8/25/2017	A1 Anchorage	Mooring			52'		3	Cu	
8/25/2017	A1 Anchorage	Mooring			54'		3	Cu	
8/25/2017	A1 Anchorage	Mooring			60'		3	Cu	
8/25/2017	A1 Anchorage	Mooring			60'		3	Cu	
8/25/2017	A1 Anchorage	Mooring			62'		3	Cu	
8/25/2017	A1 Anchorage	Mooring			63'		3	Cu	
8/25/2017	A1 Anchorage	Mooring			64'		3	Cu	
8/25/2017	A1 Anchorage	Mooring			64'		3	Cu	
8/25/2017	A1 Anchorage	Mooring			65'		3	Cu	
9/1/2017	A1 Anchorage	Mooring					3	Cu	
9/1/2017	A1 Anchorage	Mooring			21'		3	Cu	
	A1 Anchorage	Mooring			21'		3	Cu	
9/1/2017	A1 Anchorage	Mooring			25'		3	Cu	
9/1/2017	A1 Anchorage	Mooring			26'		3	Cu	
	A1 Anchorage	Mooring			27'		3	Cu	
9/1/2017	A1 Anchorage	Mooring			30'		3	Cu	
9/1/2017	A1 Anchorage	Mooring			30'		3	Cu	
9/1/2017	A1 Anchorage	Mooring			30'		3	Cu	
9/1/2017	A1 Anchorage	Mooring			33'		3	Cu	
9/1/2017	A1 Anchorage	Mooring			34'		3	Cu	
9/1/2017	A1 Anchorage	Mooring			35'		3	Cu	
9/1/2017	A1 Anchorage	Mooring			36'		3	Cu	
	A1 Anchorage	Mooring			36'		3	Cu	
9/1/2017	A1 Anchorage	Mooring			36'		3	Cu	
9/1/2017	A1 Anchorage	Mooring			37'		3	Cu	
9/1/2017	A1 Anchorage	Mooring			38'		3	Cu	
9/1/2017	A1 Anchorage	Mooring			38'		3	Cu	
9/1/2017	A1 Anchorage	Mooring			38'		3	Cu	
9/1/2017	A1 Anchorage	Mooring			40'		3	Cu	
9/1/2017	A1 Anchorage	Mooring			40'		3	Cu	
9/1/2017	A1 Anchorage	Mooring			40'		3	Cu	
9/1/2017	A1 Anchorage	Mooring			41'		3	Cu	
9/1/2017	A1 Anchorage	Mooring			42'		3	Cu	
9/1/2017	A1 Anchorage	Mooring			42'		3	Cu	
9/1/2017	A1 Anchorage	Mooring			42'		3	Cu	
9/1/2017	A1 Anchorage	Mooring			47'		3	Cu	
9/1/2017	A1 Anchorage	Mooring			48'		3	Cu	

				nooring 20				
Date	Facility	Slip / Mooring Number	Percent of Time Occupied	Vessel Type	Vessel Length	Vessel Beam	Length of Stay (nights)	Paint Type
9/1/2017	A1 Anchorage	Mooring			49'		3	Cu
	A1 Anchorage	Mooring			49'		3	Cu
	A1 Anchorage	Mooring			50'		3	Cu
	A1 Anchorage	Mooring			50'		3	Cu
9/1/2017	A1 Anchorage	Mooring			53'		3	Cu
9/1/2017	A1 Anchorage	Mooring			56'		3	Cu
9/1/2017	A1 Anchorage	Mooring			56'		3	Cu
9/1/2017	A1 Anchorage	Mooring			56'		3	Cu
9/1/2017	A1 Anchorage	Mooring			48'		3	Cu
9/8/2017	A1 Anchorage	Mooring			28'		3	Cu
9/8/2017	A1 Anchorage	Mooring			25'		3	Cu
9/8/2017	A1 Anchorage	Mooring			27'		3	Cu
9/8/2017	A1 Anchorage	Mooring			27'		3	Cu
9/8/2017	A1 Anchorage	Mooring			27'		3	Cu
	A1 Anchorage	Mooring			28'		3	Cu
9/8/2017	A1 Anchorage	Mooring			29'		3	Cu
	A1 Anchorage	Mooring			30'		3	Cu
9/8/2017	A1 Anchorage	Mooring			30'		3	Cu
9/8/2017	A1 Anchorage	Mooring			30'		3	Cu
9/8/2017	A1 Anchorage	Mooring			33'		3	Cu
9/8/2017	A1 Anchorage	Mooring			34'		3	Cu
9/8/2017	A1 Anchorage	Mooring			35'		3	Cu
9/8/2017	A1 Anchorage	Mooring			35'		3	Cu
9/8/2017	A1 Anchorage	Mooring			36'		3	Cu
9/8/2017	A1 Anchorage	Mooring			36'		3	Cu
9/8/2017	A1 Anchorage	Mooring			38'		3	Cu
9/8/2017	A1 Anchorage	Mooring			38'		3	Cu
9/8/2017	A1 Anchorage	Mooring			40'		3	Cu
9/8/2017	A1 Anchorage	Mooring			41'		3	Cu
9/8/2017	A1 Anchorage	Mooring			41'		3	Cu
9/8/2017	A1 Anchorage	Mooring			42'		3	Cu
9/8/2017	A1 Anchorage	Mooring			43'		3	Cu
	A1 Anchorage	Mooring			44'			Cu
9/8/2017	A1 Anchorage	Mooring			46'			Cu
	A1 Anchorage	Mooring			47'			Cu
	A1 Anchorage	Mooring			48'		3	Cu
9/8/2017	A1 Anchorage	Mooring			50'		3	Cu
	A1 Anchorage	Mooring			54'		3	Cu
9/8/2017	A1 Anchorage	Mooring			28'		3	Cu
9/8/2017	A1 Anchorage	Mooring			32'		3	Cu
9/15/2017	A1 Anchorage	Mooring						Cu
	A1 Anchorage	Mooring			27'		3	Cu
9/15/2017	A1 Anchorage	Mooring			28'		3	Cu

La Playa Wooring 2017										
Date	Facility	Slip / Mooring Number	Percent of Time Occupied	Vessel Type	Vessel Length	Vessel Beam	Length of Stay (nights)	Paint Type		
9/15/2017	A1 Anchorage	Mooring			30'		3	Cu		
9/15/2017	A1 Anchorage	Mooring			30'		3	Cu		
9/15/2017	A1 Anchorage	Mooring			30'		3	Cu		
9/15/2017	A1 Anchorage	Mooring			32'		3	Cu		
9/15/2017	A1 Anchorage	Mooring			32'		3	Cu		
9/15/2017	A1 Anchorage	Mooring			32'		3	Cu		
9/15/2017	A1 Anchorage	Mooring			32'		3	Cu		
9/15/2017	A1 Anchorage	Mooring			33'		3	Cu		
9/15/2017	A1 Anchorage	Mooring			33'		3	Cu		
9/15/2017	A1 Anchorage	Mooring			33'		3	Cu		
9/15/2017	A1 Anchorage	Mooring			33'		3	Cu		
9/15/2017	A1 Anchorage	Mooring			33'		3	Cu		
9/15/2017	A1 Anchorage	Mooring			34'		3	Cu		
9/15/2017	A1 Anchorage	Mooring			34'		3	Cu		
9/15/2017	A1 Anchorage	Mooring			34'		3	Cu		
9/15/2017	A1 Anchorage	Mooring			35'		3	Cu		
9/15/2017	A1 Anchorage	Mooring			35'		3	Cu		
9/15/2017	A1 Anchorage	Mooring			35'		3	Cu		
9/15/2017	A1 Anchorage	Mooring			36'		3	Cu		
9/15/2017	A1 Anchorage	Mooring			37'		3	Cu		
9/15/2017	A1 Anchorage	Mooring			37'		3	Cu		
9/15/2017	A1 Anchorage	Mooring			38'		3	Cu		
9/15/2017	A1 Anchorage	Mooring			38'		3	Cu		
9/15/2017	A1 Anchorage	Mooring			38'		3	Cu		
9/15/2017	A1 Anchorage	Mooring			40'		3	Cu		
9/15/2017	A1 Anchorage	Mooring			40'		3	Cu		
9/15/2017	A1 Anchorage	Mooring			40'		3	Cu		
9/15/2017	A1 Anchorage	Mooring			43'		3	Cu		
9/15/2017	A1 Anchorage	Mooring			43'		3			
9/15/2017	A1 Anchorage	Mooring			45'		3	Cu		
9/15/2017	A1 Anchorage	Mooring			47'		3	Cu		
9/15/2017	A1 Anchorage	Mooring			47'		3	Cu		
9/15/2017	A1 Anchorage	Mooring			48'		3	Cu		
9/15/2017	A1 Anchorage	Mooring			28'		3	Cu		
9/15/2017	A1 Anchorage	Mooring			32'		3	Cu		
9/15/2017	A1 Anchorage	Mooring			58'		3	Cu		
9/15/2017	A1 Anchorage	Mooring			27'		3	Cu		
9/22/2017	A1 Anchorage	Mooring			26'		3	Cu		
9/22/2017	A1 Anchorage	Mooring			27'		3	Cu		
9/22/2017	A1 Anchorage	Mooring			27'		3	Cu		
9/22/2017	A1 Anchorage	Mooring			28'		3	Cu		
9/22/2017	A1 Anchorage	Mooring			28'		3	Cu		
9/22/2017	A1 Anchorage	Mooring			30'		3	Cu		

			_	nooring 20				
Date	Facility	Slip / Mooring Number	Percent of Time Occupied	Vessel Type	Vessel Length	Vessel Beam	Length of Stay (nights)	Paint Type
9/22/2017	A1 Anchorage	Mooring			30'		3	Cu
	A1 Anchorage	Mooring			30'		3	Cu
9/22/2017	A1 Anchorage	Mooring			30'		3	Cu
9/22/2017	A1 Anchorage	Mooring			30'		3	Cu
	A1 Anchorage	Mooring			32'		3	Cu
9/22/2017	A1 Anchorage	Mooring			32'		3	Cu
9/22/2017	A1 Anchorage	Mooring			33'		3	Cu
9/22/2017	A1 Anchorage	Mooring			33'		3	Cu
9/22/2017	A1 Anchorage	Mooring			34'		3	Cu
9/22/2017	A1 Anchorage	Mooring			34'		3	Cu
9/22/2017	A1 Anchorage	Mooring			35'		3	Cu
9/22/2017	A1 Anchorage	Mooring			35'		3	Cu
9/22/2017	A1 Anchorage	Mooring			36'		3	Cu
9/22/2017	A1 Anchorage	Mooring			36'		3	Cu
9/22/2017	A1 Anchorage	Mooring			36'		3	Cu
9/22/2017	A1 Anchorage	Mooring			37'		3	Cu
9/22/2017	A1 Anchorage	Mooring			37'		3	Cu
	A1 Anchorage	Mooring			38'		3	Cu
9/22/2017	A1 Anchorage	Mooring			40'		3	Cu
9/22/2017	A1 Anchorage	Mooring			40'		3	Cu
9/22/2017	A1 Anchorage	Mooring			41'		3	Cu
9/22/2017	A1 Anchorage	Mooring			42'		3	Cu
9/22/2017	A1 Anchorage	Mooring			43'		3	Cu
9/22/2017	A1 Anchorage	Mooring			43'		3	Cu
9/22/2017	A1 Anchorage	Mooring			43'		3	Cu
9/22/2017	A1 Anchorage	Mooring			44'		3	Cu
9/22/2017	A1 Anchorage	Mooring			46'		3	Cu
9/22/2017	A1 Anchorage	Mooring			47'		3	Cu
9/22/2017	A1 Anchorage	Mooring			47'		3	Cu
9/22/2017	A1 Anchorage	Mooring			50'		3	Cu
9/22/2017	A1 Anchorage	Mooring			64'		3	Cu
9/22/2017	A1 Anchorage	Mooring			32'		3	Cu
9/22/2017	A1 Anchorage	Mooring			58'		3	Cu
9/22/2017	A1 Anchorage	Mooring			27'		3	Cu
	A1 Anchorage	Mooring			27'		3	Cu
9/29/2017	A1 Anchorage	Mooring			27'		3	Cu
9/29/2017	A1 Anchorage	Mooring			28'		3	Cu
9/29/2017	A1 Anchorage	Mooring			29'		3	Cu
9/29/2017	A1 Anchorage	Mooring			30'		3	Cu
9/29/2017	A1 Anchorage	Mooring			30'		3	Cu
	A1 Anchorage	Mooring			30'			Cu
	A1 Anchorage	Mooring			30'			Cu
9/29/2017	A1 Anchorage	Mooring			30'		3	Cu

La Playa Wooting 2017										
Date	Facility	Slip / Mooring Number	Percent of Time Occupied	Vessel Type	Vessel Length	Vessel Beam	Length of Stay (nights)	Paint Type		
9/29/2017	A1 Anchorage	Mooring			30'		3	Cu		
	A1 Anchorage	Mooring			30'		3	Cu		
9/29/2017	A1 Anchorage	Mooring			32'		3	Cu		
9/29/2017	A1 Anchorage	Mooring			32'		3	Cu		
9/29/2017	A1 Anchorage	Mooring			33'		3	Cu		
9/29/2017	A1 Anchorage	Mooring			33'		3	Cu		
9/29/2017	A1 Anchorage	Mooring			34'		3	Cu		
9/29/2017	A1 Anchorage	Mooring			34'		3	Cu		
9/29/2017	A1 Anchorage	Mooring			35'		3	Cu		
9/29/2017	A1 Anchorage	Mooring			35'		3	Cu		
9/29/2017	A1 Anchorage	Mooring			36'		3	Cu		
9/29/2017	A1 Anchorage	Mooring			36'		3	Cu		
9/29/2017	A1 Anchorage	Mooring			38'		3	Cu		
9/29/2017	A1 Anchorage	Mooring			38'		3	Cu		
9/29/2017	A1 Anchorage	Mooring			39'		3	Cu		
9/29/2017	A1 Anchorage	Mooring			40'		3	Cu		
9/29/2017	A1 Anchorage	Mooring			41'		3	Cu		
9/29/2017	A1 Anchorage	Mooring			42'		3	Cu		
9/29/2017	A1 Anchorage	Mooring			43'		3	Cu		
9/29/2017	A1 Anchorage	Mooring			43'		3	Cu		
9/29/2017	A1 Anchorage	Mooring			46'		3	Cu		
9/29/2017	A1 Anchorage	Mooring			48'		3	Cu		
9/29/2017	A1 Anchorage	Mooring			49'		3	Cu		
9/29/2017	A1 Anchorage	Mooring			50'		3	Cu		
9/29/2017	A1 Anchorage	Mooring			50'		3	Cu		
9/29/2017	A1 Anchorage	Mooring			53'		3	Cu		
9/29/2017	A1 Anchorage	Mooring			57'		3	Cu		
9/29/2017	A1 Anchorage	Mooring			60'		3	Cu		
9/29/2017	A1 Anchorage	Mooring			32'		3	Cu		
10/6/2017	A1 Anchorage	Mooring			27'		3	Cu		
10/6/2017	A1 Anchorage	Mooring			27'		3	Cu		
10/6/2017	A1 Anchorage	Mooring			28'		3	Cu		
10/6/2017	A1 Anchorage	Mooring			29'		3	Cu		
10/6/2017	A1 Anchorage	Mooring			30'		3	Cu		
10/6/2017	A1 Anchorage	Mooring			30'		3	Cu		
10/6/2017	A1 Anchorage	Mooring			30'		3	Cu		
10/6/2017	A1 Anchorage	Mooring			30'		3	Cu		
10/6/2017	A1 Anchorage	Mooring			30'		3	Cu		
10/6/2017	A1 Anchorage	Mooring			30'		3	Cu		
10/6/2017	A1 Anchorage	Mooring			32'		3	Cu		
10/6/2017	A1 Anchorage	Mooring			33'		3	Cu		
	A1 Anchorage	Mooring			33'		3	Cu		
10/6/2017	A1 Anchorage	Mooring			34'		3	Cu		

La Playa Wooring 2017										
Date	Facility	Slip / Mooring Number	Percent of Time Occupied	Vessel Type	Vessel Length	Vessel Beam	Length of Stay (nights)	Paint Type		
10/6/2017	A1 Anchorage	Mooring			35'		3	Cu		
10/6/2017	A1 Anchorage	Mooring			36'		3	Cu		
10/6/2017	A1 Anchorage	Mooring			37'		3	Cu		
10/6/2017	A1 Anchorage	Mooring			38'		3	Cu		
10/6/2017	A1 Anchorage	Mooring			39'		3	Cu		
10/6/2017	A1 Anchorage	Mooring			40'		3	Cu		
10/6/2017	A1 Anchorage	Mooring			40'		3	Cu		
10/6/2017	A1 Anchorage	Mooring			40'		3	Cu		
10/6/2017	A1 Anchorage	Mooring			43'		3	Cu		
10/6/2017	A1 Anchorage	Mooring			43'		3	Cu		
10/6/2017	A1 Anchorage	Mooring			44'		3	Cu		
10/6/2017	A1 Anchorage	Mooring			44'		3	Cu		
10/6/2017	A1 Anchorage	Mooring			47'		3	Cu		
10/6/2017	A1 Anchorage	Mooring			47'		3	Cu		
10/6/2017	A1 Anchorage	Mooring			50'		3	Cu		
10/6/2017	A1 Anchorage	Mooring			51'		3	Cu		
	A1 Anchorage	Mooring			57'		3	Cu		
10/6/2017	A1 Anchorage	Mooring			28'		3	Cu		
	A1 Anchorage	Mooring			32'		3	Cu		
10/6/2017	A1 Anchorage	Mooring			28'		3	Cu		
10/13/2017	A1 Anchorage	Mooring			26'		3	Cu		
10/13/2017	A1 Anchorage	Mooring			27'		3	Cu		
10/13/2017	A1 Anchorage	Mooring			27'		3	Cu		
10/13/2017	A1 Anchorage	Mooring			28'		3	Cu		
10/13/2017	A1 Anchorage	Mooring			28'		3	Cu		
10/13/2017	A1 Anchorage	Mooring			28'		3	Cu		
10/13/2017	A1 Anchorage	Mooring			30'		3	Cu		
	A1 Anchorage	Mooring			30'		3	Cu		
	A1 Anchorage	Mooring			30'		3	Cu		
10/13/2017	A1 Anchorage	Mooring			30'		3	Cu		
	A1 Anchorage	Mooring			32'		3	Cu		
10/13/2017	A1 Anchorage	Mooring			33'		3	Cu		
10/13/2017	A1 Anchorage	Mooring			33'		3	Cu		
10/13/2017	A1 Anchorage	Mooring			35'		3	Cu		
10/13/2017	A1 Anchorage	Mooring			35'		3	Cu		
10/13/2017	A1 Anchorage	Mooring			37'		3	Cu		
10/13/2017	A1 Anchorage	Mooring			38'		3	Cu		
10/13/2017	A1 Anchorage	Mooring			40'		3	Cu		
10/13/2017	A1 Anchorage	Mooring			41'		3	Cu		
10/13/2017	A1 Anchorage	Mooring			42'		3	Cu		
	A1 Anchorage	Mooring			43'		3	Cu		
10/13/2017	A1 Anchorage	Mooring			44'		3	Cu		
10/13/2017	A1 Anchorage	Mooring			47'		3	Cu		

La Playa Wooting 2017										
Date	Facility	Slip / Mooring Number	Percent of Time Occupied	Vessel Type	Vessel Length	Vessel Beam	Length of Stay (nights)	Paint Type		
10/13/2017	A1 Anchorage	Mooring			48'		3	Cu		
10/13/2017	A1 Anchorage	Mooring			50'		3	Cu		
10/13/2017	A1 Anchorage	Mooring			50'		3	Cu		
10/13/2017	A1 Anchorage	Mooring			50'		3	Cu		
10/13/2017	A1 Anchorage	Mooring			32'		3	Cu		
10/20/2017	A1 Anchorage	Mooring			25'		3	Cu		
10/20/2017	A1 Anchorage	Mooring			26'		3	Cu		
10/20/2017	A1 Anchorage	Mooring			26'		3	Cu		
10/20/2017	A1 Anchorage	Mooring			26'		3	Cu		
10/20/2017	A1 Anchorage	Mooring			27'		3	Cu		
10/20/2017	A1 Anchorage	Mooring			27'		3	Cu		
10/20/2017	A1 Anchorage	Mooring			27'		3	Cu		
10/20/2017	A1 Anchorage	Mooring			28'		3	Cu		
10/20/2017	A1 Anchorage	Mooring			30'		3	Cu		
10/20/2017	A1 Anchorage	Mooring			31'		3	Cu		
10/20/2017	A1 Anchorage	Mooring			32'		3	Cu		
10/20/2017	A1 Anchorage	Mooring			32'		3	Cu		
10/20/2017	A1 Anchorage	Mooring			33'		3	Cu		
10/20/2017	A1 Anchorage	Mooring			34'		3	Cu		
10/20/2017	A1 Anchorage	Mooring			34'		3	Cu		
10/20/2017	A1 Anchorage	Mooring			35'		3	Cu		
10/20/2017	A1 Anchorage	Mooring			35'		3	Cu		
10/20/2017	A1 Anchorage	Mooring			35'		3	Cu		
10/20/2017	A1 Anchorage	Mooring			35'		3	Cu		
10/20/2017	A1 Anchorage	Mooring			36'		3	Cu		
10/20/2017	A1 Anchorage	Mooring			36'		3	Cu		
10/20/2017	A1 Anchorage	Mooring			37'		3	Cu		
10/20/2017	A1 Anchorage	Mooring			38'		3	Cu		
10/20/2017	A1 Anchorage	Mooring			40'		3	Cu		
10/20/2017	A1 Anchorage	Mooring			40'		3	Cu		
10/20/2017	A1 Anchorage	Mooring			40'		3	Cu		
10/20/2017	A1 Anchorage	Mooring			40'		3	Cu		
10/20/2017	A1 Anchorage	Mooring			40'		3	Cu		
10/20/2017	A1 Anchorage	Mooring			42'		3	Cu		
	A1 Anchorage	Mooring			43'		3	Cu		
	A1 Anchorage	Mooring			46'		3	Cu		
10/20/2017	A1 Anchorage	Mooring			48'		3	Cu		
10/20/2017	A1 Anchorage	Mooring			50'		3	Cu		
10/20/2017	A1 Anchorage	Mooring			50'		3	Cu		
10/20/2017	A1 Anchorage	Mooring			50'		3	Cu		
	A1 Anchorage	Mooring			57'		3	Cu		
10/20/2017	A1 Anchorage	Mooring			59'		3	Cu		
10/20/2017	A1 Anchorage	Mooring			49'		3	Cu		

La Playa Wooting 2017										
Date	Facility	Slip / Mooring Number	Percent of Time Occupied	Vessel Type	Vessel Length	Vessel Beam	Length of Stay (nights)	Paint Type		
10/20/2017	A1 Anchorage	Mooring			48'		3	Cu		
10/27/2017	A1 Anchorage	Mooring			27'		3	Cu		
10/27/2017	A1 Anchorage	Mooring			28'		3	Cu		
10/27/2017	A1 Anchorage	Mooring			30'		3	Cu		
10/27/2017	A1 Anchorage	Mooring			30'		3	Cu		
10/27/2017	A1 Anchorage	Mooring			30'		3	Cu		
10/27/2017	A1 Anchorage	Mooring			33'		3	Cu		
10/27/2017	A1 Anchorage	Mooring			34'		3	Cu		
10/27/2017	A1 Anchorage	Mooring			34'		3	Cu		
10/27/2017	A1 Anchorage	Mooring			34'		3	Cu		
10/27/2017	A1 Anchorage	Mooring			35'		3	Cu		
10/27/2017	A1 Anchorage	Mooring			35'		3	Cu		
10/27/2017	A1 Anchorage	Mooring			35'		3	Cu		
10/27/2017	A1 Anchorage	Mooring			36'		3	Cu		
10/27/2017	A1 Anchorage	Mooring			37'		3	Cu		
10/27/2017	A1 Anchorage	Mooring			37'		3	Cu		
10/27/2017	A1 Anchorage	Mooring			38'		3	Cu		
10/27/2017	A1 Anchorage	Mooring			38'		3	Cu		
10/27/2017	A1 Anchorage	Mooring			38'		3	Cu		
10/27/2017	A1 Anchorage	Mooring			40'		3	Cu		
10/27/2017	A1 Anchorage	Mooring			40'		3	Cu		
10/27/2017	A1 Anchorage	Mooring			40'		3	Cu		
10/27/2017	A1 Anchorage	Mooring			40'		3	Cu		
10/27/2017	A1 Anchorage	Mooring			41'		3	Cu		
10/27/2017	A1 Anchorage	Mooring			43'		3	Cu		
10/27/2017	A1 Anchorage	Mooring			43'		3	Cu		
10/27/2017	A1 Anchorage	Mooring			43'		3	Cu		
10/27/2017	A1 Anchorage	Mooring			44'		3	Cu		
10/27/2017	A1 Anchorage	Mooring			45'		3	Cu		
10/27/2017	A1 Anchorage	Mooring			47'		3	Cu		
10/27/2017	A1 Anchorage	Mooring			47'		3	Cu		
10/27/2017	A1 Anchorage	Mooring			48'		3	Cu		
10/27/2017	A1 Anchorage	Mooring			49'		3	Cu		
10/27/2017	A1 Anchorage	Mooring			50'		3	Cu		
10/27/2017	A1 Anchorage	Mooring			56'		3	Cu		
10/27/2017	A1 Anchorage	Mooring			58'		3	Cu		
10/27/2017	A1 Anchorage	Mooring			60'		3	Cu		
10/27/2017	A1 Anchorage	Mooring			65'		3	Cu		
10/27/2017	A1 Anchorage	Mooring			32'		3	Cu		
10/27/2017	A1 Anchorage	Mooring			60'		3	Cu		
10/27/2017	A1 Anchorage	Mooring			27'		3	Cu		
	A1 Anchorage	Mooring			35'		3	Cu		
11/3/2017	A1 Anchorage	Mooring			26'		3	Cu		

La Playa Wooring 2017										
Date	Facility	Slip / Mooring Number	Percent of Time Occupied	Vessel Type	Vessel Length	Vessel Beam	Length of Stay (nights)	Paint Type		
11/3/2017	A1 Anchorage	Mooring			27'		3	Cu		
	A1 Anchorage	Mooring			28'		3	Cu		
	A1 Anchorage	Mooring			29'		3	Cu		
	A1 Anchorage	Mooring			30'		3	Cu		
	A1 Anchorage	Mooring			30'		3	Cu		
11/3/2017	A1 Anchorage	Mooring			30'		3	Cu		
11/3/2017	A1 Anchorage	Mooring			30'		3	Cu		
11/3/2017	A1 Anchorage	Mooring			30'		3	Cu		
11/3/2017	A1 Anchorage	Mooring			31'		3	Cu		
11/3/2017	A1 Anchorage	Mooring			34'		3	Cu		
11/3/2017	A1 Anchorage	Mooring			35'		3	Cu		
11/3/2017	A1 Anchorage	Mooring			35'		3	Cu		
11/3/2017	A1 Anchorage	Mooring			35'		3	Cu		
11/3/2017	A1 Anchorage	Mooring			36'		3	Cu		
11/3/2017	A1 Anchorage	Mooring			36'		3	Cu		
11/3/2017	A1 Anchorage	Mooring			38'		3	Cu		
11/3/2017	A1 Anchorage	Mooring			40'		3	Cu		
	A1 Anchorage	Mooring			41'		3	Cu		
	A1 Anchorage	Mooring			41'		3	Cu		
11/3/2017	A1 Anchorage	Mooring			43'		3	Cu		
11/3/2017	A1 Anchorage	Mooring			45'		3	Cu		
11/3/2017	A1 Anchorage	Mooring			46'		3	Cu		
11/3/2017	A1 Anchorage	Mooring			46'		3	Cu		
11/3/2017	A1 Anchorage	Mooring			49'		3	Cu		
11/3/2017	A1 Anchorage	Mooring			49'		3	Cu		
11/3/2017	A1 Anchorage	Mooring			32'		3	Cu		
11/3/2017	A1 Anchorage	Mooring			28'		3	Cu		
11/10/2017	A1 Anchorage	Mooring			26'		3	Cu		
11/10/2017	A1 Anchorage	Mooring			27'		3	Cu		
11/10/2017	A1 Anchorage	Mooring			27'		3	Cu		
	A1 Anchorage	Mooring			28'		3	Cu		
11/10/2017	A1 Anchorage	Mooring			28'		3	Cu		
11/10/2017	A1 Anchorage	Mooring			30'		3	Cu		
11/10/2017	A1 Anchorage	Mooring			30'		3	Cu		
11/10/2017	A1 Anchorage	Mooring			30'		3	Cu		
11/10/2017	A1 Anchorage	Mooring			30'		3	Cu		
11/10/2017	A1 Anchorage	Mooring			30'		3	Cu		
11/10/2017	A1 Anchorage	Mooring			33'		3	Cu		
11/10/2017	A1 Anchorage	Mooring			34'		3	Cu		
11/10/2017	A1 Anchorage	Mooring			34'		3	Cu		
11/10/2017	A1 Anchorage	Mooring			35'		3	Cu		
11/10/2017	A1 Anchorage	Mooring			36'		3	Cu		
11/10/2017	A1 Anchorage	Mooring			37'		3	Cu		

La Piaya Wooring 2017										
Date	Facility	Slip / Mooring Number	Percent of Time Occupied	Vessel Type	Vessel Length	Vessel Beam	Length of Stay (nights)	Paint Type		
11/10/2017	A1 Anchorage	Mooring			38'		3	Cu		
11/10/2017	A1 Anchorage	Mooring			39'		3	Cu		
11/10/2017	A1 Anchorage	Mooring			40'		3	Cu		
11/10/2017	A1 Anchorage	Mooring			40'		3	Cu		
11/10/2017	A1 Anchorage	Mooring			41'		3	Cu		
11/10/2017	A1 Anchorage	Mooring			41'		3	Cu		
11/10/2017	A1 Anchorage	Mooring			41'		3	Cu		
11/10/2017	A1 Anchorage	Mooring			42'		3	Cu		
11/10/2017	A1 Anchorage	Mooring			42'		3	Cu		
11/10/2017	A1 Anchorage	Mooring			45'		3	Cu		
11/10/2017	A1 Anchorage	Mooring			48'		3	Cu		
11/10/2017	A1 Anchorage	Mooring			49'		3	Cu		
11/10/2017	A1 Anchorage	Mooring			50'		3	Cu		
11/10/2017	A1 Anchorage	Mooring			50'		3	Cu		
11/10/2017	A1 Anchorage	Mooring			50'		3	Cu		
11/10/2017	A1 Anchorage	Mooring			56'		3	Cu		
	A1 Anchorage	Mooring			60'		3	Cu		
11/10/2017	A1 Anchorage	Mooring			61'		3	Cu		
11/10/2017	A1 Anchorage	Mooring			32'		3	Cu		
11/17/2017	A1 Anchorage	Mooring			27'		3	Cu		
11/17/2017	A1 Anchorage	Mooring			28'		3	Cu		
11/17/2017	A1 Anchorage	Mooring			30'		3	Cu		
11/17/2017	A1 Anchorage	Mooring			30'		3	Cu		
11/17/2017	A1 Anchorage	Mooring			30'		3	Cu		
11/17/2017	A1 Anchorage	Mooring			30'		3	Cu		
11/17/2017	A1 Anchorage	Mooring			34'		3	Cu		
11/17/2017	A1 Anchorage	Mooring			34'		3	Cu		
	A1 Anchorage	Mooring			34'		3	Cu		
	A1 Anchorage	Mooring			34'		3	Cu		
11/17/2017	A1 Anchorage	Mooring			36'		3	Cu		
	A1 Anchorage	Mooring			37'		3	Cu		
	A1 Anchorage	Mooring			37'		3	Cu		
	A1 Anchorage	Mooring			38'		3			
	A1 Anchorage	Mooring			39'		3	Cu		
	A1 Anchorage	Mooring			40'		3	Cu		
	A1 Anchorage	Mooring			41'		3	Cu		
	A1 Anchorage	Mooring			42'		3	Cu		
	A1 Anchorage	Mooring			42'		3	Cu		
	A1 Anchorage	Mooring			44'		3	Cu		
	A1 Anchorage	Mooring			46'		3	Cu		
	A1 Anchorage	Mooring			47'		3	Cu		
	A1 Anchorage	Mooring			50'			Cu		
	A1 Anchorage	Mooring			32'		+	Cu		

		Clin /	Percent	nooring 20			l amouth of	
Date	Facility	Slip / Mooring	of Time	Vessel	Vessel	Vessel	Length of Stay	Paint
	,	Number	Occupied	Туре	Length	Beam	(nights)	Туре
11/17/2017	A1 Anchorage	Mooring			28'		3	Cu
	A1 Anchorage	Mooring			44'		3	Cu
	A1 Anchorage	Mooring			26'		3	Cu
	A1 Anchorage	Mooring			27'		3	Cu
	A1 Anchorage	Mooring			27'		3	Cu
	A1 Anchorage	Mooring			28'		3	Cu
11/24/2017	A1 Anchorage	Mooring			28'		3	Cu
11/24/2017	A1 Anchorage	Mooring			28'		3	Cu
11/24/2017	A1 Anchorage	Mooring			30'		3	Cu
11/24/2017	A1 Anchorage	Mooring			30'		3	Cu
11/24/2017	A1 Anchorage	Mooring			30'		3	Cu
11/24/2017	A1 Anchorage	Mooring			32'		3	Cu
11/24/2017	A1 Anchorage	Mooring			34'		3	Cu
11/24/2017	A1 Anchorage	Mooring			35'		3	Cu
11/24/2017	A1 Anchorage	Mooring			36'		3	Cu
11/24/2017	A1 Anchorage	Mooring			37'		3	Cu
11/24/2017	A1 Anchorage	Mooring			38'		3	Cu
11/24/2017	A1 Anchorage	Mooring			40'		3	Cu
11/24/2017	A1 Anchorage	Mooring			41'		3	Cu
11/24/2017	A1 Anchorage	Mooring			41'		3	Cu
11/24/2017	A1 Anchorage	Mooring			42'		3	Cu
11/24/2017	A1 Anchorage	Mooring			42'		3	Cu
11/24/2017	A1 Anchorage	Mooring			43'		3	Cu
11/24/2017	A1 Anchorage	Mooring			43'		3	Cu
11/24/2017	A1 Anchorage	Mooring			44'		3	Cu
11/24/2017	A1 Anchorage	Mooring			44'		3	Cu
	A1 Anchorage	Mooring			46'		3	Cu
11/24/2017	A1 Anchorage	Mooring			47'			Cu
	A1 Anchorage	Mooring			47'		3	Cu
	A1 Anchorage	Mooring			49'		3	Cu
	A1 Anchorage	Mooring			50'			Cu
	A1 Anchorage	Mooring			53'		3	Cu
	A1 Anchorage	Mooring			53'			Cu
	A1 Anchorage	Mooring			60'		3	Cu
	A1 Anchorage	Mooring			32'		3	Cu
	A1 Anchorage	Mooring			34'		3	Cu
	A1 Anchorage	Mooring			28'		3	Cu
	A1 Anchorage	Mooring			27'		3	
	A1 Anchorage	Mooring			27'		3	Cu
	A1 Anchorage	Mooring			30'		3	Cu
	A1 Anchorage	Mooring			30'		3	Cu
	A1 Anchorage	Mooring			30'			Cu
12/1/2017	A1 Anchorage	Mooring			32'] 3	Cu

La Playa Mooring 2017

				nooring 20				
Date	Facility	Slip / Mooring Number	Percent of Time Occupied	Vessel Type	Vessel Length	Vessel Beam	Length of Stay (nights)	Paint Type
12/1/2017	A1 Anchorage	Mooring			34'		3	Cu
	A1 Anchorage	Mooring			34'		3	Cu
	A1 Anchorage	Mooring			34'		3	Cu
	A1 Anchorage	Mooring			34'		3	Cu
	A1 Anchorage	Mooring			35'		3	Cu
	A1 Anchorage	Mooring			35'		3	Cu
12/1/2017	A1 Anchorage	Mooring			36'		3	Cu
12/1/2017	A1 Anchorage	Mooring			36'		3	Cu
12/1/2017	A1 Anchorage	Mooring			36'		3	Cu
12/1/2017	A1 Anchorage	Mooring			40'		3	Cu
12/1/2017	A1 Anchorage	Mooring			42'		3	Cu
12/1/2017	A1 Anchorage	Mooring			42'		3	Cu
12/1/2017	A1 Anchorage	Mooring			46'		3	Cu
12/1/2017	A1 Anchorage	Mooring			47'		3	Cu
12/1/2017	A1 Anchorage	Mooring			49'		3	Cu
12/1/2017	A1 Anchorage	Mooring			60'		3	Cu
12/1/2017	A1 Anchorage	Mooring			32'		3	Cu
12/8/2017	A1 Anchorage	Mooring			32'		3	Cu
12/8/2017	A1 Anchorage	Mooring			25'		3	Cu
12/8/2017	A1 Anchorage	Mooring			26'		3	Cu
12/8/2017	A1 Anchorage	Mooring			27'		3	Cu
12/8/2017	A1 Anchorage	Mooring			28'		3	Cu
12/8/2017	A1 Anchorage	Mooring			30'		3	Cu
12/8/2017	A1 Anchorage	Mooring			30'		3	Cu
12/8/2017	A1 Anchorage	Mooring			30'		3	Cu
12/8/2017	A1 Anchorage	Mooring			30'		3	Cu
12/8/2017	A1 Anchorage	Mooring			30'		3	Cu
12/8/2017	A1 Anchorage	Mooring			34'		3	Cu
12/8/2017	A1 Anchorage	Mooring			35'		3	Cu
12/8/2017	A1 Anchorage	Mooring			37'		3	Cu
12/8/2017	A1 Anchorage	Mooring			37'		3	Cu
	A1 Anchorage	Mooring			38'		3	Cu
	A1 Anchorage	Mooring			40'			Cu
	A1 Anchorage	Mooring			40'		3	
	A1 Anchorage	Mooring			41'		3	Cu
	A1 Anchorage	Mooring			41'		3	Cu
	A1 Anchorage	Mooring			47'		3	Cu
	A1 Anchorage	Mooring			47'			Cu
	A1 Anchorage	Mooring			49'		3	Cu
	A1 Anchorage	Mooring			50'		3	Cu
	A1 Anchorage	Mooring			52'			Cu
	A1 Anchorage	Mooring			60'			Cu
12/15/2017	A1 Anchorage	Mooring			25'		3	Cu

La Playa Mooring 2017

	La Piaya Mooring 2017									
Date	Facility	Slip / Mooring Number	Percent of Time Occupied	Vessel Type	Vessel Length	Vessel Beam	Length of Stay (nights)	Paint Type		
12/15/2017	A1 Anchorage	Mooring			26'		3	Cu		
12/15/2017	A1 Anchorage	Mooring			27'		3	Cu		
12/15/2017	A1 Anchorage	Mooring			27'		3	Cu		
12/15/2017	A1 Anchorage	Mooring			27'		3	Cu		
12/15/2017	A1 Anchorage	Mooring			30'		3	Cu		
12/15/2017	A1 Anchorage	Mooring			30'		3	Cu		
12/15/2017	A1 Anchorage	Mooring			34'		3	Cu		
12/15/2017	A1 Anchorage	Mooring			35'		3	Cu		
12/15/2017	A1 Anchorage	Mooring			36'		3	Cu		
12/15/2017	A1 Anchorage	Mooring			38'		3	Cu		
12/15/2017	A1 Anchorage	Mooring			46'		3	Cu		
12/15/2017	A1 Anchorage	Mooring			49'		3	Cu		
12/15/2017	A1 Anchorage	Mooring			50'		3	Cu		
12/15/2017	A1 Anchorage	Mooring			32'		3	Cu		
12/15/2017	A1 Anchorage	Mooring			37'		3	Cu		
12/15/2017	A1 Anchorage	Mooring			28'		3	Cu		
	A1 Anchorage	Mooring			25'		3	Cu		
12/22/2017	A1 Anchorage	Mooring			26'		3	Cu		
12/22/2017	A1 Anchorage	Mooring			28'		3	Cu		
12/22/2017	A1 Anchorage	Mooring			30'		3	Cu		
12/22/2017	A1 Anchorage	Mooring			30'		3	Cu		
	A1 Anchorage	Mooring			30'		3	Cu		
12/22/2017	A1 Anchorage	Mooring			34'		3	Cu		
12/22/2017	A1 Anchorage	Mooring			35'		3	Cu		
12/22/2017	A1 Anchorage	Mooring			35'		3	Cu		
12/22/2017	A1 Anchorage	Mooring			35'		3	Cu		
12/22/2017	A1 Anchorage	Mooring			36'		3	Cu		
	A1 Anchorage	Mooring			37'		3	Cu		
	A1 Anchorage	Mooring			37'		3	Cu		
12/22/2017	A1 Anchorage	Mooring			40'		3	Cu		
	A1 Anchorage	Mooring			41'		3	Cu		
12/22/2017	A1 Anchorage	Mooring			44'		3	Cu		
	A1 Anchorage	Mooring			45'		3			
12/22/2017	A1 Anchorage	Mooring			47'		3	Cu		
	A1 Anchorage	Mooring			32'		3	Cu		
	A1 Anchorage	Mooring			28'		3	Cu		
12/22/2017	A1 Anchorage	Mooring			25'		3	Cu		
	A1 Anchorage	Mooring					2	Cu		
	A1 Anchorage	Mooring			25'		2	Cu		
	A1 Anchorage	Mooring			25'		2			
	A1 Anchorage	Mooring			26'		2	Cu		
	A1 Anchorage	Mooring			26'		2	Cu		
	A1 Anchorage	Mooring			26'			Cu		

La Playa Mooring 2017

	La i laya Wiooting 2017									
Date	Facility	Slip / Mooring Number	Percent of Time Occupied	Vessel Type	Vessel Length	Vessel Beam	Length of Stay (nights)	Paint Type		
12/29/2017	A1 Anchorage	Mooring			27'		2	Cu		
12/29/2017	A1 Anchorage	Mooring			28'		2	Cu		
12/29/2017	A1 Anchorage	Mooring			30'		2	Cu		
12/29/2017	A1 Anchorage	Mooring			30'		2	Cu		
12/29/2017	A1 Anchorage	Mooring			30'		2	Cu		
12/29/2017	A1 Anchorage	Mooring			32'		2	Cu		
12/29/2017	A1 Anchorage	Mooring			34'		2	Cu		
12/29/2017	A1 Anchorage	Mooring			34'		2	Cu		
12/29/2017	A1 Anchorage	Mooring			34'		2	Cu		
12/29/2017	A1 Anchorage	Mooring			35'		2	Cu		
12/29/2017	A1 Anchorage	Mooring			35'		2	Cu		
12/29/2017	A1 Anchorage	Mooring			35'		2	Cu		
12/29/2017	A1 Anchorage	Mooring			36'		2	Cu		
12/29/2017	A1 Anchorage	Mooring			36'		2	Cu		
12/29/2017	A1 Anchorage	Mooring			37'		2	Cu		
12/29/2017	A1 Anchorage	Mooring			40'		2	Cu		
12/29/2017	A1 Anchorage	Mooring			40'		2	Cu		
12/29/2017	A1 Anchorage	Mooring			40'		2	Cu		
12/29/2017	A1 Anchorage	Mooring			40'		2	Cu		
12/29/2017	A1 Anchorage	Mooring			42'		2	Cu		
12/29/2017	A1 Anchorage	Mooring			42'		2	Cu		
12/29/2017	A1 Anchorage	Mooring			44'		2	Cu		
12/29/2017	A1 Anchorage	Mooring			44'		2	Cu		
12/29/2017	A1 Anchorage	Mooring			45'		2	Cu		
12/29/2017	A1 Anchorage	Mooring			47'		2	Cu		
12/29/2017	A1 Anchorage	Mooring			48'		2	Cu		
12/29/2017	A1 Anchorage	Mooring			50'		2	Cu		
12/29/2017	A1 Anchorage	Mooring			55'		2	Cu		
12/29/2017	A1 Anchorage	Mooring			60'		2	Cu		
12/29/2017	A1 Anchorage	Mooring			64'		2	Cu		
12/29/2017	A1 Anchorage	Mooring			32'		2	Cu		

		Slip /	Percent of	t Dock 201			Length of	
Date	Facility	Mooring	Time	Vessel	Vessel	Vessel	Stay	Paint
		Number	Occupied	Type	Length	Beam	(nights)	Type
7/26/2017		2			38'			Cu
1/8/2017		2			39'		5	Cu
1/15/2017		2			39'		3	Cu
2/2/2017		2			26'		1	Cu
2/3/2017		2			26'			Cu
2/5/2017		2			26'		1	Cu
2/6/2017		2			20'		7	Cu
2/12/2017		2			26'		2	Cu
2/14/2017		2			16'		1	Cu
2/15/2017		2			16'		1	Cu
2/16/2017		2			35'		1	Cu
2/17/2017		2			35'		1	Cu
2/21/2017		2			32'		1	Cu
2/27/2017		2			32'		3	Cu
3/2/2017		2			32'		1	Cu
3/21/2017		2			28'		6	Cu
3/27/2017		2			28'		1	Cu
3/30/2017		2			27'		1	Cu
4/3/2017		2			30'		3	Cu
4/9/2017		2			25'		1	Cu
4/15/2017		2			19'		14	Cu
4/29/2017		2			27'		3	Cu
5/3/2017		2			33'		1	Cu
5/4/2017		2			33'		1	Cu
5/14/2017		2			36'		1	Cu
5/20/2017		2			21'		1	Cu
5/21/2017		2			38'		2	Cu
5/26/2017		2			21'		3	Cu
5/31/2017		2			36'		16	Cu
6/22/2017		2			38'		1	Cu
6/23/2017		2			23'		1	Cu
6/29/2017		2			27'		2	Cu
7/1/2017		2			21'			Cu
7/3/2017		2			19'			Cu
7/5/2017		2			34'		1	Cu
7/6/2017		2			27'		+	Cu
7/8/2017		2			27'		1	Cu
7/15/2017		2			35'		1	Cu
7/19/2017		2			38'		2	Cu
7/21/2017		2			26'		4	Cu
7/25/2017		2			26'		1	Cu
7/28/2017		2			25'			Cu
7/29/2017		2			28'			Cu

	Slip / Percent of Vacant Vacant Length of							
Date	Facility	Mooring	Time	Vessel	Vessel	Vessel	Length of Stay	Paint
24.0		Number	Occupied	Туре	Length	Beam	(nights)	Type
7/30/2017		2	•		26'			Cu
8/2/2017		2			27'		2	Cu
8/4/2017		2			35'		1	Cu
8/5/2017		2			27'		1	Cu
8/6/2017		2			20'		5	Cu
8/11/2017		2			27'		1	Cu
8/12/2017		2			22'		1	Cu
8/13/2017		2			27'		4	Cu
8/17/2017		2			33'		3	Cu
8/20/2017		2			33'		3	Cu
8/23/2017		2			33'		1	Cu
8/24/2017		2			33'		1	Cu
8/25/2017		2			25'		2	Cu
8/31/2017		2			37'		1	Cu
9/1/2017		2			36'		1	Cu
9/2/2017		2			28'		2	Cu
9/4/2017		2			27'		3	Cu
9/11/2017		2			30'		2	Cu
9/14/2017		2			27'		1	Cu
9/15/2017		2			24'		1	Cu
9/16/2017		2			26'		7	Cu
9/23/2017		2			14'		3	Cu
9/26/2017		2			33'		3	Cu
9/29/2017		2			19'		5	Cu
10/4/2017		2			33'		1	Cu
10/5/2017		2			34'		1	Cu
10/7/2017		2			16'		1	Cu
10/8/2017		2			19'		5	Cu
10/15/2017		2			33'		1	Cu
10/16/2017		2			21'		2	Cu
10/18/2017		2			26'		2	Cu
10/20/2017		2			25'		1	Cu
10/21/2017		2			30'		1	Cu
10/22/2017		2			19'		5	Cu
10/27/2017		2			40'		2	Cu
10/29/2017		2			40'			Cu
10/30/2017		2			39'		2	Cu
11/1/2017		2			21'		2	Cu
11/6/2017		2			28'		1	Cu
11/7/2017		2			28'		1	Cu
11/8/2017		2			28'		1	Cu
11/11/2017		2			25'		1	Cu
11/13/2017		2			36'		1	Cu

	Slip / Percent of Vessel Vessel Length of Being								
Date	Facility	Mooring	Time	Vessel	Vessel	Vessel	Stay	Paint	
2 4.10		Number	Occupied	Type	Length	Beam	(nights)	Type	
11/19/2017		2	•		46'			Cu	
11/20/2017		2			28'		1	Cu	
11/21/2017		2			40'		7	Cu	
11/28/2017		2			40'		7	Cu	
12/9/2017		2			25'			Cu	
12/15/2017		2			37'			Cu	
12/18/2017		2			37'		1	Cu	
12/22/2017		2			25'			Cu	
12/31/2017		2			10'			Cu	
1/27/2017		2			22'			Cu	
3/8/2017		2			26'			Cu	
6/17/2017		2			28'			Cu	
7/11/2017		2			42'			Cu	
7/14/2017		2			35'			Cu	
8/1/2017		2			26'			Cu	
9/7/2017		2			19'			Cu	
12/6/2017		2			37'			Cu	
12/11/2017		2			37'			Cu	
8/28/2017		2			28'			Cu	
9/13/2017		2			36'			Cu	
3/13/2017			66.3%		30		242		
1/17/2017		3	00.070		39'			Cu	
1/19/2017		3			46'			Cu	
1/22/2017		3			46'			Cu	
1/24/2017		3			46'			Cu	
1/28/2017		3			40'			Cu	
1/29/2017		3			40'			Cu	
1/30/2017		3			40'			Cu	
1/31/2017		3			40'			Cu	
2/1/2017		3			40'			Cu	
2/4/2017		3			43'			Cu	
2/7/2017		3			44'			Cu	
2/9/2017		3			44'		+	Cu	
2/10/2017		3			40'			Cu	
2/16/2017		3			44'			Cu	
2/10/2017		3			46'		+	Cu	
2/17/2017		3			46'			Cu	
2/21/2017		3			40'			Cu	
2/21/2017		3			40'			Cu	
2/23/2017		3			40'			Cu	
2/23/2017		3			40'			Cu	
2/28/2017		3			40'			Cu	
3/2/2017		3			40'			Cu	
3/2/201/] 3			J40		1 1	Cu	

	Slip / Percent of Versel Versel Length of Percent of Versel Versel Length of Percent of Versel Versel Length of Percent of Versel Ver							
Date	Facility	Mooring	Time	Vessel	Vessel	Vessel	Stay	Paint
		Number	Occupied	Type	Length	Beam	(nights)	Type
3/3/2017		3			24'		1	Cu
3/4/2017		3			52'		1	Cu
3/5/2017		3			51'		3	Cu
3/8/2017		3			51'		1	Cu
3/9/2017		3			51'		1	Cu
3/15/2017		3			44'		2	Cu
3/20/2017		3			46'		1	Cu
3/21/2017		3			46'		2	Cu
3/29/2017		3			27'		1	Cu
4/1/2017		3			45'		1	Cu
4/5/2017		3			44'		1	Cu
4/10/2017		3			42'		4	Cu
4/14/2017		3			42'		1	Cu
4/16/2017		3			40'		3	Cu
4/19/2017		3			40'		1	Cu
4/21/2017		3			38'		10	Cu
5/2/2017		3			33'		1	Cu
5/3/2017		3			45'		3	Cu
5/6/2017		3			30'		1	Cu
5/7/2017		3			30'		1	Cu
5/9/2017		3			55'		2	Cu
5/11/2017		3			26'		1	Cu
5/14/2017		3			42'		1	Cu
5/15/2017		3			24'		1	Cu
5/18/2017		3			51'		4	Cu
5/23/2017		3			57'		1	Cu
5/24/2017		3			57'		3	Cu
5/27/2017		3			52'		3	Cu
6/1/2017		3			41'			Cu
6/6/2017		3			53'		1	Cu
6/7/2017		3			28'		1	Cu
6/11/2017		3			46'		2	Cu
6/13/2017		3			46'			Cu
6/16/2017		3			46'			Cu
6/17/2017		3			33'		1	Cu
6/18/2017		3			28'		+	Cu
6/19/2017		3			28'		3	Cu
6/23/2017		3			38'		1	Cu
6/25/2017		3			27'		4	Cu
6/29/2017		3			18'		7	Cu
7/6/2017		3			17'			Cu
7/7/2017		3			30'			Cu
7/9/2017		3			42'			Cu

	Slip / Percent of Vaccal Vaccal Length of							
Date	Facility	Mooring	Time	Vessel	Vessel	Vessel	Stay	Paint
_ 5.55	, ,	Number	Occupied	Type	Length	Beam	(nights)	Type
7/14/2017		3	-		43'			Cu
7/22/2017		3			38'		14	Cu
8/5/2017		3			27'		4	Cu
8/9/2017		3			46'		2	Cu
8/11/2017		3			46'		1	Cu
8/12/2017		3			30'		2	Cu
8/14/2017		3			15'		4	Cu
8/18/2017		3			33'		1	Cu
8/19/2017		3			34'		1	Cu
8/20/2017		3			55'		4	Cu
8/25/2017		3			24'		7	Cu
9/3/2017		3			30'		1	Cu
9/4/2017		3			24'		7	Cu
9/11/2017		3			27'		1	Cu
9/12/2017		3			24'		3	Cu
9/15/2017		3			40'		1	Cu
9/16/2017		3			23'		1	Cu
9/18/2017		3			24'		4	Cu
9/22/2017		3			40'		2	Cu
9/25/2017		3			30'		1	Cu
9/26/2017		3			30'		1	Cu
9/28/2017		3			17'		7	Cu
10/5/2017		3			38'		2	Cu
10/7/2017		3			38'		1	Cu
10/8/2017		3			38'		5	Cu
10/13/2017		3			38'		2	Cu
10/15/2017		3			26'		3	Cu
10/18/2017		3			27'		1	Cu
10/23/2017		3			38'		4	Cu
11/1/2017		3			60'		4	Cu
11/5/2017		3			60'		1	Cu
11/6/2017		3			60'		1	Cu
11/7/2017		3			60'		2	Cu
11/9/2017		3			60'		3	Cu
11/12/2017		3			60'		2	Cu
11/14/2017		3			60'		1	Cu
11/15/2017		3			60'		1	Cu
11/16/2017		3			60'		2	Cu
11/18/2017		3			60'		2	Cu
11/27/2017		3			46'		1	Cu
12/6/2017		3			56'			Cu
12/11/2017		3			52'		1	Cu
12/21/2017		3			46'			Cu

		Clim /		t Dock 201	<u> </u>		I amouth of	
Doto	Eggility	Slip /	Percent of Time	Vessel	Vessel	Vessel	Length of	Paint
Date	Facility	Mooring Number	Occupied	Type	Length	Beam	Stay (nights)	Туре
12/28/2017		3	Occupied		23'			Cu
12/31/2017		3			23'			Cu
3/1/2017		3			40'			Cu
4/15/2017		3			42'			Cu
5/1/2017		3			33'			Cu
7/11/2017		3			35'			Cu
10/19/2017		3			38'			Cu
10/27/2017		3			38'			Cu
11/20/2017		3			42'			Cu
11/28/2017		3			47'			Cu
9/11/2017		3			28'			Cu
, ,			73.7%				269	
1/2/2017		4			28'			Cu
1/3/2017		4			28'		1	Cu
1/6/2017		4			40'			Cu
1/10/2017		4			37'			Cu
1/12/2017		4			30'		1	Cu
1/13/2017		4			40'		1	Cu
1/14/2017		4			40'			Cu
1/18/2017		4			30'			Cu
1/21/2017		4			36'		2	Cu
1/23/2017		4			36'		1	Cu
1/24/2017		4			36'		6	Cu
1/30/2017		4			29'		1	Cu
1/31/2017		4			30'		1	Cu
2/1/2017		4			37'		1	Cu
2/4/2017		4			32'		2	Cu
2/6/2017		4			30'		1	Cu
2/7/2017		4			26'		1	Cu
2/8/2017		4			30'			Cu
2/16/2017		4			36'		1	Cu
2/21/2017		4			28'		1	Cu
2/22/2017		4			30'		2	Cu
2/25/2017		4			38'		3	Cu
2/28/2017		4			40'		2	Cu
3/2/2017		4			40'		+	Cu
3/3/2017		4			30'		1	Cu
3/4/2017		4			21'		3	Cu
3/7/2017		4			21'		1	Cu
3/10/2017		4			28'		1	Cu
3/11/2017		4			22'		1	Cu
3/12/2017		4			38'		1	Cu
3/13/2017		4			40'		6	Cu

	Slip / Percent of Vessel Vessel Length of Percent of Vessel Vessel Length of Percent of Vessel Vessel Length of Percent o								
Date	Facility	Mooring	Time	Vessel	Vessel	Vessel	Stay	Paint	
Duto	. domey	Number	Occupied	Туре	Length	Beam	(nights)	Type	
3/23/2017		4			25'			Cu	
3/27/2017		4			44'		2	Cu	
3/29/2017		4			26'		3	Cu	
4/1/2017		4			26'		2	Cu	
4/3/2017		4			26'		1	Cu	
4/11/2017		4			25'		1	Cu	
4/12/2017		4			25'		1	Cu	
4/13/2017		4			25'		1	Cu	
4/14/2017		4			35'		1	Cu	
4/15/2017		4			26'		1	Cu	
4/22/2017		4			36'		2	Cu	
4/24/2017		4			40'		1	Cu	
4/29/2017		4			25'			Cu	
4/30/2017		4			32'		1	Cu	
5/1/2017		4			44'		1	Cu	
5/2/2017		4			25'			Cu	
5/5/2017		4			25'		9	Cu	
5/16/2017		4			43'		1	Cu	
5/18/2017		4			44'			Cu	
5/26/2017		4			20'			Cu	
5/30/2017		4			25'			Cu	
5/31/2017		4			25'			Cu	
6/1/2017		4			25'			Cu	
6/2/2017		4			25'		2	Cu	
6/4/2017		4			28'		5	Cu	
6/9/2017		4			28'			Cu	
6/11/2017		4			44'			Cu	
6/14/2017		4			19'			Cu	
6/16/2017		4			21'			Cu	
6/23/2017		4			33'			Cu	
6/24/2017		4			22'			Cu	
6/25/2017		4			37'			Cu	
6/29/2017		4			34'			Cu	
7/3/2017		4			21'			Cu	
7/5/2017		4			44'			Cu	
7/9/2017		4			25'			Cu	
7/23/2017		4			26'			Cu	
7/27/2017		4			35'			Cu	
7/28/2017		4			42'			Cu	
7/31/2017		4			40'			Cu	
8/1/2017		4			32'			Cu	
8/2/2017		4			27'			Cu	
8/3/2017		4			22'			Cu	

		Slip /	Percent of	t Dock 201			Length of	
Date	Facility	Mooring	Time	Vessel	Vessel	Vessel	Stay	Paint
		Number	Occupied	Туре	Length	Beam	(nights)	Type
8/5/2017		4			27'			Cu
8/7/2017		4			26'			Cu
8/10/2017		4			36'			Cu
8/11/2017		4			28'			Cu
8/13/2017		4			18'			Cu
8/15/2017		4			18'		.	Cu
8/18/2017		4			26'			Cu
8/20/2017		4			20'			Cu
8/23/2017		4			32'			Cu
8/25/2017		4			23'			Cu
8/27/2017		4			27'		1	Cu
8/28/2017		4			30'			Cu
8/29/2017		4			22'			Cu
8/31/2017		4			36'			Cu
9/1/2017		4			40'			Cu
9/2/2017		4			40'			Cu
9/5/2017		4			35'			Cu
9/8/2017		4			43'			Cu
9/10/2017		4			38'			Cu
9/18/2017		4			30'			Cu
9/19/2017		4			30'			Cu
9/21/2017		4			44'			Cu
9/23/2017		4			17'			Cu
9/24/2017		4			30'			Cu
9/29/2017		4			42'		1	Cu
9/30/2017		4			19'			Cu
10/2/2017		4			34'			Cu
10/6/2017		4			27'			Cu
10/7/2017		4			21'			Cu
10/9/2017		4			30'			Cu
10/10/2017		4			30'			Cu
10/11/2017		4			30'			Cu
10/12/2017		4	`		44'			Cu
10/16/2017		4	`		32'			Cu
10/20/2017		4			32'		+	Cu
10/21/2017		4	`		42'			Cu
10/22/2017		4			37'			Cu
10/23/2017		4			32'			Cu
10/26/2017		4			35'			Cu
10/27/2017		4			42'			Cu
10/30/2017		4			30'			Cu
11/1/2017		4			30'		1	Cu
11/2/2017		4			30'		1	Cu

	Slip / Percent of Vessel Vessel Length of							
Date	Facility	Mooring	Time	Vessel	Vessel	Vessel	Stay	Paint –
		Number	Occupied	Туре	Length	Beam	(nights)	Type
11/3/2017		4			38'		2	Cu
11/5/2017		4			43'		2	Cu
11/7/2017		4			44'		4	Cu
11/11/2017		4			44'		1	Cu
11/12/2017		4			44'		1	Cu
11/13/2017		4			28'			Cu
11/16/2017		4			35'		3	Cu
11/19/2017		4			42'		3	Cu
11/22/2017		4			42'			Cu
11/26/2017		4			30'			Cu
11/27/2017		4			44'			Cu
12/1/2017		4			38'			Cu
12/9/2017		4			10'			Cu
12/10/2017		4			42'			Cu
12/12/2017		4			34'			Cu
12/16/2017		4			40'			Cu
12/26/2017		4			34'			Cu
12/31/2017		4			27'			Cu
4/25/2017		4			35'			Cu
5/15/2017		4			10'			Cu
7/22/2017		4			22'			Cu
8/21/2017		4			27'			Cu
9/20/2017		4			28'			Cu
9/25/2017		4			43'			Cu
10/5/2017		4			35'			Cu
10/31/2017		4			30'			Cu
11/29/2017		4			42'			Cu
12/6/2017		4			34'			Cu
12/0/2017		4			34'			Cu
8/22/2017		4			28'			Cu
8/22/2017		4			28'			Cu
0,24,2017		4	77.3%		20		282	Cu
1/1/2017		5	77.3%		29'			Cu
1/2/2017		5			31'			Cu
1/4/2017		5			29'			Cu
1/4/2017		5			29'			Cu
1/5/2017		5			29'			Cu
1/12/2017		5			40'			Cu
1/12/2017		5			40'			Cu
		5			27'			Cu
1/17/2017 1/19/2017		5			37'			Cu
		5			40'			Cu
1/20/2017								
1/27/2017		5			29'			Cu

		Slip /	Percent of	t Dock 201	<i>,</i>		Length of	
Date	Facility	Mooring	Time	Vessel	Vessel	Vessel	Stay	Paint
24.0		Number	Occupied	Type	Length	Beam	(nights)	Type
1/29/2017		5	·		29'			Cu
1/30/2017		5			35'		2	Cu
2/2/2017		5			40'		1	Cu
2/3/2017		5			40'		1	Cu
2/6/2017		5			32'		3	Cu
2/12/2017		5			36'		1	Cu
2/13/2017		5			30'		1	Cu
2/14/2017		5			30'		1	Cu
2/15/2017		5			30'		2	Cu
2/17/2017		5			32'		1	Cu
2/18/2017		5			35'		2	Cu
2/21/2017		5			37'		3	Cu
2/26/2017		5			41'		1	Cu
2/28/2017		5			30'		2	Cu
3/2/2017		5			30'		1	Cu
3/3/2017		5			23'		2	Cu
3/5/2017		5			26'		3	Cu
3/8/2017		5			21'		4	Cu
3/12/2017		5			27'		5	Cu
3/17/2017		5			27'		1	Cu
3/18/2017		5			27'		1	Cu
3/20/2017		5			35'		2	Cu
3/22/2017		5			26'		1	Cu
3/27/2017		5			26'		2	Cu
3/29/2017		5			30'		2	Cu
4/5/2017		5			42'		1	Cu
4/6/2017		5			37'		4	Cu
4/10/2017		5			25'		1	Cu
4/14/2017		5			25'		2	Cu
4/17/2017		5			22'		2	Cu
4/20/2017		5			18'		3	Cu
4/23/2017		5			18'		2	Cu
4/29/2017		5			25'			Cu
4/30/2017		5			33'		1	Cu
5/1/2017		5			40'		1	Cu
5/2/2017		5			30'			Cu
5/5/2017		5			44'			Cu
5/12/2017		5			40'			Cu
5/17/2017		5			34'		3	Cu
5/20/2017		5			22'			Cu
5/22/2017		5	`		27'			Cu
5/27/2017		5			32'			Cu
5/30/2017		5			27'		2	Cu

	Slip / Percent of Versel Versel Length of Percent of Versel Versel Length of Percent of Versel Versel Length of Percent of Versel Ver							
Date	Facility	Mooring	Time	Vessel	Vessel	Vessel	Stay	Paint
2 4.0		Number	Occupied	Type	Length	Beam	(nights)	Type
6/9/2017		5	•		24'			Cu
6/11/2017		5			28'		1	Cu
6/15/2017		5			25'		1	Cu
6/16/2017		5			23'		2	Cu
6/18/2017		5			33'		1	Cu
6/19/2017		5			25'		2	Cu
6/22/2017		5			38'		1	Cu
6/23/2017		5			22'		1	Cu
6/24/2017		5			40'		1	Cu
6/25/2017		5			31'		2	Cu
6/27/2017		5			31'		1	Cu
6/28/2017		5			31'		1	Cu
6/29/2017		5			34'		3	Cu
7/2/2017		5			18'		15	Cu
7/17/2017		5			43'		1	Cu
7/21/2017		5			38'		1	Cu
7/22/2017		5			38'		1	Cu
7/24/2017		5			28'		1	Cu
7/26/2017		5			38'		5	Cu
7/31/2017		5			32'		2	Cu
8/2/2017		5			27'		3	Cu
8/5/2017		5			32'		1	Cu
8/7/2017		5			36'		3	Cu
8/10/2017		5			36'		8	Cu
8/19/2017		5			40'		4	Cu
8/23/2017		5			38'		2	Cu
8/25/2017		5			21'		1	Cu
8/26/2017		5					1	Cu
8/28/2017		5			32'		1	Cu
8/29/2017		5			20'		1	Cu
8/30/2017		5			32'		1	Cu
9/5/2017		5			28'		3	Cu
9/9/2017		5			21'		1	Cu
9/11/2017		5			27'		1	Cu
9/13/2017		5			35'		2	Cu
9/16/2017		5			35'			Cu
9/19/2017		5			36'		8	Cu
9/29/2017		5			43'		7	Cu
10/6/2017		5			32'		2	Cu
10/9/2017		5			32'		4	Cu
10/13/2017		5			41'		1	Cu
10/17/2017		5			27'		1	Cu
10/18/2017		5			33'			Cu

	Slip / Percent of Vessel Vessel Length of F							
Date	Facility	Mooring	Time	Vessel	Vessel	Vessel	Stay	Paint
Duto	. domity	Number	Occupied	Type	Length	Beam	(nights)	Type
10/23/2017		5			33'			Cu
10/24/2017		5			42'		1	Cu
10/25/2017		5			40'		1	Cu
10/26/2017		5			40'		1	Cu
10/27/2017		5			42'		3	Cu
10/30/2017		5			41'		1	Cu
10/31/2017		5			44'		3	Cu
11/3/2017		5			35'		13	Cu
11/17/2017		5			38'		2	Cu
11/20/2017		5			44'		4	Cu
11/24/2017		5			38'		5	Cu
12/5/2017		5			44'		3	Cu
12/10/2017		5			38'		1	Cu
12/11/2017		5			30'		2	Cu
12/13/2017		5			30'		2	Cu
12/15/2017		5			38'		2	Cu
12/18/2017		5			30'		1	Cu
12/20/2017		5			32'		1	Cu
12/24/2017		5			35'		4	Cu
2/9/2017		5			28'		1	Cu
4/11/2017		5			34'		3	Cu
4/26/2017		5			30'		1	Cu
5/3/2017		5			21'		1	Cu
5/15/2017		5			34'		2	Cu
6/1/2017		5			44'		7	Cu
6/12/2017		5			28'		3	Cu
8/31/2017		5			24'		3	Cu
9/12/2017		5			35'		1	Cu
9/28/2017		5			43'		1	Cu
10/16/2017		5			10'		1	Cu
10/19/2017		5			47'		4	Cu
9/18/2017		5			28'		1	Cu
			76.7%				280	
1/6/2017		6			42'		1	Cu
1/9/2017		6			27'		1	Cu
1/17/2017		6			37'			Cu
1/24/2017		6			32'		6	Cu
2/6/2017		6			27'		1	Cu
2/8/2017		6			28'		1	Cu
2/9/2017		6			32'		1	Cu
2/10/2017		6			28'		1	Cu
2/11/2017		6			28'		1	Cu
2/15/2017		6			10'		1	Cu

	Slip / Percent of Versel Versel Length of							
Date	Facility	Mooring	Time	Vessel	Vessel	Vessel	Stay	Paint
20.00		Number	Occupied	Туре	Length	Beam	(nights)	Туре
2/16/2017		6	•		37'			Cu
2/20/2017		6			30'		1	Cu
2/22/2017		6			26'		1	Cu
2/27/2017		6			30'		1	Cu
3/1/2017		6			35'			Cu
3/3/2017		6			18'			Cu
3/5/2017		6			44'		3	Cu
3/23/2017		6			44'		9	Cu
4/1/2017		6			44'		1	Cu
4/2/2017		6			44'		8	Cu
4/10/2017		6			27'			Cu
4/17/2017		6			27'		7	Cu
4/24/2017		6			27'		1	Cu
4/25/2017		6			27'			
4/26/2017		6			27'			Cu
4/28/2017		6			27'			
4/29/2017		6			27'			Cu
4/30/2017		6			40'			Cu
5/1/2017		6			27'			Cu
5/3/2017		6			27'			Cu
5/8/2017		6			32'		4	
5/15/2017		6			27'		.	Cu
5/20/2017		6			24'			Cu
5/25/2017		6			27'		.	Cu
5/26/2017		6			27'			Cu
5/31/2017		6			27'			Cu
6/2/2017		6			25'			Cu
6/4/2017		6			25'			Cu
6/5/2017		6			25'			Cu
6/6/2017		6			25'			Cu
6/7/2017		6			25'			Cu
6/8/2017		6			25'			Cu
6/11/2017		6			24'		1	Cu
6/12/2017		6			36'			Cu
6/13/2017		6			25'			Cu
6/15/2017		6			33'			Cu
6/16/2017		6			19'			Cu
6/17/2017		6			35'			Cu
6/20/2017		6			32'			Cu
6/22/2017		6			32'			Cu
6/23/2017		6			37'			Cu
6/25/2017		6			38'			Cu
6/29/2017		6			30'			Cu

		Slip /	Percent of	T DOCK 201			Length of	
Date	Facility	Mooring	Time	Vessel	Vessel	Vessel	Stay	Paint
		Number	Occupied	Туре	Length	Beam	(nights)	Туре
7/2/2017		6			33'			Cu
7/4/2017		6			23'			Cu
7/5/2017		6			38'			Cu
7/6/2017		6			38'			Cu
7/7/2017		6			27'			Cu
7/8/2017		6			42'			Cu
7/9/2017		6			16'			Cu
7/10/2017		6			27'			Cu
7/12/2017		6			27'			Cu
7/15/2017		6			35'			Cu
7/16/2017		6			27'		4	Cu
7/20/2017		6			27'			Cu
7/24/2017		6			26'		1	Cu
7/27/2017		6			25'		2	Cu
7/29/2017		6			30'		2	Cu
7/31/2017		6			32'		1	Cu
8/1/2017		6			30'			Cu
8/7/2017		6			30'		3	Cu
8/11/2017		6			38'		1	Cu
8/12/2017		6			18'		1	Cu
8/14/2017		6			30'		2	Cu
8/16/2017		6			31'		1	Cu
8/19/2017		6			17'		2	Cu
8/23/2017		6			32'		2	Cu
8/25/2017		6			30'		4	Cu
9/1/2017		6			24'		2	Cu
9/3/2017		6			33'		1	Cu
9/4/2017		6			33'		1	Cu
9/5/2017		6			27'		1	Cu
9/6/2017		6			41'			Cu
9/7/2017		6			41'		3	Cu
9/10/2017		6			27'			Cu
9/11/2017		6			27'			Cu
9/12/2017		6			25'			Cu
9/13/2017		6			27'			Cu
9/14/2017		6			10'		+	Cu
9/18/2017		6			38'			Cu
9/24/2017		6			33'			Cu
9/25/2017		6			33'			Cu
9/29/2017		6			24'			Cu
9/30/2017		6			17'			Cu
10/15/2017		6			38'			Cu
10/30/2017		6			44'			Cu

	Iransient Dock 2017								
Date	Facility	Slip / Mooring	Percent of Time	Vessel	Vessel	Vessel	Length of Stay	Paint	
Date	1 domity	Number	Occupied	Type	Length	Beam	(nights)	Type	
11/6/2017		6			28'			Cu	
11/7/2017		6			32'		2		
11/9/2017		6			34'		1	Cu	
11/11/2017		6			38'			Cu	
11/13/2017		6			32'			Cu	
11/20/2017		6			21'			Cu	
11/27/2017		6			44'		4	Cu	
12/2/2017		6			44'		1	Cu	
12/5/2017		6			35'		1	Cu	
12/9/2017		6			35'		3	Cu	
12/12/2017		6			35'		1	Cu	
12/13/2017		6			35'		2	Cu	
12/15/2017		6			35'		1	Cu	
12/16/2017		6			35'		1	Cu	
12/18/2017		6			30'		4	Cu	
12/22/2017		6			25'				
12/25/2017		6			25'		2	Cu	
12/27/2017		6			26'		3	Cu	
1/19/2017		6			30'		1	Cu	
9/15/2017		6			27'		3	Cu	
8/29/2017		6			28'		1	Cu	
8/31/2017		6			28'		1	Cu	
			71.0%				259		
1/6/2017		7			30'		1	Cu	
1/8/2017		7			30'		1	Cu	
1/9/2017		7			30'		1	Cu	
1/10/2017		7			37'		2	Cu	
1/17/2017		7			29'		1	Cu	
1/19/2017		7			10'		1	Cu	
1/24/2017		7			27'		1	Cu	
1/31/2017		7			37'		2	Cu	
2/2/2017		7			37'		6	Cu	
2/8/2017		7			26'			Cu	
2/9/2017		7			26'		1	Cu	
2/10/2017		7	_		40'	_	2	Cu	
2/16/2017		7			16'			Cu	
2/17/2017		7			16'		1	Cu	
2/18/2017		7			16'		4	Cu	
2/26/2017		7			33'		2	Cu	
2/28/2017		7			33'		1	Cu	
3/1/2017		7			33'		4	Cu	
3/5/2017		7			33'		2	Cu	
3/14/2017		7			29'			Cu	

		Slip /	Percent of	IT DOCK 201	<i>,</i>		Length of	
Date	Facility	Mooring	Time	Vessel	Vessel	Vessel	Stay	Paint
Duic	1 dointy	Number	Occupied	Type	Length	Beam	(nights)	Туре
3/15/2017		7			29'			Cu
3/29/2017		7			33'		2	Cu
4/4/2017		7			36'		2	Cu
4/10/2017		7			39'		11	Cu
4/22/2017		7			35'		1	Cu
4/24/2017		7			25'		1	Cu
4/25/2017		7			25'		1	Cu
4/27/2017		7			10'		1	Cu
4/29/2017		7			30'		1	Cu
4/30/2017		7			43'		1	Cu
5/1/2017		7			43'		11	Cu
5/18/2017		7			40'		1	Cu
5/19/2017		7			40'		1	Cu
5/22/2017		7			34'		3	Cu
5/26/2017		7			43'		1	Cu
5/27/2017		7			27'		1	Cu
5/28/2017		7			27'		1	Cu
5/30/2017		7			38'		6	Cu
6/6/2017		7			27'		3	Cu
6/10/2017		7			21'			Cu
6/12/2017		7			32'		1	Cu
6/14/2017		7			25'		1	Cu
6/15/2017		7			10'		1	Cu
6/16/2017		7			25'		1	Cu
6/24/2017		7			37'			Cu
6/26/2017		7			32'			Cu
6/29/2017		7			26'			Cu
6/30/2017		7			36'		1	Cu
7/1/2017		7			32'		2	Cu
7/3/2017		7			40'			Cu
7/5/2017		7			27'		1	Cu
7/7/2017		7			35'			Cu
7/8/2017		7			27'			Cu
7/10/2017		7			27'			Cu
7/11/2017		7			27'			Cu
7/15/2017		7			27'		+	Cu
7/16/2017		7			36'		5	Cu
7/22/2017		7						Cu
7/24/2017		7			27'			Cu
7/26/2017		7			27'			Cu
7/31/2017		7			27'			Cu
8/2/2017		7			22'			Cu
8/6/2017		7			22'			Cu

		011::- /		IL DOCK ZUI			1	
Date	Facility	Slip / Mooring	Percent of Time	Vessel Type	Vessel Length	Vessel Beam	Length of Stay	Paint Type
		Number	Occupied	Турс	_	Deam	(nights)	
8/10/2017		7			26'			Cu
8/11/2017		7			27'			Cu
8/13/2017		7			27'			Cu
8/15/2017		7			36'			Cu
8/17/2017		7			36'			Cu
8/18/2017		7			39'			Cu
8/20/2017		7			36'			Cu
8/28/2017		7			27'			Cu
8/29/2017		7			41'			Cu
9/1/2017		7			30'			Cu
9/2/2017		7			32'			Cu
9/5/2017		7			30'			Cu
9/6/2017		7			33'		1	Cu
9/8/2017		7			33'		1	Cu
9/10/2017		7			38'		3	Cu
9/13/2017		7			38'		2	Cu
9/15/2017		7			38'		1	Cu
9/16/2017		7			38'		1	Cu
9/17/2017		7			33'		2	Cu
9/19/2017		7			38'		7	Cu
9/28/2017		7			25'		1	Cu
9/30/2017		7			18'		2	Cu
10/2/2017		7			41'		1	Cu
10/3/2017		7			32'		2	Cu
10/5/2017		7			32'		1	Cu
10/7/2017		7			27'		1	Cu
10/9/2017		7			41'			Cu
10/10/2017		7			35'		1	Cu
10/11/2017		7			35'		1	Cu
10/12/2017		7			35'			Cu
10/15/2017		7			35'			Cu
10/18/2017		7			35'			Cu
10/20/2017		7			32'			Cu
10/21/2017		7			32'			Cu
10/22/2017		7			32'			Cu
10/23/2017		7			32'			Cu
10/25/2017		7			44'			Cu
10/30/2017		7			18'			Cu
11/2/2017		7			28'			Cu
11/6/2017		7			32'			Cu
11/7/2017		7			36'			Cu
11/11/2017		7			33'			Cu
11/13/2017		7			42'			Cu

	Transient Dock 2017								
Date	Facility	Slip / Mooring	Percent of Time	Vessel Type	Vessel Length	Vessel Beam	Length of Stay	Paint Type	
11/15/2017		Number	Occupied				(nights)		
11/15/2017		7			10' 35'			Cu Cu	
11/19/2017		7			.				
12/2/2017		7			30'		3	Cu	
12/5/2017		7			30'			Cu	
12/8/2017		7			32'				
12/10/2017		7			44'				
12/17/2017		7			33'			Cu	
12/20/2017		7			33'				
12/26/2017		7			44'			Cu	
2/21/2017		7			40'			Cu	
5/15/2017		7			40'				
6/19/2017		7			27'		5		
9/7/2017		7			41'			Cu	
9/29/2017		7			37'			Cu	
10/24/2017		7			40'				
11/3/2017		7			18'		3	Cu	
11/16/2017		7			30'		1	Cu	
8/24/2017		7			28'		1	Cu	
9/9/2017		7			31'		1	Cu	
			70.1%				256		
1/2/2017		8			28'		1	Cu	
1/3/2017		8			28'		1	Cu	
1/5/2017		8			28'		1	Cu	
1/7/2017		8			28'		2	Cu	
1/9/2017		8			28'		1	Cu	
1/10/2017		8			28'		2	Cu	
1/12/2017		8			28'		1	Cu	
1/28/2017		8			27'		3	Cu	
1/31/2017		8			27'		1	Cu	
2/5/2017		8			33'			Cu	
2/6/2017		8			25'			Cu	
2/7/2017		8			27'			Cu	
2/11/2017		8			27'			Cu	
2/12/2017		8			27'			Cu	
2/16/2017		8			38'			Cu	
2/21/2017		8			30'			Cu	
2/26/2017		8			40'			Cu	
2/27/2017		8			40'			Cu	
2/28/2017		8			40'			Cu	
3/1/2017		8			27'			Cu	
3/6/2017		8			30'			Cu	
3/7/2017		8			30'			Cu	
3/8/2017		8			30'			Cu	
5/6/201/		ا ۱			130		1 1	Cu	

		Slip /	Percent of	it Dock 201			Length of	
Date	Facility	Mooring	Time	Vessel	Vessel	Vessel	Stay	Paint
	,	Number	Occupied	Type	Length	Beam	(nights)	Type
3/10/2017		8	-		32'			Cu
3/11/2017		8			26'		1	Cu
3/13/2017		8			29'		1	Cu
3/14/2017		8			10'		1	Cu
3/16/2017		8			40'		4	Cu
3/21/2017		8			40'		1	Cu
3/22/2017		8			40'		1	Cu
3/23/2017		8			40'		1	Cu
3/29/2017		8			35'		1	Cu
4/1/2017		8			22'		2	Cu
4/3/2017		8			32'		3	Cu
4/7/2017		8			25'		3	Cu
4/10/2017		8			25'		1	Cu
4/14/2017		8			41'		2	Cu
4/22/2017		8			35'		1	Cu
5/1/2017		8			38'		11	Cu
6/1/2017		8			27'		2	Cu
6/3/2017		8			27'		1	Cu
6/8/2017		8			28'		8	Cu
6/16/2017		8			28'		4	Cu
6/25/2017		8			44'		7	Cu
7/2/2017		8			30'		1	Cu
7/3/2017		8			41'		2	Cu
7/5/2017		8			27'		2	Cu
7/7/2017		8			43'		3	Cu
7/12/2017		8			26'		1	Cu
7/13/2017		8			26'		1	Cu
7/14/2017		8			26'		3	Cu
7/17/2017		8			26'		2	Cu
7/19/2017		8			26'		2	Cu
7/21/2017		8			26'		7	Cu
7/28/2017		8			34'		3	Cu
7/31/2017		8			35'		4	Cu
8/4/2017		8			26'			Cu
8/6/2017		8			27'		5	Cu
8/11/2017		8			36'		2	Cu
8/13/2017		8			20'			Cu
8/14/2017		8			30'		1	Cu
8/15/2017		8			10'		1	Cu
8/17/2017		8			26'		1	Cu
8/18/2017		8			23'		3	Cu
8/25/2017		8			22'			Cu
8/28/2017		8			35'		+	Cu

Slip / Percent of Vessel Vessel Length of Pein								
Date	Facility	Mooring	Time	Vessel	Vessel	Vessel	Stay	Paint
Duto	. domity	Number	Occupied	Type	Length	Beam	(nights)	Type
8/29/2017		8			30'			Cu
8/30/2017		8			30'		1	Cu
9/1/2017		8			24'		3	Cu
9/4/2017		8			41'		2	Cu
9/6/2017		8			30'		1	Cu
9/7/2017		8			30'		1	Cu
9/13/2017		8			27'		1	Cu
9/14/2017		8			32'		1	Cu
9/16/2017		8			41'		1	Cu
9/17/2017		8			38'		2	Cu
9/19/2017		8			30'		1	Cu
9/20/2017		8			24'		1	Cu
9/21/2017		8			33'		1	Cu
9/22/2017		8			38'		3	Cu
9/30/2017		8			19'		1	Cu
10/7/2017		8			23'		2	Cu
10/9/2017		8			35'		1	Cu
10/10/2017		8			28'		1	Cu
10/11/2017		8			30'		7	Cu
10/18/2017		8			30'		2	Cu
10/21/2017		8			40'		3	Cu
10/24/2017		8			40'		3	Cu
10/27/2017		8			35'		1	Cu
10/28/2017		8			42'		1	Cu
10/29/2017		8			36'		1	Cu
10/30/2017		8			30'		1	Cu
10/31/2017		8			34'		3	Cu
11/3/2017		8			30'		1	Cu
11/4/2017		8			30'		1	Cu
11/5/2017		8			35'		1	Cu
11/6/2017		8			30'		1	Cu
11/7/2017		8			28'		2	Cu
11/9/2017		8			28'			Cu
11/11/2017		8			42'		2	Cu
11/13/2017		8			30'		4	Cu
11/20/2017		8			30'		2	Cu
11/22/2017		8			30'		3	Cu
11/28/2017		8			32'		3	Cu
12/6/2017		8			28'		1	Cu
12/11/2017		8			32'		4	Cu
12/18/2017		8			34'		4	Cu
12/23/2017		8			25'		1	Cu
12/27/2017		8			25'		2	Cu

	Transient Dock 2017								
Date	Facility	Slip / Mooring	Percent of Time	Vessel	Vessel	Vessel	Length of Stay	Paint	
Date	racility	Number	Occupied	Type	Length	Beam	(nights)	Type	
3/24/2017		8	Occupied		40'			Cu	
2/25/2017		8			40'		1		
4/24/2017		8			35'				
9/11/2017		8			35'			Cu	
9/12/2017		8			27'				
9/25/2017		8			30'			Cu	
10/2/2017		8			30'				
10/5/2017		8			30'		.	Cu	
12/25/2017		8			25'				
12/26/2017		8			30'			Cu	
8/24/2017		8			28'			Cu	
-, , -		-	65.8%				240		
1/3/2017		9			25'			Cu	
1/4/2017		9			25'				
1/5/2017		9			25'			Cu	
1/21/2017		9			32'				
2/20/2017		9			38'				
2/23/2017		9			38'			Cu	
2/25/2017		9			38'			Cu	
2/27/2017		9			41'				
3/7/2017		9			29'		1		
3/10/2017		9			41'		1	Cu	
3/11/2017		9			28'			Cu	
3/13/2017		9			30'		1	Cu	
3/14/2017		9			30'			Cu	
3/18/2017		9			25'			Cu	
3/26/2017		9			26'			Cu	
4/3/2017		9			26'			Cu	
4/10/2017		9			30'			Cu	
4/14/2017		9			32'			Cu	
4/15/2017		9			22'		1	Cu	
4/23/2017		9			22'		2	Cu	
4/26/2017		9			28'			Cu	
4/29/2017		9			35'			Cu	
4/30/2017		9			35'			Cu	
5/9/2017		9			27'		1	Cu	
5/15/2017		9			39'			Cu	
5/26/2017		9			32'		3	Cu	
5/29/2017		9			32'		1	Cu	
5/30/2017		9			41'			Cu	
6/1/2017		9			36'			Cu	
6/3/2017		9			36'			Cu	
6/6/2017		9			22'			Cu	

		Slip /	Percent of	IT DOCK 201			Length of	
Date	Facility	Mooring	Time	Vessel	Vessel	Vessel	Stay	Paint
20.0		Number	Occupied	Туре	Length	Beam	(nights)	Type
6/10/2017		9	-		42'			Cu
6/13/2017		9			32'		1	Cu
6/14/2017		9			32'		2	Cu
6/19/2017		9			25'		1	Cu
6/21/2017		9			40'		3	Cu
6/26/2017		9			27'			Cu
6/27/2017		9			12'		8	Cu
7/5/2017		9			41'		7	Cu
7/14/2017		9			36'		2	Cu
7/17/2017		9			27'		1	Cu
7/18/2017		9			27'		1	Cu
7/20/2017		9			27'		1	Cu
7/23/2017		9			42'			Cu
7/31/2017		9			20'		3	Cu
8/3/2017		9			21'		2	Cu
8/5/2017		9			24'			Cu
8/7/2017		9			40'		1	Cu
8/15/2017		9			17'			Cu
8/19/2017		9			18'			Cu
8/21/2017		9			25'			Cu
8/24/2017		9			18'			Cu
9/11/2017		9			25'			Cu
9/12/2017		9			25'			Cu
9/17/2017		9			24'			Cu
9/18/2017		9			30'			Cu
9/19/2017		9			30'			Cu
9/22/2017		9			41'			Cu
9/23/2017		9			43'			Cu
9/25/2017		9			38'			Cu
9/26/2017		9			38'			Cu
9/27/2017		9			32'			Cu
9/30/2017		9			21'			Cu
10/5/2017		9			33'			Cu
10/6/2017		9			18'			Cu
10/9/2017		9			32'			Cu
10/10/2017		9			44'			Cu
10/13/2017		9			40'			Cu
10/14/2017		9			40'		1	Cu
10/16/2017		9			32'			Cu
10/17/2017		9			32'			Cu
10/19/2017		9			42'			Cu
10/21/2017		9			40'			Cu
10/24/2017		9			40'			Cu

	I ransient Dock 2017								
Date	Facility	Slip / Mooring	Percent of Time	Vessel	Vessel	Vessel	Length of Stay	Paint	
Date	1 acmity	Number	Occupied	Type	Length	Beam	(nights)	Type	
10/30/2017		9	Occupiou		39'			Cu	
11/2/2017		9			39'			Cu	
11/3/2017		9			39'		1	Cu	
11/4/2017		9			39'		1	Cu	
11/6/2017		9			34'			Cu	
11/9/2017		9			30'			Cu	
11/11/2017		9			42'		1	Cu	
11/13/2017		9			42'		1	Cu	
11/14/2017		9			26'		1	Cu	
11/15/2017		9			42'		1	Cu	
11/20/2017		9			38'		1	Cu	
11/21/2017		9			42'		7	Cu	
11/28/2017		9			42'		1	Cu	
11/29/2017		9			33'		2	Cu	
12/1/2017		9			33'		2	Cu	
12/6/2017		9			27'		1	Cu	
12/13/2017		9			25'		1	Cu	
12/14/2017		9			32'		1	Cu	
12/18/2017		9			32'		4	Cu	
12/24/2017		9			30'		2	Cu	
12/28/2017		9			21'		3	Cu	
1/28/2017		9			17'		1	Cu	
2/4/2017		9			37'		4	Cu	
6/12/2017		9			25'		1	Cu	
7/12/2017		9			10'		1	Cu	
8/8/2017		9			26'		5	Cu	
8/13/2017		9			26'		1	Cu	
9/6/2017		9			18'		5	Cu	
9/14/2017		9			33'			Cu	
12/11/2017		9			25'			Cu	
12/26/2017		9			25'		1	Cu	
8/17/2017		9			28'		1	Cu	
9/6/2017		9			28'		2	Cu	
			62.2%				227		
1/1/2017		10			30'		4	Cu	
1/5/2017		10			30'		1	Cu	
1/10/2017		10			27'		1	Cu	
1/26/2017		10			30'		1	Cu	
1/28/2017		10			23'		1	Cu	
1/30/2017		10			33'		1	Cu	
1/31/2017		10			26'		1	Cu	
2/1/2017		10			26'			Cu	
2/6/2017		10			32'			Cu	

	Transient Dock 2017								
Date	Facility	Slip / Mooring	Percent of Time	Vessel	Vessel	Vessel	Length of Stay	Paint	
Date	гаспіту	Number	Occupied	Type	Length	Beam	(nights)	Type	
2/26/2017		10	Оссаріса		32'			Cu	
2/28/2017		10			32'		2	Cu	
3/2/2017		10			32'		1	Cu	
3/5/2017		10			29'			Cu	
3/10/2017		10			36'			Cu	
3/12/2017		10			36'			Cu	
3/13/2017		10			36'			Cu	
3/16/2017		10			25'		2	Cu	
3/30/2017		10			25'		1	Cu	
4/3/2017		10			27'		1	Cu	
4/4/2017		10			29'		3	Cu	
4/10/2017		10			38'		2	Cu	
4/23/2017		10			25'			Cu	
4/29/2017		10			43'		1	Cu	
4/30/2017		10			38'		9	Cu	
5/10/2017		10			30'		1	Cu	
5/11/2017		10			30'		1	Cu	
5/22/2017		10			30'		1	Cu	
5/23/2017		10			30'		1	Cu	
5/24/2017		10			30'		1	Cu	
5/25/2017		10			30'		1	Cu	
5/26/2017		10			36'		3	Cu	
6/3/2017		10			36'		2	Cu	
6/5/2017		10			27'		2	Cu	
6/7/2017		10			27'		1	Cu	
6/8/2017		10			27'		1	Cu	
6/11/2017		10			39'		1	Cu	
6/12/2017		10			18'		3	Cu	
6/15/2017		10			25'		1	Cu	
6/16/2017		10			22'		2	Cu	
6/22/2017		10			22'		3	Cu	
6/27/2017		10			12'		8	Cu	
7/5/2017		10			32'		3	Cu	
7/8/2017		10			32'			Cu	
7/9/2017		10			32'		2	Cu	
7/11/2017		10			20'		2	Cu	
7/13/2017		10			20'		1	Cu	
7/14/2017		10			19'		2	Cu	
7/22/2017		10			26'		1	Cu	
7/24/2017		10			44'		4	Cu	
7/28/2017		10			26'		1	Cu	
7/29/2017		10			22'		2	Cu	
7/31/2017		10			44'		4	Cu	

	Transient Dock 2017								
Date	Facility	Slip / Mooring	Percent of Time	Vessel	Vessel	Vessel	Length of Stay	Paint	
Date	гаспіту	Number	Occupied	Type	Length	Beam	(nights)	Type	
8/4/2017		10	Оссаріса		44'			Cu	
8/6/2017		10			44'		1	Cu	
8/7/2017		10			35'		5	Cu	
8/12/2017		10			27'			Cu	
8/13/2017		10			27'			Cu	
8/17/2017		10			27'			Cu	
8/18/2017		10			27'		3	Cu	
8/21/2017		10			27'		6	Cu	
9/1/2017		10			22'		1	Cu	
9/2/2017		10			28'		1	Cu	
9/3/2017		10			36'		1	Cu	
9/9/2017		10			19'		1	Cu	
9/15/2017		10			40'			Cu	
9/30/2017		10			25'		2	Cu	
10/3/2017		10			28'		1	Cu	
10/4/2017		10			21'		4	Cu	
10/8/2017		10			21'		1	Cu	
10/9/2017		10			44'		1	Cu	
10/10/2017		10			32'		2	Cu	
10/12/2017		10			40'		3	Cu	
10/16/2017		10			40'		3	Cu	
10/19/2017		10			22'		3	Cu	
10/22/2017		10			42'		1	Cu	
10/23/2017		10			40'		3	Cu	
10/26/2017		10			40'		1	Cu	
10/27/2017		10			26'		2	Cu	
10/29/2017		10			40'		1	Cu	
10/30/2017		10			32'		4	Cu	
11/3/2017		10			44'		1	Cu	
11/4/2017		10			38'		1	Cu	
11/5/2017		10			38'		1	Cu	
11/8/2017		10			30'		1	Cu	
11/9/2017		10			38'		1	Cu	
11/10/2017		10			38'		2	Cu	
11/12/2017		10			38'		1	Cu	
11/13/2017		10			38'		1	Cu	
11/14/2017		10			38'			Cu	
11/15/2017		10			38'		1	Cu	
11/16/2017		10			38'		1	Cu	
11/17/2017		10			38'		1	Cu	
11/18/2017		10			38'		1	Cu	
11/19/2017		10			38'		1	Cu	
11/20/2017		10			42'		4	Cu	

	Transient Dock 2017								
Dete	Facility	Slip /	Percent of Time	Vessel	Vessel	Vessel	Length of	Paint	
Date	Facility	Mooring Number	Occupied	Type	Length	Beam	Stay (nights)	Туре	
11/26/2017		10	Occupied		37'			Cu	
12/6/2017		10			37'		8		
12/14/2017		10			37'				
12/18/2017		10			25'			Cu	
12/26/2017		10			26'			Cu	
12/27/2017		10			26'			Cu	
12/28/2017		10			26'			Cu	
2/21/2017		10			32'			Cu	
3/3/2017		10			32'		1		
4/14/2017		10			23'		3	Cu	
5/9/2017		10			30'			Cu	
8/27/2017		10			27'			Cu	
9/11/2017		10			28'			Cu	
10/2/2017		10			28'		1	Cu	
11/6/2017		10			34'		2	Cu	
8/15/2017		10			28'			Cu	
9/6/2017		10			28'		2	Cu	
9/8/2017		10			28'		3	Cu	
			69.0%				252		
1/1/2017		11			31'		1	Cu	
1/2/2017		11			31'		1	Cu	
1/3/2017		11			27'		1	Cu	
1/4/2017		11			41'			Cu	
1/5/2017		11			31'		2	Cu	
1/7/2017		11			41'		4	Cu	
1/11/2017		11			41'		1	Cu	
1/12/2017		11			41'		1	Cu	
1/26/2017		11			25'		4	Cu	
1/30/2017		11			30'		1	Cu	
2/2/2017		11			32'			Cu	
2/6/2017		11			40'		2	Cu	
2/8/2017		11			40'		1	Cu	
2/11/2017		11			26'			Cu	
2/13/2017		11			30'		1	Cu	
2/27/2017		11	_		27'		15	Cu	
3/14/2017		11			27'		1	Cu	
3/15/2017		11			27'		1	Cu	
3/16/2017		11			27'		1	Cu	
3/24/2017		11			32'		1	Cu	
4/4/2017		11			27'		1	Cu	
4/13/2017		11			57'			Cu	
4/14/2017		11			18'		2	Cu	
4/17/2017		11			30'		1	Cu	

		Slip /	Percent of	it Dock 201			Length of	
Date	Facility	Mooring	Time	Vessel	Vessel	Vessel	Stay	Paint
2 4.0		Number	Occupied	Type	Length	Beam	(nights)	Type
5/1/2017		11	•		35'			Cu
5/6/2017		11			41'		2	Cu
5/17/2017		11			41'		2	Cu
5/22/2017		11			32'		1	Cu
5/23/2017		11			32'		3	Cu
5/27/2017		11			29'		1	Cu
6/5/2017		11			30'		1	Cu
6/6/2017		11			30'		1	Cu
6/7/2017		11			30'		1	Cu
6/8/2017		11			30'		1	Cu
6/12/2017		11			30'		1	Cu
6/15/2017		11			17'		3	Cu
6/22/2017		11			30'		3	Cu
6/25/2017		11			30'		2	Cu
6/27/2017		11			27'		1	Cu
6/29/2017		11			43'		3	Cu
7/2/2017		11			43'		5	Cu
7/7/2017		11			25'		1	Cu
7/10/2017		11			27'		1	Cu
7/11/2017		11			27'		1	Cu
7/18/2017		11			30'		2	Cu
7/24/2017		11			27'		2	Cu
7/26/2017		11			44'			Cu
8/2/2017		11			44'			Cu
8/3/2017		11			20'		1	Cu
8/4/2017		11			27'		3	Cu
8/7/2017		11			44'			Cu
8/9/2017		11			27'		1	Cu
8/10/2017		11			18'			Cu
8/16/2017		11			16'			Cu
8/18/2017		11			40'		2	Cu
8/20/2017		11			13'			Cu
8/21/2017		11			17'			Cu
8/22/2017		11			17'			Cu
8/23/2017		11			17'		1	Cu
8/28/2017		11			44'		+	Cu
9/1/2017		11			24'		4	Cu
9/5/2017		11			44'			Cu
9/11/2017		11			38'			Cu
9/15/2017		11			27'		1	Cu
10/9/2017		11			30'			Cu
10/10/2017		11			30'			Cu
10/11/2017		11			30'			Cu

	Transient Dock 2017									
Date	Facility	Slip / Mooring	Percent of Time	Vessel	Vessel	Vessel	Length of Stay	Paint		
Date	гаспіту	Number	Occupied	Type	Length	Beam	(nights)	Type		
10/12/2017		11	Occupica		30'			Cu		
10/17/2017		11			40'		3	Cu		
10/20/2017		11			44'		10	Cu		
10/30/2017		11			44'			Cu		
11/2/2017		11			38'			Cu		
11/3/2017		11			38'			Cu		
11/6/2017		11			38'		1	Cu		
11/7/2017		11			38'		1	Cu		
11/8/2017		11			38'		1	Cu		
11/10/2017		11			25'		1	Cu		
11/13/2017		11			28'		4	Cu		
11/18/2017		11			44'		5	Cu		
11/24/2017		11			29'		1	Cu		
11/28/2017		11			34'		3	Cu		
12/11/2017		11			41'		2	Cu		
12/16/2017		11			31'		3	Cu		
10/1/2017		11			41'		1	Cu		
2/18/2017		11			39'		5	Cu		
5/8/2017		11			41'		9	Cu		
7/13/2017		11			27'		4	Cu		
10/2/2017		11			38'		4	Cu		
12/6/2017		11			32'		2	Cu		
5/2/2017		11			40'		2	Cu		
7/22/2017		11			41'		1	Cu		
7/23/2017		11			41'		1	Cu		
8/13/2017		11			41'		3	Cu		
9/8/2017		11			36'		1	Cu		
9/9/2017		11			36'		1	Cu		
9/30/2017		11			41'		1	Cu		
10/16/2017		11			28'		1	Cu		
12/26/2017		11			32'		3	Cu		
			60.8%				222			
1/1/2017		12			40'		1	Cu		
1/3/2017		12			40'			Cu		
1/4/2017		12			40'		3	Cu		
1/9/2017		12			40'			Cu		
1/26/2017		12			32'			Cu		
1/30/2017		12			32'			Cu		
2/2/2017		12			27'		1	Cu		
2/6/2017		12			32'			Cu		
2/10/2017		12			39'			Cu		
2/13/2017		12			32'			Cu		
2/17/2017		12			34'		2	Cu		

	Transient Dock 2017								
Dete	Facility	Slip /	Percent of Time	Vessel	Vessel	Vessel	Length of Stay	Paint	
Date	Facility	Mooring Number	Occupied	Type	Length	Beam	(nights)	Type	
2/27/2017		12	Occupica		40'			Cu	
2/28/2017		12			38'		2	Cu	
3/2/2017		12			38'			Cu	
3/5/2017		12			36'			Cu	
3/7/2017		12			36'			Cu	
3/10/2017		12			33'			Cu	
3/13/2017		12			33'			Cu	
3/18/2017		12			41'			Cu	
3/19/2017		12			41'			Cu	
3/28/2017		12			32'		1	Cu	
4/4/2017		12			29'			Cu	
4/6/2017		12			32'			Cu	
4/9/2017		12			50'			Cu	
4/14/2017		12			22'		3	Cu	
4/17/2017		12			22'		1	Cu	
4/22/2017		12			44'			Cu	
4/29/2017		12			27'		2	Cu	
5/1/2017		12			35'		2	Cu	
5/5/2017		12			30'			Cu	
5/8/2017		12			30'			Cu	
5/10/2017		12			30'		1	Cu	
5/11/2017		12			30'		1	Cu	
5/20/2017		12			40'			Cu	
5/24/2017		12			25'		1	Cu	
5/25/2017		12			25'		1	Cu	
5/27/2017		12			40'		3	Cu	
5/30/2017		12			40'		4	Cu	
6/3/2017		12			27'		1	Cu	
6/4/2017		12			27'		1	Cu	
6/12/2017		12			32'		1	Cu	
6/15/2017		12			49'		1	Cu	
6/16/2017		12			19'		2	Cu	
6/18/2017		12			47'			Cu	
6/24/2017		12			45'		1	Cu	
6/26/2017		12			50'		2	Cu	
6/28/2017		12			50'		2	Cu	
6/30/2017		12			45'		1	Cu	
7/1/2017		12			44'		7	Cu	
7/8/2017		12			47'		2	Cu	
7/10/2017		12			32'		4	Cu	
7/14/2017		12			23'		1	Cu	
7/22/2017		12			39'		1	Cu	
7/23/2017		12			23'		3	Cu	

Slip / Percent of Vessel Vessel Length of Bei								
Date	Facility	Mooring	Time	Vessel	Vessel	Vessel	Stay	Paint
		Number	Occupied	Type	Length	Beam	(nights)	Type
7/26/2017		12			45'			Cu
7/28/2017		12			43'			Cu
7/31/2017		12			22'			Cu
8/1/2017		12			22'		5	Cu
8/7/2017		12			30'			Cu
8/8/2017		12			36'			Cu
8/9/2017		12			27'			Cu
8/11/2017		12			38'			Cu
8/12/2017		12			26'			Cu
8/14/2017		12			32'			Cu
8/24/2017		12			22'		11	Cu
9/7/2017		12			41'			Cu
9/17/2017		12			38'			Cu
9/23/2017		12			25'			Cu
9/24/2017		12			32'			Cu
9/25/2017		12			44'		4	Cu
9/30/2017		12			21'		2	Cu
10/2/2017		12			44'		4	Cu
10/8/2017		12			47'		1	Cu
10/12/2017		12			32'		1	Cu
10/24/2017		12			32'		1	Cu
10/25/2017		12			33'			Cu
10/27/2017		12			36'		2	Cu
10/29/2017		12			36'		1	Cu
10/30/2017		12			29'		1	Cu
11/1/2017		12			54'		3	Cu
11/4/2017		12			25'			Cu
11/5/2017		12			25'		2	Cu
11/7/2017		12			39'			Cu
11/8/2017		12			41'		3	Cu
11/11/2017		12			43'		1	Cu
11/12/2017		12			41'		1	Cu
11/13/2017		12			41'			Cu
11/14/2017		12			25'			Cu
11/15/2017		12			25'		1	Cu
11/16/2017		12			25'			Cu
11/17/2017		12			25'			Cu
11/18/2017		12			25'			Cu
11/19/2017		12			25'		1	Cu
11/20/2017		12			40'			Cu
11/21/2017		12			28'		2	Cu
11/23/2017		12			47'		1	Cu
11/24/2017		12			42'		1	Cu

	Transient Dock 2017									
Dete	F 1114	Slip /	Percent of	Vessel	Vessel	Vessel	Length of	Paint		
Date	Facility	Mooring	Time	Type	Length	Beam	Stay	Type		
11/27/2017		Number 12	Occupied		49'		(nights)	Cu		
12/3/2017		12			30'		1	Cu		
12/11/2017		12			28'			Cu		
12/13/2017		12			28'			Cu		
12/14/2017		12			25'			Cu		
12/18/2017		12			28'			Cu		
12/22/2017		12			32'			Cu		
10/10/2017		12			28'			Cu		
2/19/2017		12			43'		1	Cu		
2/20/2017		12			32'		3	Cu		
3/29/2017		12			32'			Cu		
5/18/2017		12			32'		1	Cu		
9/10/2017		12			38'		7	Cu		
10/7/2017		12			47'		1	Cu		
10/16/2017		12			38'		8	Cu		
12/5/2017		12			30'		1	Cu		
12/19/2017		12			37'		3	Cu		
8/16/2017		12			41'		1	Cu		
9/4/2017		12			41'		3	Cu		
9/9/2017		12			41'		1	Cu		
10/11/2017		12			28'		1	Cu		
10/15/2017		12			41'		15	Cu		
12/26/2017		12			36'		1	Cu		
12/28/2017		12			36'		1	Cu		
			67.9%				248			
1/25/2017		13			45'		5	Cu		
1/30/2017		13			45'		1	Cu		
1/31/2017		13			45'		1	Cu		
2/1/2017		13			45'			Cu		
2/2/2017		13			45'		6	Cu		
2/8/2017		13			32'			Cu		
2/16/2017		13			32'		3	Cu		
2/26/2017		13			40'			Cu		
2/28/2017		13			40'			Cu		
3/7/2017		13			32'			Cu		
3/8/2017		13			32'			Cu		
3/9/2017		13			32'			Cu		
4/2/2017		13			41'			Cu		
4/15/2017		13			21'			Cu		
5/1/2017		13			27'			Cu		
5/5/2017		13			42'			Cu		
5/18/2017		13			35'			Cu		
5/20/2017		13			14'		1	Cu		

		Olin /		IL DOCK 201	1		I amouth of	
Date	Facility	Slip / Mooring	Percent of Time	Vessel Type	Vessel Length	Vessel Beam	Length of Stay	Paint Type
- /0 / /0 0 / -		Number	Occupied	. , , , ,			(nights)	
5/21/2017		13			14'			Cu
5/22/2017		13			35'			Cu
5/27/2017		13			38'		7	
6/3/2017		13			39'			Cu
6/7/2017		13			50'			Cu
6/12/2017		13			32'			Cu
6/26/2017		13			32'			Cu
6/27/2017		13			32'			Cu
6/28/2017		13			32'			Cu
6/30/2017		13			32'			Cu
7/1/2017		13			43'			Cu
7/3/2017		13			20'			Cu
7/5/2017		13			32'			Cu
7/6/2017		13			32'			Cu
7/7/2017		13			32'			Cu
7/11/2017		13			32'			Cu
7/12/2017		13			32'			Cu
7/14/2017		13			25'			Cu
7/18/2017		13			30'			Cu
7/19/2017		13			30'			Cu
7/20/2017		13			31'			Cu
7/26/2017		13			26'			Cu
7/29/2017		13			26'			Cu
8/2/2017		13			26'		5	Cu
8/7/2017		13			26'		1	Cu
8/8/2017		13			26'		2	Cu
8/10/2017		13			26'		2	Cu
8/15/2017		13			27'		2	Cu
8/17/2017		13			26'		2	Cu
8/19/2017		13			25'		2	Cu
8/24/2017		13			40'		2	Cu
8/26/2017		13			30'			Cu
8/28/2017		13			38'			Cu
8/30/2017		13			20'			Cu
9/2/2017		13			38'			Cu
9/3/2017		13			22'			Cu
9/4/2017		13			22'			Cu
9/5/2017		13			22'			Cu
9/9/2017		13			35'			Cu
9/18/2017		13			30'			Cu
9/19/2017		13			33'			Cu
9/20/2017		13			35'			Cu
9/30/2017		13			35'			Cu

	Transient Dock 2017									
Date	Facility	Slip /	Percent of Time	Vessel	Vessel	Vessel	Length of Stay	Paint		
Date	racility	Mooring Number	Occupied	Type	Length	Beam	(nights)	Type		
10/3/2017		13	Occupied		35'			Cu		
10/9/2017		13			30'		1	Cu		
10/10/2017		13			30'			Cu		
10/12/2017		13			26'			Cu		
10/14/2017		13			47'			Cu		
10/16/2017		13			50'			Cu		
10/30/2017		13			26'					
10/31/2017		13			38'		2	Cu		
11/2/2017		13			35'		14	Cu		
11/20/2017		13			25'		1	Cu		
11/21/2017		13			25'		1	Cu		
11/22/2017		13			25'		1	Cu		
11/26/2017		13			39'		2	Cu		
11/28/2017		13			39'		3	Cu		
12/1/2017		13			39'		2	Cu		
12/6/2017		13			30'		1	Cu		
12/13/2017		13			47'		1	Cu		
12/14/2017		13			28'		1	Cu		
12/27/2017		13			25'		2	Cu		
12/29/2017		13			46'		1	Cu		
6/15/2017		13			35'		2	Cu		
6/29/2017		13			32'		1	Cu		
9/7/2017		13			24'		2	Cu		
9/10/2017		13			40'		5	Cu		
10/13/2017		13			47'		1	Cu		
12/5/2017		13			27'		1	Cu		
			57.5%				210			
1/3/2017		14			27'		3	Cu		
1/9/2017		14			27'		1	Cu		
1/10/2017		14			27'		1	Cu		
1/11/2017		14			27'		1	Cu		
1/12/2017		14			27'		1	Cu		
1/16/2017		14			27'		1	Cu		
1/17/2017		14			27'		2	Cu		
1/19/2017		14			27'		1	Cu		
1/20/2017		14			27'			Cu		
1/22/2017		14			27'		2	Cu		
1/24/2017		14			27'			Cu		
1/26/2017		14			27'		2	Cu		
1/28/2017		14			27'		2	Cu		
1/30/2017		14			27'		1	Cu		
1/31/2017		14			27'		1	Cu		
2/1/2017		14			27'		1	Cu		

	Office / Description Descrip								
Date	Facility	Slip / Mooring	Percent of Time	Vessel	Vessel	Vessel	Length of Stay	Paint	
		Number	Occupied	Type	Length	Beam	(nights)	Туре	
2/2/2017		14			27'		1	Cu	
2/6/2017		14			27'		3	Cu	
2/9/2017		14			27'		1	Cu	
2/11/2017		14			32'		2	Cu	
2/16/2017		14			42'		3	Cu	
2/21/2017		14			29'		2	Cu	
2/26/2017		14			26'		1	Cu	
2/27/2017		14			26'		1	Cu	
2/28/2017		14			26'		1	Cu	
3/1/2017		14			37'		2	Cu	
3/3/2017		14			45'		1	Cu	
3/7/2017		14			40'		1	Cu	
3/8/2017		14			40'		1	Cu	
3/9/2017		14			40'		1	Cu	
3/12/2017		14			45'		1	Cu	
3/13/2017		14			45'		1	Cu	
4/14/2017		14			39'		7	Cu	
4/21/2017		14			39'		7	Cu	
4/28/2017		14			39'		1	Cu	
4/29/2017		14			39'		1	Cu	
4/30/2017		14			39'		1	Cu	
5/1/2017		14			30'		3	Cu	
5/4/2017		14			30'		1	Cu	
5/5/2017		14			38'		6	Cu	
5/11/2017		14			43'			Cu	
5/13/2017		14			43'		2	Cu	
5/21/2017		14			44'		3	Cu	
5/26/2017		14			39'		3	Cu	
5/31/2017		14			41'		15	Cu	
6/16/2017		14			19'		1	Cu	
6/24/2017		14			27'		1	Cu	
6/26/2017		14			30'		3	Cu	
6/29/2017		14			35'		1	Cu	
7/2/2017		14			47'			Cu	
7/3/2017		14			38'		2	Cu	
7/5/2017		14			38'		2	Cu	
7/10/2017		14			18'		4	Cu	
7/14/2017		14			18'		1	Cu	
7/18/2017		14			45'		1	Cu	
7/21/2017		14			37'			Cu	
7/22/2017		14			23'			Cu	
7/29/2017		14			21'		2	Cu	
7/31/2017		14			18'		1	Cu	

	Iransient Dock 2017								
Date	Facility	Slip / Mooring	Percent of Time	Vessel	Vessel	Vessel	Length of Stay	Paint	
Date	1 domity	Number	Occupied	Type	Length	Beam	(nights)	Type	
8/2/2017		14	0000.		24'			Cu	
8/6/2017		14			38'		4	Cu	
8/10/2017		14			22'		1	Cu	
8/11/2017		14			19'		9	Cu	
8/21/2017		14			27'		4	Cu	
8/25/2017		14			40'		1	Cu	
8/26/2017		14			22'		3	Cu	
8/29/2017		14			27'		3	Cu	
9/2/2017		14			23'		2	Cu	
9/6/2017		14			38'		2	Cu	
9/9/2017		14			21'		3	Cu	
9/12/2017		14			43'		1	Cu	
9/13/2017		14			26'		4	Cu	
9/17/2017		14			42'		7	Cu	
9/25/2017		14			30'		7	Cu	
10/2/2017		14			30'		1	Cu	
10/3/2017		14			30'		2	Cu	
10/5/2017		14			42'		2	Cu	
10/10/2017		14			38'		1	Cu	
10/11/2017		14			33'		1	Cu	
10/12/2017		14			33'		1	Cu	
10/16/2017		14			33'		1	Cu	
10/17/2017		14			33'		1	Cu	
10/20/2017		14			21'		3	Cu	
10/27/2017		14			54'		1	Cu	
10/30/2017		14			43'		2	Cu	
11/6/2017		14			42'		1	Cu	
11/15/2017		14			44'		2	Cu	
11/18/2017		14			50'		2	Cu	
11/20/2017		14			34'		3	Cu	
11/24/2017		14			39'		2	Cu	
12/4/2017		14			42'		1	Cu	
12/5/2017		14			42'			Cu	
12/7/2017		14			42'		1	Cu	
12/8/2017		14			30'			Cu	
12/20/2017		14			35'			Cu	
12/25/2017		14			39'		1	Cu	
12/26/2017		14			39'		1	Cu	
12/29/2017		14			32'		3	Cu	
3/14/2017		14			41'		4	Cu	
6/30/2017		14			47'		2	Cu	
10/9/2017		14			27'		1	Cu	
10/19/2017		14			24'			Cu	

		Slip /	Percent of	Vessel	Vessel	Vessel	Length of	Paint
Date	Facility	Mooring	Time	Type	Length	Beam	Stay	Туре
10/23/2017		Number 14	Occupied		30'		(nights)	Cu
11/2/2017		14			43'			Cu
11/2/2017		17	64.1%		173		234	Cu
1/1/2017		15	04.170		32'		.	Cu
1/3/2017		15			35'			Cu
1/4/2017		15			35'			Cu
1/9/2017		15			30'			Cu
1/12/2017		15			42'			Cu
1/21/2017		15			35'			Cu
1/24/2017		15			35'			Cu
1/27/2017		15			40'		3	Cu
2/3/2017		15			40'			Cu
2/8/2017		15			40'			Cu
2/16/2017		15			46'		1	Cu
2/19/2017		15			39'		2	Cu
2/25/2017		15			46'		5	Cu
3/2/2017		15			46'		2	Cu
3/4/2017		15			29'		1	Cu
3/5/2017		15			29'		1	Cu
3/6/2017		15			29'		1	Cu
3/8/2017		15			29'		1	Cu
3/15/2017		15			36'		2	Cu
3/17/2017		15			36'		1	Cu
3/18/2017		15			36'		1	Cu
4/15/2017		15			25'		2	Cu
4/28/2017		15			34'		14	Cu
5/15/2017		15			42'			Cu
5/24/2017		15			44'		2	Cu
5/26/2017		15			44'			Cu
5/31/2017		15			44'		5	Cu
6/9/2017		15			27'			Cu
6/15/2017		15			32'			Cu
6/16/2017		15			32'			Cu
6/18/2017		15			30'			Cu
6/21/2017		15			28'		+	Cu
6/22/2017		15			50'			Cu
6/23/2017		15			50'			Cu
6/26/2017		15			37'			Cu
6/28/2017		15			27'			Cu
6/29/2017		15			36'			Cu
6/30/2017		15			25'			Cu
7/11/2017		15			29'		+	Cu
7/14/2017		15			42'		1	Cu

	Transient Dock 2017								
Dete	Facility.	Slip /	Percent of	Vessel	Vessel	Vessel	Length of	Paint	
Date	Facility	Mooring Number	Time Occupied	Type	Length	Beam	Stay (nights)	Туре	
7/15/2017		15	Occupied		42'			Cu	
7/29/2017		15			31'		1		
7/30/2017		15			31'			Cu	
7/30/2017		15			22'			Cu	
8/10/2017		15			30'				
8/14/2017		15			30'			Cu	
8/15/2017		15			25'		3		
8/21/2017		15			32'			Cu	
8/24/2017		15			26'		3		
8/28/2017		15			38'			Cu	
9/1/2017		15			27'			Cu	
9/6/2017		15			27'		4	Cu	
9/10/2017		15			27'				
9/13/2017		15			27'		5	Cu	
9/18/2017		15			28'			Cu	
9/20/2017		15			38'				
9/22/2017		15			45'			Cu	
9/26/2017		15			32'			Cu	
9/30/2017		15			26'			Cu	
10/5/2017		15			17'			Cu	
10/8/2017		15			38'		2		
10/10/2017		15			47'			Cu	
10/11/2017		15			33'			Cu	
10/13/2017		15			50'			Cu	
10/26/2017		15			32'				
10/27/2017		15			38'				
10/28/2017		15			35'			Cu	
11/3/2017		15			30'			Cu	
11/5/2017		15			40'			Cu	
11/12/2017		15			45'			Cu	
11/22/2017		15			28'			Cu	
11/26/2017		15			42'			Cu	
12/2/2017		15			34'			Cu	
12/11/2017		15			32'			Cu	
12/18/2017		15			32'			Cu	
12/21/2017		15			32'			Cu	
12/22/2017		15			39'			Cu	
12/24/2017		15			39'			Cu	
12/25/2017		15			38'			Cu	
12/29/2017		15			38'			Cu	
12/30/2017		15			38'			Cu	
3/27/2017		15			40'			Cu	
3/9/2017		15			29'			Cu	

	Olin / Descent of Legath of									
Date	Facility	Slip / Mooring	Percent of Time	Vessel	Vessel	Vessel	Length of Stay	Paint		
Date	1 acmity	Number	Occupied	Type	Length	Beam	(nights)	Type		
6/10/2017		15	o o o o o o o o o o o o o o o o o o o		27'			Cu		
10/2/2017		15			38'			Cu		
10/12/2017		15			50'			Cu		
11/20/2017		15			37'			Cu		
			61.4%				224			
1/2/2017		16			27'			Cu		
1/4/2017		16			27'		1	Cu		
1/5/2017		16			27'		1	Cu		
1/8/2017		16			37'		1	Cu		
1/9/2017		16			37'		1	Cu		
1/12/2017		16			37'		1	Cu		
1/14/2017		16			26'		1	Cu		
1/26/2017		16			27'		1	Cu		
1/28/2017		16			39'		1	Cu		
1/31/2017		16			39'		1	Cu		
2/6/2017		16			26'		1	Cu		
2/8/2017		16			44'		5	Cu		
2/13/2017		16			44'		3	Cu		
2/16/2017		16			44'		2	Cu		
2/18/2017		16			39'		1	Cu		
2/21/2017		16			20'		3	Cu		
2/27/2017		16			27'		3	Cu		
3/2/2017		16			27'		2	Cu		
3/4/2017		16			49'		1	Cu		
3/5/2017		16			49'		1	Cu		
3/10/2017		16			22'		1	Cu		
3/18/2017		16			50'		1	Cu		
3/21/2017		16			39'		2	Cu		
3/25/2017		16			26'		1	Cu		
4/7/2017		16			39'		1	Cu		
4/8/2017		16			39'		1	Cu		
4/14/2017		16			40'		2	Cu		
4/21/2017		16			40'		2	Cu		
4/23/2017		16			44'			Cu		
4/25/2017		16			22'		2	Cu		
4/27/2017		16			43'		2	Cu		
5/6/2017		16			44'			Cu		
5/10/2017		16			34'		5	Cu		
5/22/2017		16			46'		1	Cu		
5/25/2017		16			40'		2	Cu		
5/27/2017		16			20'			Cu		
5/28/2017		16			45'			Cu		
6/2/2017		16			45'		3	Cu		

	Iransient Dock 2017								
Date	Facility	Slip / Mooring	Percent of Time	Vessel	Vessel	Vessel	Length of Stay	Paint	
Date	1 acmity	Number	Occupied	Type	Length	Beam	(nights)	Туре	
6/5/2017		16	Cocapica		27'			Cu	
6/6/2017		16			27'		2		
6/8/2017		16			27'		 	Cu	
6/9/2017		16			40'			Cu	
6/11/2017		16			18'			Cu	
6/15/2017		16			38'			Cu	
6/17/2017		16			21'		3	Cu	
6/28/2017		16			41'		7	Cu	
7/5/2017		16			32'		2	Cu	
7/7/2017		16			27'		3	Cu	
7/10/2017		16			23'		3	Cu	
7/13/2017		16			41'		2	Cu	
7/15/2017		16			18'		8	Cu	
7/23/2017		16			39'		1	Cu	
7/24/2017		16			32'		1	Cu	
7/26/2017		16			31'		1	Cu	
7/27/2017		16			31'		1	Cu	
7/28/2017		16			44'		3	Cu	
7/31/2017		16			50'		1	Cu	
8/1/2017		16			18'		1	Cu	
8/2/2017		16			27'		2	Cu	
8/4/2017		16			32'		3	Cu	
8/7/2017		16			25'		2	Cu	
8/13/2017		16			38'		1	Cu	
8/14/2017		16			38'		3	Cu	
8/17/2017		16			38'		1	Cu	
8/18/2017		16			38'		1	Cu	
8/21/2017		16			44'		3	Cu	
8/28/2017		16			37'			Cu	
8/31/2017		16			40'			Cu	
9/10/2017		16			22'		6	Cu	
9/16/2017		16			22'		1	Cu	
9/17/2017		16			41'		1	Cu	
9/18/2017		16			27'		1	Cu	
9/21/2017		16			28'		1	Cu	
9/22/2017		16			38'		3	Cu	
9/25/2017		16			38'		1	Cu	
9/26/2017		16			38'		3	Cu	
9/29/2017		16			39'		2	Cu	
10/5/2017		16			32'		1	Cu	
10/6/2017		16			30'		1	Cu	
10/8/2017		16			39'		4	Cu	
10/12/2017		16			26'		1	Cu	

	Transient Dock 2017									
Doto	Facility	Slip /	Percent of Time	Vessel	Vessel	Vessel	Length of	Paint		
Date	Facility	Mooring Number	Occupied	Type	Length	Beam	Stay (nights)	Туре		
10/13/2017		16	Occupied		39'			Cu		
10/14/2017		16					1			
10/15/2017		16			40'			Cu		
10/16/2017		16			27'		1			
10/17/2017		16			42'			Cu		
10/30/2017		16			22'			Cu		
10/31/2017		16			41'		1	Cu		
11/1/2017		16			43'		1	Cu		
11/3/2017		16			42'		3	Cu		
11/6/2017		16			43'		2	Cu		
11/8/2017		16			43'		1	Cu		
11/9/2017		16			50'		1	Cu		
11/10/2017		16			36'		3	Cu		
11/13/2017		16			36'		1	Cu		
11/14/2017		16			36'		1	Cu		
11/16/2017		16			34'		4	Cu		
11/20/2017		16			34'		3	Cu		
11/23/2017		16			34'		3	Cu		
11/26/2017		16			35'		2	Cu		
11/28/2017		16			35'		1	Cu		
11/30/2017		16			32'		13	Cu		
12/14/2017		16			38'		6	Cu		
12/21/2017		16			32'		1	Cu		
12/22/2017		16			38'		5	Cu		
12/29/2017		16			22'		3	Cu		
1/29/2017		16			39'		1	Cu		
4/3/2017		16			26'		1	Cu		
4/4/2017		16			28'		2	Cu		
4/17/2017		16			43'		1	Cu		
4/30/2017		16			50'		6	Cu		
8/10/2017		16			27'		1	Cu		
8/11/2017		16			27'		2	Cu		
9/20/2017		16			28'		1	Cu		
12/28/2017		16			32'		1	Cu		
9/19/2017		16			41'		1	Cu		
10/2/2017		16			28'		3	Cu		
			71.5%				261			
9/18/2017		17			38'		1	Cu		
			0.3%				1			
1/1/2017		18			46'		1			
1/3/2017		18			45'			Cu		
1/5/2017		18			45'		1	Cu		
1/6/2017		18			45'		1	Cu		

	Olim / Borrowt of								
Date	Facility	Slip / Mooring	Percent of Time	Vessel	Vessel	Vessel	Length of Stay	Paint	
Duto	1 domity	Number	Occupied	Type	Length	Beam	(nights)	Type	
1/7/2017		18			45'			Cu	
1/8/2017		18			45'		1	Cu	
1/9/2017		18			45'		1	Cu	
1/10/2017		18			45'		1	Cu	
1/12/2017		18			47'		4	Cu	
1/16/2017		18			47'		4	Cu	
1/20/2017		18			47'		3	Cu	
1/23/2017		18			47'		3	Cu	
1/26/2017		18			47'		3	Cu	
1/29/2017		18			47'		2	Cu	
2/1/2017		18			47'		2	Cu	
2/3/2017		18			47'		3	Cu	
2/6/2017		18			47'		4	Cu	
2/11/2017		18			50'		1	Cu	
2/12/2017		18			50'		1	Cu	
2/17/2017		18			44'		3	Cu	
2/25/2017		18			45'		1	Cu	
2/27/2017		18			47'		5	Cu	
3/4/2017		18			47'		7	Cu	
3/11/2017		18			50'		2	Cu	
3/13/2017		18			49'		1	Cu	
3/18/2017		18			65'		2	Cu	
3/22/2017		18			50'		1	Cu	
3/23/2017		18			65'		1	Cu	
3/24/2017		18			50'		1	Cu	
3/29/2017		18			50'		1	Cu	
3/30/2017		18			50'		1	Cu	
4/1/2017		18			58'		2	Cu	
4/5/2017		18			50'		7	Cu	
4/14/2017		18			43'		3	Cu	
4/22/2017		18			43'		2	Cu	
4/27/2017		18			44'		9	Cu	
5/8/2017		18			44'			Cu	
5/15/2017		18			30'			Cu	
5/18/2017		18			61'			Cu	
5/24/2017		18			55'		2	Cu	
5/28/2017		18			50'		1	Cu	
5/30/2017		18			46'		1	Cu	
5/31/2017		18			46'			Cu	
6/3/2017		18			65'		15	Cu	
6/23/2017		18			50'			Cu	
6/24/2017		18			50'			Cu	
6/28/2017		18			50'			Cu	

	Transient Dock 2017								
Date	Facility	Slip / Mooring	Percent of Time	Vessel	Vessel	Vessel	Length of Stay	Paint	
Date	гаспіту	Number	Occupied	Type	Length	Beam	(nights)	Type	
6/29/2017		18	Occupica		48'			Cu	
6/30/2017		18			40'		2	Cu	
7/2/2017		18			45'			Cu	
7/3/2017		18			45'			Cu	
7/5/2017		18			40'			Cu	
7/9/2017		18			57'			Cu	
7/11/2017		18			57'			Cu	
7/17/2017		18			61'		3	Cu	
7/21/2017		18			65'		3	Cu	
7/27/2017		18			40'		1	Cu	
7/28/2017		18			65'		3	Cu	
8/7/2017		18			32'		1	Cu	
8/8/2017		18			27'		2	Cu	
8/10/2017		18			27'		1	Cu	
8/11/2017		18			45'		2	Cu	
8/20/2017		18			32'		1	Cu	
8/21/2017		18			32'		1	Cu	
8/24/2017		18			46'		4	Cu	
8/28/2017		18			30'		1	Cu	
9/6/2017		18			35'		1	Cu	
9/12/2017		18			32'		2	Cu	
9/14/2017		18			32'		1	Cu	
9/18/2017		18			32'		4	Cu	
9/23/2017		18			51'		1	Cu	
9/25/2017		18			34'		1	Cu	
9/30/2017		18			45'		3	Cu	
10/3/2017		18			45'		3	Cu	
10/12/2017		18			30'		1	Cu	
10/13/2017		18			57'		1	Cu	
10/14/2017		18			58'		13	Cu	
10/27/2017		18			30'		2	Cu	
10/29/2017		18			41'		6	Cu	
11/4/2017		18			54'		3	Cu	
11/7/2017		18			55'		1	Cu	
11/8/2017		18			55'	_	1	Cu	
11/10/2017		18			55'			Cu	
11/12/2017		18			48'		2	Cu	
11/15/2017		18			52'		3	Cu	
11/18/2017		18			51'		12	Cu	
11/30/2017		18			51'		1	Cu	
12/6/2017		18			52'		2	Cu	
12/11/2017		18			57'		6	Cu	
12/18/2017		18			54'		14	Cu	

	Transient Dock 2017									
Date	Facility	Slip / Mooring	Percent of Time	Vessel	Vessel Length	Vessel	Length of Stay	Paint		
		Number	Occupied	Туре		Beam	(nights)	Туре		
8/1/2017		18			40'			Cu		
8/14/2017		18			24'			Cu		
8/29/2017		18			30'		7	Cu		
9/7/2017		18			35'		1	Cu		
9/26/2017		18			45'		3	Cu		
9/11/2017		18			32'		1	Cu		
10/11/2017		18			28'		1	Cu		
			69.9%				255			
1/2/2017		19			52'		4	Cu		
1/6/2017		19			52'		3	Cu		
1/9/2017		19			52'		1	Cu		
1/16/2017		19			52'		2	Cu		
1/18/2017		19			52'		1	Cu		
1/24/2017		19			40'		1	Cu		
1/26/2017		19			40'		1	Cu		
1/27/2017		19			40'		1	Cu		
1/28/2017		19			46'		1	Cu		
1/31/2017		19			50'		1	Cu		
2/4/2017		19			47'			Cu		
2/6/2017		19			52'			Cu		
2/7/2017		19			52'			Cu		
2/8/2017		19			52'			Cu		
2/9/2017		19			52'			Cu		
2/10/2017		19			52'			Cu		
2/16/2017		19			43'			Cu		
2/17/2017		19			43'			Cu		
2/18/2017		19			43'			Cu		
2/22/2017		19			40'			Cu		
2/23/2017		19			40'			Cu		
3/20/2017		19			60'			Cu		
3/29/2017		19			53'			Cu		
3/30/2017		19			41'			Cu		
4/2/2017		19			46'			Cu		
4/3/2017		19			46'			Cu		
4/8/2017		19			46'			Cu		
4/11/2017		19			45'			Cu		
4/15/2017		19			45'			Cu		
4/17/2017		19			50'			Cu		
4/23/2017		19			50'			Cu		
4/27/2017		19			30'			Cu		
5/1/2017		19			30'			Cu		
5/3/2017		19			30'			Cu		
5/8/2017		19			30'			Cu		

	Transient Duck 2017								
Date	Facility	Slip / Mooring	Percent of Time	Vessel	Vessel	Vessel	Length of Stay	Paint	
Date	1 demity	Number	Occupied	Type	Length	Beam	(nights)	Type	
5/16/2017		19	- Cocapica		30'			Cu	
5/17/2017		19			30'			Cu	
5/26/2017		19			47'		3	Cu	
6/1/2017		19			38'		1	Cu	
6/2/2017		19			38'		1	Cu	
6/7/2017		19			53'			Cu	
6/21/2017		19			46'			Cu	
6/27/2017		19			55'				
7/2/2017		19			22'		4	Cu	
7/6/2017		19			30'		1	Cu	
7/7/2017		19			55'		2	Cu	
7/10/2017		19			50'		2	Cu	
7/14/2017		19			55'		3	Cu	
7/18/2017		19			50'		1	Cu	
7/21/2017		19			50'		1	Cu	
7/27/2017		19			49'		1	Cu	
8/2/2017		19			25'		10	Cu	
8/12/2017		19			60'		2	Cu	
8/24/2017		19			38'		8	Cu	
9/1/2017		19			58'		7	Cu	
9/11/2017		19			34'		4	Cu	
9/18/2017		19			34'				
9/25/2017		19			32'		1	Cu	
9/29/2017		19			49'		7	Cu	
10/12/2017		19			33'		1	Cu	
10/14/2017		19			57'		1	Cu	
10/16/2017		19			38'		4	Cu	
10/21/2017		19			60'		11	Cu	
11/1/2017		19			42'		2	Cu	
11/4/2017		19			65'		3	Cu	
11/20/2017		19			27'		2	Cu	
11/22/2017		19			27'		1	Cu	
11/26/2017		19			50'			Cu	
11/30/2017		19			50'			Cu	
12/2/2017		19			60'			Cu	
12/18/2017		19			60'			Cu	
12/24/2017		19			48'		4	Cu	
12/28/2017		19			48'		2	Cu	
12/31/2017		19			57'			Cu	
5/22/2017		19			30'		1	Cu	
6/15/2017		19			25'		1	Cu	
7/20/2017		19			50'		1	Cu	
7/29/2017		19			60'		3	Cu	

		Slip /	Percent of	Vessel	Vessel	Vessel	Length of	Paint
Date	Facility	Mooring	Time	Type	Length	Beam	Stay	Туре
0/15/2017		Number	Occupied		35'		(nights)	
8/15/2017		19 19			26'			Cu Cu
8/18/2017 8/23/2017		19			60'			Cu
		ł — —			16'			
9/8/2017		19			34'			Cu
9/26/2017 12/19/2017		19 19			48'			Cu Cu
12/19/2017		19	58.9%		48		215	
10/0/2017		19	38.3%		28'			Cu
10/9/2017 1/3/2017		20			49'			Cu
1/9/2017		20			30'			Cu
		20			52'			Cu
1/17/2017					30'			Cu
2/7/2017 2/9/2017		20 20			30'			Cu
2/9/2017		20			50'			Cu
3/1/2017		20			47'			Cu
3/4/2017		20			47'			Cu
3/4/2017		20			47'			Cu
		20			47'			Cu
3/11/2017					50'			
3/18/2017		20			51'			Cu Cu
3/30/2017		20						
4/15/2017		20			50'			Cu
4/27/2017		20			45'			Cu
4/29/2017		20			50'			Cu
4/30/2017		20			50'			Cu
5/5/2017		20			50'			Cu
5/8/2017		20			50'			Cu
5/12/2017		20			46'			Cu
5/19/2017		20			40'		+	Cu
5/20/2017		20			40'			Cu
5/29/2017		20			47'			Cu
6/3/2017		20			47'			Cu
6/21/2017		20			50'			Cu
6/24/2017		20			50'			Cu
6/29/2017		20			40'			Cu
6/30/2017		20			45'			Cu
7/5/2017		20			45'			Cu
7/8/2017		20			45'			Cu
7/17/2017		20			50'			Cu
8/3/2017		20			44'			Cu
8/7/2017		20			27'			Cu
8/8/2017		20			35'			Cu
8/28/2017		20			30'		1	Cu
8/29/2017		20			44'		5	Cu

	Iransient Dock 2017									
Date	Facility	Slip / Mooring	Percent of Time	Vessel	Vessel	Vessel	Length of Stay	Paint		
Date	гаспіту	Number	Occupied	Type	Length	Beam	(nights)	Type		
9/3/2017		20	Occupiou		44'			Cu		
9/5/2017		20			30'		1			
9/6/2017		20			30'		1	Cu		
9/7/2017		20			30'			Cu		
9/11/2017		20			33'					
9/14/2017		20			65'		7	Cu		
9/25/2017		20			28'		4	Cu		
10/2/2017		20			28'		3	Cu		
10/5/2017		20			47'		3	Cu		
10/8/2017		20			47'		1	Cu		
10/17/2017		20			33'		2	Cu		
10/19/2017		20			40'		6	Cu		
11/16/2017		20			27'		2	Cu		
11/27/2017		20			46'		1	Cu		
11/28/2017		20			46'		1	Cu		
12/6/2017		20			65'		3	Cu		
12/9/2017		20			65'		12	Cu		
12/21/2017		20			65'		2	Cu		
12/26/2017		20			46'		2	Cu		
12/28/2017		20			46'		2	Cu		
12/30/2017		20			46'		1	Cu		
12/31/2017		20			46'		1	Cu		
1/30/2017		20			30'		1	Cu		
2/1/2017		20			30'		2	Cu		
2/4/2017		20			50'		1	Cu		
4/22/2017		20			50'		3	Cu		
7/18/2017		20			36'		14	Cu		
8/9/2017		20			25'		1	Cu		
8/10/2017		20			26'		2	Cu		
8/12/2017		20			26'		1	Cu		
9/13/2017		20			33'		1	Cu		
10/9/2017		20			38'		7	Cu		
10/16/2017		20			33'		1	Cu		
10/25/2017		20			53'			Cu		
11/20/2017		20			32'		3	Cu		
			57.0%				208			
1/4/2017		21			44'		2	Cu		
1/6/2017		21			44'		1	Cu		
1/12/2017		21			46'		1	Cu		
1/17/2017		21			33'		4	Cu		
1/22/2017		21			33'		1	Cu		
1/24/2017		21			33'		2	Cu		
1/28/2017		21			50'		1	Cu		

Slip / Percent of Vaccel Vaccel Length of Point								
Date	Facility	Mooring	Time	Vessel	Vessel	Vessel	Stay	Paint
Duto	. domity	Number	Occupied	Туре	Length	Beam	(nights)	Type
1/30/2017		21			40'			Cu
2/11/2017		21			45'		2	Cu
2/13/2017		21			45'		1	Cu
2/24/2017		21			65'		1	Cu
2/25/2017		21			47'		4	Cu
3/1/2017		21			51'		1	Cu
3/2/2017		21			51'		3	Cu
3/5/2017		21			51'		3	Cu
3/8/2017		21			51'		7	Cu
3/20/2017		21			54'		1	Cu
3/21/2017		21			60'		1	Cu
3/22/2017		21			60'		1	Cu
3/23/2017		21			60'		1	Cu
4/10/2017		21			40'		3	Cu
4/22/2017		21			54'		1	Cu
4/23/2017		21			46'			Cu
4/25/2017		21			46'		1	Cu
4/26/2017		21			46'		1	Cu
4/27/2017		21			38'		1	Cu
4/30/2017		21			46'		<u> </u>	Cu
5/11/2017		21			47'			Cu
5/12/2017		21			47'			Cu
5/15/2017		21			46'			Cu
5/21/2017		21			45'		7	Cu
5/28/2017		21			47'		3	Cu
5/31/2017		21			47'		7	Cu
6/9/2017		21			49'		5	Cu
6/15/2017		21			30'			Cu
6/19/2017		21			30'			Cu
6/29/2017		21			32'			Cu
7/1/2017		21			46'		1	Cu
7/2/2017		21			48'			Cu
7/5/2017		21			46'		1	Cu
7/12/2017		21			51'			Cu
7/14/2017		21			51'			Cu
7/16/2017		21			50'			Cu
7/18/2017		21			0'			Cu
7/20/2017		21			49'			Cu
7/28/2017		21			57'			Cu
8/3/2017		21			30'			Cu
8/13/2017		21			45'			Cu
8/26/2017		21			44'			Cu
8/27/2017		21			44'		1	Cu

Office A Description of the second of the se								
Date	Facility	Slip / Mooring	Percent of Time	Vessel	Vessel	Vessel	Length of Stay	Paint
Date	гаспіту	Number	Occupied	Type	Length	Beam	(nights)	Type
8/29/2017		21	Occupica		65'			Cu
9/6/2017		21			27'			Cu
9/7/2017		21			33'			Cu
9/10/2017		21			55'			Cu
9/13/2017		21			65'			Cu
9/18/2017		21			30'			Cu
9/20/2017		21			30'			Cu
9/25/2017		21			35'			Cu
9/28/2017		21			63'			Cu
10/2/2017		21			25'		3	Cu
10/5/2017		21			25'		4	Cu
10/9/2017		21			25'		2	Cu
10/11/2017		21			25'		2	Cu
10/17/2017		21			40'		2	Cu
10/20/2017		21			33'		3	Cu
10/23/2017		21			50'		2	Cu
10/25/2017		21			53'		10	Cu
11/6/2017		21			30'		1	Cu
11/13/2017		21			34'		4	Cu
11/20/2017		21			30'		3	Cu
11/27/2017		21			47'		2	Cu
12/1/2017		21			40'		2	Cu
12/10/2017		21			51'		3	Cu
12/13/2017		21			60'		1	Cu
12/14/2017		21			60'		1	Cu
12/15/2017		21			60'		1	Cu
12/16/2017		21			60'		1	Cu
12/17/2017		21			60'		1	Cu
12/18/2017		21			60'		1	Cu
12/19/2017		21			60'		1	Cu
12/20/2017		21			60'		1	Cu
12/21/2017		21			60'		1	Cu
12/22/2017		21			60'		1	Cu
12/23/2017		21			60'		1	Cu
12/24/2017		21			60'		1	Cu
12/25/2017		21			60'		1	Cu
12/26/2017		21			60'		1	Cu
12/28/2017		21			50'		1	Cu
12/29/2017		21			58'			Cu
12/31/2017		21			58'		1	Cu
2/15/2017		21			39'		8	Cu
5/2/2017		21			27'		4	Cu
5/9/2017		21			49'		2	Cu

		Slip /	Percent of	t Dock 201			Length of	
Date	Facility	Mooring	Time	Vessel	Vessel	Vessel	Stay	Paint
		Number	Occupied	Туре	Length	Beam	(nights)	Type
8/7/2017		21			35'			Cu
8/24/2017		21			44'		2	Cu
10/16/2017		21			40'		1	Cu
10/19/2017		21			50'		1	Cu
12/27/2017		21			60'			Cu
9/11/2017		21			28'		1	Cu
9/12/2017		21			28'		1	Cu
9/14/2017		21			28'			Cu
			56.7%				207	
1/10/2017		22			47'			Cu
1/21/2017		22			50'		3	Cu
1/31/2017		22			33'			Cu
2/6/2017		22			53'		2	Cu
2/8/2017		22			53'		1	Cu
2/12/2017		22			30'		1	Cu
2/13/2017		22			30'		1	Cu
2/14/2017		22			30'		2	Cu
2/16/2017		22			30'		1	Cu
2/22/2017		22			40'		4	Cu
2/27/2017		22			44'		1	Cu
2/28/2017		22			44'		1	Cu
3/1/2017		22			44'		1	Cu
3/2/2017		22			44'		1	Cu
3/3/2017		22			44'		1	Cu
3/6/2017		22			44'		1	Cu
3/7/2017		22			44'		1	Cu
3/9/2017		22			46'		6	Cu
3/15/2017		22			46'		1	Cu
3/24/2017		22			60'		3	Cu
4/6/2017		22			58'		2	Cu
4/11/2017		22			46'		3	Cu
4/14/2017		22			46'		2	Cu
4/16/2017		22			46'		+	Cu
4/17/2017		22			46'		1	Cu
4/28/2017		22			46'		1	Cu
5/2/2017		22			46'		+	Cu
5/11/2017		22			33'		1	Cu
5/27/2017		22			45'		2	Cu
6/4/2017		22			49'		1	Cu
6/5/2017		22			55'		3	Cu
6/17/2017		22			51'			Cu
6/29/2017		22			30'			Cu
7/1/2017		22			53'			Cu

	Transient Dock 2017								
Date	Facility	Slip / Mooring	Percent of Time	Vessel	Vessel	Vessel	Length of Stay	Paint	
Date	1 acmity	Number	Occupied	Type	Length	Beam	(nights)	Туре	
7/6/2017		22			47'			Cu	
7/11/2017		22			45'			Cu	
7/31/2017		22			40'		4	Cu	
8/7/2017		22			38'		4	Cu	
8/20/2017		22			63'		1	Cu	
9/1/2017		22			47'		1	Cu	
9/6/2017		22			42'		5	Cu	
9/14/2017		22			35'		5	Cu	
9/20/2017		22			33'		1	Cu	
9/21/2017		22			40'		1	Cu	
10/2/2017		22			63'		3	Cu	
10/5/2017		22			50'		4	Cu	
10/9/2017		22			38'		1	Cu	
10/12/2017		22			57'		1	Cu	
10/16/2017		22			42'		3	Cu	
10/28/2017		22			50'		2	Cu	
10/30/2017		22			54'		1	Cu	
10/31/2017		22			42'		1	Cu	
11/1/2017		22			45'		1	Cu	
11/2/2017		22			45'		1	Cu	
11/4/2017		22			53'		3	Cu	
12/13/2017		22			52'		1	Cu	
12/16/2017		22			51'		6	Cu	
12/29/2017		22			51'		3	Cu	
1/26/2017		22			52'		1	Cu	
4/3/2017		22			58'		2	Cu	
5/1/2017		22			38'		1	Cu	
7/28/2017		22			49'		3	Cu	
8/12/2017		22			53'		1	Cu	
8/28/2017		22			28'		4	Cu	
9/11/2017		22			35'		3	Cu	
9/25/2017		22			50'		1	Cu	
9/29/2017		22			63'		1	Cu	
9/30/2017		22			63'			Cu	
10/19/2017		22			34'		9	Cu	
11/16/2017		22			42'		5	Cu	
11/21/2017		22			41'		3	Cu	
12/6/2017		22			30'		1	Cu	
			43.6%				159		
1/9/2017		23			47'		1	Cu	
9/18/2017		23			30'		1	Cu	
10/23/2017		23			47'		7	Cu	
9/13/2017		23			28'		1	Cu	

	Transient Dock 2017								
Doto	Facility.	Slip /	Percent of	Vessel	Vessel	Vessel	Length of	Paint	
Date	Facility	Mooring	Time	Type	Length	Beam	Stay	Type	
		Number	Occupied 2.7%				(nights)		
1/7/2017		24	2.7/0		50'			Cu	
		24			50'		1		
1/14/2017		24	0.8%		30		3		
0/22/2017		25	0.8%		34'		3		
9/23/2017 10/5/2017		25 25			33'			Cu Cu	
10/5/2017		23	1.1%		33		4		
1/4/2017		26	1.1%		37'		1		
1/4/2017		26			37'			Cu Cu	
1/5/2017					37'				
1/7/2017		26 26			37'			Cu Cu	
1/11/2017					37'		1		
1/12/2017		26 26			35'		7		
1/20/2017		26			33'		_		
1/28/2017		26			46'			Cu	
2/6/2017		26			35'			Cu Cu	
2/8/2017 2/9/2017					35'		1		
		26 26			37'			Cu Cu	
2/10/2017					35'			Cu	
2/11/2017		26 26			39'				
2/23/2017					30'			Cu Cu	
2/26/2017		26 26			30'			Cu	
2/27/2017 3/5/2017		26			52'			Cu	
3/6/2017		26			38'			Cu	
		26			40'				
3/17/2017					40'			Cu	
3/18/2017		26			33'		2	Cu	
4/2/2017 4/7/2017		26 26			39'			Cu Cu	
					45'				
4/12/2017 4/17/2017		26 26			50'			Cu Cu	
					36'				
4/20/2017 4/24/2017		26 26			38'			Cu Cu	
		26			38'			Cu	
5/1/2017 5/7/2017		26			30'			Cu	
5/12/2017		26			50'			Cu	
6/7/2017		26			54'			Cu	
6/20/2017		26			38'			Cu	
6/24/2017		26			40'			Cu	
		26			32'		+	Cu	
6/29/2017					38'				
7/5/2017		26 26					1	Cu	
7/7/2017					40' 40'			Cu	
7/8/2017		26						Cu	
7/9/2017		26			30'] 5	Cu	

Olin / Persont of Legath of								
Date	Facility	Slip / Mooring	Percent of Time	Vessel	Vessel	Vessel	Length of Stay	Paint
Date	1 demity	Number	Occupied	Type	Length	Beam	(nights)	Туре
7/14/2017		26	<u> </u>		30'			Cu
7/17/2017		26			35'			Cu
7/18/2017		26			35'		1	Cu
7/19/2017		26			35'		1	Cu
7/20/2017		26			35'			Cu
7/21/2017		26			35'			Cu
7/22/2017		26			38'		3	Cu
7/25/2017		26			35'			Cu
7/28/2017		26			31'			Cu
7/29/2017		26			40'		2	Cu
7/31/2017		26			27'		2	Cu
8/2/2017		26			21'		5	Cu
8/7/2017		26			35'		1	Cu
8/8/2017		26			40'		1	Cu
8/9/2017		26			35'		2	Cu
8/11/2017		26			35'		3	Cu
8/18/2017		26			42'		1	Cu
8/20/2017		26			46'		1	Cu
8/21/2017		26			38'		2	Cu
8/23/2017		26			38'		1	Cu
8/24/2017		26			38'		1	Cu
8/25/2017		26			38'		2	Cu
8/28/2017		26			30'		1	Cu
8/29/2017		26			30'		1	Cu
8/31/2017		26			33'		2	Cu
9/2/2017		26			33'		2	Cu
9/5/2017		26			33'		1	Cu
9/10/2017		26			34'		6	Cu
9/18/2017		26			34'		5	Cu
9/23/2017		26			39'		2	Cu
9/26/2017		26			30'		1	Cu
9/27/2017		26			30'		1	Cu
9/28/2017		26			30'		1	Cu
9/29/2017		26			30'		1	Cu
9/30/2017		26			46'			Cu
10/2/2017		26			33'		1	Cu
10/3/2017		26			30'		1	Cu
10/4/2017		26			30'		2	Cu
10/6/2017		26			33'			Cu
10/7/2017		26			33'		1	Cu
10/8/2017		26			33'			Cu
10/9/2017		26			33'		1	Cu
10/10/2017		26			33'		1	Cu

Slip / Percent of Vacant Vacant Length of Paint									
Date	Facility	Slip / Mooring	Time	Vessel	Vessel	Vessel	Length of Stay	Paint	
Date	1 acmity	Number	Occupied	Type	Length	Beam	(nights)	Type	
10/11/2017		26	Occupiou		40'			Cu	
10/14/2017		26			38'		2	Cu	
10/16/2017		26			32'		4	Cu	
10/21/2017		26			38'			Cu	
10/23/2017		26			40'			Cu	
10/25/2017		26			40'			Cu	
11/2/2017		26			35'			Cu	
11/3/2017		26			35'			Cu	
11/5/2017		26			30'			Cu	
11/7/2017		26			30'		1	Cu	
11/9/2017		26			22'			Cu	
11/13/2017		26			35'			Cu	
11/15/2017		26			35'			Cu	
11/16/2017		26			40'		3	Cu	
11/19/2017		26			40'		5	Cu	
11/24/2017		26			46'		2	Cu	
11/26/2017		26			46'		1	Cu	
11/27/2017		26			30'		1	Cu	
11/28/2017		26			34'		3	Cu	
12/4/2017		26			34'		3	Cu	
12/15/2017		26			33'		1	Cu	
12/18/2017		26			35'		2	Cu	
12/28/2017		26			46'		3	Cu	
1/18/2017		26			46'		1	Cu	
2/4/2017		26			40'		1	Cu	
2/12/2017		26			46'		2	Cu	
2/16/2017		26			40'		3	Cu	
3/1/2017		26			52'		3	Cu	
3/10/2017		26			45'			Cu	
8/17/2017		26			42'			Cu	
9/6/2017		26			34'		4	Cu	
9/25/2017		26			30'		1	Cu	
10/20/2017		26			38'		1	Cu	
11/6/2017		26			50'		1	Cu	
12/20/2017		26			35'		1	Cu	
			64.1%				234		
1/17/2017		27			28'		1	Cu	
1/22/2017		27			37'		3	Cu	
1/26/2017		27			27'		1	Cu	
1/30/2017		27			35'		1	Cu	
2/6/2017		27			35'			Cu	
2/11/2017		27			40'		5	Cu	
2/19/2017		27			40'			Cu	

Slip / Percent of Vaccal Vaccal Length of Pair								
Date	Facility	Mooring	Time	Vessel	Vessel	Vessel	Stay	Paint
2 4.0		Number	Occupied	Type	Length	Beam	(nights)	Type
2/21/2017		27			40'			Cu
2/26/2017		27			36'		3	Cu
3/1/2017		27			36'		1	Cu
3/3/2017		27			32'		1	Cu
3/4/2017		27			32'		2	Cu
3/6/2017		27			32'		2	Cu
3/10/2017		27			32'		1	Cu
3/11/2017		27			32'		2	Cu
3/13/2017		27			32'		1	Cu
3/14/2017		27			32'		1	Cu
3/15/2017		27			32'		2	Cu
4/3/2017		27			49'		1	Cu
4/7/2017		27			39'		1	Cu
4/22/2017		27			30'		1	Cu
5/1/2017		27			49'		1	Cu
5/10/2017		27			31'		3	Cu
5/21/2017		27			30'		1	Cu
5/29/2017		27			39'		2	Cu
6/14/2017		27			40'		1	Cu
6/25/2017		27			28'		15	Cu
7/13/2017		27			37'		3	Cu
7/17/2017		27			36'		1	Cu
7/22/2017		27			30'		1	Cu
7/23/2017		27			30'		1	Cu
7/24/2017		27			32'		1	Cu
7/25/2017		27			30'		1	Cu
7/26/2017		27			30'		1	Cu
7/27/2017		27			30'		1	Cu
7/28/2017		27			35'		1	Cu
7/29/2017		27			35'		2	Cu
7/31/2017		27			40'		4	Cu
8/4/2017		27			31'		2	Cu
8/7/2017		27			32'		2	Cu
8/9/2017		27			32'		1	Cu
8/28/2017		27					23	Cu
9/20/2017		27			30'			Cu
9/25/2017		27			35'		1	Cu
9/26/2017		27			30'		1	Cu
9/27/2017		27			30'		2	Cu
9/30/2017		27			30'		1	Cu
10/1/2017		27			30'			Cu
10/6/2017		27			32'		10	Cu
10/16/2017		27			38'			Cu

Iransient Dock 2017									
Date	Facility	Slip / Mooring	Percent of Time	Vessel	Vessel	Vessel	Length of Stay	Paint	
Date	Гаспіту	Number	Occupied	Type	Length	Beam	(nights)	Type	
10/20/2017		27	Occupica		30'			Cu	
10/23/2017		27			37'		1		
10/24/2017		27			32'		1		
10/26/2017		27			18'			Cu	
10/27/2017		27			33'		3		
10/30/2017		27			28'		3	Cu	
11/2/2017		27			27'		1	Cu	
11/5/2017		27			32'		3	Cu	
11/8/2017		27			32'		1	Cu	
11/14/2017		27			37'		1	Cu	
11/16/2017		27			35'		1	Cu	
11/19/2017		27			39'		1	Cu	
11/20/2017		27			39'			Cu	
11/21/2017		27			35'		2	Cu	
11/27/2017		27			40'		1	Cu	
11/28/2017		27			40'		1	Cu	
12/4/2017		27			35'		1	Cu	
12/11/2017		27			30'		2	Cu	
12/13/2017		27			30'		2	Cu	
12/19/2017		27			35'		1	Cu	
12/22/2017		27			30'		1	Cu	
2/8/2017		27			40'		3	Cu	
2/16/2017		27			40'		3	Cu	
3/2/2017		27			32'		1	Cu	
3/8/2017		27			32'		2	Cu	
8/10/2017		27			19'		8	Cu	
10/2/2017		27			30'		1	Cu	
10/5/2017		27			28'		1	Cu	
10/25/2017		27			35'		1	Cu	
12/20/2017		27			40'		1	Cu	
12/21/2017		27			40'		1	Cu	
5/2/2017		27			40'		2	Cu	
			50.1%				183		
1/10/2017		28			38'		2	Cu	
1/18/2017		28			34'	_	2	Cu	
1/23/2017		28			38'		2	Cu	
1/25/2017		28			38'		5	Cu	
1/30/2017		28			38'		1	Cu	
2/6/2017		28			28'		2	Cu	
2/8/2017		28			36'		5	Cu	
2/13/2017		28			38'			Cu	
2/18/2017		28			38'		2	Cu	
2/21/2017		28			38'		1	Cu	

	Office / Personal of								
Date	Facility	Slip / Mooring	Percent of Time	Vessel	Vessel	Vessel	Length of Stay	Paint	
Date	Гаспіту	Number	Occupied	Type	Length	Beam	(nights)	Type	
2/22/2017		28	Occupicu		38'			Cu	
2/28/2017		28			34'			Cu	
3/20/2017		28			38'		1	Cu	
3/21/2017		28			38'		4	Cu	
4/5/2017		28			38'		3	Cu	
4/15/2017		28			38'			Cu	
4/22/2017		28			40'			Cu	
4/29/2017		28			30'			Cu	
5/1/2017		28			32'		<u> </u>	Cu	
5/3/2017		28			32'		2	Cu	
5/5/2017		28			30'		1	Cu	
5/6/2017		28			38'		3	Cu	
5/20/2017		28			30'		1	Cu	
6/5/2017		28			30'		1	Cu	
6/6/2017		28			30'		1	Cu	
6/7/2017		28			30'		1	Cu	
6/23/2017		28			44'		3	Cu	
6/26/2017		28			44'		2	Cu	
6/29/2017		28			13'		1	Cu	
6/30/2017		28			40'		1	Cu	
7/1/2017		28			32'		2	Cu	
7/3/2017		28			30'		2	Cu	
7/6/2017		28			40'		1	Cu	
7/7/2017		28			30'		3	Cu	
7/10/2017		28			30'		1	Cu	
7/11/2017		28			30'		2	Cu	
7/13/2017		28			30'		1	Cu	
7/19/2017		28			64'		5	Cu	
7/25/2017		28			40'		3	Cu	
7/28/2017		28			32'		10	Cu	
8/7/2017		28			20'		3	Cu	
8/10/2017		28			32'		1	Cu	
8/11/2017		28			40'		2	Cu	
8/13/2017		28			38'			Cu	
8/14/2017		28			38'		1	Cu	
8/15/2017		28			38'			Cu	
8/16/2017		28			38'			Cu	
8/22/2017		28			30'			Cu	
8/26/2017		28			37'			Cu	
8/28/2017		28			38'			Cu	
8/29/2017		28			27'			Cu	
8/30/2017		28			27'			Cu	
9/1/2017		28			36'		2	Cu	

Slip / Percent of Vessel Vessel Length of Percent								
Date	Facility	Mooring	Percent of Time	Vessel	Vessel	Vessel	Length of Stay	Paint
Date	1 acmity	Number	Occupied	Type	Length	Beam	(nights)	Type
9/3/2017		28	Cocapica		39'			Cu
9/6/2017		28			38'		5	Cu
9/11/2017		28			33'			Cu
9/19/2017		28			33'			Cu
9/22/2017		28						Cu
9/23/2017		28			35'			Cu
9/24/2017		28			30'		1	Cu
9/26/2017		28			28'			Cu
9/28/2017		28			33'		5	Cu
10/3/2017		28			33'			Cu
10/7/2017		28			30'		1	Cu
10/8/2017		28			30'		1	Cu
10/9/2017		28			33'			Cu
10/10/2017		28			27'		2	Cu
10/12/2017		28			27'		1	Cu
10/13/2017		28			27'		1	Cu
10/14/2017		28			38'		16	Cu
10/31/2017		28			38'		1	Cu
11/1/2017		28			38'		3	Cu
11/4/2017		28			38'		1	Cu
11/6/2017		28			35'		1	Cu
11/9/2017		28			36'		1	Cu
11/10/2017		28			38'		1	Cu
11/14/2017		28			30'		2	Cu
11/16/2017		28			30'		1	Cu
11/19/2017		28			38'		1	Cu
11/22/2017		28			30'		1	Cu
11/24/2017		28			30'		1	Cu
11/25/2017		28			30'		1	Cu
11/26/2017		28			30'		1	Cu
11/28/2017		28			27'		1	Cu
12/4/2017		28			38'		3	Cu
12/7/2017		28			38'		2	Cu
12/9/2017		28			38'		2	Cu
12/11/2017		28			34'		1	Cu
12/12/2017		28			34'			Cu
12/19/2017		28			31'		3	Cu
12/26/2017		28			30'		3	Cu
5/21/2017		28			40'		3	Cu
6/19/2017		28			20'		3	Cu
7/5/2017		28			30'		1	Cu
10/4/2017		28			20'		3	Cu
11/8/2017		28			30'		1	Cu

Date	Facility	Slip / Mooring Number	Percent of Time Occupied	Vessel Type	Vessel Length	Vessel Beam	Length of Stay (nights)	Paint Type
9/25/2017		28			28'		1	Cu
			61.1%				223	

VESSEL TRACKING SIYB MARINA AND YACHT CLUBS

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	Category 1 reg #
SDYC	6001	100	Sail	46	14	Copper	Proline 1088-6	A10886	ter Island Boat	Jun	2014	60	60061-94-ZB
SDYC	6002	100	Power	39.5	13.8	Copper	erlux Micron Ex	5693	11 and Sausalito	Aug	2015	35	
SDYC	6003	100	Power	48	15.1	Copper	Proline 1088-6	A1088G	ter Island Boat	Jan	2015	60	60061-94-ZB
SDYC	6004	100	Sail	43	13	Low Copper	m Pro Gold mo	A411187706	ter island Boat	Feb	2016	65	
SDYC	6005	84		52	15.4	Copper	Pettit Ultima	1038	Driscolls	Apr	2016	60	
SDYC	6006	100	Power			Copper	Super Proguard	NAU770	elsen Beaumor	Jun	2016	55	23566-20-ZR
SDYC	6007	97	Sail	34.5	11	Copper	om Pro w/ Gra	411127906	Driscoll	Apr	2015	40	60061-117-ZE
SDYC	6008	87	Power	39	12	Low Copper	ttit Copper Gua	1048	ter Island Boat	Feb	2016	33.26	
SDYC	6009	95	Sail	40	13	Non Copper	Intersleek -8	FXA979/A	ter Island Boat	Mar	2013	0	
SDYC	6010	98	Sail	39.6	12.3	Low Copper	Pettit B-94	B-94	Driscoll	Jun	2015	65	
SDYC	6011	70	Power	35	12.3	Copper	erlux Bottomk	10397	Driscoll	Dec	2012	42.75	
SDYC	6012	95		62	35.7	Copper	C Offshore Blac	V118	Boat Works, P	July	2016	41.19	
SDYC	6013	100	Sail	39	13	Copper	rlux Ultrakote	2669N	Balboa	Jul	2016	66.5	
SDYC	6014	92	Sail	44.5	13.3	Non Copper	Interlux Ultra	Y3779F	Driscoll	Mar	2017	55	2693-212-AA
SDYC	6015	100	Sail	32	9	Copper	Pettit Z-Spar	411187706	Driscoll	Jul	2012	65	60061-94-ZE
SDYC	6016	99	Sail	39	12	Low Copper	Interlux Ultra	Y3779F	Marine Group	Nov	2015	55	2693-212-AA
SDYC	6017	99		37	14	Copper	erlux Bottomk	10397	Driscoll	Oct	2010	42.75	
SDYC	6018	97	Power	42	13.6	Copper	line 1088-6 Bl	A1088G	ter Island Boat	Aug	2017	60	60061-94-ZB
SDYC	6019	0		23.3	7.11	Non Copper	Purchased 2010	6	Purchase		2016	67	
SDYC	6020	100	Power	17	6.8	Copper	ical Super Prog	NAU773	ielsen Beaumo	Jun	2015	55	23566-20-ZT
SDYC	6021	96	Sail	52	10	Copper	Interlux Ultra	Y3779F	Driscolls	Aug	2014	55	2693-212-AA
SDYC	6022	0	Sail	25.5	8	Non Copper	rchased Aug 20	017	Purchase	Aug	2017	67	
SDYC	6023	94	S	28.2	8.2	Low Copper	Interlux Ultra	Y3779F	ter Island Boat	Apr	2014	55	2693-212-AA
SDYC	6024	96	Sail	29.3	9.3	Copper	Pettit Z-Spar	411187706	Driscoll	Aug	2012	65	60061-94-ZE
SDYC	6025	95	Power	21.3	8.4	Copper	Bottomshield	411186606	ogswell Marin	Aug	2015	28.86	60061-129-AA
SDYC	6026	99	Sail	37'		Copper	r Interlux Prote	B-94	Driscoll	Aor	2015	65	
SDYC	6027	96	Sail	35	9	Low Copper	erlux Bottomk	79	ter Island Boat	Jun	2012	22	
SDYC	6028	98	Sail	29.11	10.1	Low Copper	Interlux Ultra	Y3779F	ter Island boat	Jul	2015	55	2693-212-AA
SDYC	6030	91		39.2	10.8	Copper	Interlux Ultra	Y3779F	Koehler	Jun	2013	55	2693-212-AA
SDYC	6031	98	Sail	30	10.8	Copper	ottom Pro Gold	A411187706	Driscoll	Oct	2017	65	
SDYC	6032	97	Sail	43.8		Copper	Widow by Petti	1862	ter Island Boat	Aug	2016	25	
SDYC	6033	99	Sail	29.11	10.1	Copper	it Z-Spar Prote	411187706	Driscoll	Jun	2010	65	60061-94-ZE
SDYC	6034	0	Sail	29.9	11.3	Non Copper	it Z-Spar Prote	411187706	Driscoll	Jun	2016	65	60061-94-ZE
SDYC	6035	97		25		Copper	iterlux Ultrako	2779N	ter Island Boat	Mar	2017	66.5	
SDYC	6036	92	Sail	34		Copper	tit Z-Spar Pro G	A411187706	Shipyard / Nev	Sept	2017	65	
SDYC	6037	100	Sail	35	11.9	Copper	Proline 1088-6	A1088G	ter Island Boat	Feb	2016	60	60061-94-ZB
SDYC	6038	95	Sail	J-120		Copper	Prline 1088-6	A1088G	ter Island Boat	Oct	2016	60	60061-94-ZB
SDYC	6039	100	Sail	33.3	10	Low Copper	Ceram-kote	99M	ter Island Boat	Oct	2014	0	
SDYC	6040	99		47.2	14.3	Low Copper	rchased Feb 20)17	Purchase	Feb	2017	67	

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	Category 1 reg #
SDYC	6041	100	Power	31	10	Non Copper	Epoxy Bottom	V127/A	ter Island Boat	Sept	2014	0	
SDYC	6042	96	Sail	68	14	Copper	lawk Smart Sol	4705	ward Shipyard-	Mar	2015	0	
SDYC	6043	95	Sail	34.9	11.11	Copper	Pettit Vivid-3	1361	ter Island Boat	Jun	2016	25	60061-116-AA
SDYC	6044	100	Power	45.7	14.5	Copper	it Z-Spar Prote	411187706	Driscoll	Aug	2016	65	60061-94-ZE
SDYC	6046	99	Sail	18		Copper	it Z-Spar Prote	411187706	Driscoll	Mar	2012	65	60061-94-ZE
SDYC	6047	99	Power	33	11.3	Copper	Proline 1088-6	A1088G	Driscoll	Dec	2013	60	60061-94-ZB
SDYC	6048	99	Sail			Copper	it Z-Spar Prote	411187706	Driscoll	Apr	2012	65	60061-94-ZE
SDYC	6049	74				Copper	rchased Mar 20	A1088G	Purchase	Mar	2017	60	60061-94-ZB
SDYC	6050	100		40	13	Copper	ıx Calif Bottom	YBA143	Driscoll	Jul	2012	35	2693-18-ZA
SDYC	6051	99	Power	38	12	Copper	it Z-Spar Prote	411187706	Driscoll	Jul	2016	65	60061-94-ZE
SDYC	6052	0	Power	37	13	Non Copper	Ultrakote-6	Y3669U	Koehler	Jun	2017	57	
SDYC	6053	98	Power			Copper	ıx Ultra - "Ultra	2779N	Koehler	Jun	2017	66.5	
SDYC	6054	100	Power			Low Copper	ettit Vivid Whit	11161	Lido Newport	Aug	2016	25	60061-116-AA
SDYC	6055	0	Power	23	8	Non Copper	Proline 1088-6	A1088G	ter Island Boat	Oct	2015	60	60061-94-ZB
SDYC	6056	99	Power	36.4	10	Copper	Pettit-Pro	16471732	Driscoll	May	2015	65	
SDYC	6057	0		32	11	Non Copper	rchased Oct 20)13	Purchase		2013	67	
SDYC	6059	97	Power	35.5	12	Copper	Interlux Ultra	Y3779F	ter Island Boat	Feb	2013	55	2693-212-AA
SDYC	6060	90	Sail	36	12.5	Non Copper	Ceram-kote	99M	ter Island Boat	May	2011	0	
SDYC	6062	98	Sail	35.3	11.5	Copper	Micron 66-2	YBA473	ielsen Beaumo	Jul	2014	35	2693-187-ZG
SDYC	6063	81	Sail	40.9	12.9	Non Copper	it Z-Spar Prote	411187706	Driscoll	Mar	2015	65	60061-94-ZE
SDYC	6064	95	Sail	36	6	Non Copper	ad VOC Blue or	1378	Koehler	May	2013	65	
SDYC	6065	0	Electric	30	8.5	Non Copper	it Z-spar Prote	411187706	SD Boatyard	Jan	2009	65	60061-94-ZE
SDYC	6066	100	Power	25.5	7	Non Copper	lo Bottom Pain	nt	none			0	
SDYC	6067	92	Power	58		Low Copper	ux Ultra Cote 3	Y3779U	ter Island Boat	Aug	2017	57	
SDYC	6068	98	Sail	39.1	12.3	Copper	Interlux Ultra	Y3779F	ter Island Boat	Nov	2017	55	2693-212-AA
SDYC	6069	94	Sail	48	14.3	Copper	Interlux Ultra	Y3779F	Koehler	Dec	2012	55	2693-212-AA
SDYC	6070	92		50	12	Copper	ar Bottom Pro (A411187706	Driscoll	Feb	2016	65	
SDYC	6071		vacant	Jr Racing								0	
SDYC	6072	98		27		Copper	erlux VC Offsho	V118	ter Island Boat	Jun	2015	41.19	
SDYC	6073	93		39.3	12.1	Low Copper	Interlux Ultra	Y3779F	ter Island Boat	Aug	2014	55	2693-212-AA
SDYC	6075	75	Sail	22	8	Low Copper	lydrolift - No b	ottom paint	self-applied			0	
SDYC	6076	98		32.5	11.75	Copper	Purchased Apr	2017	Purchase	Apr	2017	0	
SDYC	6077	96		55	16	Non Copper	Interlux Ultra	Y3779F	ter Island Boat	Feb	2015	55	2693-212-AA
SDYC	6078	98	Power	35	11	Copper	erlux Bottomko	10397	Koehler	Nov	2016	42.75	
SDYC	6079	9	Sail	33	10.4	Copper	erlux VC Offsho	V118	Driscoll	Oct	2013	41.19	
SDYC	6080	72	Power	34		Copper	Pettit Horizons	1850	Driscoll	Jul	2016	40.5	60061-101-AA
SDYC	6081	99	Sail	28	9.6	Low Copper	ettit Vivid Whit	1361	ter Island Boat	Jan	2015	25	60061-116-AA
SDYC	6082	86	Sail	39.8	12.3	Copper	Interlux Ultra	Y3779F	iscoll Mission B	Jun	2014	55	2693-212-AA
SDYC	6083	100	Sail	44	13.7	Copper	terlux Ultra Blu	3669	ter Island Boat	Dec	2010	55	

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	Category 1 reg #
SDYC	6084	98		47.1	15.6	Copper	Sharkskin-7	6145	SD Boatyard	May	2012	45	44891-11-AA
SDYC	6085	100	Power	32	10.1	Copper	Pettit Vivid -3	1361	de San Diego C	Jan	2015	25	60061-116-AA
SDYC	6086	100	Power	33	10.2	Copper	terlux Interspe	BZA646	Driscoll	Aug	2015	0	
SDYC	6087	99	Power	17		Copper	Monterey	5445	Self Applied	Sept	2016	58	
SDYC	6088	100	Sail	45.6	14.1	Non Copper	Interlux Ultra	Y3779F	Driscoll	Jun	2015	55	2693-212-AA
SDYC	6089	100		36	13	Copper	iterlux Ultrakoi	2779N	ter Island Boat	Oct	2017	66.5	
SDYC	6090	84	Sail	36	11.9	Copper	line 1088 01 B	Y1088C-01	ter Island Boat	Jan	2014	67	
SDYC	6091	71	Sail	41	11	Non Copper	Ceramkote	99M	ter Island Boat	May	2014	0	
SDYC	6092	100		80	23.5	Copper	Interspeed 640	BRA642		Jan	2017	38	2693-142-ZM
SDYC	6093	99	Sail	28	7	Low Copper	Interlux Ultra	Y3779F	Purchased	Jun	2015	55	2693-212-AA
SDYC	6094	100	Power	31.9	11.5	Low Copper	ux Ultra Blue 3	Y3669F	ter Island Boat	Jun	2015	55	2693-212-AA
SDYC	6095	92	Power	38.2	13.4	Copper	Interlux Ultra	Y3779F	ter Island Boat	Nov	2015	55	2693-212-AA
SDYC	6096	99	Power	42	24	Copper	Proline 1088-6	A1088G	Driscoll	Apr	2016	60	60061-94-ZB
SDYC	6097	89		32	6.7	Copper	terlux Interspe	BZA646	Driscoll	Jun	2015	0	
SDYC	6098	100	Sail	36.4	12.5	Copper	it Z-Spar Prote	411187706	ter Island Boat	Mar	2017	65	60061-94-ZE
SDYC	6099	99	Sail	34		Copper	Purchased 2015	5	Purchase		2015	67	
SDYC	6100	84		17	6	Copper	B-94 Protector	B-94	iscoll Boat Wo	Oct	2015	65	
SDYC	6101	78	Sail	40	12.8	Non Copper	Pacifica Plus	YBB263	ter Island Boat	Mar	2013	0	
SDYC	6102	100	Power	34.7	13	Copper	erglass Botton	YBA579	ter Island Boat	Nov	2016	46	
SDYC	6103	95	Power	40	14	Copper	it Z-Spar Prote	411187706	Driscoll	Jul	2016	65	60061-94-ZE
SDYC	6104	99	Sail	36.1	10.1	Copper	Interlux Ultra	Y3779F	ter Island Boat	Apr	2015	55	2693-212-AA
SDYC	6105	98	Power			Copper	Interlux Aqua	YBA549	Driscoll	May	2014	46	
SDYC	6106	100		31.1	6.8	Copper	Performance Ep	V127/A				0	
SDYC	6107	100	Sail	28.5	9.2	Copper	terlux Ultra Ko	2779N	ter Island Boat	Aug	2017	66.5	
SDYC	6108	100	Power	46.4	11.6	Copper	Interlux Ultra	Y3779F	ter Island Boat	Jul	2017	55	2693-212-AA
SDYC	6109	49	Power	54.6	16.2	Copper	Intersleek 900	FXA979/A	Driscoll	Mar	2013	0	
SDYC	6110	93		64.3	18	Copper	Interlux Micror	5693	ter Island Boat	Oct	2011	35	
SDYC	6112	98	Sail	35	11.7	Copper	Trinidad-6	A1088G	Driscoll	Jun	2017	60	60061-94-ZB
SDYC	6113	76	Sail	35	11	Copper	Proline 1088-6	Y3779F	ter Island Boat	Jul	2017	55	2693-212-AA
SDYC	6114	94		33.2	10	Low Copper	: Purchased in 2	2016	Purchase		2016	67	
SDYC	6115	100	Sail	46.6	14.7	Low Copper	cal Proguard Ab	NAU993	ielsen Beaumo	Feb	2015	41.97	
SDYC	6116	88	Sail	52	14.8	Copper	Proline 1088-6	A1088G	ter Island Boat	Jul	2005	60	60061-94-ZB
SDYC	6117	95	Power	24	9	Copper	erlux Bottomko	10397	Driscoll	Oct	2016	42.75	
SDYC	6119	98	Sail	35	11	Copper	Performance Ep	V127/A	ter Island Boat	Feb	2010	0	
SDYC	6120	69	Sail	59	18	Copper	Interlux Ultra	Y3779F	Koehler	Oct	2014	55	2693-212-AA
SDYC	6121	97	Power	25	8	Copper	iterlux Ultra Re	YBA472	Self Applied	Jan	2017	35	2693-187-ZE
SDYC	6123	100	Power	49	14.2	Copper	Proline 1088-6	A1088G	ter Island Boat	Apr	2015	60	60061-94-ZB
SDYC	6124	96		20.6	8.3	Non Copper	ewater Copper	8101	iscoll Mission E	Jun	2011	67	
SDYC	6125	90	Power	36.7	12.6	Low Copper	Proline 1088-6	A1088G	ter Island Boat	Mar	2011	60	60061-94-ZB

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	Category 1 reg #
SDYC	6126	79	Power	44	13.7	Non Copper	water Shelter Is	8202	ter Island Boat	Apr	2011	0	
SDYC	6127	86		39	13	Low Copper	rchased Feb 20)17	Purchase	Feb	2017	67	
SDYC	6128	100	Power	38		Copper	Proline 1088-6	A1088G	ter Island Boat	Jun	2017	60	60061-94-ZB
SDYC	6131	100	Sail	34	11	Non Copper	water Shelter Is	8202	ter Island boat	Apr	2015	0	
SDYC	6133	100	Power	52	16	Copper	Interlux Ultra	Y3449U	ter Island Boat	Feb	2015	57	
SDYC	6134		vacant									0	
SDYC	6135	98	Power	23	8.5	Copper	ıx Calif Bottom	YBA143	Driscoll	Dec	2015	35	2693-18-ZA
SDYC	6136	90	Sail	45	13.1	Copper	Interlux Ultra	Y3779F	ter Island Boat	Apr	2014	55	2693-212-AA
SDYC	6137	92	Sail	48	13.2	Copper	Offshore Inter	V117	Driscoll	Feb	2013	41.19	
SDYC	6138	0				Non Copper	lo Bottom Pain	nt	none			0	
SDYC	6139	0	Electric	23	7.2	Non Copper	Interlux Ultra	Y3779F	Driscoll	Apr	2017	55	2693-212-AA
SDYC	6140	95	Power	42	13.9	Non Copper	terlux Interspe	BZA646	ter Island Boat	Aug	2014	0	
SDYC	6141	98		46.4	9.9	Copper	terlux Ultra-Co	2779N	ter Island Boat	Apr	2017	66.5	
SDYC	6142	93	Sail	48.4	14.8	Copper	cal Proguard Ab	NAU993	ielsen Beaumo	Feb	2015	41.97	
SDYC	6143	96		44.2	14.5	Copper	terlux Ultra Bla	Y3779F	Svendsens	Apr	2015	67	2693-212-AA
SDYC	6144	98	Sail	32	6.7	Non Copper	erlux Bottomk	10397	Other	May	2011	42.75	
SDYC	6145	94		35	11	Copper						67	
SDYC	6146	99		26	9	Copper	inidad VOC Bla	1878	Driscoll	Jan	2013	75.8	
SDYC	6147	100	Sail			Copper	chased May 20	015	Purchase	May	2015	67	
SDYC	6148	81	Sail	34.5	11	Copper	erlux VC Offsho	V118	Driscoll	Aug	2015	41.19	
SDYC	6149	100				Copper	rchased Dec 20)15	Purchase		2015	67	
SDYC	6150	100	Power	47.6	14.4	Copper	ux Ultra Black 3	Y3779F	ter Island Boat	Sep	2015	55	2693-212-AA
SDYC	6151	98	Power	47.3	15.6	Non Copper	Pacifica Plus	YBB263	ne Group/Sout	Apr	2016	0	
SDYC	6152	98	Sail			Copper	Interlux Ultra	Y3779F	Driscoll	Jun	2017	55	2693-212-AA
SDYC	6153	0	Power	22	8	Non Copper	Interlux K91	K91	Driscoll	Mar	2007	70.2	
SDYC	6154	100	Power	36.3	16.5	Non Copper	Intersleek 900	FXA979/A	ter Island Boat	Jun	2013	0	
SDYC	6155	100	Power	33.6	10.3	Copper	Interlux Ultra	Y3779F	ter Island Boat	Jun	2015	55	2693-212-AA
SDYC	6156	0	Power	50	16.8	Non Copper	Interlux Ultra	Y3779F	ter Island Boat	May	2015	55	2693-212-AA
SDYC	6157	70	Power	63	15.8	Copper	terlux Ultra Bla	Y3779F	ielsen Beaumo	Jun	2015	55	2693-212-AA
SDYC	6158	98	Sail	59	10.6	Copper	lux Bottomkot	79	Koehler	Aug	2015	22	
SDYC	6159	98	Power	37	13.5	Low Copper	Proline	A1088G	iscoll Mission E	Dec	2014		60061-94-ZB
SDYC	6160	99	Power	38	13	Copper	ABC 3-2	ABC3-92	ter Island Boat	Oct	2015	47.99	
SDYC	6161	98	Sail	40	12.5	Copper	Pettit Vivid-3	1361	Driscoll	Jun	2016	25	60061-116-AA
SDYC	6162	98		33	11	Copper	lux Bottomkot	79	Driscoll	Sept	2017	22	
SDYC	6163	93	Power	20.5		Low Copper	Interlux Ultra	Y3779F	ter Island Boat	Jun	2016	55	2693-212-AA
SDYC	6164	100	Power	38	13.5	Copper	chased June 20		Purchase	Jun	2014	67	
SDYC	6165	0	Sail	43.8	12.8	Non Copper	oline 1088 Bla	A1088G	ter Island Boat	Jun	2015	60	60061-94-ZB
SDYC	6166	98	Sail	41	10.3	Non Copper	Ultrakote - 6	Y3669U	Koehler Kraft	Mar	2017	57	
SDYC	6167	-	vacant	Jr Racing		- 1-1			- 210			0	

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	Category 1 reg #
SDYC	6168	100	Power	73.3	21	Low Copper	tom Pro Gold A	A411187706	Driscoll	Mar	2017	65	
SDYC	6169	100	Sail	79	16.4	Copper	Proline 1088-6	A1088G	ura Harbor Boa	Nov Nov	2014	60	60061-94-ZB
SDYC	6170	0	Sail	35	11	Non Copper	Interlux Ultra	Y3779F	Koehler	Oct	2016	55	2693-212-AA
SDYC	6171	90	Power	42	13.5	Copper	Interlux Ultra	Y3779F	ter Island Boat	Apr	2017	55	2693-212-AA
SDYC	6172	0	Sail	20	7	Non Copper	Interlux Ultra	Y3779F	Driscoll	Jul	2016	55	2693-212-AA
SDYC	6173	97	Sail	43.2	12.9	Copper	Defense CA 43	4801	ielsen Beaumo	Aug	2016	47.5	60061-101-ZA
SDYC	6174	97	Power	44.8	14.4	Copper	Intersleek 900	FXA979/A	ter Island Boat	Jun	2015	0	
SDYC	6176	89		63.5		Low Copper	Interlux Ultra	Y3779F	Driscoll	Mar	2017	55	2693-212-AA
SDYC	6177	100	Sail	34	11.5	Copper	Interlux Ultra	Y3779F	ter Island Boat	Feb	2017	55	2693-212-AA
SDYC	6178	99		25	8.6	Copper						67	
SDYC	6179	92	Power	65		Copper	Seaguard-2	P30BQ12	Driscoll	Jul	2015	48	
SDYC	6180	67	Power	32.4	12.3	Copper	Ceramcoat	99M	ter Island Boat	Jun	2008	0	
SDYC	6181	99	Sail	49.2	15.11	Copper	Interlux Ultra	Y3779F	ter Island Boat	Dec	2016	55	2693-212-AA
SDYC	6182	98		30.1	11	Copper	terlux Ultra Blu	3669	ter Island Boat	yard	2015	55	
SDYC	6183	97	Sail	49.5	14.8	Copper	erlux Bottomk	10397	ter Island Boat	Apr	2016	42.75	
SDYC	6184	0	Sail	42	13	Non Copper	Proline 1088-6	A1088G	ter Island Boat	Dec	2013	60	60061-94-ZB
SDYC	6185	100	Power	30.5	10.6	Low Copper	lux Bottomkot	79	ter Island Boat	Aug	2014	22	
SDYC	6186	98	Power	36	12	Copper	Interlux Ultra	Y3779F	ter Island Boat	Oct	2015	55	2693-212-AA
SDYC	6187	99	Sail			Copper	Trinidad Pro-7	A1877G	ter Island Boat	Feb	2017	60	60061-94-ZD
SDYC	6188	91				Non Copper	rchased Sep 20)17	Purchase	Sep	2017	67	
SDYC	6189	96	Power	42	15	Copper	Bottom Pro G	A411187706	ington Harbor	Oct	2015	65	
SDYC	6190		vacant	jr racing								0	
SDYC	6191	0	Power	47.9	15.5	Non Copper	Interlux Ultra	Y3779F	ter Island Boat	Nov	2017	55	2693-212-AA
SDYC	6192	99		42	13.5	Copper	lux Ultra Blue	Y3669F	ter Island Boat	Jul	2017	55	2693-212-AA
SDYC	6193	100	Sail	36.3	11.8	Copper	Interlux Ultra	Y3779F	ter Island Boat	Jun	2015	55	2693-212-AA
SDYC	6194	93		29.2	6.4	Copper						67	
SDYC	6195	98	Power			Copper	terlux Interspe	BQA659/5GL	ter Island Boat	Oct	2014	38	2693-176-ZB
SDYC	6196	100	Sail	28		Low Copper	Proline	A10886	iscoll Mission E	Oct	2010	60	60061-94-ZB
SDYC	6197	99	Sail	40	11.9	Low Copper	Interlux Ultra	Y3779F	Koehler	Nov	2013	55	2693-212-AA
SDYC	6199	100	Electric	31	11.3	Copper	Pettit Z-Spar	411187706	Driscoll	Dec	2011	65	60061-94-ZE
SDYC	6201	100	Power	32		Copper	Interlux Ultra	Y3779F	ter Island Boat	Jun	2016	55	
SDYC	6202	91	Sail	47	14.8	Low Copper	ar Bottom Pro	A411187706	Driscoll	May	2017	65	
SDYC	6203	97	Sail	28	9.3	Non Copper	Coppercoat	85396-1-AA	Driscoll	Apr	2013	0	
SDYC	6204	98	Power	40	13.5	Copper		She	Iter Island Boat	May	2016	67	
SDYC	6205		Power										
SDYC	6206	96		30	10	Copper	Interlux Ultra	Y3779F	ter Island Boat	Oct	2013	55	2693-212-AA
SDYC	6207	98	Power	34	10.6	Copper	erlux Bottomk	10397	ter Island Boat	May	2012	42.75	
SDYC	6209	0	Sail	47	14.8	Non Copper	Proline 1088-6	A1088G	ter Island Boat	Jul	2015	60	60061-94-ZB
SDYC	6210		vacant			Copper						67	

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	Category 1 reg #
SDYC	6211	96	Power	71.5	19.6	Copper	Interlux Ultra	Y3779F	Driscoll	Nov	2014	55	2693-212-AA
SDYC	6213	99	Power	35	11.5	Copper	Pettit Z-Spar	411187706	Driscoll	Jul	2017	65	60061-94-ZE
SDYC	6214	98	Sail	32	6.7	Copper	Interlux Ultra	3779	Koehler	Oct	2016	55	
SDYC	6215	99	Sail	36	11	Non Copper	lo Bottom Pain	t	none			0	
SDYC	6216	91	Sail	43	13.1	Copper	Interlux Ultra	Y3779F	ter Island Boat	Jul	2012	55	2693-212-AA
SDYC	6217	98		24	8.5	Copper	terlux Ultra Bla	Y3779F	scolls Mission	Jan	2016	55	2693-212-AA
SDYC	6218	100	Sail	37	12.3	Non Copper	ttit Copper-Gua	1048	ielsen Beaumo	Jun	2015	33.26	
SDYC	6219	100		30	21.2	Copper	ettit Vivid Free	1361	Marine Group	Jul	2014	25	60061-116-AA
SDYC	6220	100	Sail	28	9.5	Low Copper	Ceram-kote	99M	Self-Applied	Jun	2010	0	
SDYC	6221	100	Sail	39	12.6	Non Copper	Proline 1088-6	A1088G	ter Island Boat	Oct	2017	60	60061-94-ZB
SDYC	6222	98		42	13.6	Copper	ar Bottom Pro (A411187706	Driscoll	Jun	2014	65	
SDYC	6223	100	Sail	38	11.7	Copper	Proline 1088-6	A1088G	ter Island Boat	Mar	2015	60	60061-94-ZB
SDYC	6224	0	Power	36.7	13.7	Non Copper	Pettit Ultima	1038	Driscoll	Aug	2010	60	
SDYC	6225	97	Power	40	12	Copper	Interlux Ultra	Y3779F	ter Island Boat	Mar	2016	55	2693-212-AA
SDYC	6226	100		30	8.5	Low Copper	Ceramcote	99M	ter Island Boat	Jun	2002	0	
SDYC	6228	92	Power	48	15.5	Copper	Proline 1088-6	A10886	Driscoll	Jun	2015	60	60061-94-ZB
SDYC	6229		vacant	jr racing								0	
SDYC	6230	92	Power	40	13.8	Copper	Interlux Ultra	Y3779F	ter Island Boat	Jun	2016	55	2693-212-AA
SDYC	6231	90	Power	46	15	Low Copper	erlux Interprot	B-94	ter Island Boat	Jun	2015	65	
SDYC	6232	100	Sail	36	12	Copper	Trinidad SR	A1877G	Driscoll	Feb	2016	60	60061-94-ZD
SDYC	6233	81	Sail	37.5	13	Copper	Hydrocoat	1840	ielsen Beaumo	Jul	2015	40.43	60061-87-ZI
SDYC	6234	88		57	16	Low Copper	Proline 1088-6	A1088G	ter Island Boat	Jul	2009	60	60061-94-ZB
SDYC	6235	100	Power	40	12.1	Low Copper	lawk Smart Soli	4705	Driscoll	Jun	2005	0	
SDYC	6236	95	Power	36.5	11.4	Copper	erlux Bottomko	10397	laples Boat Yar	Jun	2012	42.75	
SDYC	6237	94		45.9	12	Copper	terlux Ultra Ko	Y3449U	ter Island Boat	Mar	2016	57	
SDYC	6238	0	vacant									0	
SDYC	6239	100	Sail			Copper	Interlux Ultra	Y3779F	ter Island Boat	Aug	2014	55	2693-212-AA
SDYC	6240	98	Power	30	9.6	Copper	erglass Botton	YBA579	Driscoll	Jan	2015	46	
SDYC	6241		vacant									0	
SDYC	6242	99	Power	36	12.5	Low Copper	Pettit Z-Spar	B-94	ter Island Boat	Mar	2015	65	
SDYC	6243	90	Power	70	19	Low Copper	SeaHawk AF33	3345	ie Group / Sout	Feb	2017	33	44891-12-AA
SDYC	6244	97	Sail	38	20	Copper	tit z-Spar Prote	411187706	Driscoll	Mar	2017	65	60061-94-ZE
SDYC	6245	100		39.3	13	Copper	Interlux Ultra	Y3779F	ter Island Boat	Jun	2014	55	2693-212-AA
SDYC	6246	100	Sail	47	14.2	Copper	Trinidad Pro-7	A1088G	vard BoatYard	May	2016	60	60061-94-ZB
SDYC	6247	0	Power	52	15	Non Copper	Interlux Ultra	Y3779F	ter Island Boat	Jun	2015	55	2693-212-AA
SDYC	6248	100	Power	33		Non Copper	Interlux Ultra	Y3779F	ielsen Beaumo	Jun	2013	55	2693-212-AA
SDYC	6249	97	Power	36.8	12.7	Non Copper	Pacifica Plus	YBB263	de San Diego C	Nov	2015	0	
SDYC	6250	100		27		Copper	ettit Vivid Whit	11161	ielsen Beaumo	Aug	2017	25	60061-116-AA
SDYC	6251	100	Electric	18	6	Copper	lux Bottomkot	79	ter Island Boat	Jun	2017	22	

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	Category 1 reg #
SDYC	6252	83	Sail	29	9.3	Copper	Sharksin-7	6145	ter Island Boat	Jul	2014	45	44891-11-AA
SDYC	6253	99	Sail	44	9.1	Copper	3 40% copper a	NAU993	ielsen Beaumo	Jun	2016	41.97	
SDYC	6254	99	Power	40	13.5	Low Copper	ad VOC Red or	1678	ic Marine Boat	Nov	2015	75.8	
SDYC	6255	95	Sail	38	12	Copper	Trinidad-6	A1088G	ter Island Boat	Jun	2015	60	60061-94-ZB
SDYC	6257	99	Sail			Copper	SeaHawk AF3	3345	Driscoll	Sept	2008	33	44891-12-AA
SDYC	6258	98	Sail			Copper	Interlux Ultra	Y3779F	Koehler	Mar	2015	55	2693-212-AA
SDYC	6259	100	Sail	49	11.5	Copper	Interlux Ultra	Y3779F	arbor Marine	Jun	2004	55	2693-212-AA
SDYC	6260	100	Electric	18	6.7	Copper	erlux Bottomko	10397	Driscoll	Jun	2014	42.75	
SDYC	6261	97	Sail	32.8	6.5	Low Copper	Interlux Aqua	YBA549	Koehler	Jun	2015	46	
SDYC	6262	98		32.5	12.3	Copper	Interlux Ultra	Y3779F	Koehler	Feb	2011	55	2693-212-AA
SDYC	6263	95	Sail	30	10.5	Copper	Proline 1088-6	A10886	ter Island Boat	May	2011	60	60061-94-ZB
SDYC	6264	100	Power	36	12.5	Non Copper	al Proguard Ab	NAU993	ielsen Beaumo	Nov	2016	41.97	
SDYC	6265	100	Sail			Copper	Proline 1088-6	A1088G	ter Island Boat	Mar	2014	60	60061-94-ZB
SDYC	6266	95	Power	42	11	Copper	erglass Botton	YBA579	Driscoll	Jan	2015	46	
SDYC	6267	100	Power	20	7	Copper	Proline 1088-6	A1088G	Unknown	Jun	2010	60	60061-94-ZB
SDYC	6268	100		25	8	Copper	Purchased 2016	6	Purchase		2016	67	
SDYC	6269	96	Sail	31.8		Copper	Pettit Vivid-3	1361	ter Island Boat	Jul	2017	25	60061-116-AA
SDYC	6270		vacant									0	
SDYC	6271	80	Sail	35	11.3	Copper	Proline 1088-6	A10886	Koehler	Apr	2016	60	60061-94-ZB
SDYC	6272		vacant	jr racing								0	
SDYC	6273	96	Power	41	13.4	Low Copper	ux Ultra Black 3	Y3779F	ter Island Boat	Oct	2017	55	2693-212-AA
SDYC	6275	59	Power	47.3	14.9	Copper	Interlux Ultra	Y3779F	ter Island Boat	Apr	2015	55	2693-212-AA
SDYC	6276	99	Sail	29.9	10.3	Non Copper	Proline 1088-6	A1088G	SD Boatworks	Apr	2012	60	60061-94-ZB
SDYC	6277	96	Power	32.2	10.2	Low Copper	Interlux Ultra	Y3779F	ter Island Boat	May	2015	55	2693-212-AA
SDYC	6278	94	Sail	39.6	12	Copper	Ultrakote-6	Y3669U	ter Island Boat	Jan	2014	57	
SDYC	6279	99	Power	33	11	Non Copper	Interlux Ultra	Y3779F	ter Island Boat	Jul	2016	55	2693-212-AA
SDYC	6280	95		33	10	Copper	it Z-Spar Prote	411187706	Driscoll	Jun	2011	65	60061-94-ZE
SDYC	6281	99	Sail	36.7	10	Copper	Interlux Ultra	Y3779F	ter Island Boat	Jun	2016	55	2693-212-AA
SDYC	6282	98	Power	40.6	12.2	Copper	Interlux Ultra	Y3779F	ter Island Boat	Aug	2012	55	2693-212-AA
SDYC	6283	99	Sail	32	7	Copper	Interlux Ultra	Y3779F	ter Island Boat	Jul	2011	55	2693-212-AA
SDYC	6284	99		23.5	8.5	Non Copper	ed Apr 2013 - r	no paint sinceli	pp Marine Servi	Apr	2013	0	
SDYC	6285	98	Power	38	13.3	Copper	al Pro Guard A	NAU993	e Group / Sou	May	2017	41.97	
SDYC	6286	87	Sail	41	10.6	Low Copper	Pettit Vivid-3	1361	ward Shipyard	Apr	2012	25	60061-116-AA
SDYC	6287	0	Sail	72	15	Non Copper	Interlux Ultra	Y3779F	ter Island Boat	Jul	2016	55	2693-212-AA
SDYC	6288	99	Power	38	13	Copper	erglass Botton	YBA579	ielsen Beaumo	Apr	2016	46	
SDYC	6289	95	Power	26.7	9.5	Copper	erlux Bottomko	10397	Knight &Carve	Jun	2009	42.75	
SDYC	6290	98	Power			Copper	Proline 1088-6	A1088G	ter Island Boat	Jul	2016	60	60061-94-ZB
SDYC	6291	100	Power	48.7	15.9	Copper	Proline 1088 01	1088C-01	ter Island Boat	Nov	2015	66.9	
SDYC	6292	99	Power	48	14.8	Copper	Trinidad-6	A1088G	Driscoll	Oct	2017	60	60061-94-ZB

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	Category 1 reg #
SDYC	6293	96		25	8.6	Copper	rchased Apr 20	17	Purchase	Apr	2017	67	
SDYC	6294	94	Power	31	11.3	Copper	erlux Bottomko	10397	ter Island Boat	Oct	2013	42.75	
SDYC	6296	83		78	19	Copper						67	
SDYC	6297	97		51	13.9	Copper	Pettit Z-Spar	411187706	Marine Group	Jun	2012	65	60061-94-ZE
SDYC	6298	99	Power	47.3	14.9	Copper	Coppercoat	85396-1-AA	ielsen Beaumo	Jun	2015	0	
SDYC	6299	98	Sail	32	6.7	Copper	Pettit Vivid - 3	1361	Driscoll	Jun	2012	25	60061-116-AA
SDYC	6300	96	Power	33.5	11.6	Copper	Interlux Ultra	Y3779F	Driscoll	Nov	2015	55	2693-212-AA
SDYC	6302	94		49	13.9	Copper	ean Speed Ultra	7972	nacapa Boatya	May	2012	0	
SDYC	6303	100	Sail	32	6.7	Copper	om paint appli	ed ever	Purchase			0	
SDYC	6304	96	Power	30.3	10.3	Copper	lux Ultra Kote	2779N	ter Island Boat	Mar	2017	66.5	
SDYC	6305	100	Power	39	12.5	Non Copper	Interlux Ultra	Y3779F	larine Industrie	Jun	2015	55	2693-212-AA
SDYC	6306	100	Power	42	12.8	Copper	chased April 20	017	Purchase	Apr	2017	67	
SDYC	6307	86		40.9	12.4	Non Copper	Hydro Hoist		none			0	
SDYC	6308	100				Low Copper	Interlux Ultra	Y3779F	Driscoll	Apr	2012	55	2693-212-AA
SDYC	6309	95	Power	68	18	Copper	Interlux Ultra	Y3779F	ter Island Boat	Apr	2016	55	2693-212-AA
SDYC	6310	99	Sail	31.1	7.6	Low Copper	Pettit Vivid-3	1361	iscoll Mission E	May	2016	25	60061-116-AA
SDYC	6311	97		35.3	11.6	Low Copper	rchased July 20)17	Purchase	Jul	2017	67	
SDYC	6312	84	Sail	20	4	Non Copper	lo bottom pain	it	none			0	
SDYC	6313	100		33.9	11.3	Copper	Pettit-Z Spar	411187706	Marine Group		2013	65	60061-94-ZE
SDYC	6314	94	Power	42	15	Low Copper	ıx Calif Bottom	YBA143	ter Island Boat	Jan	2012	35	2693-18-ZA
SDYC	6315	94	Sail			Low Copper	rchased Mar 20	017	Purchase	Mar	2017	67	
SDYC	6316		vacant	jr racing								0	
SDYC	6317	100				Copper	rchased Aug 20)17	Purchase	Aug	2017	67	
SDYC	6318	94		42	14	Copper	y Defense MOI	4901	eilsen Beaumo	Nov	2016	40	60061-117-ZA
SDYC	6319	100	Sail	41.8	13.8	Non Copper	Interlux Ultra	Y3779F	ter island Boat	Jul	2016	55	2693-212-AA
SDYC	6320	98	Sail	36	12.5	Copper	ergalss Botton	YBA579	ter Island Boat	Oct	2016	46	
SDYC	6321	0	Sail	15	5	Non Copper	Proline 1088	1088C-02	iscoll Mission E	6	2010	55.7	
SDYC	6322	90	Sail	40	9	Non Copper	it Z-Spar Prote	411187706	Driscoll	Mar	2015	65	60061-94-ZE
SDYC	6323	99	Power	35	12	Copper	Proline 1088-6	A1088G	ter Island Boat	Jun	2012	60	60061-94-ZB
SDYC	6324	0	Sail	33	10	Non Copper	lux Bottomkot	79	ter Island Boat	Jun	2012	22	
SDYC	6325	99	Power	32.9	12	Copper	Interlux Ultra	Y3779F	ter Island Boat	Sept	2013	55	2693-212-AA
SDYC	6326	98	Power	28		Copper	lux Bottomkot	79	Driscoll	Mar	2015	22	
SDYC	6327	78		50	16.5	Low Copper	Proline 1088-6	A1088G	e Group Boat \	Nov	2007	60	60061-94-ZB
SDYC	6329	100	Sail	32.6	10.1	Copper	Interlux Ultra	Y3779F	ter Island Boat	May	2012	55	2693-212-AA
SDYC	6330	90		38	13.5	Low Copper	Interlux Ultra	Y3779F	Koehler Kraft	Feb	2016	55	2693-212-AA
SDYC	6331	98	Power	44	13.5	Copper	Interlux Aqua	YBA549	ielsen Beaumo	Apr	2015	46	
SDYC	6332	90	Sail	35		Copper	Trilux 33-3	YBA063	Driscoll	Nov	2009	16.95	2693-203-ZB
SDYC	6333	100	Sail	25	8.3	Low Copper	erlux Bottomko	10397	Driscoll	Jun	2015	42.75	
SDYC	6334	94	Power	36.3	11.9	Copper	iterlux Ultrakoi	2779N	ter Island Boat	Apr	2016	66.5	

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	Category 1 reg #
SDYC	6335	97	Power	73	16.4	Low Copper	Trilux33-3	YBA063	ielsen Beaumo	Aug	2016	16.95	2693-203-ZB
SDYC	6336	0	Sail	51		Non Copper	ivid White w/ ខ្	11161	Driscoll	Oct	2014	25	60061-116-AA
SDYC	6337	96	Sail	44.2		Copper	Proline 1088-6	A1088G	ter Island Boat	Mar	2013	60	60061-94-ZB
SDYC	6338	98	Sail	40.2	12	Non Copper	it Z-Spar Prote	411187706	Driscoll	May	2013	65	60061-94-ZE
SDYC	6339	100		32	6.7	Copper	iterlux Ultrakoi	2779N	Driscoll		2012	66.5	
SDYC	6341	100	Sail	36.4	11.9	Non Copper	iterlux Ultrakoi	2779N	ter Island Boat	Jan	2017	66.5	
SDYC	6342	88	Sail	26	8.5	Copper	rinidad VOC Re	1678	de San Diego C	Jan	2013	75.8	
SDYC	6343	95	Power	33	10.8	Copper	terlux Interspe	BQA659/5GL	Koehler	Feb	2017	38	2693-176-ZB
SDYC	6344	97	Power	52.8	15	Copper	Interlux Ultra	Y3779F	ter Island Boat	Feb	2014	55	2693-212-AA
SDYC	6345	98		40	11.11	Low Copper	Proline 1088-6	A1088G	ndurance Marii	Apr	1991	60	60061-94-ZB
SDYC	6346	93	Sail	41.7	13	Copper	ttit Hydrocoat I	1847G	ielsen Beaumo	Jun	2017	25.25	
SDYC	6347		vacant	jr racing								0	
SDYC	6349	95	Sail	40	12	Copper	Interlux Ultra	Y3779F	ter Island Boat	Jun	2015	55	2693-212-AA
SDYC	6350	100		35	12	Non Copper	Intersleek 900	FXA979/A	Driscoll	Aug	2011	0	
SDYC	6351	99	Sail	36	11.9	Low Copper	Interlux Ultra	Y3779F	ter Island Boat	Dec	2015	55	2693-212-AA
SDYC	6352	87	Sail	32	6.7	Copper	iterlux Ultrakoi	2779N	ter Island Boat	Oct	2016	66.5	
SDYC	6353	0	Power	38	14	Non Copper	erglass Botton	YBA579	Driscoll	May	2013	46	
SDYC	6354	99	Sail	43.1	13.1	Copper	Proline 1088	A1088G	ter Island Boat	Feb	2013	60	60061-94-ZB
SDYC	6355	95	Sail	35	11	Copper	Interlux Ultra	Y3779F	ter Island Boat	Jun	2015	55	2693-212-AA
SDYC	6356	99		48	15.1	Copper	terlux Ultra Bla	Y3779F	ter Island Boat	Jun	2015	55	2693-212-AA
SDYC	6357	96	Power	24	8.3	Copper	ar Bottom Pro (A411187706	Driscoll	Mar	2015	65	
SDYC	6358	98	Sail			Low Copper	Interlux Ultra	Y3779F	Koehler	Jun	2015	55	2693-212-AA
SDYC	6359	84	Power	45	13.7	Copper	erlux Bottomk	10397	ielsen Beaumo	May	2015	42.75	
SDYC	6360	100		33	11.6	Low Copper	it Z-Spar Prote	411187706	Driscoll	Feb	2014	65	60061-94-ZE
SDYC	6361	98	Power	40	12.6	Low Copper	it Z-Spar Prote	411187706	lerno Marine -	Jul	2017	65	60061-94-ZE
SDYC	6362	99				Copper	rchased Jun 20	17	Purchase	jun	2017	67	
SDYC	6363	92	Sail	36	12.5	Copper	Ceram-kote	99M	ter Island Boat	May	2011	0	
SDYC	6364	97		38.4	13.8	Copper	rlux Ultrakote E	2779N	ter Island Boat	yard	2015	66.5	
SDYC	6365	100	Power	42	13.5	Copper	Trinidad Pro-7	A1877G	Driscoll	Aug	2014	60	60061-94-ZD
SDYC	6366	92		50	10.5	Copper						67	
SDYC	6367	88	Sail	50	13.1	Copper	Pettit Vivid - 3	1361	ter Island Boat	Jul	2016	25	60061-116-AA
SDYC	6368	100	Sail			Copper	iterlux Ultrakoi	2779N	ter Island Boat	Mar	2016	66.5	
SDYC	6369	81	Power	22	8	Low Copper	ABC3-2	ABC3-92	SD Boatyard	Oct	2006	47.99	
SDYC	6370	99	Electric	39.7	11.8	Low Copper	ettit Vivid Whit	11161	ter Island Boat	Jan	2011	25	60061-116-AA
SDYC	6371	93	Sail	48	11.6	Non Copper	it Z-Spar Prote	411187706	Driscoll	Mar	2016	65	60061-94-ZE
SDYC	6372	98	Sail	26.4	5.11	Copper	Interlux Ultra	Y3779F	Koehler	Nov	2016	55	2693-212-AA
SDYC	6373	99	Sail	34	11.6	Low Copper	Pettit Z-Spar	411187706	Driscoll	Dec	2011	65	60061-94-ZE
SDYC	6374	100		37	12	Copper	Interlux Ultra	Y3779F	ter Island Boat	Sept	2011	55	2693-212-AA
SDYC	6375	0	Power	47.5	13	Non Copper	Pettit Horizons	B-94	ter island Boat	May	2013	65	

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	Category 1 reg #
SDYC	6376	0	Sail	30		Non Copper	Proline 1088	Y3779F	coll Mission	Jun	2017	67	2693-212-AA
SDYC	6377	99	Power	59.5	16.5	Copper	erlux Ultra B 36	3669	ter Island Boat	May	2012	55	
SDYC	6378	100				Non Copper	it Z-Spar Prote	411187706	ter Island Boat	Apr	2016	65	60061-94-ZE
SDYC	6379	63		42	15	Copper	Proline 1088-6	A1088G	Driscoll	Mar	2014	60	60061-94-ZB
SDYC	6380	95	Power	36	13.6	Copper						67	
SDYC	6381	96		53	15.4	Copper	Proline 1088-6	A1088G	ter Island Boat	Jun	2012	60	60061-94-ZB
SDYC	6382	100	Sail			Copper	Ultrakote-6	Y3669U	ter Island Boat	Feb	2016	57	
SDYC	6383	90	Power	35.5	13.3	Low Copper	ettit Ultima Ec	1808	Driscoll	Jun	2016	0	
SDYC	6384	96	Sail	34.5	11	Low Copper	Performance Ep	V127/A	Driscoll			0	
SDYC	6385	95	Sail	35.7		Non Copper	Intersleek 900	FXA979/A	ter Island Boat	Nov	2013	0	
SDYC	6386	100		38.6	12.3	Non Copper	erlux Ultra Gre	Y3559F	ter Island Boat	Nov	2017	55	2693-212-AA
SDYC	6387	100	Sail	46	18.6	Copper	Spar Bottom p	A411187706	Driscoll	Aug	2017	65	
SDYC	6388	100	Sail	32.8	7.5	Non Copper	Coppercoat	85396-1-AA	At Home	Feb	2015	0	
SDYC	6389	83	Sail	34.5	11	Copper	line 1088-6 Ep	A1088G	Driscoll	Aug	2015	60	0
SDYC	6390	84	Power	17	6.1	Copper	ıx Calif Bottom	YBA143	Driscoll	Aug	2016	35	2693-18-ZA
SDYC	6391	92		43.9	14.6	Copper	ıx Micron Ultra	YBA472	scoll Shelter Isl	May	2017	35	2693-187-ZE
SDYC	6392	0	Sail	35	11	Non Copper	Interlux Ultra	Y3779F	ter Island Boat	Jun	2014	55	2693-212-AA
SDYC	6393	97	Sail	40.1	12	Copper	erlux VC Offsho	V118	ter Island Boat	Jun	2017	41.19	
SDYC	6394	100	Power	53	16	Copper	Interlux Ultra	Y3779F	e Group Boat	Nov	2014	55	2693-212-AA
SDYC	6395	99	Power	34	11.5	Low Copper	er Proguard, M	NK52	ielsen Beaumo	Oct	2016	33.4	2693-70-ZA
SDYC	6396	94	Power	47.5	15.2	Copper	lux Ultra Blue 3	Y3669F	ter Island Boat	Jun	2014	55	2693-212-AA
SDYC	6398	97	Power	43	14	Low Copper	it Z-Spar Prote	411187706	ter Island Boat	Aug	2015	65	60061-94-ZE
SDYC	6399	99	Power	21	8	Non Copper	ttit Copper-Gua	1048	ter Island Boat	Nov	2015	33.26	
SDYC	6400	100	Power	31	8.8	Copper	Proline 1088-6	A1088G	ter Island Boat	Mar	2015	60	60061-94-ZB
SDYC	6401	100		33	12	Copper						67	
SDYC	6402	97	Sail	37	12	Copper	Interlux Ultra	Y3779F	ter Island Boat	Oct	2017	55	
SDYC	6403	98	Power	50	15.8	Copper	Proline 1088-6	A1088G	ter Island Boat	Aug	2017	60	60061-94-ZB
SDYC	6404	100	Sail	32	6.7	Low Copper	'-Spar Protecto	B-94		Feb	2015	65	
SDYC	6405	97	Power	35	10.6	Copper	it Z-Spar Prote	411187706	Driscoll	Jan	2015	65	60061-94-ZE
SDYC	6406	0	Sail	34.1	10	Non Copper	Pettit-Vivid-3	1361	Koehler	May	2015	25	60061-116-AA
SDYC	6407	99	Sail	53	14	Low Copper	erlux VC Offsho	V118	ter Island Boat	Nov	2016	41.19	
SDYC	6408	100	Sail	28.5	10	Copper	Proline 1088	A1088G	ter Island Boat	Aug	2016	60	60061-94-ZB
SDYC	6409	99	Power	18.5	7	Low Copper	SeaHawk AF33	3345	ter Island Boat	Apr	2006	33	44891-12-AA
SDYC	6410	97	Power	23		Copper	erlux Bottomk	10397	ter Island Boat	Jan	2017	42.75	
SDYC	6411	93	Sail	48	14.75	Copper	Interlux Ultra	Y3779F	Driscoll	Jun	2017	55	2693-212-AA
SDYC	6412	100	Sail	35	10	Copper	Interlux Ultra	Y3779F	Koehler	Aug	2017	55	2693-212-AA
SDYC	6413	99	Power	57	15	Copper	ux Ultra Blue 3	Y3779F	ter Island Boat	May	2013	55	2693-212-AA
SDYC	6414		vacant						Cruising	,		0	
SDYC	6415	95		21		Copper	it Z-Spar Prote	411187706	Driscoll	Jul	2017	65	60061-94-ZE

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	Category 1 reg #
SDYC	6416	97		30.5	11.2	Copper	Interlux Ultra	Y3779F	ter Island Boat	Mar	2011	55	2693-212-AA
SDYC	6417	99		29	11	Low Copper	it Z-Spar Prote	411187706	Driscoll	Apr	2011	65	60061-94-ZE
SDYC	6418	72	Sail	30	10.1	Copper	Proline 1088-6	A1088G	ter Island Boat	Jan	2012	60	60061-94-ZB
SDYC	6419	95	Sail	41.3	13.5	Low Copper	terlux Interspe	BRA642	ter Island Boat	Aug	2013	38	2693-142-ZM
SDYC	6420	0	Power	23.6	7	Non Copper	Interlux Ultra	Y3779F	Koehler	Jul	2016	55	2693-212-AA
SDYC	6421	95		25	6.5	Copper	ical Super Prog	NAU770	ielsen Beaumo	7	2017	55	23566-20-ZR
SDYC	6422	100	Sail	33.1	9.7	Non Copper	Interlux Ultra	Y3779F	ter Island Boat	Mar	2013	55	2693-212-AA
SDYC	6423	97		49.9	11.9	copper	Interlux Ultra	Y3779F	Koehler	Oct	2014	55	2693-212-AA
SDYC	6424	100	Power	33	12.8	Copper	it Z-Spar Prote	411187706	Sunset Auatic	Mar	2017	65	60061-94-ZE
SDYC	6425	100	Sail	39.5	12.6	Copper	Ultrakote-6	Y3669U	ter Island Boat	Oct	2015	57	
SDYC	6426	100	Sail	46.9	11.1	Copper	Proline 1088-6	A1088G	ter Island Boat	Apr	2016	60	60061-94-ZB
SDYC	6427	79	Sail	67.6	19.2	Low Copper	it Z-spar Prote	411187706	Driscoll	Oct	2015	65	60061-94-ZE
SDYC	6428	99	Power	36	11.8	Copper	erlux Bottomk	10397	Koehler	Apr	2010	42.75	
SDYC	6429	83		42	13.3	Copper	terlux Ultra Blu	Y3669F	ter Island Boat	Mar	2016	55	2693-212-AA
SDYC	6430	98	Sail	45.9	14	Copper	ux Ultra Black 3	Y3779F	ter Island Boat	Apr	2015	55	2693-212-AA
SDYC	6431	100	S			Low Copper	iterlux Epoxyco	NK52	ielsen Beaumo	May	2015	33.4	2693-70-ZA
SDYC	6432	95	Power	42	14.5	Copper	Interlux Ultra	Y3779F	ter Island Boat	Mar	2016	55	2693-212-AA
SDYC	6433	99		30	10	Copper	erlux Bottomk	10397	Driscoll	Jan	2012	42.75	
SDYC	6434	80	Sail	30	10	Copper	Intersleek 900	FXA979/A	iscoll Mission E	Apr	2017	0	
SDYC	6435	97	Sail	52	13.6	Low Copper	Trinidad SR	A1877G	ter Island Boat	Jun	2015	60	60061-94-ZD
SDYC	6436	92	Sail	41.8	12.5	Low Copper	Pettit-Vivid 3	1361	Driscoll	Mar	2014	25	60061-116-AA
SDYC	6437	98	Power	32	11.5	Copper	erlux Bottomk	79	Koehler	Jan	2017	22	
SDYC	6438	96	Power	40	14	Non Copper	erlux Bottomk	10397	Driscoll	Jun	2016	42.75	
SDYC	6440	98	Power	45.1	13.8	Copper	Interlux Ultra	Y3779F	ter Island Boat	Oct	2017	55	
SDYC	6441	100	Sail	38		Copper	erlux Bottomk	10397	ielsen Beaumo	Jun	2014	42.75	
SDYC	6442	97	Sail	42	12.9	Low Copper	Interlux Ultra	Y3779F	ter Island Boat	Jul	2015	55	2693-212-AA
SDYC	6443	83	Sail	37	22.4	Copper	Interlux Ultra	Y3779F	ter Island Boat	Nov	2016	55	2693-212-AA
SDYC	6444	99	Sail	38.3	11.6	Copper	Proline 1088-6	A1088G	ter Island Boat	May	2012	60	60061-94-ZB
SDYC	6445	97	Sail	32	5.1	Low Copper	rlux Ultrakote E	2669N	Koehler Kraft	Jul	2016	66.5	
SDYC	6446	95	Power	23		Copper	it Z-Spar Prote	411187706	Driscoll	Jul	2017	65	60061-94-ZE
SDYC	6447	100		40	13.5	Non Copper	N/A		N/A			67	
SDYC	6448	100	Electric	18	6	Copper	SeaHawk AF33	3345	Driscoll	Jun	2015	33	44891-12-AA
SDYC	6449	100	Power	25	8	Low Copper	Pettit Vivid-3	1361	Driscoll -MB	Apr	2016	25	60061-116-AA
SDYC	6450	100		32	6.7	Copper	Proline 1088-6	A1088G	ter Island Boat	Apr	2011	60	60061-94-ZB
SDYC	6451	99	Sail	32	5	Non Copper	Coppercoat	85396-1-AA	Driscoll	Jun	2012	0	
SDYC	6452	100		39.1	11.9	Copper	rchased may 20	017	Purchase	May	2017	67	
SDYC	6453	98		19		Copper	Trinidad SR	A1877G	ter Island Boat	Jun	2011	60	60061-94-ZD
SDYC	6454	95	Power	47.3	14.3	Copper	hased January	2015	Purchase	Jan	2015	67	1
SDYC	6455	100				Copper	Purchased 2014	4	Purchase		2014	67	

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	Category 1 reg #
SDYC	6456		Power										
SDYC	6457	99	power	36	13	Low Copper	ewater Copper	8101	ter Island Boat	oct	2015	67	
SDYC	6458	82	Sail	41.8	13.8	Low Copper	Interlux Ultra	Y3779F	ter Island Boat	Nov	2015	55	2693-212-AA
SDYC	6459	99	Power	61	16	Copper	Interlux Ultra	Y3779F	ter Island Boat	Jun	2015	55	2693-212-AA
SDYC	6460	98		25.3	9.5	Copper	Pettit Vivid-3	1361	Driscoll	Jan	2014	25	60061-116-AA
SDYC	6461	0				Non Copper	ux White Epoxy	V127/A	Driscoll	Apr	2017	0	
SDYC	6462	92	Sail	32	10	Copper	it Z-spar Prote	411187706	ter Island Boat	May	2012	65	60061-94-ZE
SDYC	6463	100	Sail	31	7.3	Low Copper	Performance Ep	V127/A	ier - Manufacti	Jun	2015	0	
SDYC	6464	100				Copper						67	
SDYC	6465	99	Sail	33	9	Low Copper	Pettit Vivid	1361	Driscoll	Jun	2015	25	60061-116-AA
SDYC	6466	93	Electric	18	10	Copper	it Z-spar Prote	411187706	ter Island Boat	Jun	2014	65	
SDYC	6467	93		32.8	9.25	Copper	terlux Ultrakot	Y3669U	ter Island Boat	May	2016	57	
SDYC	6468	91	Sail	34.4	11.9	Copper	Interlux Ultra	Y3779F	ter Island Boat	Apr	2015	55	2693-212-AA
SDYC	6469	98	Sail	57.3	15.3	Low Copper	Trilux33-3	YBA060	Driscoll	Jul	2017	17	2693-203-AA
SDYC	6470	98	Power			Copper	lux Bottomkot	79	Driscoll	Jan	2016	22	
SDYC	6471	98	Power	47	14.8	Copper	rchased Mar 20	016	Purchase	Mar	2016	67	
SDYC	6472	100	Sail	34	10.8	Copper		She	lter Island Boat	Jun	2015	67	
SDYC	6473	96	Power	28.2	9.5	Copper	ettit Vivid Whit	11161	ter Island Boat	Nov	2017	25	60061-116-AA
SDYC	6474	94	Sail	50	13.8	Copper	SeaHawk AF33	3345	ter Island Boat	Apr	2006	33	44891-12-AA
SDYC	6475	100	Power	27.1	9.2	Low Copper	Pettit Ultima	1038	ielsen Beaumo	Jul	2017	60	
SDYC	6476	97	Sail	47	14	Non Copper	SeaHawk AF33	3345	ter Island Boat	Aug	2015	33	44891-12-AA
SDYC	6477	96	Power	78	20	Copper	rlux Micron CS	YBC582	ter Island Boat	Mar	2017	33.4	2693-225-AA
SDYC	6478	84	Sail	50	12.2	Low Copper	Seaguard-2	P30BQ12	Driscoll	Mar	2017	48	
SDYC	6479	100	Power	38.6	12.7	Low Copper	it Z-Spar Prote	411187706	Driscoll	Jan	2011	65	60061-94-ZE
SDYC	6480	100	Power	30	10.3	Copper	Interlux Ultra	Y3449F	Knight Carver	May	2010	55	2693-212-AA
SDYC	6481	86	Sail	32.7	9.15	Copper	Interlux Ultra	Y3779F	Driscoll	Sept	2013	55	2693-212-AA
SDYC	6482	100	Sail	39.2	10.8	Copper	Interlux Ultra	Y3779F	Driscoll	Jun	2017	55	2693-212-AA
SDYC	6483	97		37	11.8	Copper	lux Ultra-Kote	Y3779U	iscoll Mission E	Feb	2017	57	
SDYC	6484	0	Power	25	8.5	Non Copper	erlux Bottomk	10397	Driscoll	Jun	2016	42.75	
SDYC	6485	95	Power	17		Copper	Interlux Ultra	Y3779F	ter Island Boat	Jun	2016	55	2693-212-AA
SDYC	6486	100	Sail	33	11	Copper	Proguard Abla	NAU990	ielsen Beaumo	Jul	2017	41.97	
SDYC	6487	100	Power	33.1	10.8	Copper	it Z-Spar Prote	411187706	Driscoll	Oct	2015	65	60061-94-ZE
SDYC	6488	78	Power	48	14	Copper	lux Bottomkot	79	ielsen Beaumo	Aug	2016	22	
SDYC	6489	95	Power	41	12.5	Non Copper	Interlux Ultra	Y3779F	ter Island Boat	Feb	2015	55	2693-212-AA
SDYC	6490	78	Power	47	15	Copper	lux Bottomkot	79	ielsen Beaumo	Jun	2016	22	
SDYC	6491	95	Sail	46.3	13.8	Low Copper	Interlux Ultra	Y3779F	ter Island Boat	Mar	2017	55	2693-212-AA
SDYC	6492	98	Power	48.6	16	Copper	Interlux Ultra	Y3779F	ter Island Boat	Feb	2017	55	2693-212-AA
SDYC	6493	95	Power	62	16.8	Copper	Interlux Aqua	YBA549	Driscoll	Mar	2016	46	
SDYC	6494	100		26	7	Copper	Super KL-6	K93	Driscoll	May	2010	70.2	

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	Category 1 reg #
SDYC	6495	100	Power	34	12	Copper	it Z-Spar Prote	B-91	Driscoll	May	2016	65	
SDYC	6496	100	Power			Copper	Interlux Ultra	Y3779F	Driscoll	July	2017	55	2693-212-AA
SDYC	6497	98	Power	35.6	12	Copper	Hydrocoat	1840	ielsen Beaumo	Jul	2015	40.43	60061-87-ZI
SDYC	6498	97		33.5	9.2	Low Copper						67	
SDYC	6499	95	Power			Copper	lux Ultrakote 3	Y3779U	ter Island Boat	Jul	2017	57	
SDYC	6500	98	Sail	40	12.3	Copper	Interlux Ultra	Y3779F	ter Island Boat	May	2016	55	2693-212-AA
SDYC	6501	99	Power	35	12	Copper	ıx Calif Bottom	YBA143	Koehler	May	2015	35	2693-18-ZA
SDYC	6502	93		30.4	11.5	Copper	rlux UltraKote	Y3669U	ter Island Boat	Feb	2016	57	
SDYC	6503	100	Power	63.1	17.3	Copper	Interlux Ultra	Y3779F	alboa Boat Yar	Jun	2015	55	2693-212-AA
SDYC	6504	96	Sail	42.5	14	Low Copper	Interlux Ultra	Y3779F	ter Island Boat	Jun	2016	55	2693-212-AA
SDYC	6505	0		43	13.6	Non Copper	roline 1088 Re	A10886	ter Island Boat	yard	2015	60	60061-94-ZB
SDYC	6506	98	Sail	31.1	9.8	Copper	erlux Bottomko	10397	ter Island Boat	Jun	2014	42.75	
SDYC	6507	86	Power	35	9.5	Copper	erlux VC Offsh	V118	Driscoll	May	2016	41.19	
SDYC	6508	99	Sail	44.9	13	Copper	lux Bottomkot	79	ielsen Beaumo	Feb	2017	22	
SDYC	6509	100	Power	35	10	Copper	iterlux Ultrako	2779N	ter Island Boat	Jun	2016	66.5	
SDYC	6510	99				Copper	rchased Aug 20)17	Purchase	Aug	2017	67	
SDYC	6511	100	Sail	32	6.7	Copper	it Z-Spar Prote	411187706	Driscoll	Aug	2015	65	60061-94-ZE
SDYC	6512		vacant	Jr Racing								0	
SDYC	6514	100	Power	33	13	Copper	Micron Optima	YBA993	Koehler	Dec	2016	28.45	
SDYC	6515	92	Sail	33.6	11.8	Copper	Interlux Ultra	Y3779F	ter Island Boat	Apr	2014	55	2693-212-AA
SDYC	6516	96	Sail	30	19	Copper	Pettit Vivid-3	1361	ter Island Boat	Aug	2015	25	60061-116-AA
SDYC	6517	96	Power	47	14	Copper	erlux Bottomk	10397	Driscoll	Apr	2015	42.75	
SDYC	6518	100	Sail			Low Copper	k Primer - No A	V127/A	Driscoll	Oct	2016	0	
SDYC	6519	100		47	15	Copper	ewater Copper	8101	ter Island Boat	Feb	2010	67	
SDYC	6520	98	Sail	34.5	11	Copper	Performance Ep	V127/A	iscoll Mission E	Apr	2011	0	
SDYC	6521	100	Sail	34.5	11	Copper	y non toxic bo	V127/A	Driscoll	Nov	2013	0	
SDYC	6522	99	Sail	32	6.7	Copper	Coppercaot	85396-1-AA	Other	Jan	2013	0	
SDYC	6523	98		31.7	11.4	Low Copper	lsey Defense E	4901	Beaumont Bo	Jul	2017	40	60061-117-ZA
SDYC	6524	86	Sail	29.11	11	Low Copper	Interlux Ultra	Y3779F	ter Island Boat	Feb	2014	55	2693-212-AA
SDYC	6525		vacant	jr racing								0	
SDYC	6526	0		47	14.3	Non Copper	ased Decembe	r 2017	Purchase	Dec	2017	67	
SDYC	6527	70	Power	40	12.5	Copper	it Z-Spar Prote	411187706	Driscoll	Oct	2016	65	60061-94-ZE
SDYC	6528	92				Copper	Interlux Ultra	Y3779F	e Group Boat	Oct	2016	55	2693-212-AA
SDYC	6529	98	Power	35.7	12.6	Low Copper	Proline 1088-6	A1088G	ter Island Boat	Apr	2017	60	60061-94-ZB
SDYC	6530	97	Sail	50		Copper	Proline 1088-6	A1088G	ter Island Boat	Oct	2016	60	60061-94-ZB
SDYC	6531		vacant									0	
SDYC	6532	100	Sail	32	6	Copper	Proline 1088-6	A1088G	ter Island Boat	Mar	2015	60	60061-94-ZB
SDYC	6533	92	Sail	32	11	Copper	it Z-Spar Prote	411187706	ter Island Boat	May	2016	65	60061-94-ZE
SDYC	6534	80	Sail	31		Copper	Intersleek-8	FXA979/A	Driscoll	Jun	2012	0	

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	Category 1 reg #
SDYC	6535	100	Power	57	14.5	Low Copper	erlux Bottomko	10397	ter Island Boat	yard	2010	42.75	
SDYC	6536	99	Sail	47	14.1	Low Copper	rchased Jan 20	16 Bay	Marine Boatw	Jan	2016	67	
SDYC	6537	100	Sail	32	11	Copper	Proline 1088-6	A1088G	ter Island Boat	Jun	2010	60	60061-94-ZB
SDYC	6538	96	Power	27.5	9.5	Copper	Interlux Ultra	Y3779F	ter Island Boat	Dec	2011	55	2693-212-AA
SDYC	6539	100	Sail	32	6.7	Copper	x Calif Bottomk	YBA143	Koehler	Jul	2016	35	2693-18-ZA
SDYC	6540	100		42	14	Copper	ttit Hydrocoat ı	1640	Driscoll	Feb	2017	40.43	60061-87-ZL
SDYC	6541	100		34.5	11	Copper	Proline 1088-G	A1088G	ter Island Boat	Aug	2017	60	60061-94-ZB
SDYC	6542	98	Sail	40	12	Copper	olsey Defense	4901	ielsen Beaumo	Nov	2017	40	60061-117-ZA
SDYC	6544	100	Power	52	14	Copper	x Calif Bottomk	YBA143	Driscoll	Jul	2017	35	2693-18-ZA
SDYC	6545	100	Sail	29	9.6	Copper	Interlux Ultra	Y3779F	Driscoll -MB	Dec	2016	55	2693-212-AA
SDYC	6546	100	Sail	35	11	Non Copper	iterlux Epoxyco	V127/A	ed by manufac	turer	2001	0	
SDYC	6547	97	Power	48	15.2	Copper	erlux Bottomko	10397	Driscoll	Jul	2016	42.75	
SDYC	6548	100	Power	50	15	Copper	Proline 1088-6	A1088G	ter Island Boat	Nov	2014	60	
SDYC	6549	100	Power	28	9.6	Copper	Interlux Aqua	YBA549	Driscoll	Apr	2015	46	
SDYC	6550	99	Sail	33	11.4	Copper	Trinidad SR	A1877G	d Kettenberg Y	Jun	2006	60	60061-94-ZD
SDYC	6551	86	Sail	30	11	Copper	Proline 1088-6	A10886	ter Island Boat	Aug	2015	60	60061-94-ZB
SDYC	6552	99		41	10.5	Copper	Trinidad SR	A1877G	Driscoll	Jun	2010	60	60061-94-ZD
SDYC	6553	98	Power	63.5	18	Copper	it Z-spar Prote	411187706	ne Group/Sout	Dec	2014	65	60061-94-ZE
SDYC	6554	96	Power	26.5	8.5	Low Copper	Pettit-Vivid 3	1361	Driscoll	Jul	2016	25	60061-116-AA
SDYC	6555	100	Power	36	10	Copper	Proline 1088-6	A1088G	Driscoll	Feb	2017	60	60061-94-ZB
SDYC	6556	96				Copper	rchased Jun 20	16	Purchase	Jun	2016	67	
SDYC	6557	65	Power	41	13.8	Copper	it Z-Spar Prote	411187706	Driscoll	Jul	2016	65	60061-94-ZE
SDYC	6558	75	Power	47	14.6	Copper	terlux Ultra Blu	Y3669F	ter Island Boat	Mar	2015	55	2693-212-AA
SDYC	6559	99	Power	31	10.3	Copper	Interlux Ultra	Y3779F	SD Boatyard	May	2016	55	2693-212-AA
SDYC	6560	100	Sail	31	10	Copper	Interlux Ultra	Y3779F	ter Island Boat	Jun	2015	55	2693-212-AA
SDYC	6561	91	Sail	36.6	13.1	Non Copper	Interluc Ultra	Y3779F	ter Island Boat	May	2017	55	2693-212-AA
SDYC	6562	97	Power			Copper	Interlux Ultra	Y3779F	iscoll Mission E	Nov	2016	55	2693-212-AA
SDYC	6563	99	Sail	36.3	11.9	Copper	it Z-Spar Prote	411187706	Driscoll	Jul	2017	65	60061-94-ZE
SDYC	6564	95	Sail	40	12	Copper	Proline 1088-6	A1088G	ter Island Boat	Jul	2017	60	60061-94-ZB
SDYC	6565	99	Sail	38	13.2	Non Copper	lawk Smart Soli	4002	Driscoll	Mar	2016	0	
SDYC	6566	96	Power	39	15	Copper	Interlux Ultra	Y3779F	ielsen Beaumo	Jun	2015	55	2693-212-AA
SDYC	6567	100		32.2	12	Copper	lux Ultra-Kote	2779N		Feb	2017	66.5	1
SDYC	6568	76	Sail	43.8	12	Low Copper	Interlux Ultra	Y3779F	ter Island Boat	Nov	2017	55	2693-212-AA
SDYC	6569	100	Sail	31.1	6	Low Copper	erlux Bottomko	10397	Driscoll	Jan	2015	42.75	
SDYC	6570	95	Sail	40	12	Copper	Proline 1088-6	A1088G	Driscoll	May	2016	60	60061-94-ZB
SDYC	6571	89	Sail	33	9.4	Copper	Proline 1088-6	A10886	ter Island Boat	Jun	2013	60	60061-94-ZB
SDYC	6572	89	Power	32	11.5	Copper	Interlux	Y3779F	Koehler	Nov	2014	55	2693-212-AA
SDYC	6573	100		30	10.1	Copper	terlux Ultra Pai	Y3779F	ter Island Boat	Jun	2013	55	2693-212-AA
SDYC	6574	98		35	10.25		Proline 1088-6	A1088G	ter Island Boat	Aug	2013	60	60061-94-ZB

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	Category 1 reg #
SDYC	6575	100	Sail	40.2	13.5	Copper	Proline 1088-6		Driscoll	Jul	2011	60	60061-94-ZB
SDYC	6576	0				Non Copper	terlux Interspe	BQA659/5GL	ter Island Boat	Mar	2015	38	2693-176-ZB
SDYC	6577	99	Power	46	15.5	Copper		She	Iter Island Boat	Apr	2015	67	
SDYC	6578	99	Power			Copper	Interlux Ultra	Y3779F	ter Island Boat	Jun	2014	55	2693-212-AA
SDYC	6579	75	Power			Copper	Proline - Rust	A10886	Driscoll	Apr	2017	60	60061-94-ZB
SDYC	6580	99	Sail	35.6	10.4	Copper	Interlux Ultra	Y3779F	Driscoll	Jan	2007	55	2693-212-AA
SDYC	6581	86		21	8	Low Copper	Sharkskin-7	6145	ter island Boat	Jun	2013	45	44891-11-AA
SDYC	6582	91		43	11	Copper	ıx Calif Bottom	YBA143	Koehler	Apr	2015	35	2693-18-ZA
SDYC	6583	99				Non Copper	ainted since be	fore 2007	none			0	
SDYC	6584	97	Power	45.3	14.3	Low Copper	rlux UltraKote E	2779N	ter Island Boat	Mar	2017	66.5	
SDYC	6586		vacant									0	
SDYC	6587	92	Sail	30	7	Copper	Interlux Ultra	Y3779F	Koehler	Aug	2011	55	2693-212-AA
SDYC	6588	100	Sail	33.8	11.5	Non Copper	Hydrolift		none			0	
SDYC	6589	94	Power	21	8.5	Copper	terlux Ultra Bla	Y3779F	ter Island Boat	Sept	2015	55	2693-212-AA
SDYC	6590	100	Sail	31.6	9.3	Copper	roline 1088 Re	A10886	ter Island Boat	Mar	2016	60	60061-94-ZB
SDYC	6591	96	Electric	24.2	9.3	Low Copper	Interlux Ultra	Y3779F	ter Island Boat	Jul	2015	55	2693-212-AA
SDYC	6592	97		30	20.5	Non Copper	ased Novembe	r 2016	Purchase		2016	67	
SDYC	6593	97	Power	42	13.6	Copper	Interlux Ultra	Y3449U	Koehler	Aug	2011	57	
SDYC	6594	94	Sail	37	11.4	Copper	Pettit Vivid-3	1361	ward Shipyard-	Jul	2012	25	60061-116-AA
SDYC	6595	99	Sail	53	15	Low Copper	rlux Ultrakote	Y3449U	ter Island Boat	Mar	2017	57	
SDYC	6596	100	Sail	55	16	Copper	ydracoat Produ	1840	ielsen Beaumo	Feb	2016	40.43	60061-87-ZI
SDYC	6597	98	Sail	27	9	Copper	Proline 1088-6	A1088G	ter Island Boat	Jan	2015	60	60061-94-ZB
SDYC	6598	100				Copper	uper Proguard	NAU770	ielsen Beaumo	Sept	2016	55	23566-20-ZR
SDYC	6599	92	Sail	47	13.2	Copper	1icron Extra VC	5793	Driscoll	Nov	2013	38.6	2693-190-ZJ
SDYC	6600	73	Power	22	8	Copper	Interlux Ultra	Y3779F	ter Island Boat	May	2016	55	2693-212-AA
SDYC	12256	97	Electric	25	8	Copper	Trinidad-6	1878	Driscoll	Nov	2006	75.8	
SWYC	4001	100	S	40	12	Cu	Ultima SR-60	A1103206	La Cruz	2	2016	60)
SWYC	4005	100	Р	48	14	Non	Interstellar 90	FXA970/A	SI	4	2013	()
SWYC	4006	50	S	30	10	Cu			purch	6	2017		
SWYC	4007	100	S	37	12	Cu	Pettit Protec	B-94	Dr	5	2017		
SWYC	4009	98	S	28	9	Low	Zspar Protect	:B-91	SI	2	2017	65	5
SWYC	4011	96	S	36	11	Low	Interlux Ultra	2669N	KK	11	2007		
SWYC	4012	100	Р	48	15	Low	Interlux Ultra	Y3779F	SI	12	2014	55	2693-212-AA
SWYC	4013	100	Р	40	13	Low	Interlux Ultra	Y3669F	SI	11	2013	55	2693-212-AA
SWYC	4014	98	Р	39	14	Low	Interlux Ultra	Y3669F	KK	5	2014	55	2693-212-AA
SWYC	4015	100	Р	47	14	Low	Interlux Micro	YBA473	SI	12	2013	35	2693-187-ZG
SWYC	4016	100	Р	19	7	low	Pettit Vivid	11161	Dr	8	2017	0.25	,
SWYC	4017	100	Р	38	14	Low	Interlux Ultra	Y3779F	Dr MB	3	2014	55	2693-212-AA
SWYC	4018	98	S	36	11	Non	Intersleek 90		SI	8	2013	()

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper Category 1 reg #
SWYC	4022	96	Р	29	11	Low	Z-spar Protec		Dr	7	_	65
SWYC	4024	92	S	39	13	Cu	Interlux Ultra	Y3669F	KK	5	2016	57 2693-212-AA
SWYC	4025	0	Vacant			Non						0
SWYC	4026	96	S	32	11	Non	Pettit Ultima	1608	Ventura Harb	7	2012	0
SWYC	4027	100	S	38	13	Low	Interlux Ultra	Y3779U	SI	9	2013	57
SWYC	4028		Vacant									0
SWYC	4032	100	Р	21	8	Low	Interlux Ultra	Y3779F	SI	10	2014	55 2693-212-AA
SWYC	4040	100	S	46	14	Low	Interlux Ultra	Y3669F	SI	10	2014	55 2693-212-AA
SWYC	4041	100	(52	17	Low	Proline 1088	Y1088C-01	SI	4	2013	
SWYC	4042	100	Р	30	11	Cu	Interlux Ultra	Y3669U	SI	3	2015	57
SWYC	4043	100	Р	31	9	Cu	Ulttakote	3779) SI	11	2015	67
SWYC	4044	94	Р	42	13	Low	Interlux Ultra	Y3449F	DrMB	9	2012	55 2693-212-AA
SWYC	4045	90	Р	20	9		Interlux Ultra	Y3779F	SI	4	2016	55 2693-212-AA
SWYC	4046	75	S	41	13	Cu	Z-Spar Protec	B-94	DrSI	3	2017	65
SWYC	4047	100										
SWYC	4049	100	Р	40	12	Cu	Interlux Ultra	Y3779F	SI	2	2016	55 2693-212-AA
SWYC	4050	100	S	30	10	Low	Interlux Ultra	Y3779F	SI	6	2012	55 2693-212-AA
SWYC	4051	82	Р	39	14	Low	Z-Spar Bottor	411127906	Dr SI	9	2014	45
SWYC	4052	100	S	26	6	Cu	Interlux Ultra	Y3559F	KK	8	2017	55 2693-212-AA
SWYC	4053	100	Р	36	12	Non	Aquacote	non toxic tes	t Dr SI	8	2015	0
SWYC	4054	80	S	37	12	Low	Micron 66	YBA473	SI	9	2015	35 2693-187-ZG
SWYC	4055	100	Р	26	10	Low	Proline 1088	Y1088C-01	SI	6	2010	67
SWYC	4056	92	S	27	10	Low	Interlux Ultra	Y3669F	SI	11	2012	55 2693-212-AA
SWYC	4058	100	S	25	8	Cu	Z-spar botton	41127706	Dr SI	6	2015	45 60061-94-ZE
SWYC	4060	98	P	38	12	Cu	Nautical Supe		NB	4	2016	55 23566-20-ZR
SWYC	4061	100	S	31	11	Cu	Interlux Ultra		SI	3	2016	57
SWYC	4064	100	P	49	15	Low	Proline 1088	_	SI	4	2004	67
SWYC	4065	100	S	32	8	Low	Interlux Ultra		SI	10	2013	55 2693-212-AA
SWYC	4067	100	P	58	16	Low			purch	10	2014	
SWYC	4068	0	Vacant	33	20	Non			p a	10		0
SWYC	4069	100	S	34	10	Low	Z-spar Bottor	41127706	DrSI	11	2014	45 60061-94-ZE
SWYC	4071	100	P	12	5		Omni		SI Inflatables	11	2015	43 00001 34 2L 60061-87-ZI
SWYC	4074	88	S	42	13	Cu	Interlux Ultra		SI	4	2015	55 2693-212-AA
SWYC	4074	100	S	44	13	Cu	Interiux Ultra		SI	11	2015	55 2693-212-AA
SWYC	4076	96	S	30	10	Low	Interiux Ultra		SI	6	2010	55 2693-212-AA
SWYC	4070	100	D D	24	10	Cu	Ultra-Kote	3779		12	2014	67
SWYC	4077	98	r P	67	16	Low	Z-Spar Protec		SI	12	2010	65
SWYC	4079	98 100	S	34	10	Low	•			10	2014	45 60061-94-ZE
SWYC	4080	33	S P	34	12	LUW	Z-Spar Bottor	41110//00	purch	10	2014	43 00001-34-ZE

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper Category 1 reg #
SWYC	4083	98	Р	45	10	Low	Trinidad SR		self	9	2012	70 60061-94-ZD
SWYC	4084	100	S	30	11	Low	Interlux Ultra	Y3669F	SI	7	2014	55 2693-212-AA
SWYC	4085	100	Р	37	13	Cu	Z-Spar Proteo	B-94	Larson's Ship		2016	65
SWYC	4086	100	S	34	11	Non	Intersleek 90	FXA972/A	SI	7	2013	0
SWYC	4087	96	Р	43	13	Cu	Interlux Ultra	Y3779F	SI	5	2015	55 2693-212-AA
SWYC	4089	96	S	22	8	Low	Interlux Ultra	Y3669F	Self	4	2014	55 2693-212-AA
SWYC	4090	100	S	34	11	Low	Interlux Ultra	Y3669F	SI	12	2013	55 2693-212-AA
SWYC	4091	98	Р	29	9	Cu			purch	2	2016	
SWYC	4093	100	Р	35	11	Low	Z-Spar Proteo	B-91	Dr SI	5	2012	65
SWYC	4094	100	Р	22	9				purch	8	2016	
SWYC	4095	96	S	51		Cu	Interlux Ultra	Y3779F	SI	3	2015	55 2693-212-AA
SWYC	4096	92	S	36	12	Low	Interlux Ultra	Y3669F	SI	5	2014	55 2693-212-AA
SWYC	4097	100	S	30	10	Low	Proline 1088	Y1088C-01	KK	3	2014	68
SWYC	4098	100	S	24	8	Low	Micron 66	YBA470	self	3	2014	35 2693-187-ZD
SWYC	4102	100	Р	45	14	Cu			purch	3	2015	
SWYC	4103	100	S	42	13	Low	Interlux Ultra	Y3669F	SI	9	2013	55 2693-212-AA
SWYC	4104	100	S	40	12	Low	Interlux Ultra	1 Y3669U	SI	8	2010	57
SWYC	4105	100	Р	41	11	Cu	Interlux Ultra	Y3669F	SI	2	2015	55 2693-212-AA
SWYC	4108	100	Р	36	13	Cu	Ultra-Kote	Y3779U	SI	5	2016	67
SWYC	4109	100	S	30	10	Low	Pettit Trinida	127	5 Dr	5	2008	70
SWYC	4111	96	Р	34	13	Low	Interlux Ultra	Y3779F	SI	2	2014	55 2693-212-AA
SWYC	4112	96	Р	37	12	Low	Interlux Ultra	Y3669F	SI	6	2011	55 2693-212-AA
SWYC	4113	94	Р	28	8	Cu	Ultra-Kote	377	9 SI	5	2016	67
SWYC	4115	100	Р	36	13	Low	Interlux Ultra	Y3779F	SI	11	2014	55 2693-212-AA
SWYC	4116	85	S	36	11	Cu	Interlux Ultra	2669N	SI	4	2017	55
SWYC	4117	100	S	40	12	Non	Vivid free	116	2 KC	8	2017	0
SWYC	4118	100	S	37	12	Cu	Woolsey Def	450	1 KK	11	2015	45
SWYC	4119	100	Р	46	15	Low	Interlux Ultra	Y3669F	DR SI	3	2013	55 2693-212-AA
SWYC	4121	100	S	27	9	Cu	Interlux Ultra	Y3669F	SI	6	2016	57 2693-212-AA
SWYC	4123	100	Р	43	13		Interlux Ultra	1Y3779U	SI	5	2017	55
SWYC	4124	100	S	45	14	Low	Interlux Ultra	Y3669F	SI	6	2012	55 2693-212-AA
SWYC	4126	98	S	41	13	Low			purch	2	2014	
SWYC	4127	100	Р	26	9	Low	Micron 66	YBA470	MG	12	2016	35 2693-187-ZD
SWYC	4128	100	Р	44	15	Low	Proline 1088		SI	4	2013	67
SWYC	4130	100	S	37	12	Low	Micron Extra		4 KK	6	2011	35 2693-190-ZK
SWYC	4134	94	S	35	12	Low	Interlux Ultra		KK	5	2014	55 2693-212-AA
SWYC	4135	100	P	44	14	Non	Z-spar The Pr		SI	11	2013	53
SWYC	4136	96	S	39	12	Low	Interlux Ultra		KK	5	2014	55 2693-212-AA
SWYC	4137	92	P	27	8		criax offic		purch	2	2017	33 2033 212 ///

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	Product Number	Boatyard Name or Purchase Date	Month (mm)	Painting Date Year (yyyy)	% Copper Category 1 % reg #
SWYC	4138	92	S	31	11	Cu	Z-Spar Bottor			7	2015	45
SWYC	4140	98	S	39	12	Low	Pettit Trinida	A10882	SI	2	2012	70 60061-94-ZB
SWYC	4141	100	S	21	7	Low	Interlux Ultra	Y3669F	self	2	2011	55 2693-212-AA
SWYC	4142	98	S	35	10	Low	Super KL K90	K90	DR SI	4	2006	70
SWYC	4145	96	S	43	15	Low	Interlux Ultra	Y3669F	SI	7	2013	55 2693-212-AA
SWYC	4146	100	S	49	14	Cu	Proline 1088	Y1088C-01	SI	10	2015	67
SWYC	4147	94	Р	25	8	Cu	Interlux Ultra	Y3669F	SI	6	2017	55 2693-212-AA
SWYC	4148	100	S	39	12	Low	Interlux Ultra	Y3779F	KK	4	2013	30 2693-212-AA
SWYC	4149	100	Р	35	13	Low	Interlux Ultra	Y3779F	SI	4	2014	55 2693-212-AA
SWYC	4153	100	Р	21	8	Low	Interspeed 64	BQA679/5G	self	9	2015	38 2693-132-ZY
SWYC	4154	96	Р	29	9	Low	Trilux 33	YBA063	Kulick Rpair	5	2016	33 2693-203-ZB
SWYC	4155	100	S	29	10	Low	Interlux Ultra	Y3669F	SI	5	2010	55 2693-212-AA
SWYC	4157	94	Р	30	10	Low	Interlux Ultra	Y3779F	SI	3	2011	55 2693-212-AA
SWYC	4158	100	Р	24	9	Low	Interlux Ultra	Y3779F	SI	2	2014	55 2693-212-AA
SWYC	4160					Non	no paint					0
SWYC	4161	88	S	30	9	Low	Interlux Ultra	Y3779F	SI	1	2014	55 2693-212-AA
SWYC	4163	98	S	36	12	Cu	Interlux Ultra	Y3669F	SI	4	2016	57 2693-212-AA
SWYC	4166	0	Vacant									0
SWYC	4169	100	S	47	13	Cu	Z-Spar Bottor	411167706	Dr	3	2015	45 60061-94-ZE
SWYC	4171	88	S	61	13	Low	Interlux Ultra	Y3669F	KK	12	2013	55 2693-212-AA
SWYC	4172	0	Vacant			Non						0
SWYC	4173	100	Р	26	9	Cu	Ultrakote	2669N	SI	7	2017	69
SWYC	4174	94	S	41	14	Low	Proline 1088	Y1088C-01	SI	10	2010	67
SWYC	4175	0	Vacant									0
SWYC	4176	100	S	39	13	Cu	Interlux Ultra	Y3779F	SI	4	2015	55 2693-212-AA
SWYC	4177	100	S	41	13	Low	Interlux Ultra	Y3779F	SI	4	2012	55 2693-212-AA
SWYC	4178	92	S	44	13	Cu	Interlux Ultra	Y3669F	SI	7	2015	55 2693-212-AA
SWYC	4186	84	S	41	14	Cu	Trinidad Pro	A1088G	purch	3	2016	60 60061-94-ZB
SWYC	4187	94	S	32		Low	Pettit Trinida	A1277Q	Dr	10	2013	60 60061-94-ZD
SWYC	4188	100				Non	no paint					0
SWYC	4189	100	S	34	11	Cu	Z-Spar Bottor	411127906	KK	11	2015	45
SWYC	4191	96	Р	36	12	Low	Interlux Ultra		SI	6	2013	55 2693-212-AA
SWYC	4194	94	S	34	11	Low	Interlux Ultra	Y3779F	SI	3	2011	55 2693-212-AA
SWYC	4199	100	S	36	13	Cu	Interlux Ultra		SI	5	2016	57
SWYC	4200	100	S	34	11	Low	- 37-	-	SI	1	2008	67
SWYC	4205	100	S	31	9	Low	Z-Spar Protec	B-91	Marina del Ro		2014	65
SWYC	4206	100	S	36	12	Low	Interlux Ultra		SI	9	2006	55 2693-212-AA
SWYC	4208	100	P	13	6	Low	Z-spar Protec		self	5	2013	65
SWYC	4210	100	S	39	14	Cu	Z-Spar Protec		Dr SI	7	2015	65

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	Category 1 % Copper reg #
SWYC	4211	100	Р	40	14		Z-Spar Protec	B-91	MG	1	2015	65
SWYC	4213	96	S	33	8	Low	Interlux Ultra	Y3669F	SI	7	2014	55 2693-212-AA
SWYC	4214	100	Р	36	13	Low	Pettit Z-spar I	B-94	Marina del Re	3	2010	60
SWYC	4215	100	Р	40	14	Cu	Proline 1088	Y1088C-01	MG	12	2015	
SWYC	4216	100	Р	32	10	Cu	Interlux Ultra	Y3669F	SI	11	2015	55 2693-212-AA
SWYC	4218	90	Р	42	15	Low	Interlux Ultra	Y3779F	SI	11	2012	55 2693-212-AA
SWYC	4219	100	Р	44	14	Cu	Proline 1088	Y1088C-01	SI	5	2015	
SWYC	4220	100	Р	52	16	Low	Proline 1088	Y1088C-02	SI	4	2014	56
SWYC	4221	100	S	36	13	Cu	Interlux Ultra	Y3669F	SI	1	2015	55 2693-212-AA
SWYC	4222	100	S	39	12	Low	Z-Spar Protec	B-94	Dr	3	2014	65
SWYC	4223	98	Р	34	10	Cu	Woolsey Defe	4501	. NB	7	2017	45
SWYC	4224	100	S	39	12	Cu	Interlux Ultra	Y3779F	SI	9	2015	55 2693-212-AA
SWYC	4225	100	Р	39	14	Cu	Trinidat Antif	1875	DrSI	3	2017	70
SWYC	4226	100	S	34	11	Cu	Interlux Ultra	Y3669F	SI	6	2015	55 2693-212-AA
SWYC	4228	100		12		non	mo paint					0
SWYC	4229	100	S	41	12	Low	Proline 1088	Y1088C-01	SI	8	2013	67
SWYC	4231	100	Р	31		Low			purch	9	2014	
SWYC	4232	100	Р	26	9	Cu	Ultra-Kote	3779) SI	3	2016	67
SWYC	4233	100				Cu	Interlux Ultra	Y3669F	SI	10	2016	55 2693-212-AA
SWYC	4234	100	S	28	10	Low			SI	6	2012	
SWYC	4235	100	S	45	12	Cu	Proline 1088	Y1088C-01	KK	8	2015	67
SWYC	4236	100	Р	25	8	Cu	Interlux Ultra	Y3669U	SI	11	2015	57
SWYC	4237	88	Р	24	8	Cu	Proline 1088	Y1088C-02	SI	7	2016	56
SWYC	4238	0	Vacant									0
SWYC	4239	100	S	33	10	Low	Proline 1088	Y1088C-01	SI	11	2014	68
SWYC	4240	100	S	34	12	Non	CeRam-Kote !	99M	Dr	10	2011	0
SWYC	4241	100	S	37	13	Low	Interspeed 62	BQA659/5GI	_ SI	7	2017	38 2693-176-ZB
SWYC	4243	94	Р	55	14	Cu	Pettit Trinida	1878	3 KK	4	2015	70
SWYC	4246	100	S	39	11	Cu	Interlux Ultra	Y3779F	SI	6	2016	55 2693-212-AA
SWYC	4247	90	Р	28	9	Low	California Bot	YBA143	Inland boat C	3	2017	35 2693-18-ZA
SWYC	4248	100	Р	40	13	Low	Interlux CA Bo	YBA140	SI	8	2011	35 2693-18-ZA
SWYC	4251	100	Р	22		Cu						
SWYC	4252	96	Р	39	12	Cu	Z-Spar Protei	B-94	MG	4	2015	45
SWYC	4254	100	S	34	11	Low	Pettit Trinida	A10882	SI	3	2013	70 60061-94-ZB
SWYC	4255	100	S	29	10	Low	Interlux Ultra	Y3669F	SI	6	2013	55 2693-212-AA
SWYC	4257	92	Р	40	14	Cu			piurch	9	2017	55
SWYC	4259	96	S	31	11	Cu	Interlux Ultra	2669N	SI	1	2016	57
SWYC	4260	98	S	27	10	Low	Proline 1088		SI	7	2012	67
SWYC	4261	100	P	24	8	Cu		2669N	MG	9	2016	69

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	Product Number	Boatyard Name or Purchase	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper Category 1 reg #
SWYC	4262	80	S	47	11	Low	Proline 1088	Y1088C-01	Date self	10	2012	67
SWYC	4263	100	P	40	13	Cu	Interlux Ultra		SI	12	2017	55 2693-212-AA
SWYC	4265	88	Р	41	13	Low	Interlux Ultra		SI	6	2014	55 2693-212-AA
SWYC	4266	100	Р	35	11	Low	Interlux Ultra		SI	4	2011	55 2693-212-AA
SWYC	4267	100	P	63	15	Low	Seahawk AF3		_	6	2013	33 44891-12-AA
SWYC	4269	0	Vacant			Non				_		0
SWYC	4270	96	Р	47	15	Cu	ABC3 PPG	ABC3-92	SI	9	2016	70
SWYC	4274	67	S	35	11	Cu	Z-Spar Protec		DrSI	4	2016	65
SWYC	4275	100	P	25	8	Non	Bluewater Ma		_	5	2012	0
SWYC	4276	100	Р	32	11		PLM Marine I		NB	11	2016	v
SWYC	4278	100	S	32	11	Cu	Proline 1088		Dr MB	10	2015	67
SWYC	4279	100	P	49	15	Low	Proline 1088		SI	1	2013	67
SWYC	4281	100	S	35	12	Low	Interlux Ultra		SI	7	2013	55 2693-212-AA
SWYC	4282	100	P	22	8	Low			SI	11	2012	00 -000
SWYC	4284	100	P	60	18	Cu	Interlux Ultra	Y3669F	SI	6	2015	55 2693-212-AA
SWYC	4285	98	S	40	24	Cu	Proline 1088		MG	4	2017	56
SWYC	4286	100	P	42	15	Low			SI	4	2012	
SWYC	4287	100	S	48	14	Cu	Interlux Ultra	Y3669U	SI	12	2015	57
SWYC	4288	100	P	53	14	Low	Proline 1088		Lido Shipyard		2014	
SWYC	4289	100	S	53	16	Cu	Interlux Ultra		SI	2	2017	57
SWYC	4292	98	S	34	12	Low	Z-Spar Bottor			4	2012	45 60061-94-ZE
SWYC	4294	96	S	31	10	Low	Interlux Ultra		SI	1	2014	55 2693-212-AA
SWYC	4295	96	S	32	10	Low	Interlux Ultra		SI	9	2012	55 2693-212-AA
SWYC	4296	100	P	23	8	Cu	Proline 1088		SI	8	2015	56
SWYC	4297	96	Р	22	9	Low		YBA470	Hance&Smyt	9	2014	35 2693-187-ZD
SWYC	4298	100	P	32	11	Low	Pettit Vivid		Embree Mari	12	2014	25 60061-116-A
SWYC	4299	98	S	37	12	Low	-		Dr	2	2011	
SWYC	4303	100	S	21	7	Low	Interlux Ultra	Y3669F	self	2	2011	55 2693-212-AA
SWYC	4305	100	S	30	11	Low			purch	5	2014	
SWYC	4306	96	S	34	12	Low	Z-Spar Protec	B-91	NB	10	2013	65
SWYC	4307	100	S	33	10	Low			Dr MB	3	2012	
SWYC	4309	100	S	4	12					5	2015	
SWYC	4310	100	Р	40	14		Proline 1088	1088C-01	KK	5	2017	56
SWYC	4313	90	Р	40	13	Cu	Interlux Ultra		SI	8	2015	55 2693-212-AA
SWYC	4314	96	S	35	12	Cu	Interlux Ultra		NB	1	2015	55 2693-212-AA
SWYC	4315	90	S	34	11	Low	Pettit Trinida	A1877G	SI	7	2014	60 60061-94-ZD
SWYC	4317	98	Р	34	12	Low	Z-Spar Protec	B-91	SI	2	2013	65
SWYC	4318	100	S	32	12	Cu	Z-Spar Protec		Dr	9	2016	65
SWYC	4320	100		12		non	mo paint					0

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	Category % Copper reg #
SWYC	4321	100	S	34	12	Cu	Pettit Protect	B-91	DrSI	9	2016	60
SWYC	4322	100	Р	42	14	Low	Interlux Ultra	Y3669F	SI	12	2014	55 2693-212
SWYC	4325	100	S	25	8	Cu	Z-Spar Bottor	41127706	SI	11	2015	45 60061-94
SWYC	4327	100	S	38	12	Low			purch	10	2014	
SWYC	4328	100	Р	54	16	Cu	Interlux Ultra	Y3779F	SI	2	2015	55 2693-212
SWYC	4329	94	S	32	11	Cu	Z-Spar Protec	B90VOC	Dr SI	12	2015	65
SWYC	4330	100	S	34	11	Low	International		SI	1	2011	
SWYC	4331	98	Р	30	11	low	West Marine	411128006	SI	5		24 60061-71
SWYC	4332	98	S	37	13	Cu	Proline 1088	1088C-02	SI	7	2017	56
SWYC	4333	98	Р	32	12	Low			Newport	5	2010	67
SWYC	4334	100	S	30	11	Cu	Proline 1088	Y1088C-01	SI	1	2015	67
SWYC	4338	100	Р	48	13	Cu	Interlux Ultra	Y3669U	KK	1	2016	57
SWYC	4340	98	Р	25	9	Cu	Interlux Ultra	Y3779F	KK	10	2015	55 2693-212
SWYC	4342	100										
SWYC	4343	98	S	21	7	Low	Interlux Ultra	Y3669F	self	2		55 2693-212
SWYC	4347	100	S	32	11	Low			Dr	7	2011	67
SWYC	4348	98	S	40	12	Cu	Interlux Ultra	Y3779F	SI	1	2015	55 2693-212
SWYC	4349	94	S	49	16	Low	California Bot	YBA143	SI	10	2016	35 2693-18-7
SWYC	4350	100	S	28	10	Cu	Interlux Ultra	Y3669F	SI	6	2015	55 2693-212
SWYC	4351	100	S	38	13				purch	2	2017	
SWYC	4352	100	S	33	11				purch	8	2016	
SWYC	4353	100	Р	70	18	Non	No paint					0
SWYC	4356	100	Р	58	12	Low	Proline 1088	Y1088C-01	KC	2	2012	67
SWYC	4358	92	Р	21	8	Cu	Pettit Vivid	11161	Miramar BY	5	2017	60061-11
SWYC	4359	100	S	40	12	Low	Z-Spar Protec	B-91	KK	7	2010	65
SWYC	4360	90	S	40	12	Cu	Interlux Ultra	Y3779F	SI	2	2016	55 2693-212
SWYC	4361	100	S	33	11	Cu	Interlux Ultra	Y3669F	SI	11	2017	55 2693-212
SWYC	4362	100	Р	34	10	Cu	Interlux Ultra	Y3779U	KK	1	2016	57
SWYC	4363	98	S	37	12	Non	Intersleek 90	FXA972/A	SI	3	2013	0
SWYC	4364	94	S	30	10	Low	Z-Spar Protec	B-91	Dr	2	2014	65
SWYC	4365	100	Р	41	13	Low	Interlux Ultra	Y3779F	SI	6	2014	55 2693-212
SWYC	4367	96	S	36	12	Cu	Interlux Ultra	Y3669U	SI	8	2016	57
SWYC	4372	100	Р	44	14		interlux Ultra	Y3779F	SI	11	2016	55 2693-212
SWYC	4373	100	Р	25	9	Cu	Interlux Ultra	2779N	pirch	7	2016	57
SWYC	4375	94	S	43	13	Low	Interlux Ultra	Y3779F	SI	4	2013	55 2693-212
SWYC	4377	100	S	41	12	Non	Intersleek 90	FXA979/A	SI	4	2015	0
SWYC	4378	100	Р	44	15	Low			Dr SI	8	2011	
SWYC	4379	100	Р	37	13	Low	ABC 3 PPG	ABC3-41	Basin Marine	12	2014	70
SWYC	4380	100	Р			Cu						

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper Category 1 reg #
SWYC	4382	94	Р	25	8	Cu	Interlux Ultra	2779N	SI	1		57
SWYC	4383	92	S	38	12	Cu	Ultra-Kote	Y3779U	KK	2		67
SWYC	4384	100	S	47	13	Cu	Interlux Ultra	Y3669F	KK	4	2015	55 2693-212-AA
SWYC	4385	100	S	23	8	Low	Z-Spar Protec	B90VOC	Dr	10	2013	65
SWYC	4388	100	Р	29	10	Low	Interlux Ultra	Y3669F	MG	9	2014	55 2693-212-AA
SWYC	4389	85	S	40	12	Cu	Interlux Ultra	Y3669F	SI	4	2015	55 2693-212-AA
SWYC	4391	100	S	34	11	Low	Proline 1088	Y1088C-01	KC	9	2010	67
SWYC	4392	96	Р	27	10	Cu	Proline 1088	1088C-01	SI	5	2017	67
SWYC	4393	100	Р	45	14	Cu	Proline 1088	Y1088C-01	SI	6	2015	67
SWYC	4394	88	S	25	5	Low			KK	1	2011	
SWYC	4396	100	S	36	12	Low	UltraKote	2669N	SI	6	2016	69
SWYC	4397	80	S	36	12	Low	Interlux Ultra	Y3669U	SI	1	2014	55
SWYC	4399	98	Р	36	13	Non	no paint					0
SWYC	4400	98	S	35	11	Low	Z-Spar Protec	:B-94	Dr	3	2014	65
SWYC	4401	94	S	43	14	Low	Interlux Ultra	Y3669F	KK	11	2014	55 2693-212-AA
SWYC	4402	98	S	33	12	Cu	Interlux Ultra	Y3669F	SI	6	2015	55 2693-212-AA
SWYC	4404	100	S	30	11	Cu			purch	2	2015	
SWYC	4406	100	Р	33	10	Non	No paint					0
SWYC	4407	100	Р	34	11	low	Micron 66	YBA470	Charlotte Har	5	2016	35 2693-187-ZD
SWYC	4409	100	S	50	14	Cu	Proline 1088	Y1088C-01	SI	1	2011	68
SWYC	4410	100	S	30	10	Low	West Marine	10175156	Oxnard Boat	12	2011	28 60061-129-AA
SWYC	4411	92				Non	no paint					0
SWYC	4412	98	S	22	8	Cu	Interlux Ultra	Y3669F	KK	11	2016	2693-212-AA
SWYC	4413	94	S	39	11	Low	Interlux Ultra	Y3669F	SI	5	2013	55 2693-212-AA
SWYC	4414	84	Р	26	8	Low	Proline 1088	Y1088C-02	self	4	2013	56
SWYC	4415	100	S	38	11	Low	Comex ABC 3	ABC3-41	Total Yacht W	5	2013	
SWYC	4416	92	Р	60	17	Cu	Interlux Ultra	Y3779U	SI	10	2015	57
SWYC	4417	100	S	34	11	Low	Pettit		Dr	11	2014	
SWYC	4418	92	Р	36	12	Cu	Interlux Ultra	Y3669F	SI	8	2017	57 2693-212-AA
SWYC	4419	98	S	25	8	Cu	Interlux Ultra	Y3669F	SI	7	2016	55 2693-212-AA
SWYC	4421	0	Vacant			Non						0
SWYC	4422	91	Р	39	13	Low	Interlux Ultra	Y3669F	SI	6	2012	55 2693-212-AA
SWYC	4424	100	Р	14	6	Cu	Pettit Protect	:B-91	Dr SI	5	2015	60
SWYC	4426	100	Р	34	12	Cu	Proline 1088	Y1088C-01	MG	7	2016	67
SWYC	4427	100	Р	39	15	Cu	Z-Spar Protec	:B-91	Dr SI	7	2015	65
SWYC	4428	98	S	45	12	Low	Interlux Ultra	Y3669F	SI	2	2014	55 2693-212-AA
SWYC	4430	75	S	34	9	Low			Dr SI	4	2007	
SWYC	4432	96	S	33	6	Non	VC-Offshore	V116	Self	11	2017	67
SWYC	4433	60	Р	17	7	Non	VC-17	YBA406	self	1	2016	0

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	Category 1 reg #
SWYC	4435	94	S	35	9	Cu	Z-spar Botton	411167706	MG	2		45 (60061-94-ZE
SWYC	4436	100	S	27	8	Low			purch	5	2014		
SWYC	4437	100											
SWYC	4439	88	S	50	12	Low	Interlux Micro	_	SI	11			2693-187-ZD
SWYC	4441	96	Р	40	10	Low	Proline 1088		SI	12		56	
SWYC	4442	100	Р	26	8	Low	California bot	YBA143	Dr	2		35 2	2693-18-ZA
SWYC	4443	100	Р	34	12	Low			purch	2	2014		
SWYC	4446	100	S	27	9	Non	No paint					0	
SWYC	4447	94	S	38	12	Low	Interlux Ultra		SI	9			2693-212-AA
SWYC	4450	100	Р	40	15	Cu	Interlux Ultra		SI	5	_	57	
SWYC	4451	100	S	46	13	Cu	Proline 1088		SI	4	2015	56	
SWYC	4454	92	Р	39	14	Cu	Proline 1088	Y1088C-01	SI	4	2016	67	
SWYC	4458	0	Vacant			Non						0	
SWYC	4461	100	S	32	11		Interlus Ultra		SI	8		67	
SWYC	4462	100	S	30	11	Low	Interlux Ultra		SI	5			2693-212-AA
SWYC	4463	100	S	30	11	Cu	Interlux Ultra		Oceanside M	3			2693-212-AA
SWYC	4464	92	S	54	11	Low	Trinidad SR	-	KC	2		70	
SWYC	4465	100	S	35	12	Low	Pettit Trinida		Colonial Yach	12	_		50061-94-ZB
SWYC	4466	100	S	30	10	Cu	Interlux Ultra		SI	3		57	
SWYC	4468	100	S	40	12	Cu	Ultra-Kote		SI	7	2016	67	
SWYC	4470	100	S	39	11	Cu	Z-spar botton	411167706	SI	5		45 (50061-94-ZE
SWYC	4472	92	S	38	12	Low			purch	9			
SWYC	4474	100	S	33	11	Low	Interlux ACT		Dr	3		30	
SWYC	4476	100	S	45	10	Low	Proline 1088	Y1088C-02	Dr SI	4	2014	56	
SWYC	4477	98	S	29	10	Low	Z-Spar Protec		Dr	8	2014	65	
SWYC	4479	100	Р	53	15	Cu	Woolsey Defe			6	2017	45	
SWYC	4480	100	Р	18	9	Cu	Interlux Ultra	Y3779F	SI	5	2016	55 2	2693-212-AA
SWYC	4486	100	Р	18					purch	4	2016		
SWYC	4489	100	S	37	10	Low	Proline 1088		SI	6	2012	67	
SWYC	4492	100	Р	39	12	Low	Interlux Ultra		SI	12	2013	55 2	2693-212-AA
SWYC	4493	100	S	34	11	Cu	Ultra-Kote	3779	SI	7		67	
SWYC	4495	100	S	34	11	Low	Proline 1088	Y1088C-01	SI	2	2011	67	
SWYC	4496	100	S	37	11	Cu	Interlux Ultra	Y3669U	SI	12	2015	57	
SWYC	4497	100	Р	21	7	Low			Sunset Aquat	12		67	
SWYC	4499	75	S	21	8	Low	Micron Extra	5490		8		35 2	2693-181-AA
SWYC	4500	94	S	27	9	Low	Interlux Ultra	Y3449F	SI	8	2012	55 2	2693-212-AA
SWYC	4501	100	Р	31	10	Cu	Interlux Ultra	Y3779U	SI	5	2016	57	
SWYC	4502	92	S	34	12	Cu	Z-Spar Bottor	41127706	Dr	6	2015	45 6	60061-94-ZE
SWYC	4503	98	S	37	12	Cu	Interlux Ultra	Y3779F	SI	2	2015	55 2	2693-212-AA

Facility	Slip/Mooring Reference	Percent of Time	(Power or	Vessel Length	Vessel Beam	Paint Type Copper, Low	Paint Product Name	Product Number	Boatyard Name or Purchase	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	Category 1 reg #
	Number	Occupied	Sail)			or Non			Date				
SWYC	4504	100	S	50	13	Low	Interlux Ultra		SI	6		55	
SWYC	4505	100	Р	24	6	Cu	Proline 1088		self	7		68	
SWYC	4507	100	S	27	8	Low	Proline 1088		SI	5	2010	67	
SWYC	4508	90	Р	30	10	Low	Interlux Ultra	Y3779F	SI	1	2014	55	2693-212-AA
SWYC	4509	90	Р	40	14	Cu	Interlux Ultra		SI	7		55	2693-212-AA
SWYC	4513	98	Р	21	8	Low	Micron Extra	5490) NB	6	2017		2693-181-AA
SWYC	4515	88	S	39	11	Low	Proline 1088	Y1088C-01	KK	1	2014	67	
SWYC	4516	100				Cu	Interlux Ultra	Y3669U	Basin Marine	4	2015	57	
SWYC	4517	80	Р	42	14	Low	Interlux Ultra	Y3669F	SI	2	2010	55	2693-212-AA
SWYC	4518	94	S	31	10	Cu	Interlux Ultra	Y3669F	SI	5	2017	55	2693-212-AA
SWYC	4519	0	Vacant									0	
SWYC	4520	100	S	35	11	Low	Aquaguard Bo	10103	3 SI	11	2011	26	9339-19-AA-70
SWYC	4523	100	S	30	11	Low	Interspeed 64	BRA642	purch	12	2015	38	2693-142-ZM
SWYC	4524	100	S	32	7	Low	Interlux Ca Bo	YBA140	Dr	2	2010	35	2693-18-ZA
SWYC	4525	100	Р	27	8	Low	Interlux Ca Bo	YBA143	Brewer Cap, I	6	2014	35	2693-18-ZA
SWYC	4527	100	S	46	13	Low	Trinidad SR	A1227Q	Dr	8	2014	60	60061-94-ZD
SWYC	4529	100	Р	25		Non	no paint					0	
SWYC	4530	92	Р	21	8	Low			purch	2	2014	67	
SWYC	4531	80	Р	36	13	Low	Interlux Ultra	Y3779F	Dr MB	12	2012	55	2693-212-AA
SWYC	4532	100	S	30	11	Low	Interlux Ultra	Y3669F	SI	3	2013	55	2693-212-AA
SWYC	4533	100	S	31	11	Low	Interlux Ultra	Y3779F	SI	9	2014	55	2693-212-AA
SWYC	4536	100	Р	53	15				pirch	5	2017		
SWYC	4537	0	Vacant			Non			·			0	
SWYC	4538	0	Vacant			Non						0	
SWYC	4540	100	Р	31	11				purch	10	2016		
SWYC	4541	100	S	37	12	Low	Interspeed 64	BQA679/5G	•	4	2016	38	2693-132-ZY
SWYC	4542	100	P	41	15	Low	,	,	Purch	10	2009		
SWYC	4544	90	S	34	12	Cu	Interlux Ultra	Y3779F	SI	2	2015	55	2693-212-AA
SWYC	4547	100	S	43	14	Non	CeRam-Kote		SI	5	2015	0	
SWYC	4549	96	P	36	12	low	Microm Extra			4	2016	_	2693-190-ZJ
SWYC	4550	100	P	26	9	Low	Interlux Ultra		SI	4	2014		2693-212-AA
SWYC	4551	96	S	27	9	Low			SI	6	2010	33	,
SWYC	4552	100	S	42	12	Low	copper oxide		Dr	6	2007	67	
SWYC	4556	94	S	34	10	Low	Interlux Ultra	Y3669F	SI	3	2013		2693-212-AA
SWYC	4558	98	S	43	12	Cu	Interlux Ultra		SI	8	2015		2693-212-AA
SWYC	4560	100	P	37	13	Non	CeRam-Kote !		SI	5	2013	0	
SWYC	4562	94	S	36	13	Low	Jenam Rote .	J J 111	purch	5	2014	67	
SWYC	4564	100	S	42	13	Low	Interlux Ultra	V3770F	SI	7	2014		2693-212-AA
SWYC	4566	100	S	27	9	Low	interiux Oiti a	13/131	purch	9	_	33	2033-212-AA

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	Category 1 reg #
SWYC	4568	100	S	29	10	Low	Pettit Vivid	11161	SI	6	2013	25	60061-116-AA
SWYC	4569	94	S	37	12	Low	Proline 1088	Y1088C-01	SI	5	2010	67	
SWYC	4571	100	Р	32	11	Cu	Interlux Ultra	Y3779U	SI	7	2017	57	
SWYC	4573	100	S	33	7	Cu	Trinidad VOC	1278	SI	6	2015	76	
SWYC	4574	92	S	38	12	Low			MG	11	2011		
SWYC	4575	94	S	36	11	Cu	Z-Spar Bottor	411187706	Dr	5	2015	45	60061-94-ZE
SWYC	4576	100	Р	33	12	Cu	Interlux Ultra	Y3449U	SI	6	2016	57	
SWYC	4577	100	Р	35	11	Cu	Trinidad Pro	16471757	Ireland Yacht	11	2015	60	
SWYC	4579	100	S	43	14	Cu	Ultra-Kote	Y3779U	SI	6	2016	67	
SWYC	4582	92	S	39	12	Low	Pettit Trinida	1875	SI	8	2014	70	
SWYC	4584	100	S	38	13	Low	Interlux Ultra	Y3669F	SI	4	2010	55	2693-212-AA
SWYC	4586	100	S	35	7	Low	Pettit Z-spar I	B90VOC	Dr SI	9	2014	60	
SWYC	4587	100	Р	34	12				purch	6	2016		
SWYC	4590	100	S	28	10	Low	Interlux Ultra	Y3669F	SI	7	2014	55	2693-212-AA
SWYC	4591	100	S	30	11	Non	Intersleek 90	FXA970/A	SI	1	2013	0	
SWYC	4592	94	Р	39	13	Low	Interlux Ultra	Y3779F	SI	1	2013	55	2693-212-AA
SWYC	4593	100	S	34	12	Low	Pettit Trinida	1875	Marina Shipy	7	2014	70	
SWYC	4595	100	Р	32	11	Low	Interlux Ultra	Y3449F	SI	6	2014	55	2693-212-AA
SWYC	4596	100	S	33	11	Low	Interlux Ultra	Y3669F	SI	7	2014	55	2693-212-AA
SWYC	4598	90	S	26	8	Non	EP2000	EP-401	SI	8	2008	0	
SWYC	4600	100	Р	29	9	Cu			purch	9	2015		
SWYC	10256	100	S	40	14	Low	Z-Spar Protec	:B-91	Dr	6	2010	65	
SGYC	3002	95	S	42	13	COPPER	LUX ULTRA	Y3669F	ISLAND BO	02	2017	55	2693-212-AA
SGYC	3004	99	S	27	8.9	NON	SLIP LINER	AQU	ARIUS BOAT	06	2015	0	
SGYC	3018	96	S	34.6	11.9	LOW	PETTIT	1281	ISLAND BO	02	2012	37	60061-71-ZA
SGYC	3021	98	S	25.11	8	COPPER	TTIT TRINIDA	1675	WNER APPLII	04	2016	70	
SGYC	3024	95	S	34	11.6	COPPER	ERLUX SUPE	K90B	SISLAND BO	11	2011	70	
SGYC	3027	95	S	32	10.9	COPPER	TIT PROTECT	B-91	DRISCOLL	03	2016	65	
SGYC	3028	100	S	38	12			SHELTE	R ISLAND BO	01	2012	unknown	
SGYC	3030	99	S	36	12	COPPER	INTERLUX	Y3669F	ISLAND BO	05	2013	55	2693-212-AA
SGYC	3031	95	S	40	12	LOW	ERLUX MICR	5583G	ISLAND BO	10	2014	35	
SGYC	3035	99	P	50.5	15.7	COPPER	TERLUX ULT	Y3779F	ISLAND BO	03	2015	57	2693-212-AA
SGYC	3036	95	P	50.3	15.7	COPPER	FERLUX ULT	3779	SON BEAUM	01	2013	55	
SGYC	3047	100	S	30	9				purchase	04	2015	unknown	
SGYC	3061	99	S	34	10	NON	NO PAINT			06	1995	0	
SGYC	3066	100	P	48	15	COPPER	TERLUX ULT	2669N	ISLAND BO	03	2015	67	
SGYC	3074	100	S	38	13.5	COPPER	TERLUX ULT	3669	ISLAND BO	04	2017	55	
SGYC	3078	98	S	36.3	11.9	COPPER	RLUX MICRO	Y3669F	DEHLER KRA	01	2015	55	2693-212-AA
SGYC	3085	100	S	44	14.5	COPPER	TERLEX ULT	3669	ISLAND BO	06	2017	55	

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	Category 1 reg #
SGYC	3086	100	S	43	13.1	COPPER	INTERLUX	1878	ARD YACHT	05	2014	76	
SGYC	3088	100	S	35	12	COPPER	TERLUX ULT	Y3669F	R ISLAND BO	11	2014	55	2693-212-AA
SGYC	3090	100	S	37	12.5	COPPER	RO LINE 108	Y1088C-01	IGHT & CARV	08	2012	67	
SGYC	3096	100	P	35	12.9	COPPER	TERLUX ULT	3779	ISLAND BO	09	2015	55	
SGYC	3108	90	S	39	12.1	COPPER	INTERLUX	Y3669F	R ISLAND BO	07	2015	55	2693-212-AA
SGYC	3113	98	S	26.6	9.3	COPPER	TIT PROTECT	B-91	LL SHELTER	07	2016	65	
SGYC	3114	100	S	39.5	13	COPPER	PROLINE	Y1088C-01	ARINE GROU	03	2017	67	
SGYC	3115	90	P	30	10.6	COPPER	INTERLUX	3432	DRICOLLS	07	2017	47	
SGYC	3118	100	P	40	12.2	IN	TERLUX ULT	3779	KOHLER	05	2017	55	
SGYC	3125	90	S	32	9.1	COPPER	LUX ULTRA	Y3559U	ISLAND BO	07	2017	57	
SGYC	3127	100	S	43	12.5	COPPER	PROLINE	Y1088C-01	ISLAND BO	11	2016	67	
SGYC	3131	90	S	33.3	10	COPPER	PRO LINE	Y1088C-01	S ISLAND BO	12	2014	67	
SGYC	3139	80	S	35	12	COPPER	INTERLUX	Y3669F	ISLAND BO	08	2015	55	2693-212-AA
SGYC	3141	95	S	51.6	15.3	COPPER	TERLUX ULT	3669	ISLAND BO	07	2013	55	
SGYC	3147	90	S	46	14	COPPER	LUX EXTRA	Y3669U	ISLAND BO	04	2016	57	
SGYC	3149	vacant										0	
SGYC	3163	100	S	36	12	COPPER	TERLEX ULT	3669	ISLAND BO	04	2015	55	
SGYC	3165	100	S	30	10.3	COPPER	PRO-LINE	1088c-02	ISLAND BO	08	2015	56	
SGYC	3166	95	S	26.9	9	COPPER	TERLUX ULT	3669	SON BEAUM	04	2013	55	
SGYC	3167	90	S	41	12.6	COPPER	PROLINE	A10886	ISLAND BO	11	2016	60	60061-94-ZB
SGYC	3168	100	S	34.6	11.9	COPPER	TERLUX ULT	Y3669U	ISLAND BO	06	2016	55	
SGYC	3170	100	S	11.6	10.8	COPPER	INTERLUX	2449H	ISLAND BO	05	2016	76	
SGYC	3177	100	S	27	9	COPPER	TERLUX ULT	3669	ISLAND BO	07	2017	55	
SGYC	3180	100	P	36	12.2	COPPER	LUX ULTRA	Y3449U	ISLAND BO	10	2015	57	
SGYC	3186	100	S	39.8	12.8	COPPER	INTERLUX	3559	ISLAND BO	11	2014	55	
SGYC	3203	90	S	49	13	COPPER	LUX EXTRA	Y3449U	ISLAND BO	11	2017	57	
SGYC	3205	75	P	59	18	COPPER	LUX ULTRA	Y3779U	ISLAND BO	01	2016	57	
SGYC	3207	98	P	27	8.6	COPPER	ARINE BOTT	411127906	EACH YACH	09	2016	40	60061-117-ZE
SGYC	3212	50	S	39.9	13.8	COPPER	Z SPAR	B-94	ISLAND BO	10	2014	65	
SGYC	3217	99	S	33	8.6	NON	SLIP LINER					0	
SGYC	3219	98	P	43	14	COPPER	PRO LINE	Y1088C-01	ISLAND BO	09	2017	67	
SGYC	3221	90	S	37	10.1	COPPER	PRO LINE	Y1088C-01	ISLAND BO	05	2015	67	
SGYC	3225	95	S	35	12	LOW	K MICRON EX	5790	DRISCOLL	05	2014	35	2693-190-ZI
SGYC	3231	99	S	34	10.8				8/17				
SGYC	3234	90	S	39.8	12.6	COPPER	TERLUX ULT	3669	ISLAND BO	07	2016	55	
SGYC	3236	95	S	32.5	11.75	COPPER	Z-SPAR	B90VOC	OLL BOAT W	10	2015	76	
SGYC	3240	99	S			COPPER	ETIT TRINIDA	A10886	DRISCOLLS	05	2014	60	60061-94-ZB
SGYC	3241	100	S	34	10			UNKNOWN			2003		
SGYC	3247	90	S	38	13	COPPER	TERLUX ULT	3669	ISLAND BO	07	2015	55	

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	Category 1 reg #
SGYC	3258	100	S	30	10.8	COPPER	AR BOTTOM	41127706	DRISCOLL	09	2017	65	60061-94-ZE
SGYC	3260	100	S	32	6.8	LOW	NE VIVID AN	11161	NTED BY OW	03	2016	25	60061-116-AA
SGYC	3266	100	P	30	10				purchase	8	2011	unknown	
SGYC	3268	75	P	42	15	COPPER	TERLUX ULT	Y3779U	S ISLAND BO	01	2013	57	
SGYC	3271	90	S	40	11.8	COPPER	TERLUX ULT	3779	ISLAND BO	07	2016	55	
SGYC	3277	87	S	44	13.6	COPPER	TIT PROTECT	B-91	DRISCOLLS	12	2016	65	
SGYC	3279	95	S	28	9.6	COPPER	RLUX ULTRA	Y3669U	S ISLAND BO	07	2013	57	
SGYC	3280	100	S	32	11	COPPER	FERLUX ULT	3669	ISLAND BO	02	2014	55	
SGYC	3284	99	P	28	10	COPPER	FERLUX ULT	Y3779F	ISLAND BO	02	2017	55	2693-212-AA
SGYC	3288	100	S	31	10.6	COPPER	PRO LINE	Y1088C-01	ISLAND BO	07	2015	67	
SGYC	3295	vacant										0	
SGYC	3299	99	S	30	11	NON	COPPER COAT	85396	DRICOLLS	03	2016	0	
SGYC	3305	98	S	30	10	COPPER	FERLUX ULT	3559	ISLAND BO	12	2012	55	
SGYC	3306	100	S	44	14.6	COPPER	LUX ULTRA-	Y3669U	ISLAND BO	11	2015	57	
SGYC	3309	100	S	37	11.6	COPPER	INTERLUX	Y3669F	R ISLAND BO	07	2016	55	2693-212-AA
SGYC	3324	90	S	30	10.1				purchase	10	2012	unknown	
SGYC	3325	100	P	36	12.6				purchase	12	2015	unknown	
SGYC	3326	100	S	49.5	14.8	COPPER	INTERLUX	3559	ISLAND BO	01	2017	55	
SGYC	3333	98	S	30	10.9	COPPER	FERLUX ULT	Y3559F	R ISLAND BO	04	2014	55	
SGYC	3336	95	S	35	12	COPPER	FERLUX ULT	Y3669U	R ISLAND BO	04	2016	57	
SGYC	3341	100	S	30	9.6	COPPER		SHELTE	R ISLAND BO	03	2016	unknown	
SGYC	3342	100	P	43	13.7	COPPER	Z-SPAR	B-91	DEHLER KRA	01	2017	65	
SGYC	3343	100	P	42	13.7	COPPER	FERLUX ULT	Y3449F	R ISLAND BO	06	2015	55	2693-212-AA
SGYC	3344	100	P	43	14.6	COPPER	INTERLUX		KOHLER	04	2013	67	
	3347	vacant										0	
SGYC	3348	98	S	28	7.8	COPPER	TERLUX ULT	3669	ISLAND BO	11	2011	55	
SGYC	3352	99	S	32.8	9.15	NON	SLIP LINER					0	
SGYC	3355	100	P	37	12	LOW	MICRON CSC	YBC583	SON BEAUM	03	2009	33.4	2693-225-AA
SGYC	3357	100	P	43	15	COPPER	FERLUX ULT	Y3669U	OLLS MISSIC	07	2006	55	
SGYC	3358	100	S	42.6	13	COPPER	RO LINE 108	Y1088C-01	ISLAND BO	03	2012	67	
SGYC	3364	75	P	28	10	COPPER	PROLINE	Y1088C-01	R ISLAND BO	08	2014	67	
SGYC	3365	100	S	34	11	COPPER	FERLUX ULT	3669	SON BEAUM	04	2013	55	
SGYC	3368	100	S	33	12.6	COPPER	TERLUX ULT	Y3779F	ISLAND BO	04	2014	55	2693-212-AA
SGYC	3372	98	S	39.25	12.5	COPPER	PROLINE	1088C-02	ISLAND BO	11	2015	56	
SGYC	3373	90	S	36	6	COPPER	TRINIDAD	1875	DRISCOLLS	03	2015	70	
SGYC	3374	100	S	32	10.6		UNKOWN			05	2007		
SGYC	3375	90	S	41	13	COPPER	FERLUX ULT	3669	ISLAND BO	10	2015	55	
SGYC	3377	100	P	42	13.6	COPPER	unknown			01	2011		
SGYC	3382	99	S	30	10	NON	TERSLEEK 9	FXA972/A	ISLAND BO	04	2013	0	

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	Category 1 reg#
SGYC	3390	95	S	42.8	13.7	COPPER	SPAR BP GOL	411167706	ARINE GROU	. 12	2014	60	60061-94-ZE
SGYC	3396	98	S	32	10	COPPER	PETITE	B-91	DRISCOLL	04	2016	65	
SGYC	3400	100	P	38	12	COPPER	PROLINE 1088	Y1088C-01	S ISLAND BO	04	2016	67	
SGYC	3406	99	S	29.11	10.6	COPPER	FERLUX ULT	Y3669U	S ISLAND BO	08	2012	55	
SGYC	3413	85	S	30	10.5	NON	ERLUX PACIF		S ISLAND BO	01	2014	0	
SGYC	3415	95	P	46.8	14.1	COPPER	ERLUX ULT	3779	SON BEAUM	07	2014	55	
SGYC	3419	90	P	57	14.5			SHELTE	R ISLAND BO	01	2013	unknown	
SGYC	3421	90	S	30	11	COPPER	UX ULTRA B	Y3669F	R ISLAND BO	07	2014	55	2693-212-AA
SGYC	3424	95	S	41.1	13.1	COPPER	NATIONAL U	3669	R ISLAND BO	10	2017	55	
SGYC	3428	100	P	42	15.7	COPPER	PROLINE	Y1088C-01	R ISLAND BO	06	2015	67	
SGYC	3430	100	S	30	11	COPPER	INTERLUX	3779	R ISLAND BO	06	2015	55	
SGYC	3438	95	S	38	12	COPPER	PRO LINE	1088C-01	R ISLAND BO	03	2015	67	
SGYC	3440	100	P	30	10	NON	SLIP LINER					0	
SGYC	3450	97	S	36	12.5	COPPER	FERLUX ULT	3669	R ISLAND BO	04	2014	55	
SGYC	3454	100	S	38	14.2	COPPER	PER INTERLU	K90B	ISLAND BO	07	2008	70	
SGYC	3455	50	S	44	12.6	COPPER	COMEX	30	JR YARD MA	03	2015	unknown	#N/A
SGYC	3459	100	P	50	16	COPPER	LUX ULTRA	Y3449U	ISLAND BO	10	2015	57	
SGYC	3463	98	P	42	14	COPPER	PROLINE 1088	Y1088C-01	SON BEAUM	08	2015	67	
SGYC	3473	90	P	50	16	COPPER	ΓERLUX ULT	3669	DEHLER KRA	09	2017	55	
SGYC	3477	100	S	30	12	COPPER	ΓERLUX ULT	3669	ISLAND BO	06	2016	55	
SGYC	3482	90	S	34	11	COPPER	ΓERLUX ULT	Y3669U	ISLAND BO	07	2017	57	
SGYC	3483	98	P	31	10				5/17				
SGYC	3484	100	P	54	14	COPPER	ΓERLUX ULT	Y3779F	ISLAND BO	07	2017	55	2693-212-AA
SGYC	3487	90	S	40	10	COPPER	ΓERLUX ULT	Y3669F	ISLAND BO	01	2017	55	2693-212-AA
SGYC	3489	90	S	36	12	COPPER	UX ULTRA B	2669N	DEHLER KRA	07	2014	67	
SGYC	3499	99	S	42	13.9	COPPER	RLUX MICRO	YBA470	ISLAND BO	09	2012	35	2693-187-ZD
SGYC	3500	100	S	30	10	COPPER	FERLUX ULT	Y3669F	ISLAND BO	01	2013	55	2693-212-AA
SGYC	3503	85	S	36	12	COPPER	FERLUX ULT	3669	ISLAND BO	02	2013	55	
SGYC	3506	98	S	27	8.1	COPPER	FERLUX ULT	3669	ISLAND BO	04	2014	55	
SGYC	3527	100	S	38	12.6	COPPER	ΓERLUX ULT	Y3669F	ISLAND BO	05	2014	55	2693-212-AA
SGYC	3529	100	S	30	10	COPPER	RLUX NAUT	3432	OLLS MISSIO	01	2006	47	
SGYC	3531	99	S	32	11.9	COPPER	ΓERLUX ULT	3669	ISLAND BO	03	2015	55	
SGYC	3535	100	P	31.6	12	COPPER	.UX ULTRA E	Y3779F	ISLAND BO	06	2017	55	2693-212-AA
SGYC	3536	100	S	34.5	12	COPPER	FERLUX ULT	3669	ISLAND BO	03	2017	55	
SGYC	3543	95	S	45	15	COPPER	PETTIT	B-91	DRISCOLLS	12	2016	65	
SGYC	3546	100	S	30	10.1	NON	TERSLEEK 9	FXA970/A	ISLAND BO	05	2014	0	
SGYC	3549	99	S	27	8	COPPER	RLUX ULTRA	Y3669U	ISLAND BO	11	2016	57	
SGYC	3551	90	S	42	11	COPPER	PROLINE	Y1088C-01	ISLAND BO	06	2008	67	
SUIC	3331	70				COLLE	INOLINE	110000 01	IDE/IIID DO	00	2000	07	

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	Category 1 reg #
SGYC	3562	100	S	37.7	12.8	COPPER	PROLINE	1088C-02	ISLAND BO	03	2016	67	
SGYC	3564	100	S	30	10.1	COPPER	FERLUX ULT	3669	R ISLAND BO	10	2009	55	
SGYC	3565	90	S	34	11.9				12/15				
SGYC	3567	100	S	43	14.5		UNKNOWN	KN	IIGHT & CARV	01	2009	unknwon	
SGYC	3570	100	P	30	12	COPPER	FERLUX ULT	Y3779F	S ISLAND BO	04	2015	55	2693-212-AA
SGYC	3576	50	S	42	12	COPPER	TRINIDAD	A10886	KOHLER	09	2014	60	60061-94-ZB
SGYC	3583	90	S	32.5	11.9	COPPER	PETIT ZSPAR	B-91	OLL BOAT W	11	2016	65	
SGYC	3594	98	S	37	11.8	COPPER	ETIT TRINIDA	1875	DEL REY BO	. 05	2015	70	
SGYC	3597	100	S	30	10				purchase	01	2011	unknown	
SGYC	3598	99	S	26	8	NON	SLIP LINER					0	
SGYC	3599	99	S	36	11.11		UNKNOWN	SHELTE	R ISLAND BO.	03	2007	67	
SIM	5009	97	S	44	10	Copper	Interlux Ultra	3449	XIBY	10	2015	55	
SIM	5010	93	S	51	14	Low	Micron CSC	YBA060	SIBY	7	2017	17	2693-203-AA
SIM	5013		Vacant	Vacant	Vacant		Vacant					0	
SIM	5014	85	P	38	14	Copper	Interlux Ultra	3779	Unknown	2	2015	55	
SIM	5019	98	S	42	13	Low	Micron CSC	YBC583	Driscolls MB	1	2015	35	2693-225-AA
SIM	5023	64	S	63	18.5	Copper	Petit Protector	B-94	Driscoll's- SI	8	2016	65	
SIM	5027	100	S	24	8	COPPER	ıterluxUltra Ko	3669	SIBY	9	2017	55	
SIM	5036	91	P	25	8.5	Copper	nterlux Ultrako	3669	nciscos Boat S	11	2016	55	
SIM	5038	100	S	41	12	Low	Proline	Y1088c-01	SIBY	6	2013	67	
SIM	5044	100	S	44	13.9	Copper	Biolux Blue	3779	Basin Marine	6	2015	55	
SIM	5045	96	P	103	24.5	Low	Seahawk AF33	3345	SIBY	8	2015	33	44891-12-AA
SIM	5047	100	P	20	7	Copper	Interlux Ultra	3779	SIBY	5	2016	55	
SIM	5048	93	S	30	9.6	Copper	Petit	B-91	SIBY	4	2013	55	
SIM	5050	100	P	37	14	Copper	Interlux Ultra	Y3669F	Hall Marine/AZ	4	2016	55	
SIM	5051	100	S	35.5	11.9		Petit	S	outh Texas Yac	11	2016	?	
SIM	5052	86	P	27	9	COPPER	ΓERLUX ULT	3779	SIBY	1	2014	55	
SIM	5058	99	P	32	12	Non	Hydrohoist	S	its on Hydroho	unknown	2008	0	
SIM	5061	95	S	30	10.8	Copper	Proline	Y1088C-01	Knight & Carve	2	2013	67	
SIM	5066	100	S	50.5	14.9	Copper	Interlux Ultra	Y3779U	SIBY	3	2016	55	
SIM	5070	85	P	76	19	Low	. Micron CSC	YBC581	Cable Marine	1	2017	35	2693-225-AA
SIM	5071	100	P	30	10.4	Copper	Interlux Ultra	3779	Driscolls MB	4	2014	55	
SIM	5074		Vacant	Vacant	Vacant		Vacant					0	
SIM	5076	100	S	44	12	Copper	Interlux Ultra	3669	SIBY	5	2017	55	
SIM	5078	87	S	46.5	14	Copper	Zspar	B-91	wport Harb Shi	11	2016	55	
SIM	5079	85	S	44	12.5	LOW	ΓER ULTRA/E	Y3669F	DEHLER KRA	8	2011	67	2693-212-AA
SIM	5080	100	P	38	13	Copper	Proline	Y1088c-01	Oct-13	10	2013	67	
SIM	5081	81	P	144	28	NON	ahawk Smart E	4705	Rybovich	3	2017	0	
SIM	5082	100	P	21	8.6	Copper	Interlux Ultra	Y3779U	SIBY	5	2017	55	

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	Category 1 reg #
SIM	5088	92	P	30	11	Copper	Micron CSC	YBC580	SIBY	12	2011	67	2693-225-AA
SIM	5094	100	P	22	8.6	COPPER	TIT ZSPAR PI	B-94	SET AQUA C	1	2014	60	
SIM	5101	99	P	22	8.3	Copper	Unknown		Aug-17	Unknown	Unknown	67	
SIM	5104	100	S	39	12.4	Low	Hydrocoat	1840	Self Applied	6	2016	40	60061-87-ZI
SIM	5107	89	P	34	13	Copper	Micron CSC	YBC580	SIBY	11	2014	33	2693-225-AA
SIM	5108	98	P	31	9.6	Copper	Ultra	3669	SIBY	6	2013	67	
SIM	5111	71	P	25	8.6	Copper	InterluxUltra	3779	I Marine Servi	9	2017	55	
SIM	5113	100	P	30	10	Low	Proline	Y1088c-01	SIBY	5	2016	67	
SIM	5115	86	P	44.9	15.8	Copper	Interlux Ultra	3779	SIBY	4	2015	55	
SIM	5117	100	S	24	8	Copper	Interlux Ultra	3669	ceanside Mari	7	2011	55	
SIM	5128	98	P	13	6	Copper	Petit Hydrocoa	1840	INFLATABL	4	2017	67	60061-87-ZI
SIM	5129	77	P	115	25	Low	awk Solutions	3345	ARINE GROU	. 4	2015	33	44891-12-AA
SIM	5131	90	P	140	30	Low	TRILUX 33	YBA060	ARINE GROU	. 3	2016	17	2693-203-AA
SIM	5134	79	S	30	10.6	COPPER	FERLUX ULT	3449	ARINE GROU	7	2014	55	
SIM	5136	99	S	40	11	Copper	Biocop	1205-1	ottoms Up - W	6	2016	42	
SIM	5144	86	S	30	11.1	Copper	Interlux Ultra	3669	SIBY	6	2017	55	
SIM	5148	76	S	106	27	Low	eahawk Bioco	1205-1	Marine Group	8	2017	33	
SIM	5150	98	P	38	12.8	Non	Pacifica Black	YBA163	Marine Group	4	2014	0	
SIM	5160	100	S	30	10.2	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	?	2008		
SIM	5163	100	S	50	14	Low	Proline 1088	Y1088C-01		7	2017	33	
SIM	5164	100	P	29	13	Non	Proguard	NAU773	ielson Beaumo	3	2016	0	23566-20-ZT
SIM	5167	100	S	25	8	COPPER	iterluxUltra Ko	3669	SIBY	8	2017	55	
SIM	5168	100	S	42	13.9	Copper	Interlux Ultra	3669	Koehler	10	2016	55	
SIM	5176	100	P	40	13.9	Copper	Unknown		Oct-17	Unknown	Unknown		
SIM	5180	90	P	84	21.5	Copper	Z-Spar Protect	41127706	Marine Group	8	2016	67	60061-94-ZE
SIM	5181	100	P	40	14.2	Copper	Proline 1088	Y1088C-01	Oct-13	10	2013	67	
SIM	5182	74	P	28	11	Copper	Interlux Ultra	3779	Driscolls	8	2017	55	
SIM	5188	97	P	26	8	Copper	Interlux Ultra	Y3779U	SIBY	3	2016	55	
SIM	5192	100	S	23	7.8	Copper	Interlux Ultra	3779	Koehler	4	2016	55	
SIM	5195	100	S	30	11.3	COPPER	Interlux Ultra	3669	SIBY	10	2007	55	
SIM	5197	98	S	34	11.5	Copper	Interlux Ultra	3669	Koehler Kraft	6	2013	55	
SIM	5199	100	S	37	11.5	Copper	Interlux Ultra	Y3779U	Aug-16	Unknown	Unknown	55	
SIM	5202	94	P	27	8	Copper	Proline	Y1088C-01	alm Bch Florio	2	2015	67	
SIM	5205	100	S	42	13	Copper	Zspar Progold	A41127706	Driscolls- SI	8	2016	67	
SIM	5206	98	S	40	14	Copper	terlux Ultra Ko	Y3669U	SIBY	4	2017	55	
SIM	5209	99	P	77	30	Copper	ahawk Sharksk	6142	Marine Group	10	2015	55	44891-11-AA
SIM	5210	100	S	33	11	Copper	Proline 1088	Y1088C-01	Knight & Carve	1	2013	67	
SIM	5215	100	S	36	12	Non	Ceram Kote	99M	SIBY	5	2015	0	
SIM	5216	50	P	90	22	Low	Proline	Y1088c-01	Marine Group	11	2017	33	

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	Category 1 reg #
SIM	5217	99	P	38	13	Copper	Interlux Ultra	3669	Koehler Kraft	3	2017	55	
SIM	5218	100	P	39	14	Copper	Interlux Ultra	Y3779F	SIBY	4	2013	67	2693-212-AA
SIM	5219	100	P	23	8.5	Copper	Interlux Ultra	3669	SIBY	2	2016	55	
SIM	5225	100	P	40	13.5	Copper	known- New b	oat	Unkown	Unknown	Unknown		
SIM	5229	100	S	33	10.5	Copper	Interlux Ultra	3779	SIBY	11	2017	55	
SIM	5237	100	P	35.5	11.5	Copper	Micron CSC	5583G	SIBY	11	2016	33	
SIM	5243	100	S	35.1	11.8	Copper	Interlux Ultra	Y3779U	Dec-16	4	2016	55	
SIM	5255	85	S	43	13.6	Copper	CSC Micron	5583G	e Boat Yard M	11	2012	37	
SIM	5257	78	P	62	16.1	Copper	Interlux Ultra	Y3779F	SIBY	7	2017	55	2693-212-AA
SIM	5261	100	S	40	13.5	Low	Micron CSC	5583G	SIBY	9	2016	33	
SIM	5267	82	P	151	30.7	NON	BESTCOAT	2.2	RYBOVICH	8	2015	0	
SIM	5269	100	S	30	11	LOW	TRINIDAD	A1108206	SIBY	9	2011	70	
SIM	5277	100	S	41.6	13.1	Non	Intersleek	FXA972/A	SIBY	3	2013	0	
SIM	5279	100	S	30	10	Copper	Zspar Pro Gold	A41127706	Driscoll's	5	2016	67	
SIM	5280	100	P	36	12	Copper	Interlux Ultra	3779	SIBY	3	2015	55	
SIM	5281	100	P	42	12	Copper	Interlux Ultra	3779	SIBY	10	2015	55	
SIM	5287	74	P	79	21	Low	Micron CSCHS	YBC581	SIBY	5	2017	35	2693-225-AA
SIM	5295	100	P	18	6	Copper	InterluxUltra	3779	SIBY	4	2016	55	
SIM	5299	100	P	36	12.5	Copper	Interlux Ultra	3669	Dirscoll's	7	2012	55	
SIM	5302	85	S	38	12.3	LOW	Interlux Ultra	3779	DRISCOLLS	9	2009	67	
SIM	5305	93	S	30	10.25	Copper	Petit Protector	B-91	Driscoll's	6	2015	55	
SIM	5306	97	S	32.5	11.75	Copper	Interlux Ultra	3669	SIBY	7	2016	55	
SIM	5310	100	P	48.7	16.5	Copper	Proline 1088	Y1088C-02	Unknown	?	2013		
SIM	5312	100	P	30	11.5	Copper	Interlux Ultra	3779	SIBY	12	2015	55	
SIM	5313	100	S	29	7.1	Copper	Interlux Ultra	3779	SIBY	4	2012	55	
SIM	5315	97	S	33	11	Low	Proline 1088	Y1088c-01	SIBY	4	2011	33	
SIM	5317	94	S	30	11.8	Copper	Unknown		SIBY	2	2014	67	
SIM	5319	100	S	38	11.5	Copper	Interlux Ultra	3779	Anchors Away	10	2010	55	
SIM	5323	92	S	34	10	COPPER	INT ULTRA	3779	SIBY	10	2014	55	
SIM	5324	100	S	30	11	COPPER	TERLUX ULT	3669	SIBY	9	2015	55	
SIM	5326	100	P	36.4	12.5	Copper	Interlux Ultra	3449	SIBY	1	2014	55	
SIM	5327	99	P	46	15	Copper	terlux Ultra Ko	3779	SIBY	6	2016	55	
SIM	5330	100	P	44	13.9	Copper	Micron CSC	5583G	SIBY	9	2011	37	
SIM	5331	100	S	45	14	Low	Petit Vivid	1261	obile Moore-Gr	8	2013	33	60061-116-AA
SIM	5333	100	P	38	13.4	Copper	Interlux Ultra	3669	SIBY	6	2014	55	
SIM	5337	100	S	25	8	COPPER	Micron CSC	YBC580	SIBY	11	2013	33	2693-225-AA
SIM	5339	87	P	92	21	Copper	Interlux Ultra	Y3779F	Driscoll's SI	5	2015	55	2693-212-AA
SIM	5340	93	S	31	11.8	Copper	Unknown		Unknown	Unknown	Unknown		
SIM	5343	99	S	47	14	Copper	Proline	Y1088c-01	SIBY	4	2016	67	

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	Category 1 reg #
SIM	5345	100	P	44	14.6	Copper	Unknown		Sep-17	Unknown	Unknown		
SIM	5347	100	S	36	11.2	Copper	st Marine Botte	om V	entura Harbor I	2	2015		
SIM	5348	100	S	41	12	Copper	OOLSEY AGE	4802	SELF APPLIEI	2	2011	33	60061-101-ZA
SIM	5349	100	P	38	14	Non	Proguard	NAU773	ielson Beaumo	1	2016	0	23566-20-ZT
SIM	5352	100	S	48.6	14.2	COPPER	Int Ultra w/bio	Y3669F	SIBY	3	2012	67	2693-212-AA
SIM	5353	100	P	33	12	COPPER	INT ULTRA	3449	SIBY	1	2015	55	
SIM	5354	97	S	40	13.6	Low	Micron CSC	5583G	SIBY	10	2016	33	
SIM	5358	100	P	35	13	Copper	Petit Protector	B-94	Driscoll's	9	2013	60	
SIM	5359	95	P	40	12	Copper	Proline 1088	Y1088C-01	Self Applied	7	2016	67	
SIM	5362	82	P	34	13	Copper	Interlux Ultra	Y3669U	SIBY	7	2017	55	
SIM	5363	99	P	56	15.9	Copper	Proline 1088	Y1088C-02	SIYB	5	2015	67	
SIM	5367	100	S	21	6.3	COPPER	T ULTRA KO	3669	SIBY	9	2017	55	
SIM	5368	97	S	30	11	COPPER	FERLUX ULT	3779	DRISCOLLS	5	2013	55	
SIM	5373	93	P	44	13	Low	Hydrocoat	1840	e Boat Yard M	1	2014	40	60061-87-ZI
SIM	5387	91	S	46	13	Copper	terlux Ultra Ko	ote	SIBY	5	2017	55	
SIM	5392	79	P	13	5	Non	None	None	None	None	None	0	
SIM	5393	99	S	37	12	Copper	Imeron	ABC3-2	entura Harbor I	10	2014	50	
SIM	5406	82	P	28	10.5	Copper	Unknown		Jun-17	Unknown	Unknown		
SIM	5408	100	P	20.9	8.1	Copper	st Marine Botte	om Bo	at House Anah	12	2013	67	
SIM	5412	66	P	105	25	Low	Seaguard P30	P30BQ12	Delta - WA	5	2015	0	
SIM	5415	99	P	21	8	COPPER	ERLUX ULTR	3779	SIBY	1	2015	55	
SIM	5426	78	P	30	10.5	Copper	Micron CSC	5583G	SIBY	4	2015	33	
SIM	5429	92	P	26	8.9	Low	Petit Vivid	1861	SIBY	11	2013	25	60061-116-AA
SIM	5430	93	P	35	13	Copper	Interlux Ultra	3779	SIBY	12	2011	55	
SIM	5432	79	S	47	14	Low	CSC Micron	5583G	SIBY	1	2016	33	
SIM	5433	100	P	54	16	NON	EPAINT	EPT S1-305-1	DRISCOLLS	8	2015	0	
SIM	5436	100	P	48	15	COPPER	Ultra w/Bio	Y3669F	Koehler Kraft	10	2013	55	2693-212-AA
SIM	5439	100	P	17	6	Copper	Proline 1088	Y1088C-01	Self Applied	12	2012	67	
SIM	5440	99	S	30	11.1	COPPER	PAR PROGOI	A41127706	SIBY	8	2012	67	
SIM	5443	100	P	16	5	Copper	Trilux	YBA060	ELF APPLIEI	10	2013	17	2693-203-AA
SIM	5444	97	S	34.5	11	Low	Micron CSC	YBC580	SIBY	9	2016	33	2693-225-AA
SIM	5449	80	S	45	14	Copper	Proguard	NAU773	Koehler Kraft	3	2013		23566-20-ZT
SIM	5450	98	P	34	13.5	Copper	Interlux Ultra	3779	SIBY	10	2015	55	
SIM	5452	100	S	35.6	12	Copper	Voolsey Defens	4902	ielson Beaumo	8	2017	40	60061-117-ZA
SIM	5453	100	P	30	11.3	Copper	Interlux Ultra	3779	SIBY	3	2017	55	
SIM	5454	93	P	50	14.6	Copper	Unknown		Aug-17	Unknown	Unknown		
SIM	5457	100	P	32	11.3	COPPER	ΓERLUX ULT	3779	DRISCOLLS	2	2014	55	
SIM	5465	100	P	25	7	Copper	Interlux Ultra	3669	SIBY	4	2015	55	
SIM	5468	93	S	40	12	Copper	Ultra w/Bio	Y3669F	SIBY	1	2014	55	2693-212-AA

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	Category 1 reg #
SIM	5469	100	S	30	11	COPPER	UNKNOWN		Jan-17	Unknown	Unknown		
SIM	5470	100	S	44.5	14	Copper	Interlux Ultra	3779	SIBY	4	2014	55	
SIM	5475	92	P	53	15	Copper	Interlux Ultra	3779	Marine Group	7	2016	55	
SIM	5480	100	P	36	12.6	COPPER	FERLUX ULT	3669	SIBY	11	2014	55	
SIM	5481	99	S	27	8	Copper	Interlux Ultra	3779	Koehler Kraft	3	2015	55	
SIM	5482	100	S	27	8	Copper	Proline 1088	Y1088C-01	Aug-17	Unknown	Unknown		
SIM	5483	99	S	36	11.9	Copper	Petit Zspar	B-91	Driscolls	5	2017	55	
SIM	5485	100	S	33	11.6	Copper	Interlux Ultra	3779	SIBY	5	2016	55	
SIM	5490	97	P	43	14	Copper	ProGold	411127906	arsen's Boatyar	10	2016	67	60061-117-ZE
SIM	5491	100	P	30	12	Copper	Unknown		May-17	Unknown	Unnown		
SIM	5494	90	S	42	14	Copper	Interlux Ultra	3559	SIBY	2	2015	55	
SIM	5497	100	S	35	10	NON	CERAM KOTI	99M	SIBY	3	2015	0	
SIM	5504	91	S	38	13.3	Copper	Interlux Ultra	3779	SIBY	2	2016	55	
SIM	5506	100	S	21	8	Non	Seahawk Smar	4705	Koehler	3	2015	0	
SIM	5509	84	P	63.5	17.3	Copper	Interlux Ultra	Y3779U	SIBY	8	2017	55	
SIM	5511	77	P	30	10.5	Copper	nterlux Ultrako	te	SIBY	10	2016	55	
SIM	5513	100	S	35	12	Copper	Interlux Ultra	Y3669U	SIBY	10	2017	55	
SIM	5516	100	S	30	11	Low	Micron CSC	5583G	SIBY	9	2016	33	
SIM	5517	100	P	100	25.2	Copper	Interlux Ultra	Y3669F	SIBY	10	2017	55	2693-212-AA
SIM	5518	100	S	41	13	LOW	MICRON CSC	5583G	SIBY	5	2017	33	
SIM	5519	100	P	29	10	Copper	Interlux Ultra	Y3669U	SIBY	7	2016	55	
SIM	5529	95	S	36	11.8	Copper	Interlux Ultra	Y3449u	SIBY	7	2017	55	
SIM	5530	100	S	42	13.9	Low	Micron CSC	5583G	SIBY	10	2014	33	
SIM	5538	100	P	18	7.9	Copper	Unknown		Factory Applied	11	2009	67	
SIM	5539	82	S	54	16	Copper	Micron CSC	5583G	SIBY	11	2015	33	
SIM	5540	55	S	39.7	12.6	Low	Int Micron CSC	YBC580	SIBY	8	2017	33	2693-225-AA
SIM	5547	69	P	115	25	Low	Micron CSC	5583G	escent Boat Ya	6	2016	35	
SIM	5554	96	P	43	14	Copper	Interlux Ultra	3669	Kings Harbor	8	2015	55	
SIM	5557	100	S	40	13.6	Low	Micron CSC	5583G	SIBY	9	2016	33	
SIM	5561	81	P	13	5	Low	Neptune Hybrid	1243	ELF APPLIEI	3	2016	25	
SIM	5565	67	S	40	11	Copper	etit Black Wide	1186906	SIBY	12	2016	25	
SIM	5571	100	S	23	9	NON	NON	NON	SIBY	4	2006	0	
SIM	5575	95	S	34	11.9	Copper	Micron esc	5583G	SIBY	11	2015	33	
SIM	5577	95	P	50	15	Copper	Petit Trinidad	1878	SIBY	3	2017	75	
SIM	5579	88	S	36	12.5	Copper	Interlux Ultra	Y3669F	SIBY	4	2014	55	2693-212-AA
SIM	5580	100	S	22	7.9	Non	Sea shell	CUNI-90-10	SIBY	8	2015	0	
SIM	5581	100	P	42	14	Copper	terlux Ultra Ko	2669N	SIBY	11	2015	67	
SIM	5584	100	P	39.5	13	Copper	Proline 1088	Y1088c-01	Marine Group	3	2017	67	
SIM	5585	98	S	39	13	Copper	Voolsey Defens	4902	ielson Beaumo	8	2017	67	60061-117-ZA

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	Category 1 reg #
SIM	5588	100	S	46	13.9	Copper	Interlux Ultra	Y3779U	SIBY	8	2017	55	
SIM	5589	99	P	68	20	Copper	Petit Zspar	B-94	Driscoll's	6	2015	55	
SIM	5590	99	S	27	9	Copper	terlux Ultra Ko	3779	SIBY	10	2016	55	
SIM	5603	78	P	37	14	Copper	Interlux Ultra	3779	SIBY	7	2012	55	
KKM	997	90%	Р	30	10	UNK	NA	NA	NA	NA	NA	NA	
KKM	405	100%	Р	32	13	copper	70%	TRINIDAD PETTIT	1877	driscoll	04	2016	
KKM	932	60%	S	32	9	UNK	NA	NA	NA	NA	NA	NA	
KKM	372	50%	Р	35	13	COPPER	65%	INTERLUX ULTRA	160	BASIN MARINE	04	2012	
KKM	399	80%	S	34	12	UNK	NA	NA	NA	NA	NA	NA	
KKM	510	60%	S	34	10	UNK	NA	E PAINT EP2000	EP-401	NA	NA	NA	
KKM	167	80%	Р	30	10	UNK	NA	INTERLUX ULTRA	160	NA	NA	NA	
KKM	959	85%	Р	36	11	COPPER	70%	TRINIDAD PETTIT	1877	driscolls	05	2015	
KKM	389	90%	S	34	10	UNK	NA	NA	NA	NA	NA	NA	
KKM	507	90%	S	30	10	UNK	NA	NA	NA	NA	NA	NA	
KKM	118	90%	Р	27	8	UNK	NA	NA	NA	NA	NA	NA	
KKM	760	90%	Р	39	13	LOW	NA	INTERLUX ULTRA	NA	ER ISLAND BOAT	02	2009	
KKM	549	80%	S	34	13	COPPER	NA	INTERLUX	66	DRISCOLLS	07	2013	
KKM	859	70%	S	36	12	UNK	NA	NA	NA	NA	NA	NA	
KKM	328	70%	S	32	10	LOW	NA	Proline 1088-6	NA	Driscoll MB	06	2009	
KKM	637	95%	Р	28	9	LOW	NA	NA	NA	BASIN MARINE	12	2010	
KKM	62	90%	Р	35	13	UNK	NA	INTERSEEK 900	35	Iter Island Boaty	05	2013	
KKM	815	95%	Р	32	12	LOW	76%	TERLUX ULTRAKC	NA	ER ISLAND BOAT	03	2017	
KKM	271	70%	S	30	10	LOW	NA	NA	NA	ER ISLAND BOAT	04	2011	
KKM	461	90%	Р	34	13	UNK	NA	NA	NA	DRISCOLLS	05	2014	
KKM	414	98%	Р	33	11.5	UNK	NA	NA	NA	NA	06	2016	
KKM	516	90%	S	35	11	UNK	NA	NA	NA	DRISCOLLS	09	2013	
KKM	476	VACANT											
KKM	118	97%	Р	34	12	LOW	65%	Interlux Ultr	160	Iter Island Boaty	11	2012	
KKM	676	90%	Р	32	12	UNK	NA	NA	NA	NA	NA	NA	
KKM	562	90%	Р	32	11	LOW	65%	INTERLUX	NA	ER ISLAND BOAT	07	2010	
KKM	56	VACANT											
KKM	107	25%	S	36	11	COPPER	65%	Proline 1088	168	Iter Island Boaty	06	2013	
KKM	505	VACANT											
KKM	616	90%	S	34	10	UNK	NA	NA	NA	DRISCOLL	10	2012	
KKM	245	VACANT											
KKM	513	80%	S	30	9	UNK	NA	NA	NA	SHELTER ISLAND	07	2012	
KKM	230	VACANT											
KKM	714	70%	Р	26	10	UNK	NA	NA	NA	BASIN	05	2012	
KKM	709	100%	Р	32	12	COPPER	55%	INTERLUX ULTRA	3669F	SHELTER ISLAND	12	2017	

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	Category 1 reg #
KKM	615	70%	Р	32	10	UNK	NA	NA	NA	SHELTER ISLAND	02	2013	
KKM	835	VACANT											
KKM	388	55%	Р	32	10	UNK	NA	E PAINT EP2000	35	DRISCOLL	08	2012	
KKM	117	100%	S	32	10	UNK	NA	NA	NA	NA	NA	NA	
KKM	635	100%	HYDRAHOIST	34	12	UNK	NA	NA	NA	NA	NA	NA	
KKM	633	85%	Р	34	11	copper	NA	NA	NA	ER ISLAND BOAT	02	2017	
KKM	862	50%	Р	33	12	UNK	NA	INTERLUX	NA	BASIN	07	2013	
KKM	136	VACANT											
KKM	773	95%	S	35	10	UNK	NA	NA	NA	DRISCOLL	12	2012	
KKM	482	55%	S	34	10	LOW	NA	NA	NA	DRISCOLL MB	10	2011	
KKM	307	95%	S	36	11	LOW	NA	NA	NA	SHELTER ISLAND	11	2004	
KKM	597	70%	Р	28	10	NON	0%	NA	NA	NA	NA	NA	
KKM	313	80%	Р	35	11	UNK	NA	NA	NA	SHELTER ISLAND	07	2013	
KKM	754	85%	S	36	12	Non	0%	INTERSEEK 900	35	lter Island Boaty	04	2012	
KKM	883	90%	S	31	22	NON	0%	EP-2000	14	lter Island Boaty	12	2011	
KKM	484	100%	S	34	11	copper	76%	TERLUX ULTRAKC	NA	KOLAR MARINE	02	2010	
KKM	114	90%	Р	32	14	NA	NA	NA	NA	NA	NA	NA	
KKM	786	100%	Р	50	17	NA	NA	NA	NA	Marine Works	06	2010	
KKM	815	95%	Р	35	13	NA	NA	NA	NA	ER ISLAND BOAT	08	2012	
KKM	243	95%	Р	38	12	NA	NA	NA	NA	NA	NA	NA	
KKM	471	VACANT											
KKM	827	VACANT											
KKM	31	60%	Р	24	8.5	NA	NA	International	NA	ura Harbor Boat	02	2015	
KKM	109	90%	Р	42.9	14.5	LOW	NA	oolsey Defense (NA	ELSON BEAUMO	11	2016	
KKM	199	95%	Р	24	8	NA	NA	ANTI-FOUL VIVIC	NA	ER ISLAND BOAT	11	2013	
KKM	224	80%	Р	30	12	NA	NA	NA	NA	NA	NA	NA	
KKM	611	40%	S	28	10	LOW	65%	Proline 1088	168	lter Island Boaty	07	2009	
KKM	227	100%	Р	35	16	NON	NA	NA	NA	Neilsen Boatyarc	04	2014	
KKM	221	VACANT											
KKM	925	90%	Р	40	13.5	NA	40%	INTERLUX ULTRA	NA	driscoll	03	2017	
KKM	39	50%	Р	23	6	LOW	NA	PETTIT VIVIB	73	lter Island Boaty	09	2011	
KKM	782	75%	Р	44	13	UNK	NA	NA	NA	NA	NA	NA	
KKM	77	95%	Р	30	13	UNK	NA	NA	NA	NA	NA	NA	
KKM	604	VACANT											
KKM	153	50%	Р	26	7	COPPER	NA	ERLUX HIGH COP	NA	DRISCOL	NA	NA	
KKM	749	90%	Р	42	16	UNK	0%	NA	NA	MARINE WORKS	05	2013	
KKM	457	90%	S	27	9	LOW	NA	NA	NA	DRISCOLL	05	2013	
KKM	492	90%	S	40	13	LOW	NA	NA	NA	Driscoll MB	06	2012	
KKM	997	60%	S	30	9	LOW	NA	INTERSEEK 900	35	SHELTER ISLAND	09	2009	

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	t Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	Category 1 reg #
KKM	3	90%	Р	40	14	COPPER	55%	TERLUX ULTRAKC	3779	SHELTER ISLAND	06	2017	
KKM	191	75%	Р	28	10	UNK	NA	NA	NA	NA	NA	NA	
KKM	470	25%	Р	40	12	UNK	NA	NA	NA	NA	NA	NA	
KKM	309	45%	S	25	8	UNK	NA	NA	NA	NA	NA	NA	
KKM	604	40%	Р	28	10	UNK	NA	NA	NA	NA	NA	NA	
KKM	46	VACANT											
KKM	822	100%	Р	28	9	UNK	NA	NA	NA	DRISCOLL	07	2015	
KKM	280	100%	S	40.5	13.5	COPPER	55%	TERLUX ULTRAKC	3669U	lter Island Boaty	08	2016	
KKM	90	95%	Р	28	10	UNK	NA	NA	NA	NA	NA	NA	
KKM	912	50%	Р	36	12	UNK	NA	NA	NA	lter Island Boaty	07	2014	
KKM	290	90%	Р	28	10	LOW	NA	EST BOTTOM PR	NA	MARINE WORKS	04	2009	
KKM	587	70%	Р	38	14	UNK	NA	NA	NA	BAVARIA	NA	NA	
KKM	88	95%	S	30	11	LOW	NA	NA	NA	BASIN	05	2009	
KKM	671	VACANT											
KKM	864	100%	HYDRAHOIST	30	10	UNK	NA	NA	NA	NA	NA	NA	
KKM	794	95%	Р	42	42	UNK	NA	NA	NA	NA	NA	NA	
KKM	272	VACANT							NA				
KKM	103	80%	Р	40	13	UNK	NA	NA	NA	SHELTER ISLAND	05	2013	
KKM	518	80%	S	31	15	LOW COPPER	NA	Ultralux	160	lter Island Boaty	11	2011	
KKM	152	75%	S	42	15	UNK	NA	NA	NA	SHELTER ISLAND	10	2013	
KKM	393	75%	Р	30	11	UNK	NA	NA	NA	SHELTER ISLAND	06	2012	
KKM	621	70%	Р	33	12	UNK	NA	NA	NA	DRISCOLL	09	2013	
KKM	215	50%	S	30	10	Non Copper	0%	pettit hydracoat	93-18406g	ELSON BEAUMO	08	2016	
KKM	954	95%	S	29	10	UNK	NA	NA	NA	DRISCOLL	01	2013	
KKM	955	50%	S	29	10	LOW COPPER	NA	NA	NA	SHELTER ISLAND	05	2010	
KKM	623	90%	Р	30	10	LOW COPPER	NA	NA	NA	NA	12	2010	
KKM	714	90%	S	30	8	LOW COPPER	NA	INTERLUX ULTRA	NA	KOEHLER KRAFT	05	2008	
KKM	911	100%	S	30	11	NON	0%	NA	NA	ER ISLAND BOAT	01	2017	
KKM	314	70%	S	27	9	UNK	NA	NA	NA	NA	NA	NA	
KKM	185	85%	Р	48	15	UNK	NA	NA	NA	NA	NA	NA	
KKM	959	95%	Р	56	15	LOW COPPER	NA	INTERLUX	78	ER ISLAND BOAT	01	2014	
KKM	249	90%	Р	42	14	UNK	NA	NA	NA	NA	NA	NA	
KKM	611	95%	Р	58	14	UNK	NA	NA	NA	NA	NA	NA	
KKM	114	88%	Р	35	13	COPPER	76%	FERLUX ULTRAKC	117598	ER ISLAND BOAT	09	2017	
KKM	500	85%	Р	60	15	COPPER	NA	INTERLUX	NA	lter Island Boaty	03	2012	
KKM	238	75%	Р	41	12	LOW COPPER	NA	NA	NA	lter Island Boaty	02	2009	
KKM	380	30%	Р	60	10	UNK	NA	NA	NA	NA	NA	NA	
KKM	541	75%	S	36	11	UNK	NA	NA	NA	lter Island Boaty	05	2012	
KKM	558	80%	Р	55	15	LOW COPPER	NA	PETTIT	NA	TOWNSEND SHII	06	2013	

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	: Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	Category 1 reg #
KKM	2	95%	Р	41	13.5	LOW COPPER	NA	UPER PRO GUAR	NA	Neilsen Boatyard	07	2016	
KKM	569	VACANT											
KKM	747	90%	S	41	12.6	copper	65%	NTERLUX ULTRA	160	SHELTER ISLAND	02	2012	
KKM	801	25%	Р	58	18	UNK	NA	NA	NA	NA	NA	NA	
KKM	277	90%	S	42	14	copper	65%	INTERLUX ULTRA	3669F	ER ISLAND BOAT	07	2015	
KKM	905	70%	Р	58	18	copper	76%	TERLUX ULTRAKC	NA	SHELTER ISLAND	04	2016	
KKM	524	90%	Р	30	8	UNK	NA	INTERLUX ULTRA	NA	ER ISLAND BOAT	01	2012	
KKM	382	55%	Р	53	16	UNK	NA	NA	NA	NA	NA	NA	
KKM	874	60%	S	42	14	UNK	NA	NA	NA	NA	NA	NA	
KKM	280	60%	Р	55	16	UNK	NA	Z-SPAR	147	riscoll's Ship Yar	04	2016	
KKM	877	40%	Р	42	16	UNK	NA	NA	NA	ER ISLAND BOAT	07	2014	
KKM	692	60%	S	54	14	UNK	NA	NA	NA	NA	NA	NA	
KKM	430	80%	S	36	12	UNK	NA	NA	NA	ER ISLAND BOAT	07	2014	
KKM	903	95%	Р	60	16.4	COPPER	55%	INTERLUX ULTRA	3669F	ER ISLAND BOAT	11	2012	
KKM	870	70%	Р	42	14	COPPER	NA	INTERLUX	NA	ER ISLAND BOAT	02	2014	
KKM	985	90%	Р	60	14	UNK	NA	NA	NA	NA	NA	NA	
KKM	283	90%	Р	37	14	UNK	NA	NA	NA	NA	NA	NA	
KKM	811	20%	P	60	18	UNK	NA	NA	NA	NA	NA	NA	
KKM	710	100%	Р	40	15	UNK	NA	NA	NA	lter Island Boaty	11	2013	
KKM	671	70%	Р	48	16	NA	NA	NA	NA	NA	NA	NA	
KKM	403	80%	Р	35	12	NA	NA	NA	NA	NA	NA	NA	
KKM	200	80%	Р	56	17	NON	NA	comex	NA	opequimar PV	09	2014	
KKM	952	88%	Р	41	13	copper	NA	INTERLUX	NA	lter Island Boaty	02	2013	
KKM	20	90%	S	52	16	copper	67%	INTERLUX ULTRA	NA	Iter Island Boaty	04	2014	
KKM	790	25%	Р	33	12	UNK	NA	NA	NA	Iter Island Boaty	10	2013	
KKM	153	90%	S	63	17	UNK	NA	NA	NA	NA	NA	NA	
KKM	554	95%	Р	38	14	LOW COPPER	37%	INTERLUX CSC	319293	Iter Island Boaty	05	2015	
KKM	396	80%	Р	52	16	LOW COPPER	40%	interlux 3449	3449	Iter Island Boaty	12	2015	
KKM	496	70%	Р	59	15	LOW COPPER	NA	INTERLUX ULTRA	3779F	ER ISLAND BOAT	02	2011	
KKM	188	VACANT											
KKM	52	80%	S	42	11	COPPER	65%	-SPAR bottom pr	NA	DRISCOLL	03	2017	
KKM	436	80%	Р	43	15.2	NON	0%	INTERLUX 1088	168	Iter Island Boaty	04	2010	
KKM	952	80%	Р	38	13	COPPER	66%	-SPAR bottom pr	NA	Driscoll MB	08	2017	
KKM	430	90%	Р	38	15	UNK	NA	INTERLUX ULTRA	NA	ER ISLAND BOAT	09	2012	
KKM	998	30%	Р	48	14	UNK	NA	NA	NA	NA	NA	NA	
KKM	320	40%	Р	40	16	LOW	NA	NA	NA	NA	11	2009	
KKM	933	95%	Р	52	15	LOW	65%	PETIT PRO	NA	lter Island Boaty	10	2018	
KKM	459	30%	S	34	14	UNK	NA	INTERLUX	NA	ER ISLAND BOAT	04	2014	
KKM	446	90%	P	41	14	UNK	NA	NA	NA	NA	NA	NA	

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	Category 1 reg #
KKM	785	90%	S	40	12	UNK	NA	NA	NA	NA	NA	NA	
KKM	242	95%	Р	42.9	13.9	LOW	40%	PROLINE 1088C	168	IIGHT AND CARV	11	2012	
KKM	535	60%	S	40	14	UNK	NA	NA	NA	NA	NA	NA	
KKM	404	60%	Р	48	14	LOW	NA	INTERLUX	NA	ER ISLAND BOAT	05	2011	
KKM	470	90%	Р	38	13	NON	0%	INTERLUX	NA	DRISCOL	04	2011	
KKM	202	100%	Р	46	12	LOW	NA	NA	NA	SHELTER ISLAND	12	2007	
KKM	805	75%	S	42	14	COPPER	66%	PROLINE	1088	lter Island Boaty	05	2015	
KKM	777	20%	Р	36	16	LOW	NA	NA	NA	lter Island Boaty	09	2011	
KKM	170	VACANT											
KKM	227	90%	Р	44	12.8	LOW	NA	NA	NA	lter Island Boaty	06	2012	
KKM	212	90%	Р	43	14	UNK	NA	NA	NA	NA	NA	NA	
KKM	865	40%	S	44	12.8	UNK	NA	NA	NA	IIGHT AND CARV	06	2012	
KKM	569	80%	S	42	12	copper	76%	ERLUX ULTRAKC	Y3669U/I	SHELTER ISLAND	03	2017	
KKM	118	90%	Р	51	15	UNK	NA	OLLS STANDARD	NA	DRISCOLL	10	2016	
KKM	599	30%	S	38	14	UNK	NA	NA	NA	NA	NA	NA	
KKM	216	80%	S	46	13	UNK	NA	NA	NA	NA	NA	NA	
KKM	322	VACANT											
KKM	871	95%	Р	43	16	copper	60%	NA	NA	uth coast boat ya	06	2014	
KKM	158	VACANT											
KKM	511	92%	Р	43	14	UNK	NA	NA	NA	NA	NA	NA	
KKM	432	70%	Р	38	14	UNK	NA	PROLINE	NA	NA	NA	NA	
KKM	447	90%	Р	50	16	UNK	NA	NA	NA	ELSON BEAUMO	12	2014	
KKM	885	80%	S	43	14	Copper	55%	Interlux Ultra	3779f	Iter Island Boaty	06	2015	
KKM	885	50%	Р	42	14	NON	0%	Micron	NA	Iter Island Boaty	05	2015	
KKM	977	95%	S	43	12	LOW	NA	NA	NA	lter Island Boaty	12	2008	
KKM	33	80%	Р	41	14	UNK	NA	NA	NA	NA	NA	NA	
KKM	530	95%	S	38	13	Copper	NA	INTERLUX ULTRA	NA	SHELTER ISLAND	10	2017	
KKM	51	VACANT											
KKM	852	95%	Р	43	14	UNK	NA	INTERLUX ULTRA	NA	ER ISLAND BOAT	05	2014	
KKM	560	98%	S	44	14	copper	NA	nterlux ultra blu	NA	Iter Island Boaty	12	2017	
KKM	885	95%	Р	40	14	NON	0%	INTERLUX	NA	G BEACH BOAT Y	11	2017	
KKM	896	90%	S	49	15	NON	66%	Z-SPAR	B-90	SHELTER ISLAND	04	2015	
KKM	378	95%	Р	50	17	LOW	NA	PETTIT TRINIDAD	NA	Iter Island Boaty	01	2010	
KKM	817	90%	S	41	13	LOW	40%	PETTIT TRINIDAD	NA	IIGHT AND CARV	05	2010	
KKM	862	VACANT											
KKM	951	95%	S	42	13	LOW	40%	Interlux Ultra	160	Koehler Kraft	07	2012	
KKM	137	90%	Р	50	17	COPPER	55%	INTERLUX ULTRA	NA	SHELTER ISLAND	04	2014	
KKM	946	75%	Р	55	16	UNK	NA	NA	NA	NA	NA	NA	
KKM	46	70%	Р	60	17	LOW	NA	NA	NA	NA	05	2011	

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	t Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	Category 1 reg #
KKM	492	60%	Р	59	16	UNK	NA	NA	NA	NA	NA	NA	
KKM	185	90%	Р	52.5	16	COPPER	66%	proline	1088	at yard, marina	03	2015	
KKM	88	VACANT											
KKM	275	40%	S	70	15	UNK	NA	NA	NA	DRISCOL	11	2014	
KKM	198	90%	Р	58	16	UNK	40%	NA	4nk	ER ISLAND BOAT	03	2014	
KKM	968	95%	Р	75.8	17.8	COPPER	NA	nterlux ultra koti	NA	lter Island Boaty	05	2016	
KKM	8	VACANT											
KKM	270	65%	Р	86	22	LOW	40%	PROLINE 1088c	168	MARINE GROUP	09	2010	
KKM	340	90%	Р	57	14.5	LOW	40%	INTERLUX		Driscoll MB	03	2010	
KKM	742	60%	Р	57	16	UNK	NA	NA	NA	OXNARD	01	2012	
KKM	570	30%	Р	70	17	UNK	NA	NA	NA	NA	NA	NA	
KKM	722	90%	Р	90	21	COPPER	NA	SHARKSKIN	NA	NA	01	2013	
KKM	521	65%	Р	72	20	UNK	NA	NA	NA	lter Island Boaty	10	2016	
KKM	172	45%	Р	70	19	UNK	NA	NA	NA	NA	NA	NA	
KKM	568	35%	Р	74	22	LOW	60%	PETTIT VSPAR	B94	Driscoll MB	10	2011	
KKM	237	92%	S	63	20	NON	NA	PROLINE	160	WARD YACHT CE	02	2016	
KKM	215	90%	Р	52	15	UNK	NA	NA	NA	NA	NA	NA	
KKM	479	100%	Р	50	15	COPPER	NA	E PROTECTOR Z-	B-94	DRISCOLL	02	2011	
KKM	434	60%	Р	54	16	UNK	NA	NA	NA	NA	NA	NA	
KKM	559	65%	Р	55	17.6	LOW	65%	Interluxe Ultra	160	lter Island Boaty	05	2010	
KKM	381	75%	S	70	18	UNK	NA	NA	NA	NA	NA	NA	
KKM	652	90%	Р	65	19	UNK	UKN	pettit protector	b49	Driscol	11	2015	
KKM	977	95%	Р	85	20	LOW	40%	PETIT TRINIDAD	NA	MARINE GROUP	12	2012	
KKM	75	95%	Р	57	17	copper	65%	INTERLUX ULTRA	NA	lter Island Boaty	06	2014	
KKM	59	90%	Р	75	20	UNK	NA	NA	NA	NA	NA	NA	
KKM	452	45%	Р	60	18	UNK	NA	NA	NA	NA	NA	NA	
KKM	805	100%	Р	90	20	LOW	NA	PROLINE	1088-6	NA	02	2009	
KKM	377	95%	Р	60	18	LOW	65%	ITITT TRINIDAD	NA	lter Island Boaty	12	2013	
KKM	469	70%	Р	70	15	UNK	NA	NA	NA	NA	NA	NA	
KKM	635	95%	Р	59	16	LOW	NA	PETTIT	NA	elter Island Boaty	07	2011	
KKM	621	35%	S	100	20	UNK	NA	NA	NA	MARINE GROUP	05	2013	
KKM	574	90%	Р	50	16	Copper	76%	TERLUX ULTRAKC	NA	SHELTER ISLAND	05	2017	
KKM	785	90%	Р	92	23	UNK	NA	NA	NA	lter Island Boaty	12	2015	
KKM	633	45%	Р	78	21	LOW	NA	NA	NA	NA	10	2005	
KKM	504	60%	Р	60	15	UNK	NA	NA	NA	NA	NA	NA	
KKM	232	90%	Р	57	15.6	LOW	40%	TTIT TRINIDAD P	NA	T YARD MARINA	06	2017	
KKM	105	100%	Р	75	22	COPPER	50%	NA	NA	driscol	11	2014	
KKM	513	60%	S	45	14	LOW	65%	INTERLUX	NA	SELF APPLIED	07	2011	
KKM	569	70%	S	62	17	UNK	NA	NA	NA	NA	NA	NA	

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	Category 1 reg #
KKM	202	75%	Р	58	16	LOW	40%	NA	NA	ER ISLAND BOAT	02	2010	
KKM	331	95%	Р	58	18	LOW	65%	Interlux Ultra	160	lter Island Boaty	05	2010	
KKM	524	75%	Р	50	17	LOW	NA	NA	NA	NA	NA	NA	
KKM	317	95%	S	57	16	LOW	NA	RLUX BOTTOM F	79	ENSENADA	07	2008	
KKM	483	35%	Р	59	18	LOW	NA	NA	NA	NA	NA	NA	
KKM	631	95%	Р	70	18	NON	NA	PETTIT	1204G	Driscol	12	1013	
KKM	926	50%	Р	50	16	UNK	NA	NA	NA	NA	NA	NA	
KKM	870	85%	S	52	15	UNK	NA	z-spar	NA	dricoll	04	2017	
KKM	741	VACANT											
KKM	65	100%	Р	50	16	UNK	NA	NA	NA	NA	09	2013	
KKM	462	95%	Р	50	16	LOW	65%	INTERLUX ULTRA	160	lter Island Boaty	08	2009	
KKM	685	15%	Р	75	18	UNK	NA	NA	NA	NA	NA	NA	
KKM	651	90%	S	55	15	LOW	0%	Interlux VC	56	Driscoll MB	06	2010	
KKM	648	80%	Р	78	17	COPPER	55%	LTRA COTE BLAC	169	NEWPORT	02	2014	
KKM	680	VACANT											
KKM	794	90%	Р	57	17	UNK	NA	NA	NA	shelter island	05	2016	
KKM	360	80%	S	52	14	UNK	NA	VIVID	72	lter Island Boaty	05	2012	
KKM	880	90%	S	44	9	COPPER	76%	TERLUX ULTRAKC	3449U	Driscoll MB	12	2017	
KKM	741	95%	Р	52	15.3	copper	55%	INTERLUX ULTRA	3779U	lter Island Boaty	06	2016	
KKM	810	95%	Р	74	18.2	copper	65%	INTERLUX ULTRA	3779F	lter Island Boaty	08	2015	
KKM	713	35%	S	44	13	UNK	NA	PETTITE	NA	ER ISLAND BOAT	10	2014	
KKM	169	95%	Р	58	18	UNK	NA	PROLINE	1088/01	ER ISLAND BOAT	02	2014	
KKM	337	95%	S	47	13	LOW	40%	EST BOTTOM PR	NA	lter Island Boaty	01	2015	
KKM	456	90%	Р	70	18	UNK	NA	NA	NA	NA	NA	NA	
KKM	12	45%	S	52	13	UNK	NA	NA	NA	NA	NA	NA	
KKM	874	85%	S	59	17	LOW	NA	INTERLUX ULTRA	NA	lter Island Boaty	09	2010	
KKM	292	45%	Р	74	18.6	UNK	55%	INTERLUX ULTRA	3779U	lter Island Boaty	08	2015	
KKM	688	95%	Р	43	14	UNK	NA	NA	NA	NA	NA	NA	
KKM	182	95%	S	48	11	UNK	NA	EST BOTTOM PR	NA	KOEHLER	10	2013	
KKM	671	VACANT											
KKM	520	95%	S	50	13	UNK	60%	PETTIT Z-SPAR	B94	lter Island Boaty	12	2012	
KKM	59	90%	S	39	12	UNK	NA	NA	NA	NA	NA	NA	
KKM	863	100%	HYDRAHOIST	31	10	LOW	NA	PETTIT	1261	lter Island Boaty	04	2005	
KKM	309	90%	Р	47	15	UNK	NA	NA	NA	lter Island Boaty	11	2012	
KKM	418	90%	S	28	12	UNK	NA	NA	NA	NA	NA	NA	
KKM	556	VACANT											
KKM	653	90%	S	27	10	UNK	NA	NA	NA	NA	NA	NA	
KKM	617	100%	Р	42	13	LOW	NA	NA	NA	NA	06	2002	
KKM	488	80%	Р	31	12	UNK	NA	NA	NA	NA	NA	NA	

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	t Product Number	Boatyard Name or Purchase Date		Painting Date Year (yyyy)	% Copper	Category 1 reg #
KKM	314	95%	S	45	14	Copper	NA	ULTRAKOTE	NA	JK3	10	2016	
KKM	77	VACANT											
KKM	886	100%	Р	44	13	UNK	NA	NA	NA	ER ISLAND BOAT	11	2013	
KKM	997	80%	S	32	11.2	UNK	NA	INTERLUX ULTRA	NA	ER ISLAND BOAT	01	2014	
KKM	965	55%	Р	44	10	COPPER	55%	nterlux Ultra Blac	NA	ER ISLAND BOAT	06	2015	
KKM	309	VACANT											
KKM	859	100%	S	41	8	COPPER	53%	PETTIT	B91	DRISCOLLS	07	2016	
KKM	720	90%	Р	37	12	LOW	NA	NA	NA	NA	01	2010	
KKM	224	VACANT											
KKM	872	90%	Р	32.9	12	COPPER	NA	INTERLUX ULTRA	NA	DRISCOLL	08	2017	
KKM	413	90%	Р	45	14	LOW	40%	interlux	yba163	ER ISLAND BOAT	03	2014	
KKM	166	80%	Р	28	10	COPPER	66%	ZSPAR	NA	Bricks Marine	01	2018	
KKM	279	95%	Р	45	15	LOW	NA	NA	NA	NA	NA	NA	
KKM	410	92%	S	27	8	LOW	NA	NA	NA	NA	NA	NA	
KKM	255	90%	S	50	12	LOW	40%	ZSPAR B94	164	ura Harbor Boat	12	2011	
KKM	848	95%	Р	54	15	UNK	NA	NA	NA	NA	NA	NA	
KKM	59	30%	Р	26	8	UNK	NA	NA	NA	NA	NA	NA	
KKM	229	VACANT											
KKM	360	20%	Р	25	8	UNK	NA	NA	NA	NA	NA	NA	
KKM	581	VACANT											
KKM	228	95%	Р	34	12	LOW	NA	NA	NA	DRISCOLL	02	2011	
KKM	783	30%	Р	45	14	UNK	NA	NA	NA	NA	NA	NA	
KKM	648	45%	S	42	14	UNK	NA	NA	NA	NA	NA	NA	
KKM	219	95%	Р	33	11	UNK	NA	NA	NA	NA	NA	NA	
KKM	817	90%	S	43	14	UNK	NA	ITERLUX PACIFIC	YBB263	SHELTER ISLAND	01	2012	
KKM	176	VACANT											
KKM	567	98%	S	35	11	LOW	65%	Interlux	NA	Driscoll MB	10	2010	
KKM	593	45%	S	27	8	UNK	NA	NA	NA	NA	NA	NA	
KKM	375	25%	Р	45	15	UNK	NA	NA	NA	NA	NA	NA	
KKM	440	80%	Р	38	13	copper	45%	SEAHAWK	6145	leilsen Beaumon	09	2006	
KKM	797	85%	S	33	9	UNK	NA	NA	NA	NA	NA	NA	
KKM	669	99%	S	40	13	LOW	65%	Proline 1088	168	lter Island Boaty	07	2011	
KKM	642	95%	S	24	5	LOW	NA	NA	NA	NA	NA	NA	
KKM	764	85%	Р	44	13.5	LOW	NA	NA	NA	NA	09	2004	
KKM	531	25%	Р	30	11	UNK	NA	NA	NA	NA	NA	NA	
KKM	253	45%	Р	28	10	UNK	NA	NA	NA	NA	NA	NA	
KKM	425	45%	S	46	14	LOW	NA	PETTIT TRINIDAD	174	ura Harbor Boat	12	2011	
KKM	829	85%	S	46	14	LOW	NA	PETTIT TRINIDAD	174	ura Harbor Boat	12	2011	
KKM	162	90%	Р	32	11	UNK	NA	NA	NA	NA	NA	NA	

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	: Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	Category 1 reg #
KKM	752	30%	Р	37	10	UNK	NA	NA	NA	NA	NA	NA	
KKM	813	VACANT											
KKM	771	15%	Р	45	16	UNK	NA	NA	NA	NA	NA	NA	
KKM	618	95%	Р	29	10.4	copper	NA	INTERLUX ULTRA	NA	lter Island Boaty	03	2016	
KKM	201	35%	Р	43	14	LOW	NA	PETTIT TRINIDAD	NA	lter Island Boaty	07	2011	
KKM	887	88%	S	30	10	UNK	NA	NA	NA	NA	NA	NA	
KKM	370	VACANT											
KKM	274	100%	Р	29	10	NON	0%	NA	NA	NA	NA	NA	
KKM	728	95%	Р	42	14	copper	65%	Interlux	NA	lter Island Boaty		2016	
KKM	675	45%	S	30	10	UNK	NA	NA	NA	NA	NA	NA	
KKM	974	75%	S	44	12	UNK	NA	NA	NA	NA	NA	NA	
KKM	322	85%	Р	20	9	UNK	NA	NA	NA	NA	NA	NA	
KKM	316	25%	Р	47	12	UNK	NA	NA	NA	NA	NA	NA	
KKM	174	95%	Р	34	11	copper	65%	Interlux	160	lter Island Boaty	01	2017	
KKM	54	VACANT											
KKM	951	30%	S	35	11	UNK	NA	NA	NA	NA	NA	NA	
KKM	904	95%	Р	45	10	LOW	40%	'ettit Trinidad Pr	NA	SHELTER ISLAND		2016	
KKM	212	95%	S	32	11	NON	NA	PETTIT	NA	IIGHT AND CARV	08	2011	
KKM	782	60%	S	45	13	LOW	NA	PROLINE VINYL	NA	SHELTER ISLAND	06	2008	
KKM	834	VACANT											
KKM	91	VACANT											
KKM	459	VACANT											
KKM	95	85%	Р	43	14	UNK	NA	NA	NA	NA	NA	NA	
KKM	428	75%	S	30	12	UNK	NA	NA	NA	NA	NA	NA	
KKM	126	80%	S	45	12	UNK	NA	NA	NA	NA	NA	NA	
KKM	668	VACANT											
KKM	42	100%	Р	45	14	LOW	NA	PETIT TRINIDAD	NA	NA	07	2016	
KKM	142	VACANT											
KKM	744	25%	S	42	14	UNK	NA	SPAR PRO GOLD	NA	DRISCOLL	09	2014	
KKM	308	90%	Р	32	11	LOW	20%	Epoxy Modified	147	leilsen Beaumon	05	2007	
KKM	111	VACANT											
KKM	887	30%	Р	32	10.5	UNK	NA	INTERLUX Ultra	NA	Shelter Island	10	2017	
KKM	919	95%	Р	46	14	UNK	NA	NA	NA	NA	NA	NA	
KKM	444	95%	Р	30	9	LOW	NA	ettitt vivid white	NA	lter Island Boaty	11	2015	
KKM	142	VACANT											
KKM	611	VACANT											
KKM	408	85%	Р	45	15	LOW	NA	A HAWK SHARKS	NA	NA	01	2010	
KKM	279	95%	Р	28	10	LOW	NA	NA	NA	NA	NA	NA	
KKM	1000	VACANT											

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	Category 1 reg #
KKM	671	VACANT											
KKM	770	100%	HYDRAHOIST	30	12	UNK	NA	NA	NA	NA	NA	NA	
KKM	708	VACANT											
KKM	523	100%	S	35	19	NON	NA	INTERSLEEK 900	NA	DRISCOLL	NA	2009	
KKM	289	40%	S	40	15	UNK	NA	NA	NA	SHELTER ISLAND	07	2013	
KKM	152	VACANT											
KKM	457	75%	Р	38	14	UNK	NA	PETIT TRINIDAD	NA	NA	NA	NA	
KKM	991	95%	S	32	8	UNK	NA	NA	NA	lter Island Boaty	06	2012	
KKM	762	92%	S	42	15	LOW	NA	NA	NA	lter Island Boaty	11	2012	
KKM	549	100%	Р	40	12.6	COPPER	67%	INTERLUX ULTRA	3779F	ER ISLAND BOAT	11	2012	
KKM	907	100%	S	40	12.6	copper	NA	NTRULUX ULTRA	NA	NA	NA	NA	
KKM	914	95%	Р	42	13			INTRULUX ULTRA	NA	shelter island	08	2017	
KKM	563	75%	Р	42	14	LOW	65%	Interlux Ultra	160	leilsen Beaumon	07	2011	
KKM	563	90%	S	38	12	UNK	NA	NA	NA	NA	NA	NA	
KKM	759	90%	S	40	14	LOW	NA	NA	NA	SHELTER ISLAND	09	2009	
KKM	522	95%	Р	33	12	UNK	NA	NA	NA	NA	NA	NA	
KKM	763	90%	Р	38	13	LOW	NA	NA	NA	DRISCOLL	08	2010	
KKM	79	90%	S	36	13	LOW	NA	INTERLUX ULTRA	NA	SHELTER ISLAND	06	2009	
KKM	392	30%	S	36	11	copper	65%	'ettit Trinidad Pr	174	Iter Island Boaty	09	2012	
KKM	459	15%	Р	38	13	UNK	NA	NA	NA	NA	NA	NA	
KKM	759	35%	S	36	11	UNK	NA	NA	NA	NA	NA	NA	
KKM	453	100%	S	38	13	UNK	NA	1 STANDARD PAI	NA	DRISCOLL	11	2013	
KKM	920	90%	Р	41	13	UNK	NA	NA	NA	NA	NA	NA	
KKM	848	98%	Р	38	13	UNK	NA	NA	NA	DRISCOLL	12	2013	
KKM	695	90%	Р	39	13	copper	NA	nterlux ultra blac	NA	lter island boaty	11	2015	
KKM	220	85%	Р	33	13	COPPER	NA	NTRULUX ULTRA	3779F	lter island boaty	11	2017	
KKM	453	70%	Р	39	14	LOW	67%	INTERLUX ULTRA	NA	leilsen Beaumon	07	2012	
KKM	416	90%	Р	38	13	UNK	NA	NA	NA	NA	NA	NA	
KKM	257	100%	S	42	13	COPPER	66%	PROLINE	1088	SHELTER ISLAND	06	2017	
KKM	921	100%	Р	39	13	LOW	NA	NA	NA	NA	10	2009	
KKM	900	25%	S	40	10	UNK	NA	NA	NA	NA	NA	NA	
KKM	641	40%	Р	49	18	UNK	NA	NA	NA	NA	NA	NA	
KKM	807	25%	Р	37	13	UNK	NA	NA	NA	NA	NA	NA	
KKM	263	VACANT											
KKM	341	95%	Р	35	12	LOW	NA	interlux ultra	NA	NA	06	2017	
KKM	675	90%	Р	44	15	copper	65%	Interlux Ultra	160	lter Island Boaty	05	2012	
KKM	146	25%	S	37	12	UNK	NA	NA	NA	NA	NA	NA	
KKM	505	45%	S	36	11	UNK	NA	NA	NA	NA	NA	NA	
KKM	880	90%	Р	48	15	UNK	NA	NA	NA	NA	NA	NA	

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	Product Number	Boatyar Name of Purchase Date	Painting Date	Painting Date Year (yyyy)	% Copper	Category 1 reg #
KKM	697	95%	S	36	11	UNK	NA	NA	NA	NA	NA	NA	
KKM	468	35%	S	43	14	UNK	NA	NA	NA	NA	NA	NA	
KKM	729	95%	S	39	12	LOW	NA	PETTIT TRINIDAD	6	ER ISLAND BOAT	09	2009	
KKM	212	VACANT											
KKM	379	85%	Р	37	12	UNK	NA	NA	NA	ER ISLAND BOAT	03	2014	
KKM	400	100%	S	48	15	LOW	67%	nterlux ultrakote	168	Iter Island Boaty	08	2017	
KKM	751	88%	Р	38	14	UNK	NA	NA	NA	NA	NA	NA	
KKM	307	50%	Р	44	13.5	UNK	NA	NA	NA	NA	NA	NA	
KKM	972	90%	S	38	11	UNK	NA	NA	NA	NA	NA	NA	
KKM	437	40%	Р	40	16	LOW	NA	pettit ultima ssa	NA	Basin Marine	NA	NA	
KKM	210	90%	S	38	12.3	COPPER	60%	TTIT TRINIDAD P	1082	SHELTER ISLAND	03	2014	
KKM	766	80%	Р	50	15.6	copper	67%	NA	NA	Iter Island Boaty	09	2014	
KKM	560	90%	Р	38	12	LOW	NA	PETTIT TRINIDAD		Shelter Island Boaty	02	2010	
KKM	264	VACANT		40	13	UNK	NA	NA	NA	NA	NA	NA	
KKM	591	50%	S	41	14	LOW	NA	PETTIT TRINIDAD	NA	ENSENADA	04	2008	
KKM	260	95%	S	46	14	NON	0%	trilux	33	Shelter Island	11	2017	
KKM	348	30%	S	36	13	UNK	NA	NA	NA	NA	NA	NA	
KKM	631	85%	Р	40	13.5	copper	55%	INTERLUX	3669	NA	06	2012	
KKM	753	90%	S	36	11	LOW	NA	NA	NA	DRISCOLL	08	2010	
KKM	508	90%	Р	40	16	LOW	NA	ETTIT ULTIMA SS	NA	BASIN MARINE	04	2013	
KKM	455	65%	Р	38	12	UNK	NA	NA	NA	NA	NA	NA	
KKM	714	85%	Р	40	13	UNK	NA	NA	NA	NA	NA	NA	
KKM	326	90%	S	37	18	UNK	NA	NA	NA	NA	NA	NA	
KKM	1	90%	Р	38	13	UNK	NA	NA	NA	NA	NA	NA	
KKM	341	35%	Р	24	9	UNK	NA	NA	NA	NA	NA	NA	
KKM	573	98%	Р	36	13	UNK	NA	NA	NA	Iter Island Boaty	NA	NA	
KKM	134	90%	S	38	12	UNK	NA	NA	NA	NA	NA	NA	
KKM	796	40%	Р	37	14	UNK	NA	NA	NA	NA	NA	NA	
KKM	131	85%	S	38	12	LOW	65%	ZSPAR B94	165	self applied	01	2007	
KKM	461	35%	S	37	11	copper	65%	Interlux Ultra	160	Iter Island Boaty	07	2012	
KKM	618	98%	S	38	11	UNK	NA	AWLGRIP	SR	SHELTER ISLAND	12	2016	
KKM	101	95%	S	36	12	copper	NA	OXY COPPERCO	NA	NA	06	2014	
KKM	632	VACANT											
KKM	128	55%	Р	36	13	UNK	NA	NA	NA	ER ISLAND BOAT	08	2017	
KKM	402	90%	Р	35	12.5	UNK	NA	NA	NA	ER ISLAND BOAT	11	2014	
KKM	706	90%	S	42	13	UNK	NA	NA	NA	NA	NA	NA	
KKM	213	VACANT											
KKM	534	25%	S	36	11	UNK	NA	NA	NA	NA	NA	NA	
KKM	624	60%	Р	40	14	copper	65%	Interlux Ultra	160	leilsen Beaumon	07	2012	

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	Category 1 reg #
KKM	322	85%	Р	32	11	UNK	NA	NA	NA	NA	NA	NA	
KKM	766	100%	S	37	11	UNK	NA	NA	NA	NA	NA	NA	
KKM	857	90%	Р	36	13	UNK	NA	ERSLEEK 900 BL/	NA	Shelter island	05	2013	
KKM	537	90%	S	36	11	UNK	NA	NA	NA	NA	NA	NA	
KKM	532	40%	S	39	12	LOW	NA	NA	NA	DRISCOLL	10	2010	
KKM	651	90%	S	40	11	LOW	NA	NA	NA	lter Island Boaty	12	2007	
KKM	151	98%	S	42	13	LOW	67%	INTERLUX ULTRA	NA	lter Island Boaty	06	2010	
KKM	639	15%	S	36	11	UNK	NA	NA	NA	NA	NA	NA	
KKM	793	95%	Р	35	14	UNK	NA	nterlux Ultra Blac	NA	SHELTER ISLAND	03	2015	
KKM	163	95%	S	35	11	UNK	NA	NA	NA	NA	NA	NA	
KKM	704	98%	S	36	12	LOW	40%	ERLUX ULTRAKC	3779U	lter Island Boaty	06	2017	
KKM	795	95%	S	37	12	UNK	NA	INTERLUX	NA	DRISCOLL	09	2014	
KKM	795	65%	Р	47	13	UNK	NA	NA	NA	NA	NA	NA	
KKM	626	VACANT											
KKM	876	98%	S	42	14	copper	76%	nterlux UltraKote	3779	SHELTER ISLAND	10	2017	
KKM	427	90%	Р	43	10	UNK	NA	NA	NA	NA	NA	NA	
KKM	623	75%	S	46.9	12	UNK	NA	NA	NA	ina Del Ray Boat	09	2013	
KKM	912	92%	Р	48	16	LOW	NA	NA	NA	SHELTER ISLAND	11	2007	
KKM	1000	60%	Р	43	12	UNK	NA	RLUX BOTTOM F	NA	self applied	05	2013	
KKM	547	90%	Р	46	14	LOW	NA	NA	NA	SHELTER ISLAND	02	2007	
KKM	926	VACANT											
KKM	988	90%	Р	48	14	UNK	NA	NA	NA	NA	NA	NA	
KKM	871	VACANT											
KKM	598	93%	Р	43	16	LOW	40%	Proline 1088	168	lter Island Boaty	11	2011	
KKM	327	65%	Р	36	13	UNK	NA	NA	NA	NA	NA	NA	
KKM	541	100%	Р	46	16	LOW	65%	TRINIDAD SR	174	lter Island Boaty	05	2010	
KKM	890	VACANT											
KKM	522	90%	Р	48	15	LOW	NA	NA	NA	NA	NOV	2005	
KKM	579	85%	Р	44	15	LOW	NA	PROLINE 1088-6	NA	NA	03	2006	
KKM	776	75%	Р	48	16	UNK	NA	NA	NA	NA	NA	NA	
KKM	964	VACANT											
KKM	404	95%	S	46	15	copper	NA	pettit protector	NA	Driscoll MB	07	2015	
KKM	39	90%	Р	43	15	UNK	NA	NA	NA	DRISCOLL MB	11	2013	
KKM	626	90%	Р	50	16	LOW	NA	PROLINE 1088-6	NA	lter Island Boaty	03	2008	
KKM	616	VACANT											
KKM	572	88%	Р	43	15'10"	LOW	NA	PROLINE LOLO	1088	ER ISLAND BOAT	07	2013	
KKM	663	25%	S	35	17.5	UNK	NA	INTERLUX HARD	NA	lter Island Boaty	02	2014	
KKM	658	92%	Р	39	14	LOW	NA	PROIINE 1088-6	NA	lter Island Boaty	10	2010	
KKM	177	90%	S	34	12	LOW	65%	E EPOXY PRIMEF	164	Driscoll MB	05	2011	

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	Category 1 reg #
KKM	95	90%	S	44	13	LOW	65%	Proline 1088	168		02	2010	
KKM	548	75%	Р	34	12	UNK	NA	NA	NA	NA	NA	NA	
KKM	559	100%	Р	48	15	copper	65%	Interlux Ultra	3669U	lter Island Boaty	08	2017	
KKM	552	65%	S	36	11	copper	NA	TRINIDAD SR	NA	DRISCOLLS MB	05	2015	
KKM	289	90%	Р	47.8	15	copper	67%	PETTIT/TRINIDAL	NA	DRISCOLLS	05	2015	
KKM	621	25%	Р	46	16	UNK	NA	NA	NA	DRISCOLLS MB	11	2014	
KKM	860	80%	Р	46	14	LOW	NA	NA	NA	NA	01	2007	
KKM	853	25%	Р	36	12	UNK	NA	NA	NA	NA	NA	NA	
KKM	523	VACANT											
KKM	801	65%	S	35	12	UNK	NA	NA	NA	NA	NA	NA	
KKM	647	20%	Р	48	16	copper	60%	Interlux Ultra	160	lter Island Boaty	12	2012	
KKM	314	60%	Р	27	9	UNK	NA	PROLINE	NA	DRISCOLLS MB	01	2014	
KKM	201	85%	Р	54	16	copper	NA	interlux ultra	3779f	lter Island Boaty	07	2015	
KKM	975	90%	Р	28	9	UNK	NA	NA	NA	NA	NA	NA	
KKM	499	95%	Р	47	14	UNK	NA	NA	NA	NA	NA	NA	
KKM	274	90%	Р	32	12	UNK	NA	NA	NA	NA	NA	NA	
KKM	868	98%	S	50	14	LOW	40%	NA	NA	SHELTER ISLAND	08	2002	
KKM	710	90%	S	36	12	UNK	NA	NA	NA	NA	NA	NA	
KKM	294	98%	Р	49	15	LOW	NA	NA	NA	NA	12	2010	
KKM	45	50%	S	34	12	UNK	NA	NA	NA	NA	NA	NA	
KKM	76	85%	Р	49.12	16	LOW	NA	pettit B-94	NA	DRISCOLLS	08	2014	
KKM	527	93%	Р	25	9	UNK	NA	NA	NA	NA	NA	NA	
KKM	74	90%	S	44	14	COPPER	76%	TERLUX ULTRAKC	NA	lter Island Boaty	03	2016	
KKM	761	40%	Р	30	10	UNK	NA	NA	NA	NA	NA	NA	
KKM	508	40%	S	48	15	UNK	NA	NA	NA	NA	NA	NA	
KKM	697	40%	S	41	14	NON	NA	VC PERF	NA	ER ISLAND BOAT	11	2013	
KKM	406	98%	S	50	16	LOW	NA	1ISSION BAY BLU	4002	DRISCOLL	09	2007	
KKM	954	VACANT											
KKM	899	95%	Р	43	15	LOW	40%	Z Spar Gold	164	Driscoll MB	02	2012	
KKM	400	80%	Р	49	15	LOW	NA	INTERLUX KL-6	NA	lter Island Boaty	03	2007	
KKM	361	98%	Р	51	15	LOW	40%	Blue Water 8601	NA	Driscolll MB	10	2008	
KKM	796	85%	S	50	13	UNK	NA	Interlux Micro	NA	lter Island Boaty	03	2014	
KKM	865	VACANT											
KKM	578	40%	S	50	13	UNK	NA	NA	NA	NA	NA	NA	
KKM	967	45%	Р	47	15	UNK	NA	NA	NA	NA	NA	NA	
KKM	155	90%	Р	43	15	LOW	65%	Interlux Ultra	160	lter Island Boaty	04	2012	
KKM	706	90%	Р	47	15	COPPER	65%	oolsey Defense (593-4301G	Nielson Beumon	06	2017	
KKM	877	80%	S	48	14	UNK	NA	SEA HAWK	NA	BAJA NAVAL	02	2015	
KKM	308	100%	Р	50	17	NON	NA	NA	NA	SHELTER ISLAND	04	2015	

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	Category 1 reg #
KKM	920	100%	Р	43	14	COPPER	55%	Interlux Ultra	117598	SIBY	08	2016	
KKM	530	20%	S	47	14	LOW	NA	NA	NA	NA	NA	NA	
KKM	947	32%	Р	47	14	UNK	NA	NA	NA	NA	NA	NA	
KKM	332	90%	S	45	15	UNK	NA	NA	NA	SHELTER ISLAND	10	2015	
KKM	461	80%	S	50	13	UNK	NA	NA	NA	NA	NA	NA	
KKM	466	VACANT											
KKM	156	95%	Р	48	16	UNK	NA	NA	NA	lter Island Boaty	04	2014	
KKM	637	50%	Р	48	15	UNK	NA	NA	NA	NA	NA	NA	
KKM	846	35%	Р	53	15	UNK	NA	NA	NA	NA	NA	NA	
KKM	731	93%	Р	48	15	LOW	40%	AUTICAL ABLATIV	NA	Nielson Beumon	03	2017	
KKM	25	75%	S	45	14	copper	40%	Interlux Ultra	160	lter Island Boaty	11	2015	
KKM	879	90%	Р	54	17	UNK	NA	NA	NA	NA	NA	NA	
KKM	809	60%	Р	41	13	LOW	65%	Interlux Ultra	160	IIGHT AND CARV	11	2011	
KKM	197	98%	Р	44	16	COPPER	45%	oolsey Defense (4501G	leilsen Beaumor	04	2016	
KKM	16	25%	Р	41	14	UNK	NA	NA	NA	NA	NA	NA	
KKM	559	90%	Р	65	16	COPPER	76%	TERLUX ULTRAKO	NA	SHELTER ISLAND	11	2016	
KKM	509	60%	S	78	17	copper	67%	TTIT TRINIDAD P	NA	DRISCOLLS	01	2018	
KKM	474	80%	Р	97.6	24.5	UNK	UKN	TRILUX	33	Marine Group	10	2016	
KKM	576	88%	Р	140	25	Combo	0%	A HAWK SHARKS	NA	Marine Group	10	2015	
KKM	421	90%	Р	65	16	copper	NA	nterlux ultra kot	NA	lter island boaty	11	2016	
KKM	766	45%	Р	142	25	UNK	NA	NA	NA	NA	NA	NA	
KKM	763	60%	Р	160	25	UNK	NA	NA	NA	NA	NA	NA	
KKM	315	15%	Р	205	25	UNK	NA	Micron	1317-39-1	ancouver Drydo	09	2013	
KKM	614	70%	S	40	16	UNK	NA	NA	NA	NA	NA	NA	
KKM	913	65%	S	42	23	LOW	40%	Marine Bottom	10175156	rkavitch La Paz N	. 12	2016	
KKM	922	10%	S	45	15	UNK	NA	NA	NA	NA	NA	NA	
KKM	923	100%	HYDRAHOIST	15	8	NON	NA	NA	NA	NA	NA	NA	
НММ	9601	95	S	38	11	Copper	Interlux Ultra	Y3669U	Koehler Kraft	7	2015	55	
НММ	9595	100	S	32	9	Low	Unknown		Shelter Island	12	2012	67	
нмм	9589	90	S	53	13	Copper							
нмм	9583	100	S	36		Copper						67	
НММ	9582	100	S	42		Copper						67	
нмм	9581	95	S	34	10	Copper	Interlux Ultra	Y3669U	Shelter Island	7	2016	55	
нмм	9573	99	Р	46	14	Copper	Interlux Ultra	Y3779F	Shelter Island	2	2014	55	2693-212-AA
нмм	9572	100	Р	32	12	Copper						67	
нмм	9570		vacant									0	
нмм	9568	90	S	27	8	Low	Interlux Supe	K90B	Driscolls MB	11	2008	33	
нмм	9560	100	S	47	13	Low	Unknown		Unknown	12	2006		
нмм	9555	65	S	33		Copper	Proline	1088c-01	Shelter Island	4	2012	33	

Facility	Slip/Mooring Reference Number	Time Occupied	Vessel Type (Power or Sail)	Vessel Length		Paint Type Copper, Low or Non	Paint Product Name	Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	Category 1 reg #
НММ	9554	100		30	11	Copper						67	
НММ	9552	100		36		Low	Z Spar	B-91	Driscoll SI	6	2015	35	
НММ	9549	100		50		Copper	Unknown		Koehler Kraft	3	2014	67	
НММ	9541	100		32		Copper						67	
НММ	9540	100		30		Copper	Interlux Ultra	Y3669F	Shelter Island	4	2015		2693-212-AA
НММ	9531	100	S	30		Copper						67	
НММ	9530	100		38		Copper						67	
НММ	9529	100	S	26		Copper						67	
НММ	9523	100	S	35	10	Low	None		Unknown	3	2011	33	
НММ	9522	100	P	39	13	Copper						67	
НММ	9520		vacant			vacant						0	
НММ	9518	100	P	24	8	Low	None		None	1	2001	67	
НММ	9513	100	S	34	12	Non	None					0	
нмм	9506	95	Р	33	11	Low	Unknown		Drisoll SI	10	2012	67	
НММ	9501		vacant									0	
НММ	9498	90	S	30	11	Low	Seahawk	6142	Driscoll SI	1	2006	33	44891-11-AA
НММ	9497	95	S	35	13	Copper	Z spar	B90VOC	Driscolls	11	2015	76	
НММ	9492	90	S	37	12	Copper						67	
НММ	9488	85	S	35	12	Copper	Interlux Ultra	Y3669U	Shelter Island	12	2016	55	
НММ	9487	100	S	47	14	Low	Interlux Ultra	2449H	Koehler Kraft	1	2012	76	
НММ	9486	100	S	30	10	Copper	Interlux	Y3669U	Shelter Island	4	2015	55	
НММ	9485	90	Р	29	10	Non	Thorn D		Shelter Island	6	2013	0	
НММ	9480		vacant									0	
НММ	9478		vacant									0	
НММ	9475	100	Р	41	12	Copper	Interlux Ultra	Y3779F	Shelter Island	9	2013	55	2693-212-AA
НММ	9474	100	S	25	9	Non						0	
НММ	9472	100	S	37	12	Copper						67	
НММ	9470	100	S	34	10	Copper	Interlux Ultra	Y3669F	Shelter Island	9	2014	55	2693-212-AA
НММ	9469	100	S	35	12	Copper						67	
НММ	9468	100	Р	33	12	Copper						67	
HMM	9463	100	S	30	9	Low	Interlux Ultra	Y3779F	Shelter Island	5	2010	55	2693-212-AA
НММ	9458		vacant									0	
нмм	9457	100	S	35	11	Copper	Trinidad	A10886	Koehler Kraft	12	2015	67	60061-94-ZB
нмм	9449	100	Р	42		Copper						67	
НММ	9447		vacant									0	
нмм	9445	80	S	30	11	Non	Interlux/Inters	FXA972/A	Shelter Island	5	2015	0	
нмм	9443	90	Р	29	10	Non	Pettit	1808Q	Shelter Island	4	2015	0	#N/A
нмм	9423	98	S	32		Copper	Interlux Ultra		Nielsen-Beau	8	2013	55	2693-212-AA
НММ	9421	95		32		Copper	Unknown					67	

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length		Paint Type Copper, Low or Non	Paint Product Name	Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	Category 1 reg #
НММ	9416	100		21		Copper							
НММ	9414	100		38		Copper						67	
НММ	9412	100		27		Non	None					0	
НММ	9411	100		37		Copper	Interlux Ultra	Y3779U	Shelter Island	1	2013	57	
НММ	9399	100		17		Copper						67	
НММ	9397	95		34		Copper	Interlux Ultra	Y3669U	Shelter Island	2	2015	55	
НММ	9396	100		38	12	Copper						67	
НММ	9395	100	S	14		Low	Interlux Micr	5691	Self	7	2016	35	
НММ	9392	100		36		Copper	None		Unknown	Unknown			
НММ	9387	95		41		Copper	Interlux Ultra	Y3669U	Shelter Island	10	2016	57	
НММ	9386	100	Р	32	13	Copper						67	
НММ	9376	100	Р	20	9	Non	Pettit Hydro	1104	self	7	2017	0	#N/A
НММ	9363	100	-	27	9	Low	Interlux Ultra	Y3449F	Shelter Island	6	2012	55	2693-212-AA
НММ	9361	100	S	30	11	Copper	Interlux Ultra	Y3669U	Shelter Island	6	2016	67	
НММ	9356	70	S	38	12	Copper						67	
НММ	9355	100	S	22	9	Low	Unknown		Unknown	12	2011	67	
НММ	9351		vacant									0	
НММ	9349	100	S	38	12	Copper						67	
НММ	9346	100	S	36	12	Copper						67	
НММ	9344		vacant									0	
НММ	9342	100	S	23	8	Low	None		Unknown	12	1990	67	
НММ	9341	100	E	18	7	Copper						67	
НММ	9336	100	S	26	10	Copper	Interlux Ultra	Y3669F	Driscoll MB	5	2014	55	2693-212-AA
НММ	9335	100	Р	30		Copper	Nautical Supe	NAU773	Nielsen-Beau	2	2016	55	23566-20-ZT
НММ	9334	100	S	42	13	Copper						67	
НММ	9333	100	S	27		Low	None		Unknown	2	2011	67	
НММ	9325	95	Р	30	12	Copper	Seaguard	P30BQ12	Self	12	2014	48	
НММ	9324	100	S	36	12	Copper	Interlux Ultra	Y3669F	Shelter Island	7	2015	55	2693-212-AA
НММ	9320	90	Р	29	11	Non	Armored Hul	30'		10	2017	0	#N/A
НММ	9315	100	S	30	11	Copper	Pettit Z-Spar	B-91	Driscoll SI	2	2016	67	
НММ	9311	100	Р	26		Copper	Petit Hydraco	1240	Self	3	2014	40	60061-87-ZH
нмм	9310	98	Р	50		Copper	Interlux Ultra			09	2017	55	2693-212-AA
нмм	9304	100		28		Copper	Interlux Ultra	Y3779U	Shelter Island	2	2014	67	
HMM	9296		vacant					-				0	
нмм	9295	100		39	12	Copper	Trinidad Micr	ron	Mexico	11	2014	67	
нмм	9294	100	S	30		Copper							
HMM	9293	100	_	23		Copper	Trinidad Ultra	Y3779U	Shelter Island	8	2016	55	
НММ	9288	100		21	8	7 F -							
HMM	9285	100		27		Copper	UK		Driscoll SI	12	2010	67	

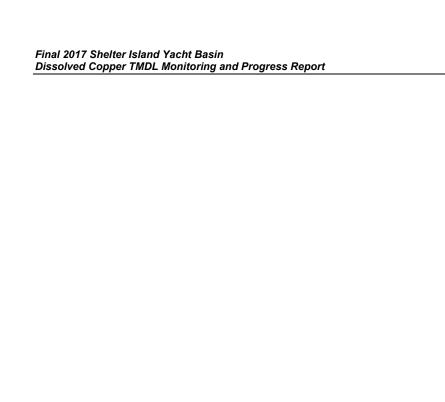
Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	Category 1 reg #
HMM	9283	100	Р	35	11	Copper	Z-Spar	B-94	Driscoll SI	8	2014	60	
HMM	9282		vacant									0	
HMM	9280	75	Р	28		Copper	Petit		Self	Unknown		66	
HMM	9277	100		33		Copper						67	
HMM	9276	100	S	27	9	Copper						67	
HMM	9267		vacant									0	
HMM	9266		vacant									0	
HMM	9265	100	S	34	11	Low	Unknown		Unknown	4	2011	67	
HMM	9261		vacant									0	
HMM	9257	100	Р	24	9	Copper						67	
HMM	9251	100		34	11	Copper	Interlux Ultra	Y3669F	Shelter Island	4	2015	55	2693-212-AA
HMM	9250	100	Р	30	11	Copper						67	
HMM	9248	100	Р	22	7	Copper						67	
HMM	9247	100	р	10	5	Copper						67	
HMM	9244	95	Р	50	15	Copper	Interlux Ultra	Y3779U	Shelter Island	2	2016	57	
НММ	9241	100	S	35	11	Copper	Interlux Ultra	Y3669F	Shelter Island	11	2013	55	2693-212-AA
НММ	9239	100	S	30	10	Copper	Proline	1088c-01	Shelter Island	10	2012	33	
НММ	9228	100	S	30	11	Non	None					0	
НММ	9218	98	S	33	13	Copper	Interlux Ultra	Y3559U	Shelter Island	5	2016	55	
НММ	9215	100	Р	35	11	Copper	Z-Spar	B-94	Driscoll SI	8	2014	60	
НММ	9213	100	S	36	10	Copper	Interlux Ultra	Y3779U	Shelter Island	6	2016	67	
НММ	9210	98	Р	36	13	Copper	Interlux Ultra	Y3779F	Shelter Island	10	2014	55	2693-212-AA
НММ	9203	100	Р	24	9	Copper						67	
HMM	9201		vacant									0	
НММ	9198	100	S	26	9	Copper	Interlux Ultra	Y3779U	Shelter Island	9	2017	55	
НММ	9195	100	S	40	13	Copper						67	
НММ	9190	100	Р	32	10	Copper	Interlux	Y3779U	Shelter Island	6	2016	55	
НММ	9189	100	S	35	12	Non						0	
НММ	9185	90	Р	22	8	Copper	JDK		NeilsenBeaur	7	2017	67	
НММ	9183	100	Р	48	15	Copper	Interlux Ultra	Y3779F	Shelter Island	8	2013	55	2693-212-AA
НММ	9182	90	S	25	8	Copper	Interlux Ultra	Y3669F	Shelter Island	11	2013	55	2693-212-AA
НММ	9181	100	Р	18	9	Copper	Trinidad					67	
нмм	9176		vacant									0	
нмм	9172	95	Р	18	8	Copper						67	
НММ	9171	100	Р	22		Copper	Interlux Ultra	Y3779F	Driscoll MB	1	2013	55	2693-212-AA
НММ	9169	90		47		Copper	Interlux Ultra	Y3779U					
нмм	9168	100		24		Copper						67	
нмм	9161	100		34		Copper						67	
НММ	9157	100	S	25		Low	Interlux Ultra	Y3559F	Shelter Island	5	2011	55	2693-212-AA

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length		Paint Type Copper, Low or Non	Paint Product Name	Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	Category 1 reg #
НММ	9156	100	S	48	14	Copper	Unknown			5	2014		
НММ	9153		vacant									0	
НММ	9151	65	Р	23	9	Copper	Trinidad SR	A1277Q	Self	5	2015		60061-94-ZD
НММ	9150	100		38	12	Low	Interlux Micr	5693	British Marin	9	2013	35	
НММ	9148	100		22		Copper			Unknown	Unknown		67	
НММ	9147	94		44		Copper	Interlux Ultra	Y3559F	Shelter Island	5	2014	55	2693-212-AA
НММ	9141	100		36		Copper	Interlux Ultra		Shelter Island	3	2013	55	2693-212-AA
НММ	9140	100		40		Copper	Ultralux	Y3779F	Shelter Island		2013		2693-212-AA
НММ	9135	95	Р	38	15	Copper	Interlux Ultra	Y3669U	Shelter Island	12	2015	67	
НММ	9133		vacant									0	
НММ	9130	100		36		Copper						67	
НММ	9129	100		36	12	Low	Interlux Ultra	2779N	Shelter Island	5	2011	33	
НММ	9128	95		33	12	Copper	Unknown		Dana Point Sh	1	2017	67	
НММ	9127	100		36		Copper						67	
НММ	9126	100		19	6	Copper						67	
НММ	9124	100	S	25	8	Copper						67	
НММ	9123	100	Р	28	10	Copper						67	
НММ	9121	100	S	33	10	Low	Unknown		Nielsen-Beau	10	2012	67	
НММ	9117		vacant									0	
НММ	9115	100	S	47	14	Low	Trinidad	1275	Self	3	2011	70	
НММ	9114	100	S	34	12	Copper	Interlux Ultra	Y3779F	Shelter Island	4	2014	55	2693-212-AA
нмм	9113		vacant									0	
НММ	9111	100	-	33	9	Copper	Interlux Ultra	Y3779F	Shelter Island	8	2014	55	2693-212-AA
HMM	9106	100	S	31	11	Copper						67	
HMM	9099	90	S	25	8	Copper							
НММ	9096		vacant									0	
НММ	9090	98	S	28	9	Low	Unknown		Unknown	4	2012	67	
НММ	9088	100	Р	42	14	Non	Interlux Inter	BZA646	Baja Naval	4	2016	0	
HMM	9085	100	Р	21	8	Copper						67	
НММ	9084	95	Р	30	8	Copper	Interlux Ultra	Y3669F	Shelter Island	6	2013	55	2693-212-AA
НММ	9083	100	S	30	10	Copper	Interlux Ultra	Y3779F	Shelter Island	9	2014	55	2693-212-AA
НММ	9077	95	S	37		Low	Micron Extra	5693	Mexico	3	2014	35	
нмм	9069		vacant									0	
НММ	9068	100	S	26	8	Copper						67	
НММ	9066	100	Р	26	8	Copper						67	
НММ	9065	100	Р	23	10	Copper							
НММ	9061	100	Р	40	12	Low	Unknown		Unknown	1	2000		
НММ	9051	100	S	20		Copper						67	
НММ	9048	100	Р	52	14	Copper	Unknown		Baja Naval	1	2009	67	

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length		or Non	Paint Product Name	Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	Category 1 reg #
НММ	9047	100		23		Low	Unknown		Los Alamitos	3	2012	67	
HMM	9044	99		36		Low	Interlux Ultra	Y3669F	Shelter Island	4	2015		2693-212-AA
HMM	9031	100	Р	18		Low	Unknown		Self	12	2010	67	
HMM	9029	90		36		Low	Interlux CSC	5583G	Shelter Island	6	2017	36	
HMM	9027	100		21		Copper						67	
HMM	9024	90		17	6	Copper			Shelter Island	2	2015	67	
HMM	9020	50		47		Low	Interlux Ultra	Y3669F	Shelter Island	5	2012	55	2693-212-AA
HMM	9017	90	P	32		Copper						67	
HMM	9015	100	S	38		Non	Sea Speed	121509-BP	Driscoll SI	2	2015	0	
HMM	9010	100	S	35	11	Copper						67	
BCM	8600	100	S	46	14	LOW COPPER	PROLINE	1088C-02	SIBY	2	2009	67	
BCM	8596	100	S	30	10.1	COPPER							
BCM	8592	100	S	30	10.1	LOW COPPER	ULTRA RED	3449	NB	3	2014	55	
BCM	8590	100	P	42	13.6	COPPER	JLTRA-KOTE	Y3669U	SIBY	7	2017	55	
BCM	8578	0				NON COPPER	<u>.</u>					0	
BCM	8576	100	S	31	11	COPPER							
BCM	8574	0				NON COPPER						0	
BCM	8572	93	P	42	13.5	LOW COPPER	ULTRA RED	3449	SIBY	7	2014		
BCM	8567	88	S	30	9.6	COPPER	TTIT TRINID	1875	KOEHLER	9	2015	28	
BCM	8560	80	P	32.5	11.1	COPPER	Z*SPAR	B-94	DRISCOLL	9	2015	65	
BCM	8559	0				NON COPPER	R					0	
BCM	8557	90	S	36	12.6	COPPER	Z*SPAR	B-91	SIBY	4	2015	65	
BCM	8554	100	S	34	11	COPPER	JLTRA-KOTE	Y3559U	SIBY	2	2017	55	
BCM	8547	97	S	31	10	COPPER							
BCM	8545	100	S	43	11.8	LOW COPPER	ICRON CSC I	YBC583	KOEHLER	7	2014	35	2693-225-AA
BCM	8544	100	S	30	10.1	COPPER	TRAKOTE BL	2669N	SIBY	9	2015	67	
BCM	8543	90	S	41	12.6	LOW COPPER	PROLINE	1088C-02	SIBY	3	2014	67	
BCM	8539	100	S	30	9.5	COPPER							
BCM	8533	100	S	46	12.2	COPPER							
BCM	8526	100	S	29	-	COPPER							
BCM	8525	97	P	56	16.4	LOW COPPER	Z*SPAR	B90VOC	DRISCOLL	8	2013	60	
BCM	8524	100	S	24	9		ICRON EXTR		DRISCOLL	4	2014	35	2693-190-ZJ
BCM	8523	99	S	36	11.9	COPPER	PROLINE	1088C-02	SIBY	7	2016	67	
BCM	8519	90	S	30	10		CRON 66 BLA	YBA473	KOEHLER	8	2014	28	2693-187-ZG
BCM	8516	97	S	38	12	LOW COPPER	L		SIBY	1	2012	unknown	, , , , , , , ,
BCM	8515	100	S	30	9.6	COPPER	ARINE CPP A	5436936	OHLER KRAF	5	2016	38	
BCM	8509	96	S	36	10	LOW COPPER		2 .20,20	BAY MARINE	6	2011	unknown	
BCM	8508	100	P	36	14	COPPER	<u> </u>			<u> </u>	2011	umano wn	
BCM	8500	100	P	57	16.5	COPPER							

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	Category 1 reg #
BCM	8487	100	P	32	11	LOW COPPER		102012				
BCM	8482	0				NON COPPER					0	
BCM	8478	100	P	34.5	11.8	LOW COPPER Z*SPAR	B-91	NB	10	2010	65	
BCM	8474	100	S	32	9.6	LOW COPPERTTIT TRINIDA	A1088G	KOEHLER	6	2012	67	60061-94-ZB
BCM	8471	100	S	32	10.1	LOW COPPER		DRISCOLL	7	2010	unknown	
BCM	8469	100	S	35.5	11.5	LOW COPPER PROLINE	1088C-02	SIBY	5	2011	67	
BCM	8468	100	S	46	13.8	COPPER						
BCM	8467	96	S	25	8	LOW COPPER Z*SPAR	B-91	DRISCOLL	6	2011	65	
BCM	8464	100	P	40	14	COPPER JLTRA BLACI	3779	KOEHLER	8	2015	55	
BCM	8463	100	S	40.6	12.1	LOW COPPER		122011				
BCM	8459	100	S	26	4.6	LOW COPPER		32012				
BCM	8456	100	P	36.3	12.1	COPPER						
BCM	8454	89	S	43.5	13.9	COPPER TTIT HORIZO	1850	SIBY	8	2016	39	60061-101-AA
BCM	8442	100	S	50	14.9	COPPER						
BCM	8436	100	S	42	14.5	LOW COPPER	KN	IIGHT & CAR	8	2010	unknown	
BCM	8433	100	P	32	12	COPPER		62015				
BCM	8431	77	S	30	10.6	LOW COPPERLASS BOTTO	YBB669G	HYLEBOS	2	2012	22	2693-18-ZB
BCM	8428	97	S	36	11.5	COPPER						
BCM	8425	93	S	31	10	COPPER TIT HYDROC	1640	NB	1	2017	0	60061-87-ZL
BCM	8424	100	S	33	11.5	COPPER PROLINE	1088C-02	SIBY	3	2016	67	
BCM	8421	73	S	44	13	COPPER JLTRA-KOTE	Y3779U	SIBY	4	2017	60	
BCM	8415	100	S	32.8	12	COPPER						
BCM	8410	100	S	30	10	COPPER			6	2013		
BCM	8401	99	S	38	12	NON COPPERTER ISLAND	8201	SIBY	1	2017		
BCM	8400	100	S	40	13	COPPER TRA-KOTE BI	Y3669U	SIBY	4	2017		
BCM	8397	100	P	37	14	COPPER JLTRA BLACI	3779	SIBY	10	2016	55	
BCM	8396	100	S	29	8	COPPER						
BCM	8395	100	S	34	11.5	COPPER						
BCM	8394	96	S	36	10.5	NON-COPPER ERSHIELD 30	ENA311	KOEHLER	3	2017	0	
BCM	8393	100	S	27	9	COPPER		22017			55	
BCM	8392	100	S	37	12	LOW COPPER Z*SPAR	B-91	DRISCOLL	9	2012	65	
BCM	8384	96	P	48	12	LOW COPPER PROLINE	1088C-02	SIBY	7	2012	67	
BCM	8382	93	P	36	12	LOW COPPERILTRA BLACI	3779	SIBY	1	2013	55	
BCM	8380	100	S	27	8.6	COPPER						
BCM	8374	100	P	26	7	COPPER PROLINE	1088C-02	SELF	4	2016	67	
BCM	8372	67	S	35	11.4	COPPER ULTRA BLUE	3669	SIBY	3	2015	55	
BCM	8371	96	S	31	9.75	COPPER						
BCM	8370	100	S	34	12	COPPER JLTRA GREEN	3559	SIBY	2	2015	55	
BCM	8368	88	P	26	8.6	COPPER ULTRA-KOTE	Y3779U	DRISCOLL MI	9	2017	55	

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	t Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	Category 1 reg#
BCM	8361	86	S	26	11	LOW COPPER		22011				
BCM	8360	94	S	30	9	LOW COPPERULTRA BLU	E 3669	SIBY	7	2014	55	
BCM	8351	100	S	28	8.5	COPPER						
BCM	8349	93	S	30	11	COPPER ULTRA BLU	E 3669	SIBY	5	2015	55	
BCM	8340	90	S	34.8	10	COPPER		62016			0	
BCM	8336	100	S	29	10	COPPER		KOEHLER	1	2016		
BCM	8332	97	S	32	11	LOW COPPERPER PROGU	A NAU770	NB	7	2016	55	23566-20-ZR
BCM	8331	100	S	40	22	COPPER BOTTOM P	R 41127706	DRISCOLLS	8	2015	65	60061-94-ZE
BCM	8328	68	S	31	10	COPPER		72016			55	
BCM	8324	100	P	36	12.9	LOW COPPER		SIBY	12	2011	unknown	
BCM	8322	99	S	37.1	11.7	COPPER						
BCM	8317	92	S	37	12.6	COPPER						
BCM	8314	0				NON COPPER					0	
BCM	8310	95	S	44	8	COPPER						
BCM	8308	82	S	29.11	10.1	LOW COPPER PROLINE	1088C-02	SIBY	7	2014	67	
BCM	8304	0				NON COPPER					0	
BCM	8300	82	S	27	9	COPPER BOTTOM P	R A41127706	DRISCOLL	10	2017		
BCM	8296	100	P	16	4	LOW COPPERULTRA BLU	E 3669	SIBY	12	2014	55	
BCM	8290	100	S	25	8	LOW COPPERTIT PROTE	CTOR	DRISCOLL	6	2011	65	
BCM	8289	100	S	29	11	LOW COPPERVEST MARI	NE .	82005	8	2005	unknown	
BCM	8286	99	S	32.6	11.6	COPPER ULTRA BLU	E 3669	SIBY	11	2015	55	
BCM	8284	96	S	34	11.3	LOW COPPERULTRA BLU	E 3669		3	2011	55	
BCM	8270	97	P	39.5	14.2	COPPER BOTTOM P	R 411187706	DRISCOLL	3	2017		60061-94-ZE
BCM	8267	87	P	34	11.6	COPPER BOTTOM P	R A411187706	DRISCOLL	11	2017		
BCM	8265	100	S	35	11.5	LOW COPPERILTRA BLA	3779	SIBY	9	2012	55	
BCM	8250	97	S	33	10	COPPER RAKOTE B	2779N	SIBY	3	2016	67	
BCM	8246	92	S	34	11.9	COPPER ULTRA BLU	E 3669	SIBY	6	2015	55	
BCM	8245	95	S	35	10	LOW COPPERILTRA BLA	3779	SIBY	7	2010	55	
BCM	8244	100	S	38	14.11	LOW COPPERRINE BOTT	O 411186606	OHLER KRAI	2	2015	29	60061-129-AA
BCM	8240	100	S	40	13	LOW COPPER		SIBY	3	2011	iunkown	
BCM	8239	100	S	30	10	LOW COPPER PROLINE	1088C-02	SIBY	3	2012	67	
BCM	8235	98	P	44	11	LOW COPPERAGUARD B	L P30LQ13	DRISCOLL	9	2014	48	
BCM	8232	100	S	26.6	10.6	COPPER ULTRA BLU	E 3669	SIBY	7	2015		
BCM	8214	0				NON COPPER					0	
BCM	8213	100	S	44.6	14	LOW COPPER PROLINE	1088C-02	SIBY	10	2011	67	
BCM	8206	100	S	36	11	LOW COPPER BOTTOM P	R 411187706	SIBY	2	2014	60	60061-94-ZE
BCM	8204	98	S	44	13	COPPER TIT ULTIMA	S 1109606	DRISCOLL	10	2017	65	
BCM	8193	100	S	35	9	COPPER JLTRA BLA	3779	SIBY	6	2015	55	
BCM	8191	100	S	34	11	LOW COPPER		22014			67	


Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	Category 1 reg #
BCM	8188	96	S	32	11.5	COPPER	PROLINE	1088C-02	SIBY	5	2015	67	
BCM	8184	100	P	28	10	COPPER	ULTRA BLUE	3669	SIBY	4	2016	55	
BCM	8182	100	P	30	12.3	COPPER							
BCM	8175	100	P	32	11	LOW COPPER	ULTRA BLACI	3779	SIBY	7	2010	55	
BCM	8171	100	S	36	11	LOW COPPER	ULTRA BLUE	3669	SIBY	1	2014	55	
BCM	8160	100	P	40	10.6	LOW COPPER	ULTRA GREEI	3559	SIBY	3	2012	55	
BCM	8156	88	S	45	13.6	COPPER	TRAKOTE BL	2669N	KOEHLER	11	2017		
BCM	8150	100	S	37	12	LOW COPPER	ULTRA BLUE	3669	SIBY	5	2010	55	
BCM	8149	100	S	46	13.5	COPPER	PROLINE	1088C-02	SIBY	4	2016	67	
BCM	8147	100	S	35	10.5	LOW COPPER	ULTRA BLACI	3779	KOEHLER	2	2013	55	
BCM	8146	100	S	45	14.5	LOW COPPER	₹	KN	IGHT & CARV	12	2011		
BCM	8138	82	P	26	8.6		TRAKOTE BL	2669N	KOEHLER	4	2017	55	
BCM	8137	100	S	47	15	LOW COPPER	TTIT TRINIDA	1878	OPEQUIMAR	5	2012	76	
BCM	8131	93	S	35	11.6	COPPER	ULTRA BLUE	3669	SIBY	5	2017	55	
BCM	8121	99	P	40	14.1	LOW COPPER	TRINIDAD	1088C-02	Vee Jay Marine	5	2006	67	
BCM	8119	100	S			NON COPPER	TERSLEEK 9	FXA979/A	SIBY	10	2013	0	
BCM	8115	100	S	36	11.6	COPPER			72013				
BCM	8111	100	S	41	12	COPPER	JLTRA BLACI	3779	SIBY	11	2017	55	
BCM	8105	99	S	32	11.8	LOW COPPER	TTIT TRINIDA	AD	SIBY	3	2011	unknown	
BCM	8100	100	S	30	10.1	COPPER							
BCM	8099	100	S	39	19.4	COPPER	ULTRA BLUE	3669	SIBY	9	2016	55	
BCM	8096	100	S	36	11	COPPER			52016				
BCM	8094	75	P	19	8	COPPER			22017				
BCM	8091	100	P	30	9.9	COPPER	ULTRA BLUE	3669	SIBY	7	2016	55	
BCM	8090	100	P	32	11.6	LOW COPPER	ULTRA BLUE	3669	SIBY	7	2013	55	
BCM	8086	100	P	34	11	LOW COPPER	ULTRA-KOTE	Y3669U	SIBY	5	2011	55	
BCM	8083	100	P	46	14.6	LOW COPPER	ULTRA BLUE	3669	DRISCOLL	3	2010	55	
BCM	8076	100	P	38	13	LOW COPPER	ULTRA BLACI	3779	SIBY	2	2014	55	
BCM	8073	100	S	41	12	LOW COPPER	Z*SPAR	B90VOC	LONG BEACH	6	2011	76	
BCM	8070	92	S	38	21.5	COPPER	ULTRA-KOTE	Y3669U	SIBY	3	2017	65	
BCM	8064	84	P	65	14	COPPER							
BCM	8060	99	P	34	11	COPPER	JLTRA-KOTE	Y3669U	SIBY	10	2016	55	
BCM	8043	93	S	34	9.8	LOW COPPER	ULTRA BLACI	3779		4	2010	55	
BCM	8041	100	S	29.11	10.1	LOW COPPER	TT TRINIDAD	A1088G	KOEHLER	8	2014	70	60061-94-ZB
BCM	8037	96	S	33	9.7		ULTRA BLACI	3779	SIBY	6	2011	55	
BCM	8034	82	P	46	14.5	COPPER	Z*SPAR GOLI	41127706	SIBY	3	2015	65	60061-94-ZE
BCM	8030	92	S	31	10.4	LOW COPPER	PROLINE	1088C-02	DRISCOLL	9	2010	67	
BCM	8029	0				NON COPPER	2					0	
BCM	8026	100	S	33	9.7	COPPER	PROLINE	1088C-02	DRISCOLL	5	2016	67	

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	Category 1 reg #
BCM	8024	100	S	33.5	11.5	LOW COPPER	₹		122013				
BCM	8023	84	S	33	11.1	COPPER	JLTRA BLACI	3779	DRISCOLL MI	4	2015	55	
BCM	8022	100	S	32	11.5	LOW COPPER	RAKOTE BLA	2779N	KOEHLER	8	2011	67	
BCM	8019	99	P	38	13	COPPER	JLTRA BLACI	3779	SIBY	8	2013	55	
BCM	8014	93	P	48	12	LOW COPPER	LTRA BLACI	3779	SIBY	12	2014	55	
BCM	8012	100	P	13.3	4	LOW COPPER	₹		SELF	6	2011	unknown	
BCM	8011	100	P	34	7.3	COPPER	ULTRA BLUE	3669	SIBY	7	2017	55	
BCM	8010	100	S	36	11.6	COPPER							
BCM	8007	99	S	32	11	LOW COPPER	PETTIT		SIBY	4	2009	uinlnown	
BCM	8006	90	S	35.5	13.3	LOW COPPER	ULTRA BLACI	3779	SIBY	1	2014	55	
GCA	2035	100	Sail	67'	19'	Copper	Pettit Pro	B90VOC	Driscoll's	7	2016	65	
GCA	2064	100	Power	80'	22'	Unknown							
GCA	2070												
GCA	2130	90	Power	29'	10'	Copper	Interlux Ultra	Y3779F	ter Island Boat	9	2016	55	2693-212-AA
GCA	2131	95	Power	30'	10'	Copper	Interlux Ultra	Y3779F	Beaumont Ma	5	2017	55	2693-212-AA
GCA	2138												
GCA	2139	95	Sail	46'	12'	Low-copper	lux Micron CS	YBC580	ter Island Boat	4	2017	38	2693-225-AA
GCA	2148	80	Power	40'	13'	Copper	Interlux Ultra	Y3779F	ter Island Boat	7	2017	55	2693-212-AA
GCA	2173	100	Power	58'	16'	Unknown							
GCA	2175	100	Power	75'	21'	Copper	ABC3		Driscoll's	12	2014	48	
GCA	2180	100	Power	30'	12'	Unknown							
GCA	2193	100	Power	38'	14'	Non-Copper	Hydrocoat Ecc	1840	Beaumont Ma	11	2015	0	60061-87-ZI
GCA	2209	90	Power	38'	13'	Copper	Proline	1088c-01	Koehler Kraft	8	2017	67	
GCA	2222	90	Power	85'	21'	Copper	Interlux Ultra	Y3779F	ter Island Boat	6	2016	55	2693-212-AA
GCA	2239	100	Power	61'	17'4"	Copper	Interlux Ultra	Y3779F	er Island Boat	5	2014	55	2693-212-AA
GCA	2247	90	Power	56'	15'	Copper	Interlux Ultra	Y3779F	er Island Boat	2	2016	55	2693-212-AA
GCA	2278												
GCA	2287	95	Power	45'	14'7"	Copper	oolsey Defen	4501	Beaumont Ma	5	2017	65	
GCA	2301	100	Power	70'	16'	Copper	Proline	1088c-01	er Island Boat	3	2017	67	
GCA	2329	80	Power	41'	13'	Copper	Interlux Ultra	Y3449F	er Island Boat	3	2017	55	2693-212-AA
GCA	2346	100	Sail	65'	15'5"		erlux-Micron	YBD101G	Unknown	11	2014	0	
GCA	2351	80	Power	42'	14'	Copper	Interlux Ultra	Y3779F	ter Island Boat	8	2017	55	2693-212-AA
GCA	2371	100	Power	48'	13'	Copper	Aqua Interlux	YBA579	Beaumont Ma	4	2012	47	
GCA	2396	100	Power	54'	16'8"	Copper	Seaguard	P30LQ13	ne Group Boats	12	2016	49	
GCA	2399	100	Power	42'	14'3"	Copper	Interlux Ultra	Y3779F	Beaumont Ma	11	2014	55	2693-212-AA
GCA	2442	90	Sail	65'	16'	Low-copper	lux Micron CS	YBC580	er Island Boat		2017	38	2693-225-AA
GCA	2445	50	Power	54'	17'	Copper	Interlux Ultra	Y3779F	er Island Boat	1	2014	55	
GCA	2446	95	Power	42'	10'	Low-copper	Petit Vivid	11161	Beaumont Ma	10	2017	17	60061-116-AA
GCA	2463	50	Power	56'	15'	Copper	Interlux Ultra	Y3779F	er Island Boat	11	2017	55	2693-212-AA

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	Category 1 reg #
GCA	2474	100	Power	48'	17'	Low-copper	Petit Vivid	11161	ort Harbor Sh	5	2013	17	60061-116-AA
GCA	2475	75	Power	37'	11'	Copper	Proline	1088c-01	er Island Boat	10	2017	67	
GCA	2525	80	Sail	30'	11'	Copper	Aqua Interlux	YBA579	Beaumont Ma	6	2016	47	
GCA	2539	100	Power	24'	9'	Copper	Proline	1088c-01	er Island Boat	8	2017	67	
GCA	2549												
GCA	2556	100	Power	40'	11'5"	Copper	Z-Spar Protecto	B-94	Beaumont Ma	11	2013	60	
GCA	2582	80	Power	40'	13'	Unknown							
Tonga	2460												
Tonga	2438												
Tonga	2417	100	Power	41		Copper	ukote Black G	3445				47	
Tonga	2325	100	Power	65			unknown						
Tonga	2262	100	Power	47			unknown						
Tonga	2250	100	Power	40			unknown						
Tonga	2238	100	Power	68			unknown						
Tonga	2201	100	Power	34			unknown						
Tonga	2171	100	Power	33			unknown						
Tonga	2132	100	Power	33			unknown						
Tonga	2126	100	Power	29			unknown						
Tonga	2073	100	Power	32			unknown						
Tonga	2011	100	Power	42			unknown						
Tonga	2008	100	Power	44	15	Low Copper	micron	YBC583				35	2693-225-AA
Tonga	2006	100	Power	39		Copper	ukote Black G	3445				47	
Crow's Nest	1001		Vacant										
Crow's Nest	1008		Vacant										
Crow's Nest	1009		Vacant										
Crow's Nest	1047	10	Power	58	18	copper	Proline	1088c-01			2014		
Crow's Nest	1094	10	Power	54	15	copper	Interlux						
Crow's Nest	1191	10	Power	48	15	Copper							
Crow's Nest	1195	10	Power	82	19	copper	Interlux Ultra	3639U			2015		
Crow's Nest	1271		Vacant										
Crow's Nest	1274	50	Power	35	12	Micron Non	Micron Non						
Crow's Nest	1295	10	Power	50	14		Zspar		Seattle	Dec	2012		
Crow's Nest	1306	10	Power	32	12								
Crow's Nest	1314	90	Sail	42	10	Copper	Biolux Green	5490	Walsh Marine	7	2012		2693-181-AA
Crow's Nest	1325	10	Power	35	12	copper	Interlux Ultra	3696U			2016		
Crow's Nest	1373		Vacant										
Crow's Nest	1420		Vacant										
Crow's Nest	1432	50	Sail	42	12				Koehler	Nov	2017		
Crow's Nest	1517	10	Power	36	13		Proline	1088c-01			2014		

Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	Category 1 reg #
Crow's Nest	1565		Vacant										
Crow's Nest	1573		Vacant										
Crow's Nest	1575		Vacant										
LPYC	1434	vacant											
LPYC	3473	vacant											
LPYC	3292	vacant											
LPYC	3090	vacant											

APPENDIX D WATER QUALITY RESULTS

This page intentionally left blank

March 2018

WATER QUALITY FIELD WATER QUALITY DATA SHEETS

Station Identification:	SIYB - ER			
Date: (mm/dd/yyyy)	08/23/2017			
Time Started: (hh:mm)	0645	Ended: (hh:mm)	0715	
GPS: (WGS84)	Lat. 32.70996	<u> </u>	Long117.23410	
Tide (ft):	1 10 1+	Time of Slack High Tide:	1115	
Water Depth (ft):	NA			-
Weather conditions:	calm; over cast			·
Wind (mph):	0.5	Time of C	ΓD Cast: NA-	
Current Speed and Direction:	NA			
Water Visibility (ft).	NA			

рН	Salinity (ppt)	Temperature (°C)
N A	ALA	NA
		рп (ppt)

^{*}Water quality measured at the same depth as sample collection (i.e. within 1 meter from the surface).

Notes: took equip blank away from ocean King. Culm, overcast conditoris sample taken at 0645.

Station Identification:	SIYB - REF			
Date: (mm/dd/yyyy)	08/23/2017			
Time Started: (hh:mm)	0745	Ended: (hh:mm) _	0845	<u> </u>
GPS: (WGS84)	Lat. 32. 70409		Long117.23	199
Tide (ft):	1 2,25 ft	Time of Slack High Tide:	1115	r r
Water Depth (ft):	67 ft	· 		
Weather conditions:	calm, overcust, s1	ightly mis	+/	
Wind (mph):	20,5	Time of CT	D Cast: 084	6
Current Speed and Direction:	very calm condition	is; glassy	surface slic	ght cerent
Water			9)

Time of Measurement	рН	Salinity (ppt)	Temperature (°C)	po
Upon arrival on station	781	33.5	. 19,1	n.F
During sample collection	7.85	33,5	19.4	7.01
End of sample collection	7.88	33.5	19.2	7.03
Average value	7.85	33.5	19.2	7.06

*Water quality measured at the same depth as sample collection (i.e. within 1 meter from the surface).

organic dubris at surface

wind picked up to 7.0 by end of station collection

Visibility (ft):

Station Identification:	SIYB-6	· · · ·	
Date: (mm/dd/yyyy)	08/23/2017		
Time Started: (hh:mm)	0900	Ended: (hh:mm)0150	
GPS: (WGS84)	Lat. 32, 70877	Long117	2351/
Tide (ft):	1 3.58 ft	Time of Slack High Tide: 1115	
Water Depth (ft):			
Weather conditions:	overcast + misty	•	
Wind (mph):	3.2	Time of CTD Cast:	1945
Current Speed and Direction:	slight ripple in v	vatur, slight arruent that of h	monng
Water	9.0'	that of n	ar bov.

Time of Measurement	рН	Salinity (ppt)	Temperature (°C)	Do
Upon arrival on station	7.86	33.6	20.5	6.81
During sample collection	7.85	33.6	20.6	6.73
End of sample collection	7.86	33.b	20.5	6.73
Average value	7.86	33.6	20.5	6.76

*Water quality measured at the same depth as sample collection (i.e. within 1 meter from the surface).

Notes: Sample taken at 0915 organic debns in water

Station Identification:	SIY 13 - 5				
Date: (mm/dd/yyyy)	08/23/2017				
Time Started: (hh:mm)	1000	Ended: (hh:mm)	1055		v
GPS: (WGS84)	Lat. 32, 71205		Long	17.2320	77
<u> </u>					
Tide (ft):	1 4.59 St	Time of Slack High Tide:	1115		
Water Depth (ft):	24′				
Weather conditions:	Overcast + misty				
Wind (mph):	5.6 gusts of 8+	Time of C	ΓD Cast:	1050	
Current Speed and Direction:	calm water, current	nong"to	wards	ruad of	fasm
Water Visibility (ft):	81	· ·		-	

ime of Measurement	рН	Salinity (ppt)	Temperature (°C)
on arrival on station	787	33.6	20.7
ng sample collection	7.88	33.6	20.7
of sample collection	7.87	336	20.8
erage value	7.87	33.6	20.7

^{*}Water quality measured at the same depth as sample collection (i.e. within 1 meter from the surface).

Notes: Sample Collected at 1015.
- off F-2

Station Identification:	SNB-4	· ·	. •		:
Date: (mm/dd/yyyy)	08 23 2017				
Time Started: (hh:mm)	1100	Ended: (hh:mm)	1157		
GPS: (WGS84)	Lat. 32.71657	· .	Long(17	.23117	· ·
Tide (ft):	5 09 T	Time of Slack High Tide:	1115	l peak	5.10f
Water Depth (ft):	17'				
Weather conditions:	overcast + misty				
Wind (mph):	5.8 Wl gusts up to	Time of C	TD Cast:	1150	
Current Speed and Direction:	bout is being purshed su)	·		
Water Visibility (ft):	8,				

Time of Measurement	рН	Salinity (ppt)	Temperature (°C)	00
Upon arrival on station	7.89	34.0	21.1	7.2
During sample collection	7.88	34.0	21.0	7.2
End of sample collection	7.89	34.0	21.0	7.2
Average value	7.89	34.0	21.0	7.2

^{*}Water quality measured at the same depth as sample collection (i.e. within 1 meter from the surface).

Notes: sample collection at 111

Station Identification:	SINB-3			
Date: (mm/dd/yyyy)	08/23/2017			•
Time Started: (hh:mm)	1205	Ended: (hh:mm)	1246	
GPS: (WGS84)	Lat. 32,71554		Long117.22	997
Tide (ft):	1 4.94 54	Time of Slack High Tide:	1115	
Water Depth (ft):	21/6"		X.	
Weather conditions:	overclast (cleaning up)	.		
Wind (mph):	7.4	Time of C	TD Cast: 1239	<u> </u>
Current Speed and Direction:	stronger aurent, pus	string wes	sel toward!	s head
Water	7'6"			

Time of Measurement	рН	Salinity (ppt)₩	Temperature (°C)	00
Upon arrival on station	7.88	340	20.9	729
During sample collection	7.89	34.0	21.0	7.30
End of sample collection	7.89	34.0	21.1	7.31
Average value	7.81	34.0	21.0	7.30

^{*}Water quality measured at the same depth as sample collection (i.e. within 1 meter from the surface).

Notes: Sample collected at 1215

* ord is reading 33,6

Station Identification:	SIVB-2
Date: (mm/dd/yyyy)	08/23/2017
Time Started: (hh:mm)	Ended: (hh:mm) 1405
GPS: (WGS84)	Lat. 32. 71416 Long117. 22922
Tide (ft):	Time of Slack High Tide: 1115
Water Depth (ft):	15.0'
Weather conditions:	windy, overcast, bright conditors
Wind (mph):	10 (bliwing in Time of CTD Cast: 1400
Current Speed and Direction:	calm at position (tred to duck)
Water	12'

Time of Measurement	рН	Salinity (ppt)	Temperature (°C)
Upon arrival on station	7.89	34.0	20.9
During sample collection	7.88	34.0	21.0
End of sample collection	7.90	34.0	21.1
Average value	7.89	34.0	21.0

*Water quality measured at the same depth as sample collection (i.e. within 1 meter from the surface).

Notes:

Sample collected at 1315

Station Identification:	SIVB-1	
Date: (mm/dd/yyyy)	08/23/2017	
Time Started: (hh:mm)	1410	Ended: 1455
GPS: (WGS84)	Lat. 32.71821	Long117.22603
Tide (ft):	1 3.26	Time of Slack High Tide:
Water Depth (ft):	18'5"	·
Weather conditions:	overcast, bright	
Wind (mph):	0.8	Time of CTD Cast: 1450
Current Speed and Direction:	stight aurvent	pushing south
Water Visibility (ft):	91411	

Time of Measurement	рН	Salinity (ppt)	Temperature (°C)	Do
Upon arrival on station	7.88	34.0	21.4	7.4
During sample collection	7.89	34.1	21.4	7.38
End of sample collection	7.90	34.1	21.5	7,40
Average value	7.89	34.1	21.4	7.30

*Water quality measured at the same depth as sample collection (i.e. within 1 meter from the surface).

Notes:

sumple collected at 1415

Station Identification:	514B-1	(REP)		
Date: (mm/dd/yyyy)	8/23/2019			
Time Started: (hh:mm)	1455	Ended (hh:mm)	A 1840 184	
GPS: (WGS84)	Lat. 32.71830	· · · · · · · · · · · · · · · · · · ·	Long.	1.22598
				:
Tide (ft):		Time of Slack High Tide	3 1 2 %	
Water Depth (ft):	17'6"			
Weather conditions:	calm			
Wind (mph):	7.0	Time of 0	CTD Cast:	1515
Current Speed and Direction:	slight A curvent pus	hing South		
Water Visibility (ft):	910"	· .		•

Time of Measurement	рН	Salinity (ppt)	Temperature (°C)	00
Upon arrival on station	7.90	34.1	21.5	7.4
During sample collection	7.90	34.1	214	7.44
End of sample collection	7.90	34.1	24.4	7.45
Average value	7.90	34.1	21.4	7.4

*Water quality measured at the same depth as sample collection (i.e. within 1 meter from the surface).

Notes:

sample taken at 1455

Station Identification:	SIYB-FB	···			. •
Date: (mm/dd/yyyy)	08/23/2017	<i>:</i>			•
Time Started: (hh:mm)	1525	Ended: (hh:mm)	153	5	
GPS: (WGS84)	Lat. 32, 71821		Long l	17, 226	01
Tide (ft):	NA	Time of Slack High Tide:	N A		
Water Depth (ft):	NA				
Weather conditions:	overcast				
Wind (mph):	NA	Time of C	TD Cast: _	NA	
Current Speed and Direction:	Na	,	·	· · · · · · · · · · · · · · · · · · ·	
Water Visibility (ft):	NX				

Time of Measurement	рН	Salinity (ppt)	Temperature (°C)
Upon arrival on station	NA	NΔ	NA
During sample collection			
End of sample collection			
Average value			

^{*}Water quality measured at the same depth as sample collection (i.e. within 1 meter from the surface).

Notes:

Sample collected at 1525.

WATER QUALITY RESULTS 2017 FIELD SAMPLING QA CHECKLIST

FIELD SAMPLING QA CHECKLIST

Station Location:	ER	D	Date/Time:8/23/17
Mark each box with	Y. N. or NA	:	6:45

Field Procedures

1. Upon arriving at the sampling location, the following site observations are being recorded:

Vessel has been anchored (or tied off)	NIA
Station GPS coordinates (approx. ± 3 m) and station identification verified and recorded Corl On Cocle .	NIA
Tide recorded	NA
Weather conditions recorded	<u> </u>
Surface water conditions (incl. currents) recorded (including H2O clarity by Secchi disk)	NA
Time of sampling recorded	Y
Water depth at sample site recorded	NA
General site observations recorded	
Check for boat cleaning operations in the area – if active, move to a new station	NIA

2. Sampling procedures:

Vessel engine has been shut off for 3-5 minutes prior to sampling	NA
Field staff wearing fresh, powder free nitrile gloves	Y
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	NA
Sampling instrument given site water rinse prior to deployment	<u> </u>
Sampling depth recorded	NA
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	
Samples bottles and containers are the correct type in accordance with Table 10 in the QAPP	У
Sample bottles contain correct preservative in accordance with Table 10 in the QAPP	ý
Sample bottles correctly labeled and match the station identification	Ý
Sample bottles correctly labeled with date and time in accordance with Table 10 in the QAPP	Y
Bottles filled in the following order: metals, DOC, TOC, TSS, toxicity	Y
COC seals have been placed over individual sample bottles	Y
Staff avoided contaminating samples at all times	Y
pH and salinity readings taken 3 times: when arriving on station, while water samples are collected and again while sample bottles are being filled	NA
CTD profile cast completed after water samples bottles are collected and preserved.	N/A
Equipment rinsate blank and field blank have been collected (if applicable)	Y
Site replicate (i.e., duplicate) collected (if applicable)	NA

FIELD S.	AMPLING	OA CH	ECKLIST
----------	---------	-------	----------------

3. PPE properly removed and disposed of u	ipon station completion	
4. Data Recording:		
Field notes have been recorded for t	this site before moving to the next	
CTD profile saved as an individual	file for each station	NA
Water samples properly logged on G	COC form	Y
Proper persons have signed the CO	C	
5. Sample Storage:		
Water samples properly stored on ic	ce in a cooler	
Cooler and samples hand delivered		

Completed COC included with courier to hand deliver to labs

Additional Notes:

Signature of QA/QC Personnel: Aum J	T. Enyely	Date/Time	8/23/17
Print Name/Company: Ame Post	r Wheeler		<u>;</u>

Reviewed and verified by Kelly Tact, Port of San Diego 8/23/12
Kelly & San

FIELD SAMPLING QA CHECKLIST

Station Location:	Ref	Date/Time: 8/	23/	l

Mark each box with Y, N, or NA

Field Procedures

1. Upon arriving at the sampling location, the following site observations are being recorded:

Vessel has been anchored (or tied off)	<u> </u>
Station GPS coordinates (approx. \pm 3 m) and station identification verified and recorded	N
Tide recorded	Y
Weather conditions recorded	<u> </u>
Surface water conditions (incl. currents) recorded (including H2O clarity by Secchi disk)	Y,
Time of sampling recorded	<u> </u>
Water depth at sample site recorded	Y
General site observations recorded	
Check for boat cleaning operations in the area – if active, move to a new station	Y

2. Sampling procedures:

Vessel engine has been shut off for 3-5 minutes prior to sampling	Y
Field staff wearing fresh, powder free nitrile gloves	Y
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	Y
Sampling instrument given site water rinse prior to deployment	Y
Sampling depth recorded	<u> </u>
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	Y
Samples bottles and containers are the correct type in accordance with Table 10 in the QAPP	Y
Sample bottles contain correct preservative in accordance with Table 10 in the QAPP	<u> </u>
Sample bottles correctly labeled and match the station identification	Y
Sample bottles correctly labeled with date and time in accordance with Table 10 in the QAPP	\ Y
Bottles filled in the following order: metals, DOC, TOC, TSS, toxicity	Y
COC seals have been placed over individual sample bottles	Y
Staff avoided contaminating samples at all times	<u> </u>
pH and salinity readings taken 3 times: when arriving on station, while water samples are collected and again while sample bottles are being filled	Y
CTD profile cast completed after water samples bottles are collected and preserved.	Y_
Equipment rinsate blank and field blank have been collected (if applicable)	NA
Site replicate (i.e., duplicate) collected (if applicable)	NIA

FIELD SAMI LING QA CHECKLIST	
3. PPE properly removed and disposed of upon station completion	Y
4. Data Recording:	
Field notes have been recorded for this site before moving to the next	<u> </u>
CTD profile saved as an individual file for each station	Ý
Water samples properly logged on COC form	Y
Proper persons bayes signed the COC	

5. Sample Storage:

Water samples properly stored on ice in a cooler	X
Cooler and samples hand delivered to labs	
Completed COC included with courier to hand deliver to labs	X

Additional Notes:

Construction activity at SPAWAR pier

Signature of QA/QC Pers	sonnel:	Brung J.	. Smyclin Date/Ti	ime_8/23/17_
Print Name/Company:				

Reviewed and verified by Kelly Taut, Port of San Diego

Kelly & Sav

FIELD SAMPLING QA CHECKLIST

Station Location:	51YB-6	Date/Time:	8/23/17
Mark each box with	Y, N, or NA		8:15

Field Procedures

1. Upon arriving at the sampling location, the following site observations are being recorded:

Vessel has been anchored (or tied off)	<i>Y</i>
Station GPS coordinates (approx. ± 3 m) and station identification verified and recorded	N
Tide recorded	У
Weather conditions recorded	<u> Y</u>
Surface water conditions (incl. currents) recorded (including H2O clarity by Secchi disk)	Y
Time of sampling recorded	Y
Water depth at sample site recorded	Y
General site observations recorded	<u> </u>
Check for boat cleaning operations in the area – if active, move to a new station	Y

2. Sampling procedures:

Vessel engine has been shut off for 3-5 minutes prior to sampling	Y
Field staff wearing fresh, powder free nitrile gloves	<u> </u>
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	Y
Sampling instrument given site water rinse prior to deployment	<u>Y</u>
Sampling depth recorded	Y
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	X
Samples bottles and containers are the correct type in accordance with Table 10 in the QAPP	У
Sample bottles contain correct preservative in accordance with Table 10 in the QAPP	Y
Sample bottles correctly labeled and match the station identification	Y
Sample bottles correctly labeled with date and time in accordance with Table 10 in the QAPP	Y
Bottles filled in the following order: metals, DOC, TOC, TSS, toxicity	Y
COC seals have been placed over individual sample bottles	Y
Staff avoided contaminating samples at all times	У
pH and salinity readings taken 3 times: when arriving on station, while water samples are collected and again while sample bottles are being filled	У
CTD profile cast completed after water samples bottles are collected and preserved.	
Equipment rinsate blank and field blank have been collected (if applicable)	NA
Site replicate (i.e., duplicate) collected (if applicable)	NA

FIELD	SAMPLING	QA	CHECKL	IST
-------	----------	----	--------	-----

3. PPE properly removed and disposed of upon station completion

4. Data Recording:

Field notes have been recorded for this site before moving to the next	
CTD profile saved as an individual file for each station	У
Water samples properly logged on COC form	Y
Proper persons have signed the COC	

5. Sample Storage:

Water samples properly stored on ice in a cooler		У
Cooler and samples hand delivered to labs		
Completed COC included with courier to hand deliver to	o labs	

Additional Notes:

Signature of QA/QC Personnel: Bamy J. Smydln
Print Name/Company: Ame Foster Wheeler

Revewed and verified by Kelly Tait, Port of San Piego 8/03/17 Kelly & Sat

Station Location: 5/43 5	Date/Time: 8/23/17
Mark each box with Y, N, or NA	10:20

Field Procedures

1. Upon arriving at the sampling location, the following site observations are being recorded:

Vessel has been anchored or tied off)	Y 2 15
Station GPS coordinates (approx. \pm 3 m) and station identification verified and recorded	N
Tide recorded	Y
Weather conditions recorded	Y
Surface water conditions (incl. currents) recorded (including H2O clarity by Secchi disk)	Y
Time of sampling recorded	Y
Water depth at sample site recorded	Y
General site observations recorded	Y
Check for boat cleaning operations in the area – if active, move to a new station	Y

2. Sampling procedures:

Vessel engine has been shut off for 3-5 minutes prior to sampling	Y
Field staff wearing fresh, powder free nitrile gloves	У
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	Y
Sampling instrument given site water rinse prior to deployment	Y
Sampling depth recorded	У
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	<u> </u>
Samples bottles and containers are the correct type in accordance with Table 10 in the QAPP	Ý
Sample bottles contain correct preservative in accordance with Table 10 in the QAPP	Y
Sample bottles correctly labeled and match the station identification	Y
Sample bottles correctly labeled with date and time in accordance with Table 10 in the QAPP	Y
Bottles filled in the following order: metals, DOC, TOC, TSS, toxicity	Y
COC seals have been placed over individual sample bottles	Υ.
Staff avoided contaminating samples at all times	X
pH and salinity readings taken 3 times: when arriving on station, while water samples are collected and again while sample bottles are being filled	4
CTD profile cast completed after water samples bottles are collected and preserved.	Υ,
Equipment rinsate blank and field blank have been collected (if applicable)	N/A
Site replicate (i.e., duplicate) collected (if applicable)	N/A

* sample collection target time was 10:15. Anchoring on site took a little lunger due to variable winds

FIELD SAMPLING QA CHECKLIST	
3. PPE properly removed and disposed of upon station completion	_Y
4. Data Recording:	
Field notes have been recorded for this site before moving to the next CTD profile saved as an individual file for each station	Y
Water samples properly logged on COC form Proper persons have signed the COC	Ý
1 Toper persons have signed the COC	
5. Sample Storage:	
Water samples properly stored on ice in a cooler	Y
Cooler and samples hand delivered to labs Completed COC included with courier to hand deliver to labs	У
	,
Additional Notes:	

Signature of QA/QC Personnel: Amy J. Swych Date/Time 8/23/17

Print Name/Company: Amee Foster Wheeler

Revnewed and ventued by Kelly Tact, Port of San Diego 8/03/17
Kelly D Jan

Station Location: 5/	413	Н	Date/Time:	8/23/17
Mark each box with Y, I	N. or NA			1115

Field Procedures

1. Upon arriving at the sampling location, the following site observations are being recorded:

Vessel has been anchored (or tied off)	
Station GPS coordinates (approx. ± 3 m) and station identification verified and recorded	N*
Tide recorded	<u> </u>
Weather conditions recorded	Y
Surface water conditions (incl. currents) recorded (including H2O clarity by Secchi disk)	Y
Time of sampling recorded	У
Water depth at sample site recorded	У
General site observations recorded	Ý
Check for boat cleaning operations in the area – if active, move to a new station	Y

2. Sampling procedures:

Vessel engine has been shut off for 3-5 minutes prior to sampling	Y
Field staff wearing fresh, powder free nitrile gloves	Y
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	Y
Sampling instrument given site water rinse prior to deployment	Y
Sampling depth recorded	Y
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	Y
Samples bottles and containers are the correct type in accordance with Table 10 in the QAPP	Y
Sample bottles contain correct preservative in accordance with Table 10 in the QAPP	Y
Sample bottles correctly labeled and match the station identification	X
Sample bottles correctly labeled with date and time in accordance with Table 10 in the QAPP	Y
Bottles filled in the following order: metals, DOC, TOC, TSS, toxicity	Y
COC seals have been placed over individual sample bottles	Y
Staff avoided contaminating samples at all times	Y
pH and salinity readings taken 3 times: when arriving on station, while water samples are collected and again while sample bottles are being filled	Y
CTD profile cast completed after water samples bottles are collected and preserved.	Y
Equipment rinsate blank and field blank have been collected (if applicable)	N/A
Site replicate (i.e., duplicate) collected (if applicable)	NIK

* wind issues - could not anchor within \$ 3 m

PPE properly removed and disposed of upon station completion	
Data Recording:	
Field notes have been recorded for this site before moving to the next	У
CTD profile saved as an individual file for each station	Y
Water samples properly logged on COC form	X
Proper persons have signed the COC	

Additional Notes:

Water samples properly stored on ice in a cooler

Completed COC included with courier to hand deliver to labs

Cooler and samples hand delivered to labs

Signature of QA/QC Personnel:	Bung J.	Suych Date/Time	8/23/17	
	mer Foster	•		ż

Reviewed and verified by Kelly Taut, Port of San Diego 8/23/17
Kully D. Jan

Station Location:	5143	3	Date/Time: § /	23/	17
Mark each box with	Y, N, or NA		1.	2 15	-

Field Procedures

1. Upon arriving at the sampling location, the following site observations are being recorded:

Vessel has been anchored (or tied off)	Y
Station GPS coordinates (approx. ± 3 m) and station identification verified and recorded	N *
Tide recorded	У
Weather conditions recorded	<u> </u>
Surface water conditions (incl. currents) recorded (including H2O clarity by Secchi disk)	Y
Time of sampling recorded	Y
Water depth at sample site recorded	Y
General site observations recorded	Y
Check for boat cleaning operations in the area – if active, move to a new station	1

2. Sampling procedures:

Vessel engine has been shut off for 3-5 minutes prior to sampling	Y
Field staff wearing fresh, powder free nitrile gloves	
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	Ý_
Sampling instrument given site water rinse prior to deployment	Y
Sampling depth recorded	ĽÝ.
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	Y
Samples bottles and containers are the correct type in accordance with Table 10 in the QAPP	<u> </u>
Sample bottles contain correct preservative in accordance with Table 10 in the QAPP	Y
Sample bottles correctly labeled and match the station identification	Y
Sample bottles correctly labeled with date and time in accordance with Table 10 in the QAPP	Y
Bottles filled in the following order: metals, DOC, TOC, TSS, toxicity	Y
COC seals have been placed over individual sample bottles	Y
Staff avoided contaminating samples at all times	У
pH and salinity readings taken 3 times: when arriving on station, while water samples are collected and again while sample bottles are being filled	Y
CTD profile cast completed after water samples bottles are collected and preserved.	Υ
Equipment rinsate blank and field blank have been collected (if applicable)	N/A
Site replicate (i.e., duplicate) collected (if applicable)	NIA

* wind issues prevented anchoring within ±3 m

FIELD SAMPLING QA CHECKLIST	
3. PPE properly removed and disposed of upon station completion	<u> </u>
4. Data Recording:	
Field notes have been recorded for this site before moving to the next	Y
CTD profile saved as an individual file for each station	<u>Y</u>
Water samples properly logged on COC form	
Proper persons have signed the COC	
5. Sample Storage:	
Water samples properly stored on ice in a cooler	Y
Cooler and samples hand delivered to labs	
Completed COC included with courier to hand deliver to labs	
Completed	

Additional Notes:

Bury J. Engely	Date/Time	8/23/17
Print Name/Company: Amec Foster Wheeler	·	

Reviewed and verified by Kelly Jait Port of San Diego Kelly J. Dart

Station Location: 51482	Date/Time: 8/25/	[17]
Mark each box with Y, N, or NA	1:15	5 pm

Field Procedures

1. Upon arriving at the sampling location, the following site observations are being recorded:

Vessel has been anchored (ortied off)	Y
Station GPS coordinates (approx. ± 3 m) and station identification verified and recorded	N*
Tide recorded	У
Weather conditions recorded	У
Surface water conditions (incl. currents) recorded (including H2O clarity by Secchi disk)	y
Time of sampling recorded	Ý
Water depth at sample site recorded	Y
General site observations recorded	Y
Check for boat cleaning operations in the area – if active, move to a new station	У

2. Sampling procedures:

Vessel engine has been shut off for 3-5 minutes prior to sampling	Y
Field staff wearing fresh, powder free nitrile gloves	Y
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	Y
Sampling instrument given site water rinse prior to deployment	Y
Sampling depth recorded	Y
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	Y_
Samples bottles and containers are the correct type in accordance with Table 10 in the QAPP	Ý
Sample bottles contain correct preservative in accordance with Table 10 in the QAPP	Y
Sample bottles correctly labeled and match the station identification	Y
Sample bottles correctly labeled with date and time in accordance with Table 10 in the QAPP	X
Bottles filled in the following order: metals, DOC, TOC, TSS, toxicity	Y
COC seals have been placed over individual sample bottles	Y
Staff avoided contaminating samples at all times	Y
pH and salinity readings taken 3 times: when arriving on station, while water samples are collected and again while sample bottles are being filled	7
CTD profile cast completed after water samples bottles are collected and preserved.	X
Equipment rinsate blank and field blank have been collected (if applicable)	N/A
Site replicate (i.e., duplicate) collected (if applicable)	N/A

* Collected a regular lucation tied to dock

* hull cleaner showed up when after sample collection

was complete. 42 meters to the East

FIELD SAMPLING QA CHECKLIST	·
3. PPE properly removed and disposed of upon station completion	<u> </u>
4. Data Recording:	
Field notes have been recorded for this site before moving to the next	Y
CTD profile saved as an individual file for each station	Y
Water samples properly logged on COC form	
Proper persons have signed the COC	
5. Sample Storage:	
5. Sample Storage.	
Water samples properly stored on ice in a cooler	X
Cooler and samples hand delivered to labs	
Completed COC included with courier to hand deliver to labs	

Additional Notes:

Signature of QA/QC Personnel: Bruny J. Snych Date/Time 8/23/17

Print Name/Company: Amer Poster Wheely

Reviewed and verified by Kelly Taxt, Port of San Diego, 8/23/17

Kelly of Sans

Station Location:	SNBI	Date/Time: 8/23/	17
Mark each box with	h Y, N, or NA	215	

Field Procedures

1. Upon arriving at the sampling location, the following site observations are being recorded:

Vessel has been anchored (or tied off)	Y
Station GPS coordinates (approx. ± 3 m) and station identification verified and recorded	Y
Tide recorded	Y
Weather conditions recorded	Y
Surface water conditions (incl. currents) recorded (including H2O clarity by Secchi disk)	Y
Time of sampling recorded	Ý
Water depth at sample site recorded	
General site observations recorded	Y
Check for boat cleaning operations in the area – if active, move to a new station	Y /

2. Sampling procedures:

Vessel engine has been shut off for 3-5 minutes prior to sampling	Y
Field staff wearing fresh, powder free nitrile gloves	<u>/ *Y </u>
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	Y
Sampling instrument given site water rinse prior to deployment	<u> </u>
Sampling depth recorded	Y
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	<u> </u>
Samples bottles and containers are the correct type in accordance with Table 10 in the QAPP	Y _
Sample bottles contain correct preservative in accordance with Table 10 in the QAPP	Y_
Sample bottles correctly labeled and match the station identification	Y
Sample bottles correctly labeled with date and time in accordance with Table 10 in the QAPP	Y
Bottles filled in the following order: metals, DOC, TOC, TSS, toxicity	У
COC seals have been placed over individual sample bottles	ý
Staff avoided contaminating samples at all times	<u> Y</u>
pH and salinity readings taken 3 times: when arriving on station, while water samples are collected and again while sample bottles are being filled	Y
CTD profile cast completed after water samples bottles are collected and preserved.	
Equipment rinsate blank and field blank have been collected (if applicable)	<u> </u>
Site replicate (i.e., duplicate) collected (if applicable)	Y

FIELD SAMPLING QA CHECKLIST	
3. PPE properly removed and disposed of upon station completion	<u> Y</u>
4. Data Recording:	
Field notes have been recorded for this site before moving to the next	У
CTD profile saved as an individual file for each station	Y
Water samples properly logged on COC form	Y
Proper persons have signed the COC	
5. Sample Storage:	
Water samples properly stored on ice in a cooler	
Cooler and samples hand delivered to labs	
Completed COC included with courier to hand deliver to labs	У

Additional Notes:

Signature of QA/QC Per	sonnel: Ma	my J.	Snycles	Date/Time	8/27/17
Print Name/Company:_	Amec	Foster	wheeler		

Reviewed and verified by Kelly Tait, Port of San Diegr, 8/23/17

Station Location:	514B 1	Rep.	Date/Time:	8/23/17
Mark each box wit	h Y, N, or NA		,	1455
Field Procedures	•			(2:55 pm)

1. Upon arriving at the sampling location, the following site observations are being recorded:

Vessel has been anchored or tied off)	Y
Station GPS coordinates (approx. ± 3 m) and station identification verified and recorded	Y
Tide recorded	Y
Weather conditions recorded	Ý
Surface water conditions (incl. currents) recorded (including H2O clarity by Secchi disk)	Y
Time of sampling recorded	Ý
Water depth at sample site recorded	Ý
General site observations recorded	Y
Check for boat cleaning operations in the area – if active, move to a new station	У

2. Sampling procedures:

Vessel engine has been shut off for 3-5 minutes prior to sampling	Y
Field staff wearing fresh, powder free nitrile gloves	Y
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	Y
Sampling instrument given site water rinse prior to deployment	Y
Sampling depth recorded	Y .
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	Ý
Samples bottles and containers are the correct type in accordance with Table 10 in the QAPP	Y
Sample bottles contain correct preservative in accordance with Table 10 in the QAPP	Y
Sample bottles correctly labeled and match the station identification	Y
Sample bottles correctly labeled with date and time in accordance with Table 10 in the QAPP	Y
Bottles filled in the following order: metals, DOC, TOC, TSS, toxety	Y
COC seals have been placed over individual sample bottles	Y
Staff avoided contaminating samples at all times	Υ
pH and salinity readings taken 3 times: when arriving on station, while water samples are collected and again while sample bottles are being filled	Y
CTD profile cast completed after water samples bottles are collected and preserved.	Y
Equipment rinsate blank and field blank have been collected (if applicable)	Y
Site replicate (i.e., duplicate) collected (if applicable)	À

FIELD	SAMPL	ING	OA	CHE	CKL	IST
A A A A A A A A A A A A A A A A A A A	NAME OF TAXABLE PARTY.	11.1	VIL	\sim 111	- IN	

3. PPE properly removed and disposed of upon station completion	· ·		
3. PPE properly removed and disposed of upon station completion	2 DDE11	. 1 . 1	1
5.11 E properly removed and disposed of apoli baction completion	- 3 PPE property removed at	aa atsoosea ot tioon statio	n completion
	5.11 E property removed as	ia disposed of apoli statio.	i completion

4. Data Recording:

Field notes have been recorded for this site before moving to the next	I V
CTD profile saved as an individual file for each station	V
Water samples properly logged on COC form	
Proper persons have signed the COC	/

5. Sample Storage:

Water samples properly stored on ice in a cooler	\sum	
Cooler and samples hand delivered to labs	•	
Completed COC included with courier to hand deliver to labs	Y	

Additional Notes:

Signature of QA/QC Personnel: Ramy J. Smychn
Print Name/Company: Amer Foster Wheeler

Date/Time_ 8/23/17

Revnewed and verified by Kelly Tavi, Port of San Diego 8/23/17

Station Location: Field Blank	Date	e/Time: 8/23/17
Mark each box with Y, N, or NA		3:25 pm

Field Procedures

1. Upon arriving at the sampling location, the following site observations are being recorded:

Vessel has been anchored (or tied off)	Y
Station GPS coordinates (approx. ± 3 m) and station identification verified and recorded	Y
Tide recorded	N/A
Weather conditions recorded	Y
Surface water conditions (incl. currents) recorded (including H2O clarity by Secchi disk)	Ý
Time of sampling recorded	7
Water depth at sample site recorded	NA
General site observations recorded	У.
Check for boat cleaning operations in the area – if active, move to a new station	NA

2. Sampling procedures:

Vessel engine has been shut off for 3-5 minutes prior to sampling	Y
Field staff wearing fresh, powder free nitrile gloves	Y
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	N/A
Sampling instrument given site water rinse prior to deployment	NA
Sampling depth recorded	NIA
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	Y
Samples bottles and containers are the correct type in accordance with Table 10 in the QAPP	Y
Sample bottles contain correct preservative in accordance with Table 10 in the QAPP	Υ.
Sample bottles correctly labeled and match the station identification	V
Sample bottles correctly labeled with date and time in accordance with Table 10 in the QAPP	Y
Bottles filled in the following order: metals, DOC, TOC, TSS, toxxity	У
COC seals have been placed over individual sample bottles	Y
Staff avoided contaminating samples at all times	Y
pH and salinity readings taken 3 times: when arriving on station, while water samples are collected and again while sample bottles are being filled	NA
CTD profile cast completed after water samples bottles are collected and preserved.	N/A
Equipment rinsate blank and field blank have been collected (if applicable)	Ý
Site replicate (i.e., duplicate) collected (if applicable)	NA

3. PP	E properly removed and disposed of upon station completion	
4. Da	ta Recording:	
	Field notes have been recorded for this site before moving to the next	Y
	CTD profile saved as an individual file for each station	Í V
	Water samples properly logged on COC form	V
	Proper persons have signed the COC	
5. Sar	mple Storage:	
	Water samples properly stored on ice in a cooler	<i>y</i>
	Cooler and samples hand delivered to labs	
	Completed COC included with courier to hand deliver to labs	

Additional Notes:

Signature of QA/QC Pers	onnel: Barry & Emycle	Date/Time	8/23/17
Print Name/Company:	Amer Foster wheeler		

Reviewed and verified by Kelly Tast, Port of San Diego 8/23/17 Kelly J Sur

WATER QUALITY RESULTS

2017 SIYB TMDL 2017 TOXICITY TESTING RESULTS (NAUTILUS)

Toxicity Testing Results for the Shelter Island Yacht Basin Total Maximum Daily Load Monitoring Plan

Monitoring Period: August 2017

Prepared for: Amec Foster Wheeler

9210 Sky Park Court, Suite 200

San Diego, CA 92123

Prepared by: Nautilus Environmental

4340 Vandever Avenue San Diego, CA 92120

(858) 587-7333

Report Submitted: October 3, 2017

Data Quality Assurance:

- Nautilus Environmental is accredited in accordance with NELAP by the State of Oregon Environmental Laboratory Accreditation Program (Certificate No. 4053). It is also certified by the State of California Water Resources Control Board Environmental Laboratory Accreditation Program (Certificate No. 1802) and the State of Washington Department of Ecology (Lab ID C552). Specific fields of testing applicable to each accreditation are available upon request. All data have been reviewed and verified.
- All data have been reviewed and verified.
- All test results have met minimum test acceptability criteria under their respective EPA protocols, unless otherwise noted in this report.
- All test results have met internal Quality Assurance Program requirements.

Results verified by:	adrienne libor
•	

Client: Amec Foster Wheeler Test IDs: 1708-S181 to S194 Monitoring Period: August 2017

Introduction

Ambient receiving water samples were collected in the Shelter Island Yacht Basin (SIYB), San Diego, California, in August 2017 to fulfill annual monitoring requirements for the SIYB Dissolved Copper Total Maximum Daily Load (TMDL) program. Samples were collected by Amec Foster Wheeler (AMEC) staff and delivered to the Nautilus laboratory for toxicity testing. Six samples were collected at previously monitored locations from the outer basin area nearest to the mouth of San Diego Bay (SIYB-6) inward toward the closed end of the yacht basin that receives the least amount of tidal flushing (SIYB-1). A reference sample (SIYB-REF) was also collected inside San Diego Bay, just outside of the SIYB. Samples were tested using a marine larval fish acute survival toxicity test and a bivalve larvae chronic survival and development test.

Materials and Methods

Sample Information

Amec Foster Wheeler/Port of San Diego
1. SIYB-1 (8/23/17; 14:15)
2. SIYB-2 (8/23/17; 13:15)
3. SIYB-3 (8/23/17; 12:15)
4. SIYB-4 (8/23/17; 11:15)
5. SIYB-5 (8/23/17; 10:15)
6. SIYB-6 (8/23/17; 09:15)
7. SIYB-REF (8/23/17; 08:15)
8/23/17; 17:15
Ambient Water (grab samples)

Bivalve Larvae Chronic Survival and Development Test Specifications

Test Period: 8/24/17; 16:00 – 8/26/17; 16:00

Test Organism: Mytilus galloprovincialis (Mediterranean mussel)

Test Organism Source: Mission Bay (San Diego, CA)

Control and Dilution Water: Natural seawater from Scripps Institution of Oceanography

inlet, 20 micron (μ m)-filtered, 34 \pm 2 parts per thousand (ppt). All replicates from each sample were randomized within in a single vial tray, each with its own separate lab control.

Client: Amec Foster Wheeler

Monitoring Period: August 2017

Additional Control: A 0.45 µm-filtered method control was also tested (one filtered

method control for all sites).

Test Concentrations: 100, 50, 25, 12.5 and 6.25 percent of each sample. A 100

percent sub-sample from each site was also tested after 0.45 µm filtration for the bivalve test to remove native algae that

may interfere with test organisms.

Number of Organisms/Replicate: ~150 embryos

Number of Replicates/Concentration: 5

Test Temperature: 15 \pm 1 degrees Celsius (°C)

Test Acceptability Criteria: Lab control mean percent survival must be 50 percent, and 90

percent of surviving organisms must have normal shell development. The percent minimum significant difference

(PMSD) in the test must be less than 25.

Concurrent Reference Toxicant Test: Copper chloride

Protocol Used: USEPA West Coast Manual, 1995 (EPA/600/R-95/136), ASTM

1998, PTI 1995

Pacific Topsmelt Acute Survival Test Specifications

Test Period: 8/24/17; 13:40 to 14:30 – 8/28/16; 13:40 to 14:05

Test Organism: Atherinops affinis (Pacific topsmelt; 11 days old at test

initiation)

Test Organism Source: Aguatic BioSystems (Fort Collins, CO)

Control and Dilution Water: Natural Seawater from Scripps Institution of

Oceanography inlet, 20 μ m-filtered, at 34 \pm 2 ppt. Samples were arranged on multiple shelves within an environmental

chamber, each shelf containing its own lab control.

Test Concentrations: 100, 33^a, and 25 percent sample

Number of Organisms/Replicate: 5
Number of Replicates/Concentration: 6

Test Temperature: $21 \pm 1^{\circ}C$

Test Acceptability Criterion: Mean survival in the laboratory control must be ≥ 90 percent

Concurrent Reference Toxicant Test: Copper chloride

Protocol Used: USEPA Acute Manual, 2002 (EPA/821/R-02/012)

^aThe middle concentration tested for topsmelt was supposed to be 50 percent, but 33 percent was test (see QA section).

Client: Amec Foster Wheeler Monitoring Period: August 2017

The mussel test was scored by counting all larvae in each test vial using an inverted compound microscope under 100x magnification; each larva was scored as normal or abnormal, and the total number of larvae is compared to the initial density to calculate survival. Mussels exhibiting normal 48-hour development are D-shaped prodissoconch I larvae with clearly defined edges. Embryos and larvae that exhibited an effect, had developmental patterns differing from those in control replicates, or did not reach the straight hinge D-shape stage at test termination were counted as abnormal.

An additional metric was added to the SIYB monitoring Quality Assurance Project Plan (QAPP) (AMEC 2017) in order to provide information regarding the magnitude of effect in the development endpoint for the mussel test. If observed in the samples as in previous years, curve-hinged bivalve larvae are to be enumerated. Therefore, there were three development categories enumerated for 2017: (1) fully developed shell with a straight-hinge D-shape, (2) partially developed larvae with a concave or curved hinge, and (3) larvae that fail to develop a shell or display severe morphological defects. For data analysis and reporting purposes, if observed, larvae with curved hinges are reported in the abnormal category. A separate table has been included in the report, which summarizes the proportion of larvae in all three categories. Example photographs were taken by laboratory staff of the three types of larvae during the counting process.

Toxicity test responses were evaluated statistically using the Comprehensive Environmental Toxicity Information System $^{\text{TM}}$ (CETIS) software by Tidepool Scientific according to flowchart specifications provided in method guidance (USEPA 1995 and 2002). Organism performance in each sample was compared to that observed in concurrent laboratory control exposures. The filtration control was compared to the SIYB-1 lab control to ensure no adverse effects were observed due to the filtration procedure itself. A No Observed Effect Concentration (NOEC), Lowest Observed Effect Concentration (LOEC), median effect concentration (EC $_{50}$), and percent effect relative to the lab control were calculated for all samples.

Additionally, data were analyzed using the Test of Significant Toxicity (TST) t-test approach specified in National Pollutant Discharge Elimination System Test of Significant Toxicity Implementation Document (USEPA 2010). The TST applies a modified t-test that takes into account both the statistical power of the test and magnitude of biological effects in determining the presence of a response; results are reported as "Pass" if a sample is considered non-toxic according to the TST calculation, or "Fail" if considered toxic according to TST. If the mean response in the sample was equal to or greater than that in the lab control, the TST analysis was not performed, and results are reported as "Pass".

Results and Discussion

Raw test data and statistical analyses for both species can be found in Appendix A. Sample receipt information is provided in Appendix B, and a copy of the chain-of-custody form is in Appendix C.

Client: Amec Foster Wheeler

Monitoring Period: August 2017

Bivalve Larvae Chronic Survival and Development Test

Results of the mussel larvae survival and development test indicated there were no statistically significant differences in the majority of the SIYB samples (Figure 1). Samples were tested unmanipulated and serially diluted per method directions. In addition, an aliquot of each undiluted (i.e., 100 percent only) sample was tested after filtration through a 0.45-µm nylon filter for comparison purposes, as described in the 2017 QAPP for this monitoring event. This step was performed due to interference from native organisms and potentially harmful algae, a confounding factor identified in previous years. Statistical results for the mussel tests are summarized in Table 1, and mean test results are summarized in Table 2.

There was an adverse effect observed in the undiluted SIYB-1 and SIYB-2 samples for the combined survival and development endpoint (Figures 1 through 3; Tables 1 and 2). Normal development was reduced in both the SIYB-1 and SIYB-2 undiluted samples compared to the lab control. The effects observed in SIYB-1 were statistically significant using both the traditional EPA flow-chart statistical approach and the TST analysis for the undiluted sample. The undiluted, unfiltered SIYB-1 sample resulted in 42 percent mean combined development, a 56 percent effect from the associated lab control. A similar, but reduced effect was also observed in the 0.45-µm filtered SIYB-1 sample (34 percent effect relative to the control). A 25 percent effect in the combined development rate was found to be statistically significant in the SIYB-2 100 percent sample according to both the EPA flow-chart statistical method, and the TST. However, the undiluted 0.45-µm filtered SIYB-2 sample resulted in a 9.6 percent effect, which was significant using EPA 1995 flowchart statistics, but not according to the TST. A toxicity identification evaluation (TIE) test would need to be conducted to determine the cause of toxicity in the SIYB-1 and SIYB-2 samples.

Approximately 1 to 3.5 percent of the total number of larvae in the undiluted, unfiltered SIYB-1 through SIYB-3 samples were partially developed, but did not possess a straight hinge (Table 3); this response was not observed in any of the control replicates. The fraction of embryos with curved hinges was generally observed in the highest concentrations, with a single larva present in the lower concentrations of SIYB-1 and SIYB-2 and one in the SIYB-4 and SIYB-6 100 percent filtered samples exhibiting this effect. The proportion of curved hinges observed in the samples overall is reduced compared to the previous year. There were no curved hinges observed in any test concentrations of the SIYB-5 or SIYB-REF sites. Additionally, there were no statistically significant effects detected in any of the test concentrations for the SIYB-3, SIYB-4, SIYB-5, SIYB-6, or SIYB-REF samples with regard to the combined development rate endpoint in the bivalve test.

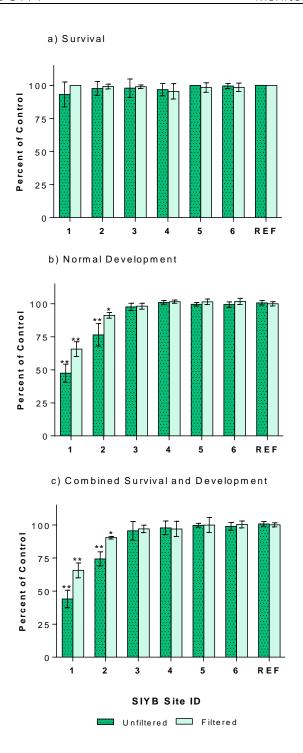
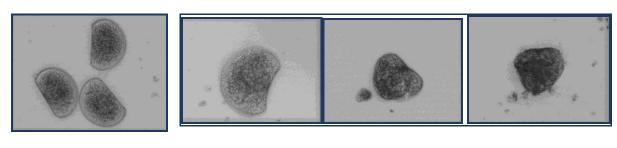



Figure 1. Results of the 48-hour larval bivalve survival and development test for each undiluted sample, a) survival, b) normal development, c) combined survival and normal development; presented as the mean result (± one standard deviation) normalized to the control. Note: all three endpoints are displayed separately here for additional information, but only the combined endpoint is used for NOEC/LOEC determination and TST pass/fail calculations. A single asterisk (*) indicates a significant decrease compared to control using the traditional EPA flow chart statistical methods, a double asterisk (**) indicates a significant decrease with both EPA flow chart methods and the TST.

a) Lab Control b) SIYB-1

Figure 2. Examples of a) normal mussel larvae development in the lab control, and b) varying degrees of abnormal development observed in the SIYB-1 sample. Note: 2 percent of the larvae counted as abnormal in the unfiltered SIYB-1 sample had curved hinges (see Table 3); the remaining larvae (approx. 52 percent of total) counted as abnormal had severe abnormalities.

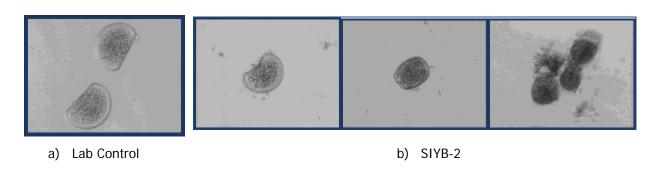


Figure 3. Examples of a) normal mussel larvae development in the lab control, and b) varying degrees of abnormal development observed in the SIYB-2 sample. Note: 2 percent of the larvae counted as abnormal in the unfiltered SIYB-2 sample had curved hinges (see Table 3); the remaining larvae (approx. 34 percent of total) counted as abnormal had severe abnormalities.

Table 1. Statistical Results Summary - Bivalve 48-hr Combined Survival and Development

Sampl	eID	NOEC (% sample)	EC ₅₀ (% sample)	TUc value	TST (Pass/Fail)	Percent Effect
	Unfiltered	50	94.7	2.0	Fail	56
SIYB-1	Filtered	< 100	> 100	>1.0	Fail	34
211/12 0	Unfiltered	50	> 100	2.0	Fail	25
SIYB-2	Filtered	< 100	> 100	>1.0	Pass	10
0.11/15 0	Unfiltered	100	> 100	1.0	Pass	4.4
SIYB-3	Filtered	100	> 100	1.0	Pass	0.84
0.11/15	Unfiltered	100	> 100	1.0	Pass	2.3
SIYB-4	Filtered	100	> 100	1.0	Pass	4.7
CIVID 5	Unfiltered	100	> 100	1.0	Pass	0.27
SIYB-5	Filtered	100	> 100	1.0	Pass	2.4
CIVID (Unfiltered	100	> 100	1.0	Pass	1.0
SIYB-6	Filtered	100	> 100	1.0	Pass	2.1
CIVID DEE	Unfiltered	100	> 100	1.0	Pass	-0.79
SIYB-REF	Filtered	100	> 100	1.0	Pass	0.61

NOEC: the highest concentration tested resulting in no observed effect

EC₅₀: concentration expected to cause an adverse effect to 50 percent of the organisms

 TU_c : (Chronic Toxic Unit) = 100 ÷ NOEC. A TU_c value of 1.0 indicates no toxicity.

TST: Pass = sample is non-toxic according to the TST analysis; Fail = sample is toxic according to the TST analysis

Percent effect (PE) from control is calculated as: PE= ((mean response in control-mean response in undiluted sample)/mean response in control) *100. A negative PE results when organism performance in the sample is greater than that in the control.

Table 2. Bivalve 48-hr Development Test Detailed Summary

	Mean Combined Survival and Normal Development (%)									
Test		Sample ID								
Concentration (% sample)	SIYB-1	SIYB-2	SIYB-3	SIYB-4	SIYB-5	SIYB-6	SIYB-REF			
Lab Control	95.0	96.0	93.2	96.9	97.5	97.7	96.0			
6.25	95.2	95.2	96.9	93.7	93.7	95.4	94.5			
12.5	95.4	95.3	95.5	96.3	94.9	96.2	94.8			
25	96.8	96.6	95.9	90.6	93.9	94.2	95.5			
50	96.9	95.9	97.0	98.1	95.5	94.8	94.7			
100	41.9**	71.4**	89.1	94.7	97.2	96.7	96.7			
Filter Control	95.2	95.2	95.2	95.2	95.2	95.2	95.2			
100 (filtered)	62.6**	86.1*	92.4	92.3	95.2	95.6	95.4			

^{*} A single bold asterisk indicates a statistically significant decrease compared to the lab control using the traditional EPA flow-chart statistical methods, but no effect with TST.

Table 3. Bivalve 48-hr Development Summary of Percentage of Curved Hinges

		Mean Number of Curved Hinges (%)								
Test		Sample I D								
Concentration (% sample)	SIYB-1	SIYB-2	SIYB-3	SIYB-4	SIYB-5	SIYB-6	SIYB-REF			
Lab Control	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
Filter Control	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
6.25	0.11	0.11	0.0	0.0	0.0	0.0	0.0			
12.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
25	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
50	0.36	0.0	0.0	0.0	0.0	0.0	0.0			
100	1.9	1.9	3.3	0.29	0.0	0.0	0.0			
100 (filtered)	2.7	3.5	1.1	0.0	0.0	0.12	0.0			

Note: percentage curved expressed as percent of total number counted.

 $^{^{\}star\star}$ Two bold asterisks indicate a statistically significant decrease compared to the lab control using both the traditional EPA flow-chart statistical methods and the TST analysis.

Client: Amec Foster Wheeler Monitoring Period: August 2017

Pacific Topsmelt Acute Survival Test

There were no statistically significant effects to Pacific topsmelt in any of the samples tested. Statistical results for the topsmelt tests are summarized in Table 4, and mean test results are summarized in Table 5.

Table 4. Statistical Results Summary - Pacific Topsmelt 96-hour Survival

Sample I D	NOEC (% sample)	LC ₅₀ (% sample)	TU _a value	TST (Pass/Fail)
SIYB-1	100	> 100	0.49	Pass
SIYB-2	100	> 100	0.49	Pass
SIYB-3	100	> 100	0.0	Pass
SIYB-4	100	> 100	0.49	Pass
SIYB-5	100	> 100	0.49	Pass
SIYB-6	100	> 100	0.31	Pass
SIYB-REF	100	> 100	0.31	Pass

NOEC: the highest Concentration tested resulting in No Observed Effect

LC₅₀: concentration expected to cause a lethal effect to 50 percent of the organisms

 TU_a : (Acute Toxic Unit) = 100 ÷ LC₅₀; or Log (100 - %survival) ÷ 1.7, if LC₅₀ is >100%. TU_a = 0 if 100% survival in the undiluted sample

TST: Pass = sample is non-toxic according to the TST analysis; Fail = sample is toxic according to the TST analysis

Table 5. Pacific Topsmelt 96-hr Acute Survival Test Detailed Summary

	Mean Survival (%)							
Test				Sample ID				
Concentration (% sample)	SIYB-1							
Lab Control	96.7	96.7	96.7	93.3	93.3	96.7	96.7	
25	96.7	96.7	100	96.7	100	96.7	96.7	
50	100	96.7	96.7	100	93.3	96.7	96.7	
100	93.3	93.3	100	93.3	93.3	96.7	96.7	

Quality Assurance

All SIYB samples were received in good condition on the same day as collected. The samples were delivered on ice and received in the laboratory within the appropriate temperature range. All tests were initiated within the 36-hour holding time requirement. The controls for each test met the minimum test acceptability criteria as set by US EPA and ASTM, as well as internal QA Program requirements. Additionally, based on the dose responses observed during testing, the calculated effect concentration for each effluent test reported is deemed reliable.

Client: Amec Foster Wheeler Monitoring Period: August 2017

The series of sample concentrations for the Pacific topsmelt test was designed to be 25, 50 and 100 percent sample. However, due to an error in dilution making on the day of test initiation, the 50 percent dilution was actually prepared as 33 percent. The error was identified 24 hours into the test, and after consultation with the AMEC QA officer, the decision was made to continue the test at the 33 percent concentration as no effects in the undiluted sample were apparent. There were no statistically significant effects to topsmelt survival in any of the undiluted samples at 96 hours; therefore, so this error did not impact the calculation of acute toxic units.

The reference toxicant test results for both species are summarized in Table 6 and presented in full in Appendix D. The controls for both reference toxicant tests met the minimum test acceptability criteria. The calculated EC_{50} values for both reference toxicant tests fell within two standard deviations (SD) of the laboratory historical mean, indicating that the test organisms used during this round of testing were of typical sensitivity to copper. Any minor QA/QC issues that were not likely to have any bearing on the test results, such as slight temperature deviations, are noted on the data sheets, and a list of data qualifier codes is available in Appendix E.

Table 6. Reference Toxicant Test Results

Species & Endpoint	EC50/LC50 (µg/L copper)	Historical Mean ±2 SD (µg/L copper)	CV (%)
Bivalve: Combined Survival and Development	7.47	8.58 ± 4.62	26.9
Pacific Topsmelt: 96-hr Survival	141	104 ± 60.4	28.9

 EC_{50}/LC_{50} : concentration expected to cause an adverse or lethal effect to 50 percent of the test organisms Historical Mean = the mean EC_{50} or LC_{50} value for previous reference toxicant tests performed by the laboratory, plus or minus two standard deviations References

Test IDs: 1708-S181 to S194 Monitoring Period: August 2017

AMEC. 2017. Final Quality Assurance Project Plan for Shelter Island Yacht Basin Total Maximum Daily Load Monitoring Plan. August 2017.

Client: Amec Foster Wheeler

- ASTM. 1998. Standard Guide for Conducting Static Acute Toxicity Tests Starting with Embryos of Four Species of Saltwater Bivalve Molluscs. ASTM E 724 98.
- PTI Environmental Services for USEPA Region 10, Office of Puget Sound. Recommended Guidelines for Conducting Laboratory Bioassays on Puget Sound Sediments. July 1995.
- Tidepool Scientific Software. 2000-2013. CETIS Comprehensive Environmental Toxicity Information System Software, Version 1.8.7.20.
- US EPA. 1995. Short-Term Method for Estimating the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms (EPA/600/R-95/136). Office of Research and Development, Washington DC. US EPA, 2002. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, Fifth Edition (EPA/821/R-02/012). Office of Water, Washington DC.
- USEPA. 2010. National Pollutant Discharge Elimination System Test of Significant Toxicity Implementation Document. EPA/833/R-10/003. June 2010.

Appendix A

Test Data and Statistical Analyses

Site: SIYB-1

CETIS Summary Report

Report Date:

03 Oct-17 12:39 (p 1 of 4)

Test Code:

1708-S188 | 12-4185-0887

Rivalve Lange	Survival and Developn	nant Tace							Noutilus Environmental (CA)
Bivaive Laivai	Survivar and Developin	ient rest						**********	Nautilus Environmental (CA)
Batch ID:		est Type:	Development-S	urvival			Analyst:		
Start Date:	24 Aug-17 16:00 F	rotocol:	EPA/600/R-95/	136 (1995)			Diluent:	Labo	oratory Seawater
Ending Date:	26 Aug-17 16:00 S	pecies:	Mytilus gallopro	vincialis			Brine:	Not A	Applicable
Duration:	48h S	ource:	Mission Bay				Age:		
Sample ID:	06-4536-9335 C	ode:	17-0932		need the Manhaud to see the contract of the second		Client:	Ame	c Foster Wheeler
Sample Date:	23 Aug-17 14:15 N	flaterial:	Ambient Water				Project:		
Receive Date:	23 Aug-17 17:15	ource:	Shelter Island	acht Basin					
Sample Age:	26h (8 °C)	station:	SIYB-1						
Batch Note:	101= 100 percent samp	le filtered to	o 0.45um						
Comparison S	ummary								
Analysis ID	Endpoint	NOEL	LOEL	TOEL	PMSD	TU	Meth	nod	
09-2893-1455	Combined Development	Ra 50	100	70.71	4.58%	2	Dunr	nett M	ultiple Comparison Test
13-3098-4926	Development Rate	50	100	70.71	4.61%	2	Dunr	nett M	ultiple Comparison Test
18-0015-8104	Survival Rate	100	>100	NA	2.88%	1	Stee	l Man	y-One Rank Sum Test
Point Estimate	e Summary								
Analysis ID	Endpoint	Level	%	95% LCL	95% UCL	TU	Meth	nod	
11-4446-9095	Combined Development	Ra EC25	72.34	69.52	75.91	1.382	2 Linea	ar Inte	rpolation (ICPIN)
		EC50	94.68	89.17	101.9	1.056	3		
19-6851-5795	Development Rate	EC25	73.61	69.78	76.89	1.359	Linea	ar Inte	rpolation (ICPIN)
		EC50	97.22	89.85	N/A	1.029			
Test Acceptab	ility								
Analysis ID	Endpoint	Attrib	ute	Test Stat	TAC Limi	ts	Ove	rlap	Decision
13-3098-4926	Development Rate		ol Resp	0.9497	0.9 - NL		Yes		Passes Acceptability Criteria
19-6851-5795	Development Rate		ol Resp	0.9497	0.9 - NL		Yes		Passes Acceptability Criteria
18-0015-8104	Survival Rate	Contro	ol Resp	1	0.5 - NL		Yes		Passes Acceptability Criteria
09-2893-1455	Combined Development	Ra PMSD)	0.04578	NL - 0.25		No		Passes Acceptability Criteria

Report Date: Test Code: 03 Oct-17 12:39 (p 2 of 4)

1708-S188 | 12-4185-0887

							103	L Coue.	170	0-0100 12	2-4100-0007
Bivalve La	arval Survival and I	Developme	ent Test						Nautilus	Environm	nental (CA)
Combined	i Development Rate	e Summary	1								
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Filter Control	5	0.9523	0.9238	0.9808	0.913	0.9689	0.01026	0.02294	2.41%	0.0%
0	Lab Control	5	0.9497	0.9202	0.9792	0.9091	0.9675	0.01062	0.02375	2.5%	0.28%
6.25		5	0.9523	0.9444	0.9601	0.9454	0.9578	0.002833	0.006334	0.67%	0.01%
12.5		5	0.9542	0.9261	0.9822	0.9289	0.9895	0.0101	0.02259	2.37%	-0.2%
25		5	0.9684	0.9362	1	0.9249	0.9947	0.01161	0.02596	2.68%	-1.69%
50		5	0.969	0.9467	0.9912	0.9565	1	0.008007	0.0179	1.85%	-1.75%
100		5	0.4188	0.3408	0.4967	0.3439	0.5027	0.02806	0.06275	14.98%	56.03%
101		5	0.6255	0.5589	0.692	0.5535	0.6839	0.02397	0.05359	8.57%	34.32%
Developm	ent Rate Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Filter Control	5	0.9523	0.9238	0.9808	0.913	0.9689	0.01026	0.02294	2.41%	0.0%
0	Lab Control	5	0.9497	0.9202	0.9792	0.9091	0.9675	0.01062	0.02375	2.5%	0.28%
6.25		5	0.9523	0.9444	0.9601	0.9454	0.9578	0.002833	0.006334	0.67%	0.01%
12.5		5	0.9542	0.9261	0.9822	0.9289	0.9895	0.0101	0.02259	2.37%	-0.2%
25		5	0.9684	0.9362	1	0.9249	0.9947	0.01161	0.02596	2.68%	-1.69%
50		5	0.969	0.9467	0.9912	0.9565	1	0.008007	0.0179	1.85%	-1.75%
100		5	0.4515	0.3715	0.5315	0.3439	0.5027	0.02881	0.06442	14.27%	52.59%
101		5	0.6255	0.5589	0.692	0.5535	0.6839	0.02397	0.05359	8.57%	34.32%
Survival F	Rate Summary				viet.						
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Filter Control	5	1	1	1	1	1	0	0	0.0%	0.0%
0	Lab Control	5	1	1	1	1	1	0	0	0.0%	0.0%
6.25		5	1	1	1	1	1	0	0	0.0%	0.0%
12.5		5	1	1	1	1	1	0	0	0.0%	0.0%
25		5	1	1	1	1	1	0	0	0.0%	0.0%
50		5	1	1	1	1	1	0	0	0.0%	0.0%
100		5	0.9315	0.8137	1	0.8082	1	0.04244	0.09491	10.19%	6.85%
101		5	1	1	1	1	1	0	0	0.0%	0.0%

Report Date: Test Code: 03 Oct-17 12:39 (p 3 of 4) 1708-S188 | 12-4185-0887

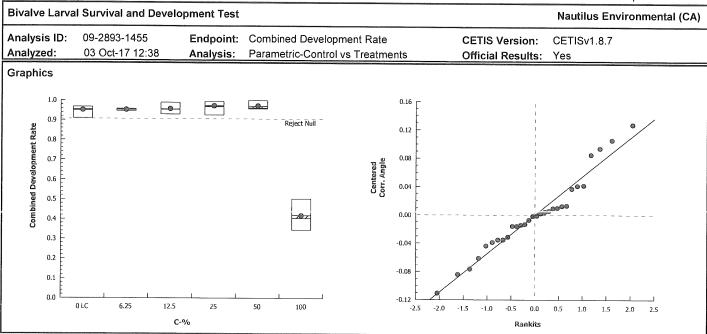
Bivalve L	arval Survival and [Developme	nt Test				Nautilus Environmental (CA
Combine	d Development Rate	e Detail					
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	Filter Control	0.913	0.9565	0.9686	0.9545	0.9689	
0	Lab Control	0.9675	0.9091	0.9661	0.9533	0.9524	
6.25		0.9578	0.9565	0.9563	0.9454	0.9454	
12.5		0.9289	0.9418	0.9565	0.9542	0.9895	
25		0.9249	0.9947	0.9763	0.9742	0.9721	
50		0.9585	0.9565	0.9682	0.9615	1	
100		0.4595	0.3439	0.5027	0.3836	0.4041	
101		0.5868	0.6478	0.6554	0.6839	0.5535	
Developn	nent Rate Detail	200					
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	Filter Control	0.913	0.9565	0.9686	0.9545	0.9689	
0	Lab Control	0.9675	0.9091	0.9661	0.9533	0.9524	
6.25		0.9578	0.9565	0.9563	0.9454	0.9454	
12.5		0.9289	0.9418	0.9565	0.9542	0.9895	
25		0.9249	0.9947	0.9763	0.9742	0.9721	
50		0.9585	0.9565	0.9682	0.9615	1	
100		0.4595	0.3439	0.5027	0.4516	0.5	
101		0.5868	0.6478	0.6554	0.6839	0.5535	
Survival	Rate Detail						4000
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	Filter Control	1	1	1	1	1	
0	Lab Control	1	1	1	1	1	
6.25		1	1	1	1	1	
12.5		1	1	1	1	1	
25		1	1	1	1	1	
50		1	1	1	1	1	
100		1	1	1	0.8493	0.8082	
101		1	1	1	1	1	

Report Date:

03 Oct-17 12:39 (p 4 of 4)

Test Code:

							 1100 0100 12 4100 0001
Bivalve L	arval Survival and l	Developme	nt Test				 Nautilus Environmental (CA)
Combine	d Development Rat	e Binomials	6				
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	Filter Control	147/161	176/184	185/191	189/198	187/193	
0	Lab Control	149/154	170/187	171/177	143/150	180/189	
6.25		159/166	154/161	153/160	173/183	173/183	
12.5		183/197	178/189	176/184	146/153	188/190	
25		160/173	187/188	165/169	151/155	174/179	
50		185/193	154/161	152/157	150/156	166/166	
100		68/148	54/157	94/187	56/146	59/146	
101		98/167	103/159	97/148	119/174	88/159	
Developn	nent Rate Binomials	3	41. 442.				 111 - 11 - 1
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	Filter Control	147/161	176/184	185/191	189/198	187/193	
0	Lab Control	149/154	170/187	171/177	143/150	180/189	
6.25		159/166	154/161	153/160	173/183	173/183	
12.5		183/197	178/189	176/184	146/153	188/190	
25		160/173	187/188	165/169	151/155	174/179	
50		185/193	154/161	152/157	150/156	166/166	
100		68/148	54/157	94/187	56/124	59/118	
101		98/167	103/159	97/148	119/174	88/159	
Survival I	Rate Binomials						
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	Filter Control	146/146	146/146	146/146	146/146	146/146	
0	Lab Control	146/146	146/146	146/146	146/146	146/146	
6.25		146/146	146/146	146/146	146/146	146/146	
12.5		146/146	146/146	146/146	146/146	146/146	
25		146/146	146/146	146/146	146/146	146/146	
50		146/146	146/146	146/146	146/146	146/146	
100		146/146	146/146	146/146	124/146	118/146	
101		146/146	146/146	146/146	146/146	146/146	

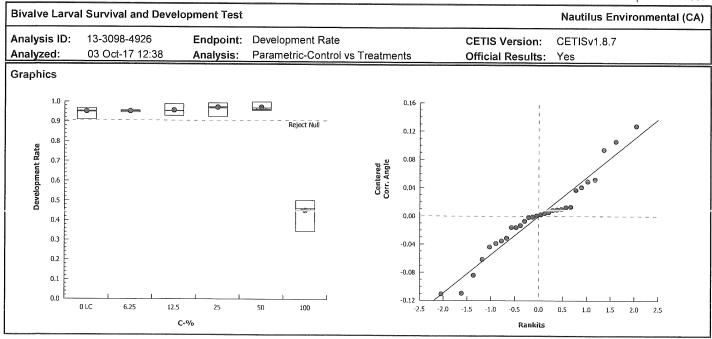

Report Date:

03 Oct-17 12:39 (p 1 of 6)

Test Code:

r							1636	Code.	170	0-3100 12	2-4 100-000/
Bivalve Larv	al Survival and	Developme	ent Test		State - 11				Nautilus	Environr	nental (CA)
Analysis ID:	09-2893-1455 03 Oct-17 12:		idpoint: Co					IS Version:	CETISv1	.8.7	
Analyzed:	03 OCI-17 12.	30 AI	ialysis: Pa	rametric-Cor	itroi vs Trea	tments	Onic	cial Results:	Yes		
Batch Note:	101= 100 perc	ent sample	filtered to 0.4	45um 					·		
Data Transfo		Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU
Angular (Cor	rected)	NA	C > T	NA ————————————————————————————————————	NA ————————————————————————————————————		4.58%	50	100	70.71	2
Dunnett Mul	tiple Compariso	n Test									
Control	vs C-%		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision(α:5%)		
Lab Control	6.25		-0.05755	2.362	0.089 8	0.8498	CDF	Non-Significant Effect			
	12.5		-0.3626	2.362	0.089 8	0.9185	CDF	Non-Significant Effect			
	25		-1.462	2.362	0.089 8	0.9958	CDF	Non-Significant Effect			
	50		-1.481	2.362	0.089 8	0.9960	CDF	Non-Signif	icant Effect		
	100*		17.09	2.362	0.089 8	<0.0001	CDF	Significant	Effect		
ANOVA Tabl	е										
Source	Sum Squares Mean Square 1.89086 0.3781719				DF	F Stat	P-Value	Decision(α:5%)		
Between	1.89086		0.3781719	9	5	106.1	<0.0001	Significant	Effect		
Error	0.085564	08	0.003565	17	24	_					
Total	1.976424				29						
Distributiona	al Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances	Bartlett B	Equality of \	√ariance	7.668	15.09	0.1755	Equal Var	iances			
Distribution	Shapiro-	Wilk W No	rmality	0.9604	0.9031	0.3168	Normal D	istribution			
Combined D	evelopment Rate	e Summan	У							- The state of the	
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	0.9497	0.9202	0.9792	0.9533	0.9091	0.9675	0.01062	2.5%	0.0%
6.25		5	0.9523	0.9444	0.9601	0.9563	0.9454	0.9578	0.002833	0.67%	-0.27%
12.5		5	0.9542	0.9261	0.9822	0.9542	0.9289	0.9895	0.0101	2.37%	-0.47%
25		5	0.9684	0.9362	1	0.9742	0.9249	0.9947	0.01161	2.68%	-1.97%
50		5	0.969	0.9467	0.9912	0.9615	0.9565	1	0.008007	1.85%	-2.03%
100		5	0.4188	0.3408	0.4967	0.4041	0.3439	0.5027	0.02806	14.98%	55.91%
Angular (Cor	rected) Transfor	med Sumi	mary								
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	1.349	1.286	1.411	1.353	1.265	1.39	0.02253	3.73%	0.0%
6.25		5	1.351	1.333	1.369	1.36	1.335	1.364	0.006585	1.09%	-0.16%
12.5		5	1.362	1.283	1.442	1.355	1.301	1.468	0.02849	4.68%	-1.02%
25		5	1.404	1.313	1.494	1.409	1.293	1.498	0.03262	5.2%	-4.09%
50		5	1.405	1.315	1.494	1.373	1.361	1.532	0.03225	5.13%	-4.15%
100		5	0.7033	0.6242	0.7824	0.6889	0.6267	0.7881	0.0285	9.06%	47.86%

Report Date: Test Code: 03 Oct-17 12:39 (p 2 of 6)


Report Date:

03 Oct-17 12:39 (p 3 of 6)

Test Code:

								1621	Code:	1700	-3 100 12	-4185-0887
Bivalve Larva	al Survival and D	Developm	nent Test							Nautilus	Environm	nental (CA)
Analysis ID: Analyzed:	13-3098-4926 03 Oct-17 12:3		•	elopment R ametric-Con		Freat	tments		S Version:	CETISv1. : Yes	8.7	
Batch Note:	101= 100 perce	ent sampl	le filtered to 0.4	5um								
Data Transfo	rm	Zeta	Alt Hyp	Trials	Seed	THE SCHOOL SECTION AND		PMSD	NOEL	LOEL	TOEL	TU
Angular (Corre	ected)	NA	C > T	NA	NA			4.61%	50	100	70.71	2
Dunnett Mult	iple Comparisor	n Test			Local Control of the							
Control	vs C-%		Test Stat	Critical	MSD	DF	P-Value	P-Type	Decision(α:5%)			
Lab Control	6.25		-0.05723	2.362	0.09	8	0.8497	CDF	Non-Signi	ficant Effect		
	12.5		-0.3606	2.362	0.09	8	0.9181	CDF	Non-Significant Effect			
	25		-1.454	2.362	0.09	8	0.9957	CDF	Non-Significant Effect			
	50		-1.473	2.362	0.09	8	0.9959	CDF	Non-Signi	ficant Effect		
	100* 16.13		16.13	2.362	0.09	8	<0.0001	CDF	Significan	t Effect	~~~	
ANOVA Table	9											
Source	Sum Squares Mean S			are	DF		F Stat	P-Value	Decision(α:5%)		
Between	Sum Squares Mean S 1.710337 0.34206				5		94.91	<0.0001	Significan	t Effect		
Error	0.086501	56	0.0036042	32	24							
Total	1.796839				29							
Distributiona	I Tests											
Attribute	Test			Test Stat	Critica	al	P-Value	Decision	α:1%)			
Variances	Bartlett E	quality of	f Variance	7.702	15.09		0.1735	Equal Var	iances			
Distribution	Shapiro-			0.9552	0.903	1	0.2331	Normal D	stribution			
Development	t Rate Summary						9 (19 (19 (19 (19 (19 (19 (19 (19 (19 (1					
C-%	Control Type	Count	Mean	95% LCL	95% L	JCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	0.9497	0.9202	0.9792	2	0.9533	0.9091	0.9675	0.01062	2.5%	0.0%
6.25		5	0.9523	0.9444	0.960	1	0.9563	0.9454	0.9578	0.002833	0.67%	-0.27%
12.5		5	0.9542	0.9261	0.9822	2	0.9542	0.9289	0.9895	0.0101	2.37%	-0.47%
25		5	0.9684	0.9362	1		0.9742	0.9249	0.9947	0.01161	2.68%	-1.97%
50		5	0.969	0.9467	0.9912		0.9615	0.9565	1	0.008007	1.85%	-2.03%
100		5	0.4515	0.3715	0.5315	5	0.4595	0.3439	0.5027	0.02881	14.27%	52.45%
Angular (Cor	rected) Transfor	med Sur	nmary									
C-%	Control Type	Count	Mean	95% LCL	95% L	JCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	1.349	1.286	1.411		1.353	1.265	1.39	0.02253	3.73%	0.0%
6.25		5	1.351	1.333	1.369		1.36	1.335	1.364	0.006585	1.09%	-0.16%
12.5		5	1.362	1.283	1.442		1.355	1.301	1.468	0.02849	4.68%	-1.02%
25		5	1.404	1.313	1.494		1.409	1.293	1.498	0.03262	5.2%	-4.09%
50		5	1.405	1.315	1.494		1.373	1.361	1.532	0.03225	5.13%	-4.15%
100		5	0.7364	0.655	0.817	7	0.7448	0.6267	0.7881	0.02931	8.9%	45.4%

Report Date: Test Code: 03 Oct-17 12:39 (p 4 of 6)

Report Date:

1.529

1.529

0

0.0946

03 Oct-17 12:39 (p 5 of 6)

1708-S188 | 12-4185-0887 Test Code: **Bivalve Larval Survival and Development Test** Nautilus Environmental (CA) **CETIS Version:** CETISv1.8.7 Analysis ID: 18-0015-8104 Endpoint: Survival Rate 03 Oct-17 12:38 Analysis: Nonparametric-Control vs Treatments Official Results: Yes Analyzed: 101= 100 percent sample filtered to 0.45um Batch Note: TU TOEL **Data Transform** Zeta Alt Hyp Trials Seed **PMSD** NOEL LOEL Angular (Corrected) NA C > TNA NA 2.88% 100 >100 NΑ 1 Steel Many-One Rank Sum Test Test Stat Critical Ties DF P-Value P-Type Decision(a:5%) Control ٧S C-% 6.25 27.5 16 1 8 0.8333 Asymp Non-Significant Effect Lab Control 27.5 1 8 0.8333 Asymp Non-Significant Effect 12.5 16 27.5 Non-Significant Effect 25 16 1 8 0.8333 Asymp 50 27.5 16 1 8 0.8333 Asymp Non-Significant Effect 0.3937 Non-Significant Effect 100 22.5 16 1 8 Asymp **ANOVA Table** Source Mean Square DF F Stat P-Value Decision(a:5%) Sum Squares 5 0.0485 Significant Effect Between 0.09860269 0.01972054 2.644 Error 0.1789773 0.007457389 24 Total 0.27758 29 **Distributional Tests** Attribute Test Stat Critical P-Value Decision(a:1%) Mod Levene Equality of Variance 2.97 4.248 0.0398 Equal Variances Variances Variances Levene Equality of Variance 79.32 3.895 <0.0001 **Unequal Variances** Shapiro-Wilk W Normality 0.5631 0.9031 <0.0001 Non-normal Distribution Distribution Survival Rate Summary 95% UCL Median Max Std Err CV% %Effect C-% **Control Type** Count Mean 95% LCL Min 1 0 0.0% 5 1 1 1 1 0.0% Lab Control 6.25 5 1 1 1 1 1 1 0 0.0% 0.0% 12.5 5 1 1 1 1 1 1 0 0.0% 0.0% 5 1 0 0.0% 0.0% 25 1 1 1 1 1 0 0.0% 0.0% 50 5 1 1 1 1 1 1 5 0.9315 0.8137 0.8082 1 0.04244 10.19% 6.85% 100 Angular (Corrected) Transformed Summary CV% %Effect 95% UCL Median Min Max Std Err C-% Control Type 95% LCL Count Mean 1.53 0.0% 1.529 1.529 1.529 0 0.0% 0 Lab Control 5 1.529 1.529 0 0.0% 0.0% 6.25 5 1.529 1.529 1.53 1.529 1.529 1.529 0 12.5 5 1.529 1.529 1.53 1.529 1.529 1.529 0.0% 0.0% 0 0.0% 0.0% 25 5 1.529 1.529 1.53 1.529 1.529 1.529

0.0%

15.38%

0.0%

10.06%

50

100

5

5

1.529

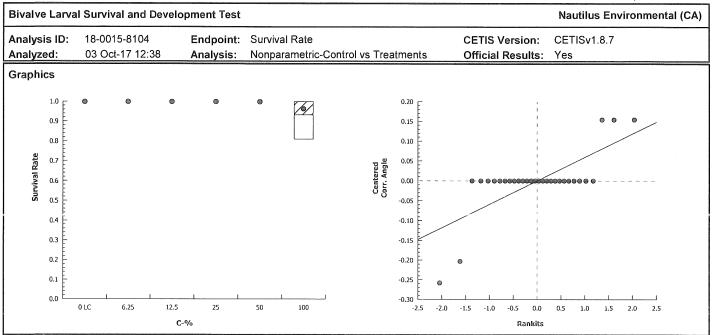
1.376

1.529

1.113

1.53

1.638


1.529

1.529

1.529

1.118

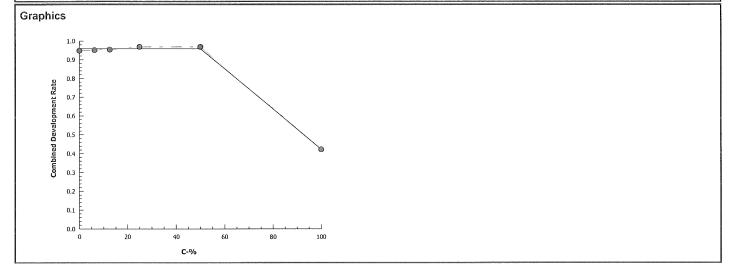
Report Date: Test Code: 03 Oct-17 12:39 (p 6 of 6)

Report Date:

03 Oct-17 12:39 (p 1 of 2)

Test Code:

1708-S188 | 12-4185-0887


Bivalve Larva	Survival and Develo	opment Test			Nautilus Environmental (CA)
Analysis ID:	11-4446-9095	Endpoint:	Combined Development Rate	CETIS Version:	CETISv1.8.7
Analyzed:	03 Oct-17 12:38	Analysis:	Linear Interpolation (ICPIN)	Official Results:	Yes

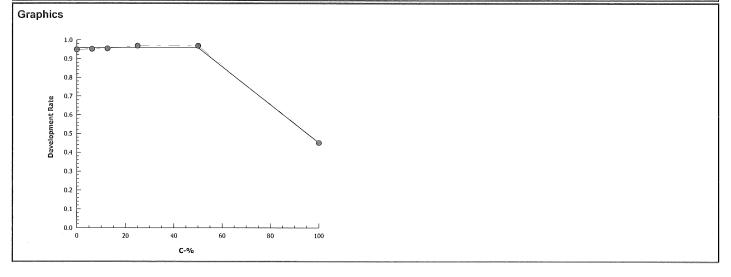
Batch Note: 101= 100 percent sample filtered to 0.45um

Linear Interpola	ation Options				
X Transform	Y Transform	Seed	Resamples	Exp 95% CL	Method
Linear	Linear	703014	1000	Yes	Two-Point Interpolation

Point E	stimates					
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL
EC25	72.34	69.52	75.91	1.382	1.317	1.438
EC50	94.68	89.17	101.9	1.056	0.9811	1.121

Combine	ed Development Rat	e Summary	Calculated Variate(A/B)								
C-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Lab Control	5	0.9497	0.9091	0.9675	0.01062	0.02375	2.5%	0.0%	813	857
6.25		5	0.9523	0.9454	0.9578	0.002833	0.006335	0.67%	-0.27%	812	853
12.5		5	0.9542	0.9289	0.9895	0.0101	0.02259	2.37%	-0.47%	871	913
25		5	0.9684	0.9249	0.9947	0.01161	0.02597	2.68%	-1.97%	837	864
50		5	0.969	0.9565	1	0.008007	0.0179	1.85%	-2.03%	807	833
100		5	0.4188	0.3439	0.5027	0.02806	0.06275	14.98%	55.91%	331	784

Report Date:


03 Oct-17 12:39 (p 2 of 2)

Test Code:

Bivalve Larva	l Survival and Devel	opment Test			Nautilus Environmental (CA)
Analysis ID:	19-6851-5795	Endpoint:	Development Rate	CETIS Version:	CETISv1.8.7
Analyzed:	03 Oct-17 12:39	Analysis:	Linear Interpolation (ICPIN)	Official Results:	Yes

Batch I	Note:	101= 100 perce	nt sample fi	ltered t	o 0.45um			
Linear	Interpola	ation Options						
X Trans	sform	Y Transform	Seed	d	Resamples	Exp 95% CL	Method	
Linear		Linear	1242	2739	1000	Yes	Two-Point Interpolation	
Point E	stimates	8						
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL		
EC25	73.61	69.78	76.89	1.359	1.301	1.433		
EC50	97.22	89.85	N/A	1.029	NA	1.113		

Develop	ment Rate Summary	Calculated Variate(A/B)									
C-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Lab Control	5	0.9497	0.9091	0.9675	0.01062	0.02375	2.5%	0.0%	813	857
6.25		5	0.9523	0.9454	0.9578	0.002833	0.006335	0.67%	-0.27%	812	853
12.5		5	0.9542	0.9289	0.9895	0.0101	0.02259	2.37%	-0.47%	871	913
25		5	0.9684	0.9249	0.9947	0.01161	0.02597	2.68%	-1.97%	837	864
50		5	0.969	0.9565	1	0.008007	0.0179	1.85%	-2.03%	807	833
100		5	0.4515	0.3439	0.5027	0.02881	0.06442	14.27%	52.45%	331	734

151

Report Date:

03 Oct-17 12:40 (p 1 of 1) 1708-S188 | 12-4185-0887

CE 113 Analytical Report				151			Test	Code:	1708-S188 12-4185-0887			
Bivalve Larv	al Survival and [Developme	nt Test		albeiden kommen men seus en kjer peles je in dere kjeres en en e				Nautilus	Environm	nental (CA)	
Analysis ID: Analyzed:	02-9553-7603 03 Oct-17 12:3		-	elopment R ametric Bioe		Two Sampl		S Version: ial Results		8.7		
Batch Note:	101= 100 perc	ent sample	filtered to 0.4	5um								
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed	TST b	PMSD	NOEL	LOEL	TOEL	ΤU	
Angular (Corr	rected)	NA	C*b < T	NA	NA	0.75	2.68%	50	100	70.71	2	
TST-Welch's	t Test											
Control	vs C-%		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision(α:5%)				
Lab Control	6.25*		18.72	2.015	0.037 5	<0.0001	CDF	Non-Significant Effect				
	12.5*		10.59	1.943	0.064 6	<0.0001	CDF	Non-Significant Effect				
	25*		10.68	1.943	0.071 6	<0.0001	CDF	Non-Significant Effect				
	50*		10.8	1.943	0.071 6	<0.0001	CDF	Non-Significant Effect				
	100		-8.134	1.943	0.066 6	0.9999	CDF	Significant Effect				
	101	-3.296	1.895	0.057 7	0.9934	CDF	Significan	t Effect				
ANOVA Tabl	е											
Source	Sum Squ	ares	Mean Squ	ıare	DF	F Stat	P-Value	Decision	(α:5%)			
Between	Sum Squares Mean Square 2.250412 0.3750687				6	106.4	<0.0001	Significan	t Effect			
Error	0.098726	0.0035259	963	28			_					
Total	2.349139				34	-						
Distributiona	al Tests							etanoide interanticatorina committee attainin main				
Attribute	Test			Test Stat	Critical	P-Value	Decision(α:1%)				
Variances	Bartlett E	quality of √	/ariance	7.757	16.81	0.2565	Equal Var	iances				
Distribution	Shapiro-	Wilk W Nor	mality	0.9744	0.9146	0.5738	Normal Di	stribution				
Developmen	t Rate Summary											
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect	
0	Lab Control	5	0.9497	0.9202	0.9792	0.9533	0.9091	0.9675	0.01062	2.5%	0.0%	
6.25		5	0.9523	0.9444	0.9601	0.9563	0.9454	0.9578	0.002833	0.67%	-0.27%	
12.5		5	0.9542	0.9261	0.9822	0.9542	0.9289	0.9895	0.0101	2.37%	-0.47%	
25		5	0.9684	0.9362	1	0.9742	0.9249	0.9947	0.01161	2.68%	-1.97%	
50		5	0.969	0.9467	0.9912	0.9615	0.9565	1	0.008007	1.85%	-2.03%	
100		5	0.4515	0.3715	0.5315	0.4595	0.3439	0.5027	0.02881	14.27%	52.45%	
101		5	0.6255	0.5589	0.692	0.6478	0.5535	0.6839	0.02397	8.57%	34.14%	
Angular (Cor	rrected) Transfor	med Sumr	mary									
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect	
0	Lab Control	5	1.349	1.286	1.411	1.353	1.265	1.39	0.02253	3.73%	0.0%	
6.25		5	1.351	1.333	1.369	1.36	1.335	1.364	0.006585	1.09%	-0.16%	
12.5		5	1.362	1.283	1.442	1.355	1.301	1.468	0.02849	4.68%	-1.02%	
25		5	1.404	1.313	1.494	1.409	1.293	1.498	0.03262	5.2%	-4.09%	
50	5 1.405 1.315				1.494	1.373	1.361	1.532	0.03225	5.13%	-4.15%	
50		0										
100		5	0.7364	0.655	0.8177	0.7448	0.6267	0.7881	0.02931	8.9%	45.4%	

TST

Report Date: Test Code: 03 Oct-17 12:40 (p 1 of 1) 1708-S188 | 12-4185-0887

	-		131		Test Code:		1708	1708-S188 12-4185-0887			
Bivalve Larv	al Survival and [Developme	nt Test						Nautilus	Environm	nental (CA)
Analysis ID: Analyzed:	05-6045-3969 03 Oct-17 12:3		dpoint: Co	mbined Deve	· · · · · · · · · · · · · · · · · · ·			IS Version: ial Results	CETISv1. : Yes	8.7	
Batch Note:	101= 100 perc	ent sample	filtered to 0.4	15um	·						
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed	TST b	PMSD	NOEL	LOEL	TOEL	TU
Angular (Corr	rected)	NA	C*b < T	NA	NA	0.75	2.68%	50	100	70.71	2
TST-Welch's	t Test										
Control	vs C-%		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision((α:5%)		
Lab Control	6.25*		18.72	2.015	0.037 5	<0.0001	CDF	Non-Signi	ficant Effect		
	12.5*		10.59	1.943	0.064 6	<0.0001	CDF	Non-Significant Effect			
	25*		10.68	1.943	0.071 6	<0.0001	CDF	Non-Significant Effect			
Í	50*		10.8	1.943	0.071 6	<0.0001	CDF	Non-Significant Effect			
	100		-9.306	1.943	0.064 6	1.0000	CDF	Significant Effect			
	101		-3.296	1.895	0.057 7	0.9934	CDF	Significant Effect			
ANOVA Tabl	e ·										
Source	Sum Squares Mean S 2.414275 0.40237			uare	DF	F Stat	P-Value	Decision(α:5%)		
Between	2.414275 0.4023			2	6	115.2	<0.0001	Significan	t Effect		
Error	0.097789	5	0.0034924	182	28	_					
Total	2.512065				34				XXXII DAY		
Distributiona	al Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision				
Variances		Equality of V		7.718	16.81	0.2595	Equal Variances				
Distribution	Shapiro-'	Wilk W Nor	mality	0.978	0.9146	0.6933	Normal Di	stribution			
Combined D	evelopment Rate	Summary									
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	0.9497	0.9202	0.9792	0.9533	0.9091	0.9675	0.01062	2.5%	0.0%
6.25		5	0.9523	0.9444	0.9601	0.9563	0.9454	0.9578	0.002833	0.67%	-0.27%
12.5		5									-0.47%
25			0.9542	0.9261	0.9822	0.9542	0.9289	0.9895	0.0101	2.37%	
		5	0.9684	0.9362	1	0.9742	0.9249	0.9947	0.01161	2.68%	-1.97%
50		5 5	0.9684 0.969	0.9362 0.9467	1 0.9912	0.9742 0.9615	0.9249 0.9565	0.9947 1	0.01161 0.008007	2.68% 1.85%	-1.97% -2.03%
50 100		5 5 5	0.9684 0.969 0.4188	0.9362 0.9467 0.3408	1 0.9912 0.4967	0.9742 0.9615 0.4041	0.9249 0.9565 0.3439	0.9947 1 0.5027	0.01161 0.008007 0.02806	2.68% 1.85% 14.98%	-1.97% -2.03% 55.91%
50		5 5	0.9684 0.969	0.9362 0.9467	1 0.9912	0.9742 0.9615	0.9249 0.9565	0.9947 1	0.01161 0.008007	2.68% 1.85%	-1.97% -2.03%
50 100 101 Angular (Cor	rected) Transfor	5 5 5 5	0.9684 0.969 0.4188 0.6255	0.9362 0.9467 0.3408	1 0.9912 0.4967	0.9742 0.9615 0.4041	0.9249 0.9565 0.3439	0.9947 1 0.5027	0.01161 0.008007 0.02806	2.68% 1.85% 14.98%	-1.97% -2.03% 55.91%
50 100 101	rected) Transfor Control Type	5 5 5 5	0.9684 0.969 0.4188 0.6255	0.9362 0.9467 0.3408	1 0.9912 0.4967 0.692	0.9742 0.9615 0.4041	0.9249 0.9565 0.3439	0.9947 1 0.5027	0.01161 0.008007 0.02806	2.68% 1.85% 14.98%	-1.97% -2.03% 55.91%
50 100 101 Angular (Cor	•	5 5 5 5 med Sumn	0.9684 0.969 0.4188 0.6255 mary Mean 1.349	0.9362 0.9467 0.3408 0.5589 95% LCL 1.286	1 0.9912 0.4967 0.692 95% UCL 1.411	0.9742 0.9615 0.4041 0.6478 Median 1.353	0.9249 0.9565 0.3439 0.5535 Min 1.265	0.9947 1 0.5027 0.6839 Max 1.39	0.01161 0.008007 0.02806 0.02397	2.68% 1.85% 14.98% 8.57%	-1.97% -2.03% 55.91% 34.14%
50 100 101 Angular (Cor C-% 0 6.25	Control Type	5 5 5 5 med Sumn	0.9684 0.969 0.4188 0.6255 Mean 1.349 1.351	0.9362 0.9467 0.3408 0.5589 95% LCL	1 0.9912 0.4967 0.692 95% UCL	0.9742 0.9615 0.4041 0.6478	0.9249 0.9565 0.3439 0.5535	0.9947 1 0.5027 0.6839	0.01161 0.008007 0.02806 0.02397 Std Err	2.68% 1.85% 14.98% 8.57%	-1.97% -2.03% 55.91% 34.14% %Effect
50 100 101 Angular (Cor C- %	Control Type	5 5 5 5 med Sumn Count	0.9684 0.969 0.4188 0.6255 mary Mean 1.349	0.9362 0.9467 0.3408 0.5589 95% LCL 1.286 1.333 1.283	1 0.9912 0.4967 0.692 95% UCL 1.411 1.369 1.442	0.9742 0.9615 0.4041 0.6478 Median 1.353	0.9249 0.9565 0.3439 0.5535 Min 1.265 1.335 1.301	0.9947 1 0.5027 0.6839 Max 1.39	0.01161 0.008007 0.02806 0.02397 Std Err 0.02253	2.68% 1.85% 14.98% 8.57% CV% 3.73%	-1.97% -2.03% 55.91% 34.14% %Effect 0.0%
50 100 101 Angular (Cor C-% 0 6.25 12.5 25	Control Type	5 5 5 5 med Sumn Count 5 5	0.9684 0.969 0.4188 0.6255 Mean 1.349 1.351	0.9362 0.9467 0.3408 0.5589 95% LCL 1.286 1.333 1.283 1.313	1 0.9912 0.4967 0.692 95% UCL 1.411 1.369	0.9742 0.9615 0.4041 0.6478 Median 1.353 1.36	0.9249 0.9565 0.3439 0.5535 Min 1.265 1.335	0.9947 1 0.5027 0.6839 Max 1.39 1.364	0.01161 0.008007 0.02806 0.02397 Std Err 0.02253 0.006585	2.68% 1.85% 14.98% 8.57% CV% 3.73% 1.09%	-1.97% -2.03% 55.91% 34.14% %Effect 0.0% -0.16%
50 100 101 Angular (Cor C-% 0 6.25 12.5 25 50	Control Type	5 5 5 5 med Sumn Count 5 5 5 5	0.9684 0.969 0.4188 0.6255 Mean 1.349 1.351 1.362 1.404 1.405	0.9362 0.9467 0.3408 0.5589 95% LCL 1.286 1.333 1.283 1.313 1.315	1 0.9912 0.4967 0.692 95% UCL 1.411 1.369 1.442	0.9742 0.9615 0.4041 0.6478 Median 1.353 1.36 1.355 1.409 1.373	0.9249 0.9565 0.3439 0.5535 Min 1.265 1.335 1.301	0.9947 1 0.5027 0.6839 Max 1.39 1.364 1.468	0.01161 0.008007 0.02806 0.02397 Std Err 0.02253 0.006585 0.02849	2.68% 1.85% 14.98% 8.57% CV% 3.73% 1.09% 4.68%	-1.97% -2.03% 55.91% 34.14% %Effect 0.0% -0.16% -1.02% -4.09% -4.15%
50 100 101 Angular (Cor C-% 0 6.25 12.5 25	Control Type	5 5 5 5 med Sumn Count 5 5 5	0.9684 0.969 0.4188 0.6255 Mean 1.349 1.351 1.362 1.404	0.9362 0.9467 0.3408 0.5589 95% LCL 1.286 1.333 1.283 1.313	1 0.9912 0.4967 0.692 95% UCL 1.411 1.369 1.442 1.494	0.9742 0.9615 0.4041 0.6478 Median 1.353 1.36 1.355 1.409	0.9249 0.9565 0.3439 0.5535 Min 1.265 1.335 1.301 1.293	0.9947 1 0.5027 0.6839 Max 1.39 1.364 1.468 1.498	0.01161 0.008007 0.02806 0.02397 Std Err 0.02253 0.006585 0.02849 0.03262	2.68% 1.85% 14.98% 8.57% CV% 3.73% 1.09% 4.68% 5.2%	-1.97% -2.03% 55.91% 34.14% %Effect 0.0% -0.16% -1.02% -4.09%

Report Date:

03 Oct-17 12:40 (p 1 of 1)

Test Code:

Bivalve Larv	al Survival a	nd Develo	oment Test						Nautilus	s Environr	nental (CA)
Analysis ID: Analyzed:	12-7132-1 03 Oct-17		· ,	ombined Deve arametric-Two		ite		IS Version:		.8.7	
Batch Note: 101= 100 percent sample filtered to 0.45um											
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed		PMSD	Test Res	ult		
Angular (Corr	ected)	NA	C > T	NA	NA		2.98%	Fails com	nbined devel	opment rat	е
Equal Varian	ice t Two-Sa	mple Test									
Control	vs C-%		Test Sta	at Critical	MSD DF	P-Value	P-Type	Decision	(a:5%)		
Lab Control	101*	•	13.03	1.86	0.062 8	<0.0001	CDF	Significar	nt Effect		
ANOVA Tabl	е										
Source	Sum	Squares	Mean S	quare	DF	F Stat	P-Value	Decision	(α:5%)		
Between	0.474	19839	0.47498	39	1	169.8	<0.0001	Significar	nt Effect		
Error	0.022	237312	0.00279	6639	8						
Total	0.497	'357			9	and the					
Distributiona	al Tests										
Attribute	Test	ţ		Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances	Vari	ance Ratio I	=	1.205	23.15	0.8611	Equal Var	iances			**************************************
Distribution	Sha	piro-Wilk W	Normality	0.8981	0.7411	0.2088	Normal D	istribution			
Combined D	evelopment	Rate Sumr	nary								
C-%	Control Ty	pe Coui	nt Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Contro	l 5	0.9497	0.9202	0.9792	0.9533	0.9091	0.9675	0.01062	2.5%	0.0%
101	~ x - 3 - 2	5	0.6255	0.5589	0.692	0.6478	0.5535	0.6839	0.02397	8.57%	34.14%
Angular (Co	rrected) Trar	sformed S	ummary								
C-%	Control Ty	pe Cou	nt Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Contro	1 5	1.349	1.286	1.411	1.353	1.265	1.39	0.02253	3.73%	0.0%
101		5	0.9128	0.8442	0.9815	0.9354	0.839	0.9737	0.02472	6.06%	32.32%

Report Date:

03 Oct-17 12:40 (p 1 of 1)

Test Code:

Analysis ID: Analyzed: 02-4480-2352	11.8.7	mental (CA)
Analyzed:03 Oct-17 12:40Analysis:Parametric-Two SampleOfficial Results:VesBatch Note:101= 100 percent sample filtered to 0.45umData TransformZetaAlt HypTrialsSeedPMSDTest ResultAngular (Corrected)NAC > TNANA2.98%Fails development rateEqual Variance t Two-Sample TestControlvsC-%Test StatCriticalMSDDFP-ValueP-TypeDecision(α:5%)Lab Control101*13.031.860.0628 <0.0001		
Data Transform	ate	
Angular (Corrected) NA C > T NA NA NA NA NA 2.98% Fails development rate Equal Variance t Two-Sample Test Control vs C-% Test Stat Critical MSD DF P-Value P-Type Decision(α:5%) Lab Control 101* 13.03 1.86 0.062 8 <0.0001	ate	
Equal Variance t Two-Sample Test Control vs C-% Test Stat Critical MSD DF P-Value P-Type Decision(α:5%) Lab Control 101* 13.03 1.86 0.062 8 <0.0001 CDF Significant Effect ANOVA Table Source Sum Squares Mean Square DF F Stat P-Value Decision(α:5%) Between 0.4749839 0.4749839 1 169.8 <0.0001 Significant Effect	ate	
Control vs C-% Test Stat Critical MSD DF P-Value P-Type Decision(α:5%) Lab Control 101* 13.03 1.86 0.062 8 <0.0001		
Lab Control 101* 13.03 1.86 0.062 8 <0.0001 CDF Significant Effect ANOVA Table Source Sum Squares Mean Square DF F Stat P-Value Decision(α:5%) Between 0.4749839 0.4749839 1 169.8 <0.0001		
ANOVA Table Source Sum Squares Mean Square DF F Stat P-Value Decision(α:5%) Between 0.4749839 0.4749839 1 169.8 <0.0001		
SourceSum SquaresMean SquareDFF StatP-ValueDecision(α:5%)Between0.47498391169.8<0.0001		
Between 0.4749839 0.4749839 1 169.8 <0.0001 Significant Effect		
1 103.5 Co.0001 Significant Effect		
Error 0.02237312 0.002796639 8		
Total 0.497357 9		
Distributional Tests		
Attribute Test Test Stat Critical P-Value Decision(α:1%)		
Variances Variance Ratio F 1.205 23.15 0.8611 Equal Variances		
Distribution Shapiro-Wilk W Normality 0.8981 0.7411 0.2088 Normal Distribution		
Development Rate Summary		
C-% Control Type Count Mean 95% LCL 95% UCL Median Min Max Std Err	CV%	%Effect
0 Lab Control 5 0.9497 0.9202 0.9792 0.9533 0.9091 0.9675 0.01062	2.5%	0.0%
101 5 0.6255 0.5589 0.692 0.6478 0.5535 0.6839 0.02397	8.57%	34.14%
Angular (Corrected) Transformed Summary		
C-% Control Type Count Mean 95% LCL 95% UCL Median Min Max Std Err	CV%	%Effect
0 Lab Control 5 1.349 1.286 1.411 1.353 1.265 1.39 0.02253	3.73%	0.0%
101 5 0.9128 0.8442 0.9815 0.9354 0.839 0.9737 0.02472	6.06%	32.32%

Client: AMEC/POSD	Test Species: M. galloprovinciali
-------------------	-----------------------------------

 Sample ID:
 SIYB-1
 Start Date/Time:
 8/24/2017 1600

Test ID: 1708-S188 End Date/Time: 8/26/2017 1600

		Number	Abnormal	Total Number	
Random #	Number Normal	Number Curved Shell	All other abnormal	Counted	Intials/Date
31	59	(B) S	54	113 118 0	RL/8/28/17
32	160	0	13	173	
33	166	O	0	166	
34	152	0	5	157	
35	159	0	1	166	(B) V
36	Gro4 103	1800 5	1856 51	1750158 159	Q1812L 8128117
37	97	3	48	148	RL 8/29/17
38	173		9	183	
39	54	3	100	15 7	
40	171	Ø	6	3) 176177	
41	173	0	10	183	
42	146	0	7	153	
43	88	6	65	159	
44	185	1	tury .	193	
45	176	Ö	8	184	
46	185	0	6	191	
47	56		67	124	
48	187	0		188	\
49	178	O	(1	189	
50	183	O	14	197	1
51	154	Ø	7	161	213010
52	153	Q	7	160	
53	98	7	6)	167	
54	187	0	6	193	***************************************
55	151	O	4	155	
56	68	Ĵ	78	148	
57	176	0	8	184	
58	143	.0	7	150	
59	189	0	9	198	
60	119	1	54	174	
61	149	0	5	154	
62	180	0	9	184	
63	170	Ò	17	187	*************************************
64	150		5	156	
65	154	0	6	161	
66			5	179	
67	188	0	9	190	
68	147	0	14	161	
69	94	J	81	187	
70	165	0	4	169	100000000000000000000000000000000000000

Comments:	(A) Q18	br 8/72/11	(8) & OIR MENT			
		997950000000000000000000000000000000000	-			
QC Check:	<u>AC</u>	8/30/17		Final Review:	& WIZIM	

Report Date:

21 Aug-17 18:00 (p 1 of 1)

Test Code: 12-4185-0887/1708-S188

Bival ⊌e Larval Survival and Development Test

Nautilus Environmental (CA)

Start Date: 24 Aug-17 Species: Mytilus galloprovincialis Sample Code: 17-0932

End Date: 26 Aug-17 Protocol: EPA/600/R-95/136 (1995) Sample Source: Shelter Island Yacht Basin

~ ~	C- 1		7	1-141-1 D : · · · · ·	Elect P. 2	40-	41.54	A
C -%	Code		Pos	Initial Density	Final Density	# Counted	# Normal	Notes
0	FC	1	68			154	149	AC8/27/17
0	FC	2	57			`		
0	FC	3	46					
0	FC	4	59					
0	FC	5	54					
0	LC	1	61					
0	LC	2	63					
0	LC	3	40					
0	LC	4	58					
0	LC	5	62					
6.25		1	35					
6.25		2	51					
6.25		3	52					
6.25		4	41			***************************************		
6.25		5	38					
12.5		1	50					
12.5		2	49					
12.5		3	45					
12.5		4	42					
12.5		5	67					
25		1	32					
25		2	48					
25		3	70					
25		4	55					
25		5	66					
50		1	44					
50		2	65					
50		3	34					
50		4	64					
50		5	33					
100		1	56		4	150	78	
100		2	39				1	
100		3	69					
100		4	47					
100		5	31				(b)	
101		1	53			165	9519	
/, 101		2	36			100	, 5,10	
ed 101 @		3	37					
101		4	60					
101		5	43					

B (· N 8 @018 AC 8(2) 17 (5) (018 AC 8(30) 17

Marine Chronic Bioassay

Water Quality Measurements

Client:	AMEC/POSD	
Sample ID:	SIYB-1	

Sample Log No.: 17- 0932

Test No.: 1708-S 1 8 8

Test Species: M. galloprovincialis

Start Date/Time: 8/24/2017 (©)

End Date/Time: 8/26/2017 16:00

Concentration (%)		Salinity (ppt)		Т	emperatu (°C)	re	Dis	solved Ox (mg/L)	ygen		pH (pH units)
	0	24	48	0	24	48	0	24	48	0	24	48
Lab Control	33.7	33.0	33,3	15.2	14.9	14.6	8.4	7.8	8.1	8.03	8.05	8.03
6.25	33,8	33.4	33,6	15.2	14.6	14.3	8.3	8.0	8.1	8,01	8.03	8.01
12.5	33 .V	33.4	33.6	15.2	14.7	14.3	8.2	7.9	8.1	8.02	8.03	8.00
25	34.0	33.6	33, 7	15.2	14.7	14.3	8.2	7.7	ಕೆ.೦	8.01	8 .03	3.00
50	33.9	33.6	33.8	15.3	14.7	14.3	8.1	7.9	8.0	8,03	8.03	€.00
100	34.1	33.8	33,9	15,3	14.6	14.3	8.2	7.8	8.0	8.02	8.03	7.99
100 filtered	34.1	335	33.8	15.0	14,8	14.3	7.5	76	8.0	8.02	8.01	8.03
Elter Control												

Technician Initials:	WQ Readings: AC CG DM Dilutions made by: AC/ES	
Comments:	0 hrs:	
QC Check:	A(8/27/)7	Final Review: *> W/2/17

48

24

Marine Chronic Bioassay

Water Quality Measurements

Client: AMEC/POSD Test Species: M. galloprovincialis

Sample ID: Filtration Method Control Start Date/Time: 8/24/2017 /6:00

Sample Log No.: 21- N/A
Test No.: 1708-S188 +0 S194 End Date/Time: 8/26/2017 /6 : 0 0

Concentration (%)		Salinity (ppt)		T	emperatu (°C)	re	Diss	solved Ox (mg/L)	ygen		pH (pH units)
W	0	24	48	0	24	48	0	24	48	0	24	48
Filter Control	33.7	33.3	33,3	15.4	14.9	14.3	6.7	7.7	7.9	8.04	8.02	7.99
What is a second of the second												

Technician Initials:	WQ Readings: AC CG DM Dilutions made by: AC/E6	
Comments:	0 hrs:	
QC Check:	AC8127/17	Final Review:

Final Review: W/r/V

Client:	AMEC/POSD-SIYB-1		Start Date/Time:	8/24/2017 (6.00				
Test No.:	1708-5188		End Date/Time:	8/26/2017 16:00				
Test Species:	Mytilus galloprovincialis		Technician Initials:					
Animal Source:	Mission Bay		, and a second s					
Date Received:	3/2/17							
Test Chambers:	30 mL glass shell vials	,						
Sample Volume:	10 mL							
Spawn Informatio	n	Gamete Selection						
	100	Sex		ion (sperm motility, egg density, color, shape,				
First Gamete Relea	se Time: 1230		Number(s)	etc.)				
C	Number Spauning	Male Female 1		d density and motility				
Sex	Number Spawning	Female 2	2 Grand	density, fall orange color, uniform shape density fall orange				
Male	5+	ļ	2 disain	density white color, witom Shape				
Female	3	Female 3	3 Itigh	density pare orange color, Miforn				
		F F4	12	- larg				
Embryo Stock Se	lastian	Egg Ferti	ilization Time: 13	15 Mass				
	% of embryos at 2-cell		_					
Stock Number	division stage	Stock(s) chose	en for testing:					
Female 1	99	Crossing oneser for testing.						
Female 2	100							
Female 3	100							
Target count on Se Number Counted:	dgwick-Rafter slide for desired density 11 10 10 15 4 11 14 9 4 10	is 6 embryos 	10-1					
	Mean X 50 =	605embryos/	ml ··					
Initial Desired Final (to inoculate with	,	(dilution fi	actor)					
When mean percenuse 100 ml of existi	it dividing is ≥ 90, prepare the embryo in ng stock (1 part) and 125 ml of dilution	noculum according to the c water (1.25 parts).	alculated dilution facto	r. For example, if the dilution factor is 2.25,				
	Time Zero Control Counts							
	Rep No. Dividing Total	% Dividing Mean		774 fr. 1949)				
	144 126 126	Dividir	<u>9</u> 48-h QC: ₋	13:1/142 (94%)				
	TØA 135 135 TØB 162 162 TØC 3143 143 TØD 3134 134 TØE 157 158 TØF 145 145	100 100 100 100 99.4	· .					
Comments:	BCH Q18 8/24/17	Xdividing=						
		7	1.1.0					

AC 8/27/17

QC Check:

Site: SIYB-2

CETIS Summary Report

Report Date:

03 Oct-17 12:48 (p 1 of 4)

Test Code:

Bivalve Larval	Bivalve Larval Survival and Development Test Nautilus Environmental (CA)										
Batch ID: Start Date: Ending Date: Duration:	24 Aug-17 16:00 P 26 Aug-17 16:00 S	est Type: rotocol: pecies: ource:	Development-S EPA/600/R-95/ Mytilus gallopro Mission Bay	/136 (1995)		 	Analyst: Diluent: Brine: Age:		oratory Seawater Applicable		
Sample ID: Sample Date: Receive Date: Sample Age:	23 Aug-17 13:15 W 23 Aug-17 17:15 S	ode: laterial: ource: tation:	17-0933 Ambient Water Shelter Island ` SIYB-2				Client: Project:	Ame	ec Foster Wheeler		
Batch Note:	101= 100 percent sampl	0.45um									
Comparison S	rison Summary										
Analysis ID	Endpoint	NOEL	LOEL	TOEL	PMSD	TU	Met	hod			
19-3595-0874	Combined Development	Ra 50	100	70.71	2.66%	2	Dun	nett M	lultiple Comparison Test		
15-1745-7741	Development Rate	50	100	70.71	3.51%	2	Dun	nett M	lultiple Comparison Test		
09-0332-5706	Survival Rate	100	>100	NA	1.62%	1	Stee	el Man	y-One Rank Sum Test		
Point Estimate	Summary										
Analysis ID	Endpoint	Level	%	95% LCL	95% UCL	TU	Met	hod			
11-1754-6520	Combined Development	Ra EC25	98.41	88.24	N/A	1.016	Line	ar Inte	erpolation (ICPIN)		
		EC50	>100	N/A	N/A	<1			. , ,		
19-5191-4942	Development Rate	EC25	>100	N/A	N/A	<1	Line	ar Inte	erpolation (ICPIN)		
		EC50	>100	N/A	N/A	<1					
Test Acceptab	ility										
Analysis ID	Endpoint	Attribute		Test Stat	TAC Limi	ts	Ove	rlap	Decision		
15-1745-7741	Development Rate	Contro	ol Resp	0.9603	0.9 - NL		Yes		Passes Acceptability Criteria		
19-5191-4942	Development Rate	Contro	ol Resp	0.9603	0.9 - NL		Yes		Passes Acceptability Criteria		
09-0332-5706	Survival Rate	Contro	ol Resp	1	0.5 - NL		Yes		Passes Acceptability Criteria		
19-3595-0874	Combined Development	Ra PMSD)	0.02662	NL - 0.25		No		Passes Acceptability Criteria		

Report Date: Test Code: 03 Oct-17 12:48 (p 2 of 4) 1708-S189 | 07-1722-0186

							1631	Code:	170	0-0103 01	-1/22-0100	
Bivalve La	arval Survival and I	Developme	nt Test				Nautilus	Environm	nental (CA)			
Combined Development Rate Summary												
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect	
0	Filter Control	5	0.9523	0.9238	0.9808	0.913	0.9689	0.01026	0.02294	2.41%	0.0%	
0	Lab Control	5	0.9603	0.9467	0.9739	0.9467	0.9737	0.004906	0.01097	1.14%	-0.84%	
6.25		5	0.9523	0.9405	0.9641	0.9452	0.9673	0.00425	0.009504	1.0%	0.0%	
12.5		5	0.9526	0.9359	0.9694	0.9394	0.9742	0.006025	0.01347	1.41%	-0.03%	
25		5	0.9663	0.9499	0.9827	0.9448	0.9809	0.005921	0.01324	1.37%	-1.47%	
50		5	0.9585	0.9328	0.9841	0.9231	0.9748	0.009228	0.02063	2.15%	-0.64%	
100		5	0.7142	0.6488	0.7797	0.6541	0.7718	0.02357	0.05269	7.38%	25.0%	
101		5	0.8607	0.8488	0.8726	0.8447	0.8701	0.004276	0.009562	1.11%	9.62%	
Developm	nent Rate Summary											
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect	
0	Filter Control	5	0.9523	0.9238	0.9808	0.913	0.9689	0.01026	0.02294	2.41%	0.0%	
0	Lab Control	5	0.9603	0.9467	0.9739	0.9467	0.9737	0.004906	0.01097	1.14%	-0.84%	
6.25		5	0.955	0.944	0.9659	0.9463	0.9673	0.00395	0.008832	0.92%	-0.28%	
12.5		5	0.9526	0.9359	0.9694	0.9394	0.9742	0.006025	0.01347	1.41%	-0.03%	
25		5	0.9663	0.9499	0.9827	0.9448	0.9809	0.005921	0.01324	1.37%	-1.47%	
50		5	0.9585	0.9328	0.9841	0.9231	0.9748	0.009228	0.02063	2.15%	-0.64%	
100		5	0.7341	0.6325	0.8357	0.6541	0.8527	0.03659	0.08182	11.15%	22.92%	
101		5	0.8681	0.843	0.8932	0.8447	0.9	0.009031	0.02019	2.33%	8.84%	
Survival F	Rate Summary											
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect	
0	Filter Control	5	1	1	1	1	1	0	0	0.0%	0.0%	
0	Lab Control	5	1	1	1	1	1	0	0	0.0%	0.0%	
6.25		5	0.9973	0.9897	1	0.9863	1	0.00274	0.006126	0.61%	0.27%	
12.5		5	1	1	1	1	1	0	0	0.0%	0.0%	
25		5	1	1	1	1	1	0	0	0.0%	0.0%	
50		5	1	1	1	1	1	0	0	0.0%	0.0%	
100		5	0.9767	0.9121	1	0.8836	1	0.02329	0.05207	5.33%	2.33%	
101		5	0.9918	0.969	1	0.9589	1	0.008219	0.01838	1.85%	0.82%	

Report Date: Test Code: 03 Oct-17 12:48 (p 3 of 4) 1708-S189 | 07-1722-0186

Bivalve Larva	al Survival and [Developme	nt Test				Nautilus Environmental (CA)
Combined De	evelopment Rate	e Detail					
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	Filter Control	0.913	0.9565	0.9686	0.9545	0.9689	
0	Lab Control	0.953	0.96	0.9683	0.9737	0.9467	
6.25		0.9563	0.9463	0.9452	0.9673	0.9465	
12.5		0.9742	0.9394	0.9435	0.9536	0.9524	
25		0.9711	0.9809	0.9673	0.9674	0.9448	
50		0.9588	0.9231	0.9699	0.9657	0.9748	
100		0.7534	0.6541	0.7718	0.7273	0.6646	
101		0.8701	0.8609	0.863	0.8647	0.8447	
Development	: Rate Detail						MILEMAN II II MARAN II
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	Filter Control	0.913	0.9565	0.9686	0.9545	0.9689	
0	Lab Control	0.953	0.96	0.9683	0.9737	0.9467	
6.25		0.9563	0.9463	0.9583	0.9673	0.9465	
12.5		0.9742	0.9394	0.9435	0.9536	0.9524	
25		0.9711	0.9809	0.9673	0.9674	0.9448	
50		0.9588	0.9231	0.9699	0.9657	0.9748	
100		0.8527	0.6541	0.7718	0.7273	0.6646	
101		0.8701	0.8609	0.9	0.8647	0.8447	
Survival Rate	Detail						
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	Filter Control	1	1	1	1	1	
0	Lab Control	1	1	1	1	1	
6.25		1	1	0.9863	1	1	
12.5		1	1	1	1	1	
25		1	1	1	1	1	
50		1	1	1	1	1	
100		0.8836	1	1	1	1	
101		1	1	0.9589	1	1	

Report Date:

03 Oct-17 12:48 (p 4 of 4)

Test Code: 1708-S189 | 07-1722-0186

							rest code.	1700-3109 07-1722-0100
Bivalve L	arval Survival and l	Developme	nt Test					Nautilus Environmental (CA)
Combine	d Development Rate	e Binomials	3					
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Filter Control	147/161	176/184	185/191	189/198	187/193		
0	Lab Control	142/149	168/175	183/189	185/190	142/150		
6.25		197/206	141/149	138/146	148/153	177/187		
12.5		189/194	155/165	167/177	144/151	140/147		
25		168/173	154/157	148/153	178/184	154/163		
50		163/170	144/156	161/166	197/204	155/159		
100		110/146	104/159	115/149	128/176	105/158		
101		134/154	130/151	126/146	147/170	136/161		
Developm	nent Rate Binomials	3		1000		***************************************		11874 11874 11874 11874 11874 11874 11874 11874 11874 11874 11874 11874 11874 11874 11874 11874 11874 11874 1
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Filter Control	147/161	176/184	185/191	189/198	187/193		
0	Lab Control	142/149	168/175	183/189	185/190	142/150		
6.25		197/206	141/149	138/144	148/153	177/187		
12.5		189/194	155/165	167/177	144/151	140/147		
25		168/173	154/157	148/153	178/184	154/163		
50		163/170	144/156	161/166	197/204	155/159		
100		110/129	104/159	115/149	128/176	105/158		
101		134/154	130/151	126/140	147/170	136/161		
Survival F	Rate Binomials							, , , , , , , , , , , , , , , , , , ,
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Filter Control	146/146	146/146	146/146	146/146	146/146		
0	Lab Control	146/146	146/146	146/146	146/146	146/146		
6.25		146/146	146/146	144/146	146/146	146/146		
12.5		146/146	146/146	146/146	146/146	146/146		
25		146/146	146/146	146/146	146/146	146/146		
50		146/146	146/146	146/146	146/146	146/146		
100		129/146	146/146	146/146	146/146	146/146		
101		146/146	146/146	140/146	146/146	146/146		

Report Date:

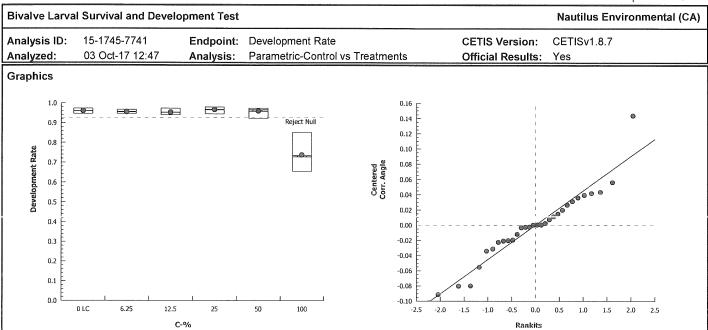
03 Oct-17 12:47 (p 1 of 6)

Test Code:

							1621	Code:	170	3-3 109 0	7-1722-0186
Bivalve Larv	al Survival and I	Developr	nent Test				Nautilus	Environi	mental (CA)		
Analysis ID: Analyzed:	19-3595-0874 03 Oct-17 12:4		=	Combined Deve Parametric-Cor				IS Version:	CETISv1 Yes	8.7	
Batch Note:	101= 100 perc	ent samp	ole filtered to	0.45um							
Data Transfo	orm	Zeta	Alt Hyp	o Trials	Seed	X 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PMSD	NOEL	LOEL	TOEL	TU
Angular (Corr	ected)	NA	C > T	NA	NA		2.66%	50	100	70.71	2
Dunnett Mult	tiple Compariso	n Test									
Control	vs C-%		Test Sta	at Critical	MSD DF	P-Value	P-Type	Decision(α:5%)		
Lab Control	6.25		0.8037	2.362	0.059 8	0.5093	CDF	Non-Signif	icant Effect		
	12.5		0.7331	2.362	0.059 8	0.5418	CDF	Non-Signif	icant Effect		
	25		-0.6765	2.362	0.059 8	0.9608	CDF	Non-Signif	icant Effect		
	50		0.08328	3 2.362	0.059 8	0.8075	CDF	Non-Signif	icant Effect		
	100*		14.49	2.362	0.059 8	<0.0001	CDF	Significant	Effect		
ANOVA Table	е										
Source	Sum Squ	ares	Mean S	quare	DF	F Stat	P-Value	Decision(α:5%)		
Between			0.10832	222	5 68.77		<0.0001	Significant	Effect		
Error	0.03780413 0.0015		'5172	24	_						
Total	0.579415	3			29						
Distributiona	al Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances	Bartlett E	Equality o	f Variance	4.068	15.09	0.5397	Equal Var	iances			
Distribution	Shapiro-	Wilk W N	lormality	0.9769	0.9031	0.7384	Normal D	istribution			
Combined D	evelopment Rate	Summa	ary								
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	cv%	%Effect
0	Lab Control	5	0.9603	0.9467	0.9739	0.96	0.9467	0.9737	0.004906	1.14%	0.0%
6.25		5	0.9523	0.9405	0.9641	0.9465	0.9452	0.9673	0.00425	1.0%	0.83%
12.5		5	0.9526	0.9359	0.9694	0.9524	0.9394	0.9742	0.006025	1.41%	0.8%
25		5	0.9663	0.9499	0.9827	0.9674	0.9448	0.9809	0.00592	1.37%	-0.62%
50		5	0.9585	0.9328	0.9841	0.9657	0.9231	0.9748	0.009228	2.15%	0.19%
100		5	0.7142	0.6488	0.7797	0.7273	0.6541	0.7718	0.02357	7.38%	25.63%
Angular (Cor	rected) Transfor	med Su	mmary	, , , , , , , , , , , , , , , , , , , ,							
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	1.372	1.336	1.407	1.369	1.338	1.408	0.01273	2.07%	0.0%
6.25		5	1.352	1.323	1.381	1.337	1.335	1.389	0.01044	1.73%	1.47%
12.5		5	1.353	1.311	1.396	1.351	1.322	1.41	0.01525	2.52%	1.34%
25		5	1.389	1.345	1.433	1.389	1.334	1.432	0.01589	2.56%	-1.24%
50		5	1.37	1.311	1.429	1.384	1.29	1.412	0.02131	3.48%	0.15%
100		5	1.008	0.9357	1.08	1.021	0.942	1.073	0.02608	5.79%	26.51%

Report Date: Test Code: 03 Oct-17 12:47 (p 2 of 6) 1708-S189 | 07-1722-0186

Bivalve Larval Survival and Development Test Nautilus Environmental (CA) Analysis ID: 19-3595-0874 Combined Development Rate Endpoint: **CETIS Version:** CETISv1.8.7 Analyzed: 03 Oct-17 12:47 Analysis: Parametric-Control vs Treatments Official Results: Yes Graphics 0,08 0.07 0.06 Combined Development Rate 8.0 0.05 0,04 0.7 0.03 0.02 0.6 0.01 0.5 0.00 -0.01 0.4 -0.02 -0.03 0.3 -0.04 0.2 -0.05 -0.06 0.1 -0.07 0.0 -0.08 6.25 12.5 25 50 100 -1.5 -2.5 -2.0 -1.0 -0.5 0.0 1.0 2.0 C-% Rankits


Report Date:

03 Oct-17 12:47 (p 3 of 6)

Test Code:

							resi	Code:	170	8-2189 0	7-1722-0186
Bivalve Lar	/al Survival and	Develop	ment Test						Nautilus	Environ	mental (CA)
Analysis ID: Analyzed:	15-1745-7741 03 Oct-17 12:		-	Development F Parametric-Cor		tments		IS Version: cial Results		.8.7	
Batch Note:								oral results	. 105		
Data Transfo	orm	Zeta	Alt Hy	p Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU
Angular (Cor	rected)	NA	C > T	NA	NA		3.51%	50	100	70.71	2
Dunnett Mul	Itiple Compariso	n Test									
Control	vs C-%		Test St	at Critical	MSD DF	P-Value	P-Type	Decision((α:5%)		
Lab Control	6.25		0.4401	2.362	0.075 8	0.6727	CDF	Non-Signi	ficant Effect		
	12.5		0.5771	2.362	0.075 8	0.6128	CDF	Non-Signi	ficant Effect		
	25		-0.5326	2.362	0.075 8	0.9445	CDF	Non-Signi	ficant Effect		
	50		0.06556	6 2.362	0.075 8	0.8132	CDF	Non-Signi	ficant Effect		
	100*		10.62	2.362	0.075 8	<0.0001	CDF	Significan	t Effect		
ANOVA Tabl	le										
Source	Sum Squ	uares	Mean S	quare	DF	F Stat	P-Value	Decision(α:5%)		
Between	0.471634			5	37.12	<0.0001	Significant	t Effect			
Error	0.060993		0.00254	0.00254141 24							
Total	0.532628	2			29	***					
Distribution	al Tests								······································		
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances	Bartlett E	Equality o	of Variance	11.41	15.09	0.0439	Equal Var	riances			
Distribution	Shapiro-	Wilk W N	Normality	0.9351	0.9031	0.0670	Normal D	istribution			
Developmen	t Rate Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	0.9603	0.9467	0.9739	0.96	0.9467	0.9737	0.004906	1.14%	0.0%
6.25		5	0.955	0.944	0.9659	0.9563	0.9463	0.9673	0.00395	0.92%	0.56%
12.5		5	0.9526	0.9359	0.9694	0.9524	0.9394	0.9742	0.006025	1.41%	0.8%
25		5	0.9663	0.9499	0.9827	0.9674	0.9448	0.9809	0.00592	1.37%	-0.62%
50		5	0.9585	0.9328	0.9841	0.9657	0.9231	0.9748	0.009228	2.15%	0.19%
100		5	0.7341	0.6325	0.8357	0.7273	0.6541	0.8527	0.03659	11.15%	23.56%
Angular (Cor	rrected) Transfor	med Su	mmary								
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	1.372	1.336	1.407	1.369	1.338	1.408	0.01273	2.07%	0.0%
6.25		5	1.358	1.331	1.385	1.36	1.337	1.389	0.009708	1.6%	1.02%
12.5		5	1.353	1.311	1.396	1.351	1.322	1.41	0.01525	2.52%	1.34%
25		5	1.389	1.345	1.433	1.389	1.334	1.432	0.01589	2.56%	-1.24%
		h	127	1.311	1.429	1.384	1.29	1.412	0.00404	3.48%	0.15%
50 100		5 5	1.37 1.033	0.9137	1.153	1.021	0.942	1.177	0.02131 0.04306	9.32%	24.68%

Report Date: Test Code: 03 Oct-17 12:47 (p 4 of 6)

Report Date:

03 Oct-17 12:47 (p 5 of 6)

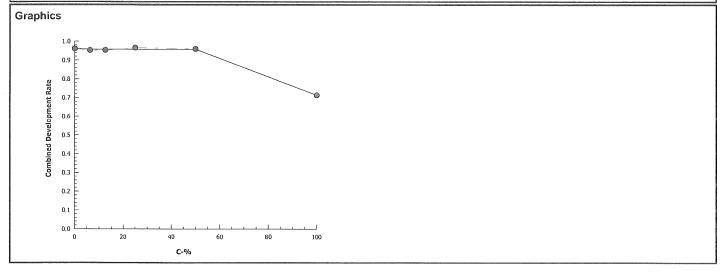
Test Code:

								Test	Code:	1708	S-S189 0.	7-1722-0186
Bivalve Larv	al Survival and	Developme	nt Test							Nautilus	Environn	nental (CA)
Analysis ID:	09-0332-5706 03 Oct-17 12:		•	rvival Rate	Control	с Т	rootmonts		S Version:	CETISv1.	8.7	
Analyzed: Batch Note:	101= 100 perd				Control v	5 1	realinents	Onic	iai Resuits	. 165		
Data Transfo		Zeta	Alt Hyp	Trials	Seed			PMSD	NOEL	LOEL	TOEL	TU
Angular (Corr	ected)	NA	C > T	NA	NA			1.62%	100	>100	NA	1
Steel Many-C	One Rank Sum 1	Test										
Control	vs C-%		Test Stat	Critical	Ties I	DF	P-Value	P-Type	Decision(α:5%)		
Lab Control	6.25		25	16	1 8	8	0.6353	Asymp	Non-Signi	ficant Effect		
	12.5		27.5	16	1 8	8	0.8333	Asymp	Non-Signi	ficant Effect		
	25		27.5	16	1 8	8	0.8333	Asymp	_	ficant Effect		
	50		27.5	16		8	0.8333	Asymp	-	ficant Effect		
	100		25 	16	1 8	8	0.6353	Asymp	Non-Signi	ficant Effect		
ANOVA Table	е											
Source	Sum Sq	uares	Mean Sq	uare	DF		F Stat	P-Value	Decision(α:5%)		
Between	0.015098	38	0.003019	759	5		0.9067	0.4930	Non-Signi	ficant Effect		
Error	0.079928	348	24		_							
Total	0.095027	'16 			29							
Distributiona	I Tests											
Attribute	Test			Test Stat	Critical		P-Value	Decision	(α:1%)			
Variances	Mod Lev	ene Equalit	y of Varianc	e 0.9067	4.248		0.4983	Equal Var	iances			
Variances	Levene	Equality of \	/ariance	6.448	3.895		0.0006	Unequal \	/ariances			
Distribution	Shapiro-	-Wilk W Nor	mality	0.5134	0.9031		<0.0001	Non-norm	al Distribution	on		
Survival Rate	e Summary											
C-%	Control Type	Count	Mean	95% LCL	95% UC	L	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	1	1	1		1	1	1	0	0.0%	0.0%
6.25		5	0.9973	0.9897	1		1	0.9863	1	0.00274	0.61%	0.27%
12.5		5	1	1	1		1	1	1	0	0.0%	0.0%
25		5	1	1	1		1	1	1	0	0.0%	0.0%
50		5	1	1	1		1	1	1	0	0.0%	0.0%
100		5	0.9767	0.9121	1		1	0.8836	1	0.02329	5.33%	2.33%
Angular (Cor	rected) Transfo	rmed Sumr	mary									
C-%	Control Type	Count	Mean	95% LCL	95% UC	L	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	1.529	1.529	1.53		1.529	1.529	1.529	0	0.0%	0.0%
6.25		5	1.514	1.472	1.556		1.529	1.453	1.529	0.01518	2.24%	0.99%
12.5		5	1.529	1.529	1.53		1.529	1.529	1.529	0	0.0%	0.0%
25		5	1.529	1.529	1.53		1.529	1.529	1.529	0	0.0%	0.0%
50		5	1.529	1.529	1.53		1.529	1.529	1.529	0	0.0%	0.0%
100		5	1.468	1.298	1.638		1.529	1.223	1.529	0.06137	9.35%	4.01%

Report Date: Test Code: 03 Oct-17 12:47 (p 6 of 6) 1708-S189 | 07-1722-0186

Bivalve Larval Survival and Development Test Nautilus Environmental (CA) 09-0332-5706 Endpoint: Survival Rate CETISv1.8.7 Analysis ID: **CETIS Version:** Nonparametric-Control vs Treatments Analyzed: 03 Oct-17 12:47 Analysis: Official Results: Yes Graphics 0.15 1.0 0.9 0.10 0.8 0.05 Survival Rate Centered Corr. Angle 0.00 0.6 -0.10 0.3 -0.15 -0.20 0.1 0.0 -0.25 0 LC 6.25 12.5 50 100 2.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 C-% Rankits

Report Date:


03 Oct-17 12:48 (p 1 of 2)

Test Code:

Bivalve Larva	I Survival and Devel	opment Test			Nautilus Environmental (CA)
Analysis ID:	11-1754-6520	Endpoint:	Combined Development Rate	CETIS Version:	CETISv1.8.7
Analyzed:	03 Oct-17 12:47	Analysis:	Linear Interpolation (ICPIN)	Official Results:	Yes

Batch i	Note:	101= 100 perce	ent sample fi	ltered t	o 0.45um		
Linear	Interpola	ation Options					
X Trans	sform	Y Transform) See	d	Resamples	Exp 95% CL	Method
Linear		Linear	1306	3229	1000	Yes	Two-Point Interpolation
Point E	stimates	5					
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL	
EC25	98.41	88.24	N/A	1.016	NA	1.133	
EC50	>100	N/A	N/A	<1	NA	NA	

Combine	ed Development Rat	e Summary	Calculated Variate(A/B)								
C-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	А	В
0	Lab Control	5	0.9603	0.9467	0.9737	0.004906	0.01097	1.14%	0.0%	820	853
6.25		5	0.9523	0.9452	0.9673	0.00425	0.009504	1.0%	0.83%	801	841
12.5		5	0.9526	0.9394	0.9742	0.006025	0.01347	1.41%	0.8%	795	834
25		5	0.9663	0.9448	0.9809	0.00592	0.01324	1.37%	-0.62%	802	830
50		5	0.9585	0.9231	0.9748	0.009228	0.02063	2.15%	0.19%	820	855
100		5	0.7142	0.6541	0.7718	0.02357	0.05269	7.38%	25.63%	562	788

Analysis ID:

Report Date:

CETIS Version:

03 Oct-17 12:48 (p 2 of 2)

Nautilus Environmental (CA)

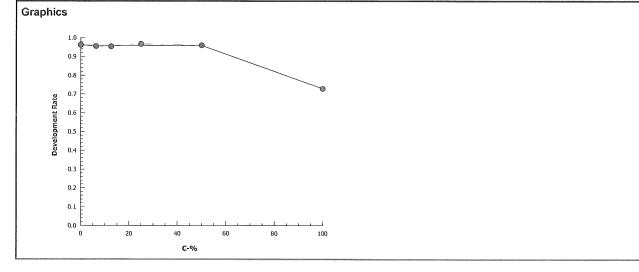
CETISv1.8.7

Test Code:

1708-S189 | 07-1722-0186

Bivalve Larval Survival and Development Test Endpoint: Development Rate

Analyzed: 03 Oct-17 12:47 Analysis: Linear Interpolation (ICPIN) Official Results: Yes


Batch Note: 101= 100 percent sample filtered to 0.45um

19-5191-4942

Linear interpola	tion Options				
X Transform	Y Transform	Seed	Resamples	Exp 95% CL	Method
Linear	Linear	677208	1000	Yes	Two-Point Interpolation

Point E	stimates					
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL
EC25	>100	N/A	N/A	<1	NA	NA
EC50	>100	N/A	N/A	<1	NA	NA

Development Rate Summary			Calculated Variate(A/B)								
C-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Lab Control	5	0.9603	0.9467	0.9737	0.004906	0.01097	1.14%	0.0%	820	853
6.25		5	0.955	0.9463	0.9673	0.00395	0.008831	0.92%	0.56%	801	839
12.5		5	0.9526	0.9394	0.9742	0.006025	0.01347	1.41%	0.8%	795	834
25		5	0.9663	0.9448	0.9809	0.00592	0.01324	1.37%	-0.62%	802	830
50		5	0.9585	0.9231	0.9748	0.009228	0.02063	2.15%	0.19%	820	855
100		5	0.7341	0.6541	0.8527	0.03659	0.08182	11.15%	23.56%	562	771

Report Date: Test Code: 03 Oct-17 12:49 (p 1 of 1) 1708-S189 | 07-1722-0186

				10			Test				7-1/22-0186	
Bivalve Larv	al Survival and D	Developme	nt Test						Nautilus	Environ	mental (CA)	
Analysis ID: Analyzed:	02-7056-0792 03 Oct-17 12:4	mbined Deve			IS Version: ial Results		.8.7					
Batch Note:	101= 100 perce											
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed	TST b	PMSD	NOEL	LOEL	TOEL	TU	
Angular (Corr	rected)	NA	C*b < T	NA	NA	0.75	0.87%	101	>101	NA	0.9901	
TST-Welch's	t Test											
Control	vs C-%		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision	(a:5%)			
Lab Control	6.25*		22.81	1.895	0.027 7	<0.0001	CDF	Non-Sign	ificant Effect			
	12.5*		18.04	1.943	0.035 6	<0.0001	CDF	Non-Sign	ificant Effect			
	25*		19.42	1.943	0.036 6	<0.0001	CDF	Non-Sign	ificant Effect			
	50*		14.6	2.015	0.047 5	<0.0001	CDF	Non-Sign	ificant Effect			
	100		-0.7482	2.015	0.056 5	0.7560	CDF	Significar				
i	101*		14.09	1.943	0.022 6	<0.0001	CDF	Non-Significant Effect				
ANOVA Tabl	e										Name of the Control o	
Source	Sum Squ	ares	Mean Squ	ıare	DF	F Stat	P-Value	Decision	(α:5%)			
Between	0.6020707	7	0.1003451		6	72.89	<0.0001	Significar	nt Effect			
Error	0.0385487	76	0.0013767	' 42	28							
Total	0.6406195	5			34	_						
Distribution	al Tests											
Attribute	Test	***************************************	· · · · · · · · · · · · · · · · · · ·	Test Stat	Critical	P-Value	Decision	(α:1%)				
Variances	Bartlett E	Equality of V	/ariance	8.432	16.81	0.2081	Equal Var	iances				
Distribution	Shapiro-\	Wilk W Nor	mality	0.9762	0.9146	0.6319	Normal D	istribution				
Combined D	evelopment Rate	Summary	7									
Combined D C-%	Control Type	Summary Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect	
C-% 0				0.9467	0.9739	0.96	Min 0.9467	0.9737	0.004906	1.14%	0.0%	
C-%	Control Type	Count	Mean								0.0% 0.83%	
C-% 0 6.25 12.5	Control Type	Count 5	Mean 0.9603	0.9467 0.9405 0.9359	0.9739 0.9641 0.9694	0.96 0.9465 0.9524	0.9467	0.9737 0.9673 0.9742	0.004906 0.00425 0.006025	1.14% 1.0% 1.41%	0.0% 0.83% 0.8%	
C-% 0 6.25	Control Type	Count 5 5	Mean 0.9603 0.9523	0.9467 0.9405	0.9739 0.9641	0.96 0.9465	0.9467 0.9452	0.9737 0.9673	0.004906 0.00425	1.14% 1.0%	0.0% 0.83%	
C-% 0 6.25 12.5	Control Type	5 5 5 5 5	Mean 0.9603 0.9523 0.9526 0.9663 0.9585	0.9467 0.9405 0.9359 0.9499 0.9328	0.9739 0.9641 0.9694 0.9827 0.9841	0.96 0.9465 0.9524 0.9674 0.9657	0.9467 0.9452 0.9394 0.9448 0.9231	0.9737 0.9673 0.9742 0.9809 0.9748	0.004906 0.00425 0.006025 0.00592 0.009228	1.14% 1.0% 1.41% 1.37% 2.15%	0.0% 0.83% 0.8% -0.62% 0.19%	
C-% 0 6.25 12.5 25	Control Type	5 5 5 5	Mean 0.9603 0.9523 0.9526 0.9663	0.9467 0.9405 0.9359 0.9499	0.9739 0.9641 0.9694 0.9827	0.96 0.9465 0.9524 0.9674	0.9467 0.9452 0.9394 0.9448	0.9737 0.9673 0.9742 0.9809	0.004906 0.00425 0.006025 0.00592	1.14% 1.0% 1.41% 1.37%	0.0% 0.83% 0.8% -0.62%	
C-% 0 6.25 12.5 25 50	Control Type	5 5 5 5 5	Mean 0.9603 0.9523 0.9526 0.9663 0.9585	0.9467 0.9405 0.9359 0.9499 0.9328	0.9739 0.9641 0.9694 0.9827 0.9841	0.96 0.9465 0.9524 0.9674 0.9657	0.9467 0.9452 0.9394 0.9448 0.9231	0.9737 0.9673 0.9742 0.9809 0.9748	0.004906 0.00425 0.006025 0.00592 0.009228	1.14% 1.0% 1.41% 1.37% 2.15%	0.0% 0.83% 0.8% -0.62% 0.19%	
C-% 0 6.25 12.5 25 50 100 101	Control Type	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Mean 0.9603 0.9523 0.9526 0.9663 0.9585 0.7142 0.8607	0.9467 0.9405 0.9359 0.9499 0.9328 0.6488	0.9739 0.9641 0.9694 0.9827 0.9841 0.7797	0.96 0.9465 0.9524 0.9674 0.9657 0.7273	0.9467 0.9452 0.9394 0.9448 0.9231 0.6541	0.9737 0.9673 0.9742 0.9809 0.9748 0.7718	0.004906 0.00425 0.006025 0.00592 0.009228 0.02357	1.14% 1.0% 1.41% 1.37% 2.15% 7.38%	0.0% 0.83% 0.8% -0.62% 0.19% 25.63%	
C-% 0 6.25 12.5 25 50 100 101	Control Type Lab Control	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Mean 0.9603 0.9523 0.9526 0.9663 0.9585 0.7142 0.8607	0.9467 0.9405 0.9359 0.9499 0.9328 0.6488	0.9739 0.9641 0.9694 0.9827 0.9841 0.7797	0.96 0.9465 0.9524 0.9674 0.9657 0.7273	0.9467 0.9452 0.9394 0.9448 0.9231 0.6541	0.9737 0.9673 0.9742 0.9809 0.9748 0.7718	0.004906 0.00425 0.006025 0.00592 0.009228 0.02357	1.14% 1.0% 1.41% 1.37% 2.15% 7.38%	0.0% 0.83% 0.8% -0.62% 0.19% 25.63%	
C-% 0 6.25 12.5 25 50 100 101 Angular (Con	Control Type Lab Control rrected) Transfor	Count 5 5 5 5 5 5 5 5 med Sumr	Mean 0.9603 0.9523 0.9526 0.9663 0.9585 0.7142 0.8607	0.9467 0.9405 0.9359 0.9499 0.9328 0.6488 0.8488	0.9739 0.9641 0.9694 0.9827 0.9841 0.7797 0.8726	0.96 0.9465 0.9524 0.9674 0.9657 0.7273 0.863	0.9467 0.9452 0.9394 0.9448 0.9231 0.6541 0.8447	0.9737 0.9673 0.9742 0.9809 0.9748 0.7718 0.8701	0.004906 0.00425 0.006025 0.00592 0.009228 0.02357 0.004277	1.14% 1.0% 1.41% 1.37% 2.15% 7.38% 1.11%	0.0% 0.83% 0.8% -0.62% 0.19% 25.63% 10.37%	
C-% 0 6.25 12.5 25 50 100 101 Angular (Cor	Control Type Lab Control rrected) Transfor Control Type	Count 5 5 5 5 5 5 5 5 5 5 Count Count	Mean 0.9603 0.9523 0.9526 0.9663 0.9585 0.7142 0.8607 mary Mean	0.9467 0.9405 0.9359 0.9499 0.9328 0.6488 0.8488	0.9739 0.9641 0.9694 0.9827 0.9841 0.7797 0.8726	0.96 0.9465 0.9524 0.9674 0.9657 0.7273 0.863	0.9467 0.9452 0.9394 0.9448 0.9231 0.6541 0.8447	0.9737 0.9673 0.9742 0.9809 0.9748 0.7718 0.8701	0.004906 0.00425 0.006025 0.00592 0.009228 0.02357 0.004277	1.14% 1.0% 1.41% 1.37% 2.15% 7.38% 1.11%	0.0% 0.83% 0.8% -0.62% 0.19% 25.63% 10.37%	
C-% 0 6.25 12.5 25 50 100 101 Angular (Cor	Control Type Lab Control rrected) Transfor Control Type	Count 5 5 5 5 5 5 5 5 5 5 Timed Sumr Count 5	Mean 0.9603 0.9523 0.9526 0.9663 0.9585 0.7142 0.8607 mary Mean 1.372	0.9467 0.9405 0.9359 0.9499 0.9328 0.6488 0.8488 95% LCL	0.9739 0.9641 0.9694 0.9827 0.9841 0.7797 0.8726 95% UCL 1.407	0.96 0.9465 0.9524 0.9674 0.9657 0.7273 0.863 Median 1.369	0.9467 0.9452 0.9394 0.9448 0.9231 0.6541 0.8447	0.9737 0.9673 0.9742 0.9809 0.9748 0.7718 0.8701 Max 1.408	0.004906 0.00425 0.006025 0.00592 0.009228 0.02357 0.004277 Std Err	1.14% 1.0% 1.41% 1.37% 2.15% 7.38% 1.11% CV% 2.07%	0.0% 0.83% 0.8% -0.62% 0.19% 25.63% 10.37% %Effect 0.0%	
C-% 0 6.25 12.5 25 50 100 101 Angular (Cor C-% 0 6.25	Control Type Lab Control rrected) Transfor Control Type	Count 5 5 5 5 5 5 5 5 5 5 5 5 Count Count 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Mean 0.9603 0.9523 0.9526 0.9663 0.9585 0.7142 0.8607 mary Mean 1.372 1.352	0.9467 0.9405 0.9359 0.9499 0.9328 0.6488 0.8488 95% LCL 1.336 1.323	0.9739 0.9641 0.9694 0.9827 0.9841 0.7797 0.8726 95% UCL 1.407 1.381	0.96 0.9465 0.9524 0.9674 0.9657 0.7273 0.863 Median 1.369 1.337	0.9467 0.9452 0.9394 0.9448 0.9231 0.6541 0.8447 Min 1.338 1.335	0.9737 0.9673 0.9742 0.9809 0.9748 0.7718 0.8701 Max 1.408 1.389	0.004906 0.00425 0.006025 0.00592 0.009228 0.02357 0.004277 Std Err 0.01273 0.01044	1.14% 1.0% 1.41% 1.37% 2.15% 7.38% 1.11% CV% 2.07% 1.73%	0.0% 0.83% 0.8% -0.62% 0.19% 25.63% 10.37% %Effect 0.0% 1.47%	
C-% 0 6.25 12.5 25 50 100 101 Angular (Cor C-% 0 6.25 12.5	Control Type Lab Control rrected) Transfor Control Type	Count 5 5 5 5 5 5 med Sumr Count 5 5 5 5 5 5 5 5 5 5 5 5 5	Mean 0.9603 0.9523 0.9526 0.9663 0.9585 0.7142 0.8607 mary Mean 1.372 1.352 1.353	0.9467 0.9405 0.9359 0.9499 0.9328 0.6488 0.8488 95% LCL 1.336 1.323 1.311	0.9739 0.9641 0.9694 0.9827 0.9841 0.7797 0.8726 95% UCL 1.407 1.381 1.396	0.96 0.9465 0.9524 0.9674 0.9657 0.7273 0.863 Median 1.369 1.337 1.351	0.9467 0.9452 0.9394 0.9448 0.9231 0.6541 0.8447 Min 1.338 1.335 1.322	0.9737 0.9673 0.9742 0.9809 0.9748 0.7718 0.8701 Max 1.408 1.389 1.41	0.004906 0.00425 0.006025 0.00592 0.009228 0.02357 0.004277 Std Err 0.01273 0.01044 0.01525	1.14% 1.0% 1.41% 1.37% 2.15% 7.38% 1.11% CV% 2.07% 1.73% 2.52%	0.0% 0.83% 0.8% -0.62% 0.19% 25.63% 10.37% %Effect 0.0% 1.47% 1.34%	
C-% 0 6.25 12.5 25 50 100 101 Angular (Cor C-% 0 6.25 12.5 25	Control Type Lab Control rrected) Transfor Control Type	Count 5 5 5 5 5 5 med Sumr Count 5 5 5 5 5 5 5 5 5 5 5 5 5	Mean 0.9603 0.9523 0.9526 0.9663 0.9585 0.7142 0.8607 mary Mean 1.372 1.352 1.353 1.389	0.9467 0.9405 0.9359 0.9499 0.9328 0.6488 0.8488 95% LCL 1.336 1.323 1.311 1.345	0.9739 0.9641 0.9694 0.9827 0.9841 0.7797 0.8726 95% UCL 1.407 1.381 1.396 1.433	0.96 0.9465 0.9524 0.9674 0.9657 0.7273 0.863 Median 1.369 1.337 1.351 1.389	0.9467 0.9452 0.9394 0.9448 0.9231 0.6541 0.8447 Min 1.338 1.335 1.322 1.334	0.9737 0.9673 0.9742 0.9809 0.9748 0.7718 0.8701 Max 1.408 1.389 1.41 1.432	0.004906 0.00425 0.006025 0.00592 0.009228 0.02357 0.004277 Std Err 0.01273 0.01044 0.01525 0.01589	1.14% 1.0% 1.41% 1.37% 2.15% 7.38% 1.11% CV% 2.07% 1.73% 2.52% 2.56%	0.0% 0.83% 0.88% -0.62% 0.19% 25.63% 10.37% %Effect 0.0% 1.47% 1.34% -1.24%	

Analyst: A QA: 6 LUBINT

Report Date:

03 Oct-17 12:49 (p 1 of 1)

Test Code:

							Test	Code:	1708	3-5189 07	7-1722-0186
Bivalve Larv	al Survival and I	Developme	nt Test						Nautilus	Environn	nental (CA)
Analysis ID: Analyzed:	•		Development Rate Parametric Bioequivalence-Two Sample				IS Version: ial Results:	CETISv1. Yes	8.7		
Batch Note:	101= 100 perc										
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed	TST b	PMSD	NOEL	LOEL	TOEL	TU
Angular (Corr	ected)	NA	C*b < T	NA	NA	0.75	1.31%	101	>101	NA	0.9901
TST-Welch's	t Test										
Control	vs C-%		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision(α:5%)		
Lab Control	6.25*		24.16	1.895	0.026 7	<0.0001	CDF	Non-Signit	ficant Effect		
	12.5*		18.04	1.943	0.035 6	<0.0001	CDF	_	ficant Effect		
	25*		19.42	1.943	0.036 6	< 0.0001	CDF	Non-Signit	ficant Effect		
	50*		14.6	2.015	0.047 5	<0.0001	CDF	Non-Signif	ficant Effect		
	100		0.09912	2.132	0.094 4	0.4629	CDF	Significant			
	101*		10.25	1.895	0.032 7	<0.0001	CDF		ficant Effect		
ANOVA Table	9								500 Table 100 Table 1		
Source	Sum Squares Mea			uare	DF	F Stat	P-Value	Decision(α:5%)		
Between	0.525887	3	0.087647	87	6	37.91	<0.0001	Significant	Effect		
Error	0.064740	01	0.002312	143	28	_					
Total	0.590627	3			34				Dod.		
Distributiona	I Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision((α:1%)			
Variances	Bartlett E	Equality of \	'ariance	12.66	16.81	0.0488	Equal Var	iances			
Distribution	Shapiro-	Wilk W Nor	mality ————	0.9366	0.9146	0.0442	Normal Di	stribution			***************************************
Developmen	t Rate Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	0.9603	0.9467	0.9739	0.96	0.9467	0.9737	0.004906	1.14%	0.0%
6.25		5	0.955	0.944	0.9659	0.9563	0.9463	0.9673	0.00395	0.92%	0.56%
12.5		5	0.9526	0.9359	0.9694	0.9524	0.9394	0.9742	0.006025	1.41%	0.8%
25		5	0.9663	0.9499	0.9827	0.9674	0.9448	0.9809	0.00592	1.37%	-0.62%
50		5	0.9585	0.9328	0.9841	0.9657	0.9231	0.9748	0.009228	2.15%	0.19%
100		5	0.7341	0.6325	0.8357	0.7273	0.6541	0.8527	0.03659	11.15%	23.56%
101		5	0.8681	0.843	0.8932	0.8647	0.8447	0.9	0.009031	2.33%	9.6%
	rected) Transfor		-								
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	1.372	1.336	1.407	1.369	1.338	1.408	0.01273	2.07%	0.0%
6.25		5	1.358	1.331	1.385	1.36	1.337	1.389	0.009708	1.6%	1.02%
12.5		5	1.353	1.311	1.396	1.351	1.322	1.41	0.01525	2.52%	1.34%
25		5	1.389	1.345	1.433	1.389	1.334	1.432	0.01589	2.56%	-1.24%
50		5	1.37	1.311	1.429	1.384	1.29	1.412	0.02131	3.48%	0.15%
100		5	1.033	0.9137	1.153	1.021	0.942	1.177	0.04306	9.32%	24.68%
101		5	1.2	1.162	1.238	1.194	1.166	1.249	0.01369	2.55%	12.53%

Report Date:

03 Oct-17 12:49 (p 1 of 1)

Test Code:

Analyzed:	Division	al Complete de	Na							N. 411		7 1722 0100
Analyzed:	BIVAIVE Larv	ai Survival and I	Develop	ment lest						Nautilus	Environr	nental (CA)
Data Transform	Analysis ID:			•						8.7		
Data Transform	Analyzed:					Sample		Offic	ial Results	: Yes		
Angular (Corrected) NA C > T NA NA 1.46% Fails development rate	Batch Note:	101= 100 perc	ent samp	ole filtered to 0.4	15um 							
Equal Variance t Two-Sample Test Test Stat Critical MSD DF P-Value P-Type Decision(a:5%)	Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed		PMSD	Test Res	ult		
Control vs C-% Test Stat Critical MSD DF P-Value P-Type Decision(α:5%) ANOVA Table Source Sum Squares Mean Square DF F Stat P-Value Decision(α:5%) Between 0.07384486 0.07384486 1 84.57 <0.0001	Angular (Corrected) NA			C > T	NA	NA		1.46%	Fails deve	elopment rate	€	
Lab Control 101* 9.196 1.86 0.035 8 <0.0001 CDF Significant Effect ANOVA Table Source Sum Square Mean Square DF F Stat P-Value Decision(α:5%) Between 0.07384486 1 84.57 <0.0001	Equal Varian	nce t Two-Sampl	e Test									
Source Sum Square DF F Stat P-Value Decision(α:5%)	Control	vs C-%		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision	(α:5%)		
Source Sum Square Mean Square DF F Stat P-Value Decision(α:5%) Between 0.07384486 1.0008731617 8 44.57 <0.0001	Lab Control	101*		9.196	1.86	0.035 8	<0.0001	CDF	Significant Effect			
Between 0.07384486 0.07384486 1 84.57 <0.0001 Significant Effect	ANOVA Tabl	е										
Error 0.006985294 0.0008731617 8 Total 0.08083015 9 Distributional Tests Attribute Test Stat Critical P-Value Decision(α:1%) Variances Variance Ratio F 1.157 23.15 0.8913 Equal Variances Distribution Shapiro-Wilk W Normality 0.941 0.7411 0.5642 Normal Distribution Development Rate Summary C-% Control Type Count Mean 95% LCL 95% UCL Median Min Max Std Err CV% %Effect 0 Lab Control 5 0.9603 0.9467 0.9739 0.96 0.9467 0.9737 0.004906 1.14% 0.0% 101 5 0.8681 0.843 0.8932 0.8647 0.8447 0.9 0.009031 2.33% 9.6% Angular (Corrected) Transformed Summary C-% Control Type Count Mean 95% LCL	Source	Sum Squ	ares	Mean Squ	Mean Square		F Stat	P-Value	Decision	(α:5%)		
Distributional Tests Test Stat Critical P-Value Decision(α:1%)	Between	0.073844	86	0.0738448	36	1	84.57	<0.0001	Significan	t Effect		
Distributional Tests Test Test Stat Critical P-Value Decision(α:1%)	Error	0.006985	294	0.0008731	1617	8						
Attribute Test Test Stat Critical P-Value Decision(α:1%) Variances Variance Ratio F 1.157 23.15 0.8913 Equal Variances Distribution Shapiro-Wilk W Normality 0.941 0.7411 0.5642 Normal Distribution Development Rate Summary C-% Control Type Count Mean 95% LCL 95% UCL Median Min Max Std Err CV% %Effect 0 Lab Control 5 0.9603 0.9467 0.9739 0.96 0.9467 0.9737 0.004906 1.14% 0.0% 101 5 0.8681 0.843 0.8932 0.8647 0.8447 0.9 0.009031 2.33% 9.6% Angular (Corrected) Transformed Summary C-% Control Type Count Mean 95% LCL 95% UCL Median Min Max Std Err CV% %Effect 0 Lab Control 5 1.372 1.336 1.407	Total	0.080830	15			9	_					
Variances Variance Ratio F 1.157 23.15 0.8913 Equal Variances	Distributiona	al Tests										
Distribution Shapiro-Wilk W Normality 0.941 0.7411 0.5642 Normal Distribution	Attribute	Test			Test Stat	Critical	P-Value	Decision((α:1%)			
Development Rate Summary C-% Control Type Count Mean 95% LCL 95% UCL Median Min Max Std Err CV% %Effect 0 Lab Control 5 0.9603 0.9467 0.9739 0.96 0.9467 0.9737 0.004906 1.14% 0.0% 101 5 0.8681 0.843 0.8932 0.8647 0.8447 0.9 0.009031 2.33% 9.6% Angular (Corrected) Transformed Summary C-% Control Type Count Mean 95% LCL 95% UCL Median Min Max Std Err CV% %Effect 0 Lab Control 5 1.372 1.336 1.407 1.369 1.338 1.408 0.01273 2.07% 0.0%	Variances	Variance	Ratio F		1.157	23.15	0.8913	Equal Var	iances			
C-% Control Type Count Mean 95% LCL 95% UCL Median Min Max Std Err CV% %Effect 0 Lab Control 5 0.9603 0.9467 0.9739 0.96 0.9467 0.9737 0.004906 1.14% 0.0% 101 5 0.8681 0.843 0.8932 0.8647 0.8447 0.9 0.009031 2.33% 9.6% Angular (Corrected) Transformed Summary C-% Control Type Count Mean 95% LCL 95% UCL Median Min Max Std Err CV% %Effect 0 Lab Control 5 1.372 1.336 1.407 1.369 1.338 1.408 0.01273 2.07% 0.0%	Distribution	Shapiro-	Wilk W N	Vormality	0.941	0.7411	0.5642	Normal Di	stribution			
O Lab Control 5 0.9603 0.9467 0.9739 0.96 0.9467 0.9737 0.004906 1.14% 0.0% 101 5 0.8681 0.843 0.8932 0.8647 0.8447 0.9 0.009031 2.33% 9.6% Angular (Corrected) Transformed Summary C-% Control Type Count Mean 95% LCL 95% UCL Median Min Max Std Err CV% %Effect 0 Lab Control 5 1.372 1.336 1.407 1.369 1.338 1.408 0.01273 2.07% 0.0%	Developmen	t Rate Summary										
101 5 0.8681 0.843 0.8932 0.8647 0.8447 0.9 0.009031 2.33% 9.6% Angular (Corrected) Transformed Summary C-% Control Type Count Mean 95% LCL 95% UCL Median Min Max Std Err CV% %Effect 0 Lab Control 5 1.372 1.336 1.407 1.369 1.338 1.408 0.01273 2.07% 0.0%	C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
Angular (Corrected) Transformed Summary C-% Control Type Count Mean 95% LCL 95% UCL Median Min Max Std Err CV% %Effect 0 Lab Control 5 1.372 1.336 1.407 1.369 1.338 1.408 0.01273 2.07% 0.0%	0	Lab Control	5	0.9603	0.9467	0.9739	0.96	0.9467	0.9737	0.004906	1.14%	0.0%
C-% Control Type Count Mean 95% LCL 95% UCL Median Min Max Std Err CV% %Effect 0 Lab Control 5 1.372 1.336 1.407 1.369 1.338 1.408 0.01273 2.07% 0.0%	101		5	0.8681	0.843	0.8932	0.8647	0.8447	0.9	0.009031	2.33%	9.6%
0 Lab Control 5 1.372 1.336 1.407 1.369 1.338 1.408 0.01273 2.07% 0.0%	Angular (Cor	rrected) Transfoi	med Su	mmary								
	C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
101 5 1.2 1.162 1.238 1.194 1.166 1.249 0.01369 2.55% 12.53%	0	Lab Control	5	1.372	1.336	1.407	1.369	1.338	1.408	0.01273	2.07%	0.0%
	101		5	1.2	1.162	1.238	1.194	1.166	1.249	0.01369	2.55%	12.53%

Report Date:

03 Oct-17 12:50 (p 1 of 1)

Test Code:

The way of the same of the sam									1,0	0.0010	7-1722-010
Bivalve Larva	al Survival and I	Developme	ent Test						Nautilus	Environ	nental (CA
Analysis ID:	• *****				elopment Ra	ite	CETIS Version: CETISv1.8.7				
Analyzed:	03 Oct-17 12:4	49 A n	ı alysis : Par	ametric-Two	Sample		Offic	ficial Results: Yes			
Batch Note:	101= 100 perc	ent sample	filtered to 0.4	15um							
Data Transfo	rm	Zeta	Alt Hyp	Trials	Seed		PMSD Test Result				
Angular (Corre	ected)	NA	C > T	NA	NA		1.06%	Fails com	bined develo	pment rat	е
Equal Varian	ce t Two-Sampl	e Test	The state of the s								
Control	vs C-%		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision(α:5%)			
Lab Control	101*		12.99	1.86	0.026 8	<0.0001	CDF	Significant Effect			
ANOVA Table	•										
Source	Sum Squ	iares	Mean Squ	ıare	DF	F Stat	P-Value	Decision(α:5%)		
Between	0.084036	51	0.0840365	51	1	168.8	<0.0001	Significant	Effect		
Error	0.003983	83749 0.00049		0.0004979686							
Total	0.088020	26			9	_					
Distributiona	l Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision((α:1%)			
Variances	Variance	Ratio F		4.35	23.15	0.1835	Equal Var	iances	······································		****
Distribution	Shapiro-	Wilk W Nor	mality	0.9785	0.7411	0.9569	Normal Di	stribution			
Combined De	evelopment Rate	Summary	1								10000000000000000000000000000000000000
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	0.9603	0.9467	0.9739	0.96	0.9467	0.9737	0.004906	1.14%	0.0%
101		5	0.8607	0.8488	0.8726	0.863	0.8447	0.8701	0.004277	1.11%	10.37%
Angular (Corr	rected) Transfor	med Sumi	mary								
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	1.372	1.336	1.407	1.369	1.338	1.408	0.01273	2.07%	0.0%
101		5	1.188	1.172	1.205	1.192	1.166	1.202	0.006102	1.15%	13.37%

Report Date: Test Code: 03 Oct-17 13:32 (p 1 of 1)

Rivalve Larv	al Survival and I	Developm	ont Tost					Code:			2-4100-U00/
									CETISv1		nental (CA)
Analysis ID: Analyzed:	b: 08-7514-8055				CET e Offic						
Batch Note:	101= 100 perc	ent sample	e filtered to 0.4	15um							
Data Transform Zeta Alt Hyp			Alt Hyp	Trials	Seed	TST b		NOEL	LOEL	TOEL	TU
Angular (Corr	rected)	NA	C*b < T	NA	NA	0.75		101	>101	NA	0.9901
TST-Welch's	t Test										
Control	vs C-%	Test Stat		Critical	MSD D	F P-Value	P-Type	Decision	(α:5%)		
Lab Control	6.25*		0.3824	NA		<0.05		Non-Signi	ficant Effect		
	12.5*		0.3824	NA		<0.05		Non-Signi	ficant Effect		
	25*		0.3824	NA		<0.05		Non-Significant Effect			
	50*		0.3824	NA		< 0.05		Non-Significant Effect			
	100*		2.416	2.132	0.202 4	0.0366	CDF	_	ficant Effect		
	101*		0.3824	2.132	4	<0.05	CDF		ficant Effect		
ANOVA Table	e										
Source	Sum Squ	ares	Mean Squ	ıare	DF	F Stat	P-Value	Decision	(α:5%)		
Between	0.101419	9	0.0169033	32	6	2.644	0.0369	Significan	t Effect		
Error	0.178977	3	0.0063920)47	28			Ü			
Total	0.280397	2			34						
Distributiona	al Tests			***************************************							
Attribute	Test			Test Stat	Critical	P-Value	Decision(α:1%)			
Variances	Mod Lev	ene Equal	ity of Variance	2.97	3.812	0.0293	Equal Var	***************************************			
Variances		Equality of	-	79.32	3.528	<0.0001	Unequal V				
Distribution		Wilk W No		0.5188	0.9146	<0.0001		al Distributio	on		
Survival Rate	e Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	1	1	1	1	1	1	0	0.0%	0.0%
6.25		5	1	1	1	1	1	1	0	0.0%	0.0%
12.5		5									
		0	1	1	1	1	1	1	0	0.0%	0.0%
25		5	1 1	1	1	1 1	1 1	1 1	0 0	0.0% 0.0%	0.0% 0.0%
25 50			1 1 1	1 1 1	1 1 1	1 1 1	1 1 1	1 1 1		0.0%	0.0%
		5	1 1 1 0.9315	1 1 1 0.8137	1 1 1 1	1 1 1 1	1 1 1 0.8082	1 1 1 1	0		
50		5 5	1 1 1 0.9315	1 1 1 0.8137 1	1 1 1 1	1 1 1 1	1 1 1 0.8082 1	1 1 1 1	0 0	0.0% 0.0%	0.0% 0.0%
50 100 101	rected) Transfor	5 5 5 5	1		1 1 1 1	1 1 1 1 1		1 1 1 1 1	0 0 0.04244	0.0% 0.0% 10.19%	0.0% 0.0% 6.85%
50 100 101	rected) Transfor Control Type	5 5 5 5	1		1 1 1 1 1 95% UCL	1 1 1 1 1 Median		1 1 1 1 1	0 0 0.04244	0.0% 0.0% 10.19%	0.0% 0.0% 6.85%
50 100 101 Angular (Cor C- %	•	5 5 5 5 med Sum	1 mary	1	1	1 1 1 1 1 1 Median	1	1 1 1 1 1 1 1 Max	0 0 0.04244 0	0.0% 0.0% 10.19% 0.0%	0.0% 0.0% 6.85% 0.0%
50 100 101 Angular (Cor	Control Type	5 5 5 5 med Sum Count	1 mary Mean	1 95% LCL	1 95% UCL	~~~~~~	1 Min		0 0 0.04244 0 Std Err	0.0% 0.0% 10.19% 0.0%	0.0% 0.0% 6.85% 0.0%
50 100 101 Angular (Cor C-%	Control Type	5 5 5 5 med Sum Count 5	mary Mean 1.529	95% LCL 1.529	95% UCL 1.53	1.529	Min 1.529	1.529	0 0 0.04244 0 Std Err	0.0% 0.0% 10.19% 0.0%	0.0% 0.0% 6.85% 0.0% %Effect
50 100 101 Angular (Cor C-% 0 6.25	Control Type	5 5 5 5 5 med Sum Count 5 5	1 mary Mean 1.529 1.529	95% LCL 1.529 1.529	95% UCL 1.53 1.53	1.529 1.529	Min 1.529 1.529	1.529 1.529	0 0 0.04244 0 Std Err	0.0% 0.0% 10.19% 0.0% CV% 0.0% 0.0%	0.0% 0.0% 6.85% 0.0% %Effect 0.0% 0.0%
50 100 101 Angular (Cor C-% 0 6.25 12.5	Control Type	5 5 5 5 med Sum Count 5 5	1 mary Mean 1.529 1.529 1.529	95% LCL 1.529 1.529 1.529	95% UCL 1.53 1.53 1.53	1.529 1.529 1.529	Min 1.529 1.529 1.529	1.529 1.529 1.529	0 0 0.04244 0 Std Err 0 0	0.0% 0.0% 10.19% 0.0% CV% 0.0% 0.0%	0.0% 0.0% 6.85% 0.0% %Effect 0.0% 0.0%
50 100 101 Angular (Cor C-% 0 6.25 12.5 25	Control Type	5 5 5 5 med Sum Count 5 5 5	1 mary Mean 1.529 1.529 1.529 1.529	95% LCL 1.529 1.529 1.529 1.529	95% UCL 1.53 1.53 1.53 1.53	1.529 1.529 1.529 1.529	Min 1.529 1.529 1.529 1.529	1.529 1.529 1.529 1.529	0 0 0.04244 0 Std Err 0 0 0	0.0% 0.0% 10.19% 0.0% CV% 0.0% 0.0% 0.0%	0.0% 0.0% 6.85% 0.0% %Effect 0.0% 0.0% 0.0%

Report Date:

03 Oct-17 13:32 (p 1 of 1)

Test Code:

1708-S188 | 12-4185-0887

						w		iesi	Code:	1700	3-5 186 12	2-4185-0887
Bivalve Larv	al Survival and I	Developme	nt Test						**************************************	Nautilus	Environn	nental (CA)
Analysis ID:	16-8680-1507	End	dpoint: Sur	vival Rate				CET	IS Version:	CETISv1.	8.7	
Analyzed:	03 Oct-17 13:3	32 An a	alysis: No	nparametric-	Control v	∕s T	reatments	Offic	ial Results	: Yes		
Batch Note:	101= 100 perc	ent sample	filtered to 0.4	l5um								
Data Transfo		Zeta	Alt Hyp	Trials	Seed			PMSD	NOEL	LOEL	TOEL	TU
Angular (Corr	rected)	NA ————	C > T	NA —————	NA			2.88%	100	>100	NA	1
Steel Many-0	One Rank Sum T	est										
Control	vs C-%		Test Stat	Critical	Ties	DF	P-Value	P-Type	Decision	(α:5%)		
Lab Control	6.25		27.5	16	1	8	0.8333	Asymp	Non-Signi	ficant Effect		
	12.5		27.5	16	1	8	0.8333	Asymp	Non-Signi	ficant Effect		
	25		27.5	16	1	8	0.8333	Asymp	Non-Signi	ficant Effect		
	50		27.5	16	1	8	0.8333	Asymp	-	ficant Effect		
	100		22.5	16	1	8	0.3937	Asymp	-	ficant Effect		
ANOVA Table	e											
Source	Sum Squ	ares	Mean Squ	ıare	DF		F Stat	P-Value	Decision(α:5%)		
Between	0.098602	 69	0.0197205	54	5		2.644	0.0485	Significan	t Effect		
Error	0.178977	3	0.0074573	889	24				· ·			
Total	0.27758				29		_					
Distributiona	al Tests											
Attribute	Test			Test Stat	Critica	I	P-Value	Decision(α:1%)			
Variances	Mod Lev	ene Equality	of Variance	2.97	4.248		0.0398	Equal Var	iances			
Variances	Levene E	Equality of V	ariance	79.32	3.895		<0.0001	Unequal √	/ariances			
Distribution	Shapiro-	Wilk W Norr	mality	0.5631	0.9031		<0.0001	Non-norm	al Distribution	on		
Survival Rate	e Summary											
C-%	Control Type	Count	Mean	95% LCL	95% U	CL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	1	1	1		1	1	1	0	0.0%	0.0%
6.25		5	1	1	1		1	1	1	0	0.0%	0.0%
12.5		5	1	1	1		1	1	1	0	0.0%	0.0%
25					4		1	1	1	0	0.0%	0.0%
		5	1	1	1			•	•	0		
50		5 5	1 1	1	1		1	1	1	0	0.0%	0.0%
50 100			1 1 0.9315	1 1 0.8137	1		1 1	1 0.8082	1			0.0% 6.85%
100	rected) Transfor	5 5	0.9315	1 1 0.8137			1	1 0.8082	1	0	0.0%	
100	Control Type	5 5	0.9315	1 1 0.8137 95% LCL	1	OL.	1 1 Median	1 0.8082 Min	1 1 Max	0	0.0%	
100 Angular (Cor	•	5 5 med Summ Count 5	0.9315 nary		1	CL				0 0.04244	0.0% 10.19%	6.85%
100 Angular (Cor C-%	Control Type	5 5 med Summ Count	0.9315 lary Mean	95% LCL	95% U	CL	Median	Min	Max	0 0.04244 Std Err	0.0% 10.19% CV%	6.85% %Effect
Angular (Cor C-%	Control Type	5 5 med Summ Count 5	0.9315 nary Mean 1.529	95% LCL 1.529	95% UC	CL	Median	Min 1.529	Max 1.529	0 0.04244 Std Err	0.0% 10.19% CV % 0.0%	6.85% %Effect 0.0%
100 Angular (Cor C-% 0 6.25	Control Type	5 5 med Summ Count 5 5	0.9315 pary Mean 1.529 1.529	95% LCL 1.529 1.529	95% UC 1.53 1.53	CL	Median 1.529 1.529	Min 1.529 1.529	Max 1.529 1.529 1.529	0 0.04244 Std Err 0 0	0.0% 10.19% CV% 0.0% 0.0% 0.0%	6.85% %Effect 0.0% 0.0% 0.0%
100 Angular (Cor C-% 0 6.25 12.5	Control Type	5 5 med Summ Count 5 5	0.9315 Mean 1.529 1.529 1.529	95% LCL 1.529 1.529 1.529	95% UC 1.53 1.53 1.53	CL	Median 1.529 1.529 1.529	Min 1.529 1.529 1.529	Max 1.529 1.529	0 0.04244 Std Err 0 0	0.0% 10.19% CV% 0.0% 0.0%	%Effect 0.0% 0.0%

Report Date:

03 Oct-17 13:33 (p 1 of 1)

Test Code:

1708-S188 | 12-4185-0887

	The second secon										
Bivalve Larv	al Survival and	Developme	ent Test						Nautilu	s Environ	mental (CA)
Analysis ID: Analyzed:	06-3515-4261 03 Oct-17 13:			rvival Rate	-Two Sampl	e		IS Version:		1.8.7	
Batch Note:	101= 100 perc	ent sample									
Data Transfo	orm	Alt Hyp	Trials	Seed			Test Res	ult			
Angular (Corrected) NA C > T NA NA Passes survival rate											
Wilcoxon Ra	ank Sum Two-Sa	mple Test									
Control	vs C-%		Test Stat	Critical	Ties DF	P-Value	P-Type	Decision	(a:5%)		
Lab Control	101		27.5	NA	1 8	1.0000	Exact	Non-Sign	ificant Effec	t	
ANOVA Tabl	е										
Source	Sum Sqւ	ıares	Mean Squ	ıare	DF	F Stat	P-Value	Decision	(α:5%)		
Between	0		0		1	65540	<0.0001	Significan			NII
Error	0		0		8			-			
Total	0				9						
Survival Rat	e Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	1	1	1	1	1	1	0	0.0%	0.0%
101		5	1	1	1	1	1	1	0	0.0%	0.0%
Angular (Co	rrected) Transfor	med Sumr	mary								
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	1.529	1.529	1.53	1.529	1.529	1.529	0	0.0%	0.0%
101		5	1.529	1.529	1.53	1.529	1.529	1.529	0	0.0%	0.0%
ATTORNEY											

Client: AMEC/POSD	Test Species: M. galloprovincialis

Sample ID: SIYB-2 **Start Date/Time:** 8/24/2017 1600

Test ID: 1708-S189 End Date/Time: 8/26/2017 1600

		Number	Abnormal	Total Number	
Random #	Number Normal	Number Curved Shell	All other abnormal	Counted	Intials/Date
71	104		54	159	PL 8/28/17
72	141	0	54	149	
73	163	0	7	170	
74	154	0	9	163	
75	138	Ò	6	144	
76	130) 0	11	151	
77	142	0	8	150	
78	154	0	3	157	
79	144	0	7	151	
80	155	0	4	159	
81	144	0	12	. 156	
82	168	0	7	(A) 175 175	
83	iis	2	32	149	
84	161	U	5	166	
85	167	Ò	10	177	
86	105	3	50	158	
87	147	7	16	170	
88	185	0	5	190	
89	197	0	9	206	
90	148	0	5	153]
91	134		19	154	
92	136	3	22	161	
93	183	0	6	189	
94	155	0	10	165	
95	178	0	6	184	
96	142	0	1	149	
97	189	0	5	194	
98	128	24	44	176	
99	126	6	E	140	
100	168	0	5	[73	
101	140	0		147	
102	177	ı	q	187	
103	148	0	5	153	
104	197	Ô	7	704 179	
105	110	4	15	179	

Comments:	(A) 0188 NV/2117	
QC Check:	A210/2/17	Final Review: Es W FW

CETIS Test Data Worksheet

Start Date:

Report Date:

21 Aug-17 18:02 (p 1 of 1) 07-1722-0186/1708-S189

Test Code:

Nautilus Environmental (CA)

Bivalve Larval Survival and Development Test

24 Aug-17

Species: Mytilus galloprovincialis Sample Code: 17- 0933

End Date: 26 Aug-17 **Protocol**: EPA/600/R-95/136 (1995) Sample Source: Shelter Island Yacht Basin

Sample Date: 23 Aug-17 Material: Ambient Water Sample Station: SIYB-2

Code LC		Pos	Initial Density	Final Density	# Counted	# Normal	Notes
1 1	4 1				" Countou	# Normal	Notes
	1	96					
LC	2	82					
LC	3	93					
LC	5						
	1						
	2						
	3	75				· ·	
	4	103					
	5	102					
	1	97					
	2	94					
	3	85					
	4	79					
	5	101					
	1	100	***************************************				11 710 (100)
	2	78					
	3	90					
	4	95	***************************************				
	5	74					
	1	73					
	2	81					
	3	84					
	4	104					
	5	80					
	1	105		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	130	112	AC8[27]17
	2	71				, ,	
	3	83					
	4	98					
	5	86					
	1	91					
	2	76					
	3	99					
	4	87					VA.
	5	92					
	LC	LC 4 LC 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 4 5 1 2 3 4 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5	LC 4 88 LC 5 77 1 89 2 72 3 75 4 103 5 102 1 97 2 94 3 85 4 79 5 101 1 100 2 78 3 90 4 95 5 74 1 73 2 81 3 84 4 104 5 80 1 105 2 71 3 83 4 98 5 86 1 91 2 76 3 99 4 87	LC 4 88 LC 5 77 1 89 2 72 3 75 4 103 5 102 1 97 2 94 3 85 4 79 5 101 1 100 2 78 3 90 4 95 5 74 1 73 2 81 3 84 4 104 5 80 1 105 2 71 3 83 4 98 5 86 1 91 2 76 3 99 4 87	LC 4 88 LC 5 77 1 89 2 72 3 75 4 103 5 102 1 97 2 94 3 85 4 79 5 101 1 100 2 78 3 90 4 95 5 74 1 73 2 81 3 84 4 104 5 80 1 105 2 71 3 83 4 98 5 86 1 91 2 76 3 99 4 87	LC	LC 4 88 LC 5 77 1 89 2 72 3 75 4 103 5 102 1 97 2 94 3 85 4 79 5 101 1 100 2 78 3 90 4 95 5 74 1 73 2 81 3 84 4 104 5 80 1 105 2 71 3 83 4 98 5 86 1 1 91 2 76 3 99 4 87

OCISAL SIZILIT

Marine Chronic Bioassay

Water Quality Measurements

Client: AMEC/POSD Sample ID: SIYB-2

Start Date/Time: 8/24/2017 /6:00

Test Species: M. galloprovincialis

Sample Log No.: 17- 0933

End Date/Time: 8/26/2017 / 6 ; 00

Test No.: 1708-S189

Concentration (%)	on Salinity (ppt)			Temperature (°C)				Dissolved Oxygen (mg/L)			pH (pH units)		
	0	24	48	0	24	48	0	24	48	0	24	48	
Lab Control	33.8	33.5	33.5	15.3	15.0	14.6	8,4	7.9	8.0	8.08	9.05	8.01	
6.25	33.8	35.7	33, 7	147	14.6	14,5	8.3	7.8	8.0	8.02	8.02	8.00	
12.5	33.8	337	33.8	14.5	14.6	14.5	8.3	7. 8	8.0	8.03	8.03	ਹੋ.00	
25	33.9	33.6	33.7	14.8	14.6	14,5	8.2	7.9	3.0	8.02	8.03	7.99	
50	33.8	33.7	33.7	14.8	14.5	14.5	8.2	7.9	8.0	8.03	8.03	8,00	
100	34.0	33.9	34.0	14.6	14.5	14.4	8.4	7.8	8.0	8.03	8.03	7.99	
100 filtered	33.9	33.4	33,4	15.0	15.0	14.3	7.3	7.7	3.6	8.01	8.01	7,99	

		0	24	48
Technician Initials:	WQ Readings:	AC	C6	DM
	Dilutions made by:	AL/EG		

Comments:	0 hrs:	
	24 hrs:	
	48 hrs:	
QC Check:	AC8/27/17	Final Review: *> W/2/V7

Final Review: 6 10/7/17

	•								
		10 0					16:00		
Client:	AMEY POSD S	31415-2	_	Start Dat		/24/2017	•		
Test No.:	1708-5189		_	End Dat		/26/2017	16100		
Test Species:	Mytilus galloprovincialis		_	Technician	n Initials: <u>CH/A</u>	I C			
Animal Source:	Mission Bay		_						
Date Received:	3(2/17		_						
Test Chambers:	30 mL glass shell vials	· · · · · · · · · · · · · · · · · · ·	-						
Sample Volume:	10 mL		_						
Spawn Information	on	Game	Gamete Selection						
First Gamete Relea	ase Time: 1230		Sex Beaker Condition (sperm motility, egg etc.)				, egg density, color, shape, tc.)		
			Male	a5+3,4,5	6100d d	ensite	and motility		
Sex	Number Spawning		Female 1	1	High dens	ity, pal	l orange cour, un form in		
Male	5ナ		Female 2	2	Grood dens	sity far	e orange color, un form in		
Female	3		Female 3	3			e orange color, Mife		
						- 	sin.		
			E	gg Fertilization Time:	: <u>1315 </u>		M		
Embryo Stock Se									
Stock Number	% of embryos at 2-cell division stage		Stock((s) chosen for testing	:				
Female 1	99								
Female 2	100								
Female 3	100								
Embryo Inoculum Target count on Se Number Counted:	edgwick-Rafter slide for desir	ed density is 6 eml		Mean:	-				
	Mean	X 50 =	05_6	embryos/ml					
Initial Desired Final (to inoculate wit		=	(B) (dilution factor)					
	nt dividing is ≥ 90, prepare th ing stock (1 part) and 125 m				ution factor. For	example, it	the dilution factor is 2.25,		
	Time Zero Control Coun	ts							
	Rep No. Dividing	Total % D	ividing	Mean % Dividing	18-h QC: <u>\}'1/</u>	147 (44	1°/v)		
Comments	TØB 162 1 TØC 3143 TØD 5134 1 TØE 157 TØF 145	143 100 34 10 158 99 145 10	50 6 6 6 7	99,97.	<u> </u>	1100	· ·· ,		
Comments:	@CH Q18 8/24/17) <u>X</u> .	41V10	117-146					

AC 8/27/17

QC Check:

Site: SIYB-3

CETIS Summary Report

Report Date:

03 Oct-17 12:55 (p 1 of 4)

Test Code: 1708-S190 | 12-9117-2946 **Bivalve Larval Survival and Development Test** Nautilus Environmental (CA) Batch ID: 09-7048-4195 Test Type: Development-Survival Analyst: Start Date: 24 Aug-17 16:00 Protocol: EPA/600/R-95/136 (1995) Diluent: Laboratory Seawater Ending Date: 26 Aug-17 16:00 Species: Mytilus galloprovincialis Brine: Not Applicable **Duration:** Source: Mission Bay Age: 06-5181-9973 Sample ID: Code: 17-0934 Client: Amec Foster Wheeler Sample Date: 23 Aug-17 12:15 Material: **Ambient Water** Project: Receive Date: 23 Aug-17 17:15 Source: Shelter Island Yacht Basin Sample Age: 28h (3.5 °C) Station: SIYB-3 Batch Note: 101= 100 percent sample filtered to 0.45um **Comparison Summary** Analysis ID **Endpoint** NOEL LOEL TOEL **PMSD** TU Method 18-1605-8388 Combined Development Ra 100 >100 NA 5.9% 1 **Dunnett Multiple Comparison Test** 13-8051-6944 Development Rate 100 >100 **Dunnett Multiple Comparison Test** NΑ 2.8% 1 13-5528-7470 Survival Rate 100 >100 NA 3.73% 1 Steel Many-One Rank Sum Test Point Estimate Summary Analysis ID Endpoint Level 95% LCL 95% UCL TU Method 02-0434-9028 Combined Development Ra EC25 >100 N/A N/A <1 Linear Interpolation (ICPIN) EC50 >100 N/A N/A <1 20-7893-4732 Development Rate EC25 >100 N/A N/A <1 Linear Interpolation (ICPIN) EC50 >100 N/A N/A <1 07-5105-3261 Survival Rate EC25 >100 N/A N/A <1 Linear Interpolation (ICPIN) EC50 >100 N/A N/A <1 **Test Acceptability** Analysis ID **Endpoint** Attribute Test Stat TAC Limits Overlap Decision 13-8051-6944 Development Rate Control Resp 0.9537 0.9 - NL Passes Acceptability Criteria Yes 20-7893-4732 **Development Rate** Control Resp 0.9537 0.9 - NL Yes Passes Acceptability Criteria 07-5105-3261 Survival Rate Control Resp 0.9767 0.5 - NL Yes Passes Acceptability Criteria 13-5528-7470 Survival Rate Control Resp 0.9767 0.5 - NL Yes Passes Acceptability Criteria 18-1605-8388 Combined Development Ra PMSD 0.05896 Passes Acceptability Criteria NL - 0.25 No

25

Report Date: Test Code:

03 Oct-17 12:55 (p 2 of 4) 1708-S190 | 12-9117-2946

Bivalve Larval Survival and Development Test Nautilus Environmental (CA) **Combined Development Rate Summary** C-% **Control Type** Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% %Effect 0 Filter Control 0.9523 5 0.9238 0.9808 0.913 0.9689 0.01026 0.02294 2.41% 0.0% 0 Lab Control 5 0.9317 0.8644 0.9989 0.8356 0.9661 0.02423 0.05418 5.82% 2.17% 6.25 5 0.9686 0.954 0.9832 0.9588 0.9824 0.00526 0.01176 1.21% -1.71% 12.5 5 0.03292 0.955 0.9141 0.9958 0.8973 0.9761 0.01472 3.45% -0.28% 25 5 0.9592 0.9353 0.9831 0.9371 0.9867 0.008613 0.01926 2.01% -0.72% 0.01179 50 5 0.9695 0.9548 0.9841 0.9542 0.9872 0.005273 1.22% -1.8% 100 5 0.8908 0.8091 0.9725 0.8014 0.9548 0.02942 0.06577 7.38% 6.46% 101 5 0.8905 0.9634 0.02681 0.9238 0.9571 0.9012 0.01199 2.9% 2.99% **Development Rate Summary Control Type** Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% %Effect 0 Filter Control 5 0.9523 0.9238 0.9808 0.913 0.9689 0.02294 0.01026 2.41% 0.0% 0 Lab Control 5 0.9537 0.9432 0.9642 0.9457 0.9661 0.008463 0.003785 0.89% -0.14% 6.25 5 0.9686 0.954 0.9832 0.9588 0.9824 -1.71% 0.00526 0.01176 1.21% 5 12.5 0.9654 0.9515 0.9792 0.9493 0.9761 0.004989 0.01116 1.16% -1.37%

50		5	0.9695	0.9548	0.9841	0.9542	0.9872	0.005273	0.01179	1.22%	-1.8%
100		5	0.9305	0.8982	0.9629	0.8913	0.9548	0.01167	0.02609	2.8%	2.29%
101		5	0.9327	0.905	0.9605	0.9012	0.9634	0.009987	0.02233	2.39%	2.06%
Survival	Rate Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Filter Control	5	1	1	1	1	1	0	0	0.0%	0.0%
0	Lab Control	5	0.9767	0.9121	1	0.8836	1	0.02329	0.05207	5.33%	2.33%
6.25		5	1	1	1	1	1	0	0	0.0%	0.0%
12.5		5	0.989	0.9586	1 .	0.9452	1	0.01096	0.0245	2.48%	1.1%
25		5	0.9959	0.9845	1	0.9795	1	0.00411	0.009189	0.92%	0.41%
50		5	1	1	1	1	1	0	0	0.0%	0.0%
100		5	0.9575	0.8724	1	0.8425	1	0.03066	0.06856	7.16%	4.25%
101		5	0.9904	0.9738	1	0.9726	1	0.005971	0.01335	1.35%	0.96%

0.9851

0.9371

0.9867

0.007884

0.01763

1.83%

-1.14%

5

0.9632

0.9413

03 Oct-17 12:55 (p 3 of 4) 1708-S190 | 12-9117-2946

Bivalve L	arval Survival and I	Developme	nt Test				Nautilus Environmental (CA)
Combine	d Development Rate	e Detail					
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	Filter Control	0.913	0.9565	0.9686	0.9545	0.9689	
0	Lab Control	0.9509	0.9583	0.9661	0.9474	0.8356	
6.25		0.9824	0.9805	0.9588	0.961	0.9602	
12.5		0.9761	0.9675	0.8973	0.9594	0.9745	
25		0.9615	0.9867	0.9655	0.9452	0.9371	
50		0.9689	0.9706	0.9664	0.9872	0.9542	
100		0.8425	0.8014	0.9191	0.9363	0.9548	
101		0.9634	0.9041	0.911	0.9394	0.9012	
Developn	nent Rate Detail		The second section of				
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	Filter Control	0.913	0.9565	0.9686	0.9545	0.9689	
0	Lab Control	0.9509	0.9583	0.9661	0.9474	0.9457	
6.25		0.9824	0.9805	0.9588	0.961	0.9602	
12.5		0.9761	0.9675	0.9493	0.9594	0.9745	
25		0.9615	0.9867	0.9655	0.965	0.9371	
50		0.9689	0.9706	0.9664	0.9872	0.9542	
100		0.8913	0.9512	0.9191	0.9363	0.9548	
101		0.9634	0.9296	0.9301	0.9394	0.9012	
Survival I	Rate Detail						
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	Filter Control	1	1	1	1	1	
0	Lab Control	1	1	1	1	0.8836	
6.25		1	1	1	1	1	
12.5		1	1	0.9452	1	1	
25		1	1	1	0.9795	1	
50		1	1	1	1	1	
100		0.9452	0.8425	1	1	1	
101		1	0.9726	0.9795	1	1	

03 Oct-17 12:55 (p 4 of 4) 1708-S190 | 12-9117-2946

							 1100 0100 12 0111 2010
Bivalve La	rval Survival and I	Developme	nt Test				Nautilus Environmental (CA)
Combined	Development Rate	e Binomials					
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	Filter Control	147/161	176/184	185/191	189/198	187/193	
0	Lab Control	155/163	184/192	171/177	144/152	122/146	
6.25		167/170	201/205	163/170	148/154	169/176	
12.5		204/209	149/154	131/146	189/197	153/157	
25		150/156	148/150	168/174	138/146	149/159	
50		156/161	165/170	144/149	154/156	146/153	
100		123/146	117/146	159/173	147/157	148/155	
101		158/164	132/146	133/146	155/165	146/162	
Developm	ent Rate Binomials						
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	Filter Control	147/161	176/184	185/191	189/198	187/193	
0	Lab Control	155/163	184/192	171/177	144/152	122/129	
6.25		167/170	201/205	163/170	148/154	169/176	
12.5		204/209	149/154	131/138	189/197	153/157	
25		150/156	148/150	168/174	138/143	149/159	
50		156/161	165/170	144/149	154/156	146/153	
100		123/138	117/123	159/173	147/157	148/155	
101		158/164	132/142	133/143	155/165	146/162	
Survival R	ate Binomials						
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	Filter Control	146/146	146/146	146/146	146/146	146/146	
0	Lab Control	146/146	146/146	146/146	146/146	129/146	
6.25		146/146	146/146	146/146	146/146	146/146	
12.5		146/146	146/146	138/146	146/146	146/146	
25		146/146	146/146	146/146	143/146	146/146	
50		146/146	146/146	146/146	146/146	146/146	
100		138/146	123/146	146/146	146/146	146/146	
101		146/146	142/146	143/146	146/146	146/146	

Report Date:

03 Oct-17 12:54 (p 1 of 6)

Test Code: 1708-S190 | 12-9117-2946 **Bivalve Larval Survival and Development Test** Nautilus Environmental (CA) **CETISv1.8.7** 18-1605-8388 Endpoint: Combined Development Rate **CETIS Version:** Analysis ID: Analyzed: 03 Oct-17 12:54 Analysis: Parametric-Control vs Treatments Official Results: Yes 101= 100 percent sample filtered to 0.45um Batch Note: TOEL TU **PMSD** NOEL LOEL **Trials** Seed **Data Transform** Zeta Alt Hyp 100 NA Angular (Corrected) C > T NA NA 5.9% >100 1 **Dunnett Multiple Comparison Test** vs C-% Test Stat Critical MSD DF P-Value P-Type Decision(a:5%) Control Non-Significant Effect CDF Lab Control 6.25 -1.718 2.362 0.106 8 0.9981 CDF Non-Significant Effect 12.5 -1.055 2.362 0.106 8 0.9857 25 2.362 0.9911 CDF Non-Significant Effect -1.2170.106 8 CDF Non-Significant Effect 50 -1.782 2.362 0.106 8 0.9985 100 1.623 2.362 0.106 8 0.1862 CDF Non-Significant Effect **ANOVA Table** P-Value Source Sum Squares Mean Square DF F Stat Decision(a:5%) 5 3.395 0.0185 Significant Effect Between 0.08568031 0.01713606 Error 0.1211374 0.005047393 24 Total 0.2068177 29 **Distributional Tests** Decision(a:1%) Attribute Test Test Stat Critical P-Value Variances Bartlett Equality of Variance 7.065 15.09 0.2159 Equal Variances 0.9447 0.9031 0.1216 Normal Distribution Distribution Shapiro-Wilk W Normality Combined Development Rate Summary CV% %Effect **Control Type** 95% LCL 95% UCL Median Min Max Std Err C-% Count Mean 0.9509 0.8356 0.9661 0.02423 5.82% 0.0% Lab Control 5 0.9317 0.8644 0.9989 0 0.9824 0.9588 0.00526 1.21% -3.96% 0.954 0.9832 0.961 6.25 5 0.9686 -2.5% 3.45% 0.9958 0.8973 0.9761 0.01472 12.5 5 0.955 0.9141 0.9675 25 5 0.9592 0.9353 0.9831 0.9615 0.9371 0.9867 0.008613 2.01% -2.96% -4.06% 50 5 0.9695 0.9548 0.9841 0.9689 0.9542 0.9872 0.005272 1.22% 0.8014 0.02942 7.38% 4.39% 100 5 0.8908 0.8091 0.9725 0.9191 0.9548 Angular (Corrected) Transformed Summary C-% Control Type 95% LCL 95% UCL Median Min Max Std Err CV% %Effect Count Mean 7.12% 0.0% 1.202 1.435 1.347 1.153 1.386 0.04197 0 Lab Control 5 1.318 -5.86% 1.372 1.366 1.438 0.01588 2.55% 6.25 5 1.395 1.351 1.439 5.15% -3.6% 5 0.03143 12.5 1.366 1.278 1.453 1.39 1.245 1.416 -4.15% 0.02392 3.9% 25 5 1.373 1.306 1.439 1.373 1.317 1.455 1.457 0.01658 2.65% -6.07% 50 5 1.398 1.352 1.444 1.394 1.355 0.04699 5.53% 5 1.115 1.376 1.282 1.109 1.357 8.44% 100 1.245

Report Date: Test Code: 03 Oct-17 12:55 (p 2 of 6) 1708-S190 | 12-9117-2946

Bivalve Larval Survival and Development Test Nautilus Environmental (CA) Analysis ID: 18-1605-8388 Endpoint: Combined Development Rate CETISv1.8.7 **CETIS Version:** 03 Oct-17 12:54 Analyzed: Analysis: Parametric-Control vs Treatments Official Results: Yes Graphics 0.15 1.0 -0-Combined Development Rate 0.10 0.8 Centered Corr. Angle 0.05 0.7 0.00 0.5 -0.05 0.4 0.3 -0.10 0.2 -0.15 0.1 0.0 -0.20 6.25 12.5 0 LC 25 50 100 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 C-% Rankits

Report Date: Test Code:

Official Results: Yes

03 Oct-17 12:55 (p 3 of 6) 1708-S190 | 12-9117-2946

Bivalve Larval Survival and Development Test

Analysis ID: 13-8051-6944

Endpoint: Development Rate

CETIS Version: CETISv1.8.7

Parametric-Control vs Treatments

Batch Note: 101= 100 percent sample filtered to 0.45um

03 Oct-17 12:54

Data Transform	Zeta	Alt Hyp	Trials	Seed	PMSD	NOEL	LOEL	TOEL	TU
Angular (Corrected)	NA	C > T	NA	NA	2.8%	100	>100	NA	1

Dunnett Multiple Comparison Test Control vs C-% Test Stat Critical MSD DF P-Value P-Typ

Analysis:

Control	vs	C-%	Test Stat	Critical	MSD	DF	P-Value	P-Type	Decision(α:5%)
Lab Control		6.25	-1.673	2.362	0.057	8	0.9978	CDF	Non-Significant Effect
		12.5	-1.265	2.362	0.057	8	0.9923	CDF	Non-Significant Effect
		25	-1.145	2.362	0.057	8	0.9889	CDF	Non-Significant Effect
		50	-1.792	2.362	0.057	8	0.9985	CDF	Non-Significant Effect
		100	1.938	2.362	0.057	8	0.1110	CDF	Non-Significant Effect

ANOVA Table	
-------------	--

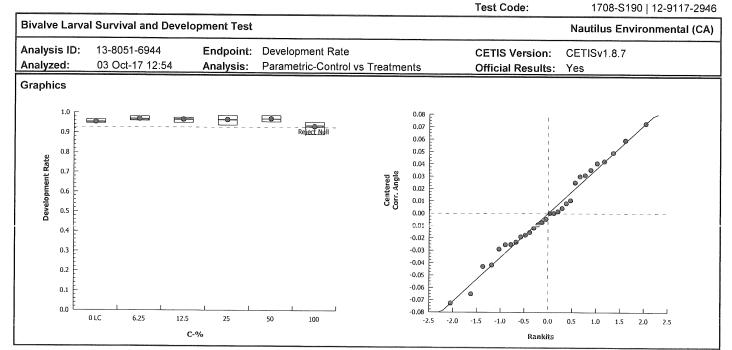
Analyzed:

Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(α:5%)
Between	0.02986366	0.005972733	5	4.036	0.0084	Significant Effect
Error	0.03551355	0.001479731	24			
Total	0.06537721		29			

Distributional Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)
Variances	Bartlett Equality of Variance	3.476	15.09	0.6271	Equal Variances
Distribution	Shapiro-Wilk W Normality	0.9841	0.9031	0.9204	Normal Distribution

Development Rate Summary


C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	0.9537	0.9432	0.9642	0.9509	0.9457	0.9661	0.003785	0.89%	0.0%
6.25		5	0.9686	0.954	0.9832	0.961	0.9588	0.9824	0.00526	1.21%	-1.56%
12.5		5	0.9654	0.9515	0.9792	0.9675	0.9493	0.9761	0.004989	1.16%	-1.22%
25		5	0.9632	0.9413	0.9851	0.965	0.9371	0.9867	0.007884	1.83%	-0.99%
50		5	0.9695	0.9548	0.9841	0.9689	0.9542	0.9872	0.005272	1.22%	-1.66%
100		5	0.9305	0.8982	0.9629	0.9363	0.8913	0.9548	0.01167	2.8%	2.43%

Angular (Corrected) Transformed Summary

C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	1.355	1.329	1.38	1.347	1.336	1.386	0.009269	1.53%	0.0%
6.25		5	1.395	1.351	1.439	1.372	1.366	1.438	0.01588	2.55%	-3.01%
12.5		5	1.385	1.348	1.423	1.39	1.344	1.416	0.01343	2.17%	-2.27%
25		5	1.382	1.322	1.443	1.383	1.317	1.455	0.02191	3.54%	-2.06%
50		5	1.398	1.352	1.444	1.394	1.355	1.457	0.01658	2.65%	-3.22%
100		5	1.308	1.245	1.37	1.316	1.235	1.357	0.02241	3.83%	3.48%

Report Date:

03 Oct-17 12:55 (p 4 of 6)

Report Date: Test Code: 03 Oct-17 12:55 (p 5 of 6)

1708-S190 | 12-9117-2946

Bivalve Larv	al Survival and I	Develon	nent Test			-			code.			nental (CA
Analysis ID:	13-5528-7470		Endpoint: Su		0	_		CETIS Version: CETISv1.8.7				
Analyzed:	03 Oct-17 12:5	04 /	Analysis: No	nparametric-	Control	vs I	reatments	Offic	ial Results	: Yes		
Batch Note:	101= 100 perc	ent samp	le filtered to 0.	45um								
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed			PMSD	NOEL	LOEL	TOEL	TU
Angular (Corr	ected)	NA	C > T	NA	NA			3.73%	100	>100	NA	1
Steel Many-C	One Rank Sum T	est										
Control	vs C-%		Test Stat	Critical	Ties	DF	P-Value	P-Type	ype Decision(α:5%)			
Lab Control	6.25	***************************************	30	16	1	8	0.9446	Asymp	Non-Significant Effect			
	12.5		28	16	1	8	0.8627	Asymp	_	ificant Effect		
	25		28	16	1	8	0.8627	Asymp	Non-Sign			
	50		30	16	1	8	0.9446	Asymp	Non-Sign			
	100		25	16	1	8	0.6353	Asymp	_	ificant Effect		
ANOVA Table	e											
Source	Sum Squ	ares	Mean Sq	uare	DF		F Stat	P-Value	Decision	(α:5%)		
Between	0.046307	95	0.009261	59	5		0.9945	0.4419	Non-Sign	ificant Effect		
Error	0.223496	6	0.009312	36	24							
Total	0.269804	6			29						·	
Distributiona	ıl Tests					***************************************						
Attribute	Test			Test Stat	Critica	I	P-Value	Decision(a:1%)			
Variances	Mod Lev	ene Equa	ality of Variance	e 1.039	4.248		0.4252	Equal Var	iances			
Variances	Levene E	Equality o	f Variance	5.968	3.895		0.0010	Unequal Variances				
Distribution	Shapiro-'	Wilk W N	lormality	0.7969	0.9031		<0.0001	Non-norm	al Distribut	on		
Survival Rate	Summary											
C-%	Control Type	Count	Mean	95% LCL	95% U	CL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	0.9767	0.9121	1		1	0.8836	1	0.02329	5.33%	0.0%
6.25		5	1	1	1		1	1	1	0	0.0%	-2.38%
12.5		5	0.989	0.9586	1		1	0.9452	1	0.01096	2.48%	-1.26%
25		5	0.9959	0.9845	1		1	0.9795	1	0.00411	0.92%	-1.96%
50		5	1	1	1		1	1	1	0	0.0%	-2.38%
100		5	0.9575	0.8724	1	-	1	0.8425	1	0.03066	7.16%	1.96%
Angular (Cor	rected) Transfor	med Su	mmary									
C-%	Control Type	Count	Mean	95% LCL	95% U	CL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	1.468	1.298	1.638		1.529	1.223	1.529	0.06137	9.35%	0.0%
6.25		5	1.529	1.529	1.53		1.529	1.529	1.529	0	0.0%	-4.18%
12.5		5	1.49	1.382	1.599		1.529	1.335	1.529	0.03898	5.85%	-1.53%
25		5	1.509	1.452	1.566		1.529	1.427	1.529	0.02049	3.04%	-2.78%
50		5	1.529	1.529	1.53		1.529	1.529	1.529	0	0.0%	-4.18%
		5	1.417	1.212	1.622		1.529	1.163	1.529	0.07396	11.67%	3.47%

C-%

Report Date: Test Code:

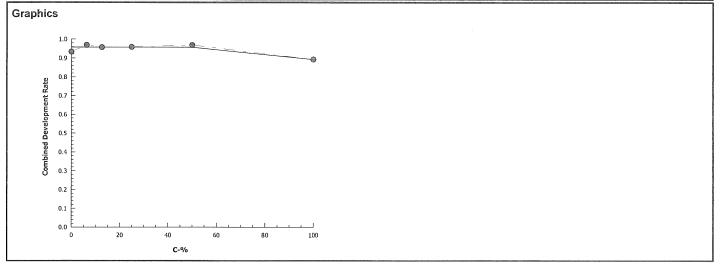
Rankits

03 Oct-17 12:55 (p 6 of 6) 1708-S190 | 12-9117-2946

Bivalve Larval Survival and Development Test Nautilus Environmental (CA) 13-5528-7470 Analysis ID: Endpoint: Survival Rate **CETIS Version:** CETISv1.8.7 03 Oct-17 12:54 Analyzed: Analysis: Nonparametric-Control vs Treatments Official Results: Yes Graphics 1.0 0.15 **S** 0.9 0.10 8.0 0.05 Survival Rate 0.7 0.00 0.6 -0.05 -0.10 0.4 -0.15 0.3 -0.20 0.2 -0.25 0.1 -0.30 12.5 0 LC 6.25 50 100 0.0 -2.5 -2.0 -1.5 -1.0 -0.5 1.0 1.5 2.0

Report Date:

03 Oct-17 12:55 (p 1 of 3)


Test Code:

1708-S190 | 12-9117-2946

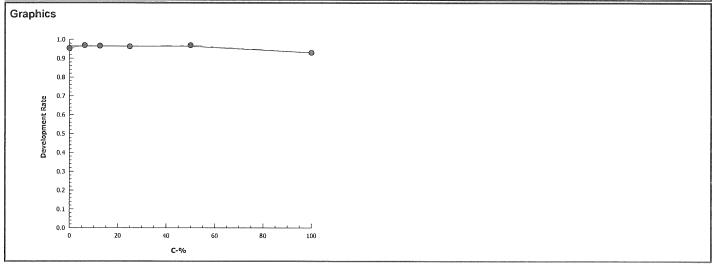
Bivalve Larva	al Survival and Deve	lopment Test		Mautilus Environmental (CA) ment Rate CETIS Version: CETISv1.8.7					
Analysis ID:	02-0434-9028	Endpoint:	Combined Development Rate	CETIS Version:	CETISv1.8.7				
Analyzed:	03 Oct-17 12:54	Analysis:	Linear Interpolation (ICPIN)	Official Results:	Yes				

	Name and Address of the Owner, where the Owner, which is the Owner, where the Owner, which is			-							
Batch N	ote:	101= 100 perce	nt sample fil	tered	to 0.45um						
Linear Interpolation Options											
X Transi	form	Y Transform	Seed	1	Resamples	Exp 95% CL	Method				
Linear		Linear	1700	654	1000	Yes	Two-Point Interpolation				
Point Es	stimates	•									
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL					
EC25	>100	N/A	N/A	<1	NA	NA					
EC50	>100	N/A	N/A	<1	NA	NA					

Combine	Combined Development Rate Summary										
C-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Lab Control	5	0.9317	0.8356	0.9661	0.02423	0.05418	5.82%	0.0%	775	830
6.25		5	0.9686	0.9588	0.9824	0.00526	0.01176	1.21%	-3.96%	848	875
12.5		5	0.955	0.8973	0.9761	0.01472	0.03292	3.45%	-2.5%	826	863
25		5	0.9592	0.9371	0.9867	0.008613	0.01926	2.01%	-2.96%	753	785
50		5	0.9695	0.9542	0.9872	0.005272	0.01179	1.22%	-4.06%	765	789
100		5	0.8908	0.8014	0.9548	0.02942	0.06577	7.38%	4.39%	694	777

Report Date:

03 Oct-17 12:55 (p 2 of 3)


Test Code:

1708-S190 | 12-9117-2946

Bivalve Larva	Bivalve Larval Survival and Development Test								
Analysis ID:	20-7893-4732	Endpoint:	Development Rate	CETIS Version:	CETISv1.8.7				
Analyzed:	03 Oct-17 12:54	Analysis:	Linear Interpolation (ICPIN)	Official Results:	Yes				

Batch N	Note:	101= 100 perce	01= 100 percent sample filtered to 0.45um										
Linear	Interpola	ation Options		AND DESCRIPTION OF THE PARTY OF									
X Trans	sform	Y Transform	See	d	Resamples	Exp 95% CL	Method						
Linear		Linear	7425	566	1000	Yes	Two-Point Interpolation						
Point E	stimates	>											
Level	%	95% LCL	95% UCL	τυ	95% LCL	95% UCL							
EC25	>100	N/A	N/A	<1	NA	NA							
EC50	>100	N/A	N/A	<1	NA	NA							

Development Rate Summary			Calculated Variate(A/B)								
C-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Lab Control	5	0.9537	0.9457	0.9661	0.003785	0.008463	0.89%	0.0%	776	813
6.25		5	0.9686	0.9588	0.9824	0.00526	0.01176	1.21%	-1.56%	848	875
12.5		5	0.9654	0.9493	0.9761	0.004989	0.01116	1.16%	-1.22%	826	855
25		5	0.9632	0.9371	0.9867	0.007884	0.01763	1.83%	-0.99%	753	782
50		5	0.9695	0.9542	0.9872	0.005272	0.01179	1.22%	-1.66%	765	789
100		5	0.9305	0.8913	0.9548	0.01167	0.02609	2.8%	2.43%	694	746

Report Date:

03 Oct-17 12:55 (p 3 of 3)

Test Code:

1708-S190 | 12-9117-2946

Bivalve Larval Survival and Development Test

Analysis ID: 07-5105-3261

Endpoint: Survival Rate

CETIS Version: CETISv1.8.7

Analyzed: 03 Oct-17 12:54 Analysis: Linear Interpolation (ICPIN) Official Results: Yes

Batch Note: 101= 100 percent sample filtered to 0.45um

Linear Interpol	ation Options				
X Transform	Y Transform	Seed	Resamples	Exp 95% CL	Method
Linear	Linear	994102	1000	Yes	Two-Point Interpolation

Point Estimates % Level 95% LCL 95% UCL TU 95% LCL 95% UCL EC25 >100 N/A N/A <1 NA NΑ EC50 >100 N/A N/A <1 NA NA

Survival	Survival Rate Summary			Calculated Variate(A/B)							
C-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Lab Control	5	0.9767	0.8836	1	0.02329	0.05207	5.33%	0.0%	713	730
6.25		5	1	1	1	0	0	0.0%	-2.38%	730	730
12.5		5	0.989	0.9452	1	0.01096	0.0245	2.48%	-1.26%	722	730
25		5	0.9959	0.9795	1	0.00411	0.00919	0.92%	-1.96%	727	730
50		5	1	1	1	0	0	0.0%	-2.38%	730	730
100		5	0.9575	0.8425	1	0.03066	0.06856	7.16%	1.96%	699	730

Report Date: Test Code: 03 Oct-17 12:55 (p 1 of 2) 1708-S190 | 12-9117-2946

							1631	Code:	1700	3-3190 1	2-9117-2946
Bivalve Larv	al Survival and I	Developme	ent Test			w _m ."			Nautilus	Environ	nental (CA)
Analysis ID: Analyzed:	12-5644-3307 03 Oct-17 12:5		dpoint: Cor alysis: Par	mbined Deve ametric Bioe				S Version		8.7	
Batch Note:	101= 100 perc	ent sample									
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed	TST b	PMSD	NOEL	LOEL	TOEL	TU
Angular (Cori	rected)	NA	C*b < T	NA	NA	0.75	3.81%	101	>101	NA	0.9901
TST-Welch's	t Test										
Control	vs C-%		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision	ι(α:5%)		
Lab Control	6.25*		11.53	2.015	0.071 5	<0.0001	CDF	Non-Sign	ificant Effect		
	12.5*		8.475	1.895	0.084 7	< 0.0001	CDF	Non-Sign	ificant Effect		
	25*		9.719	1.895	0.075 7	<0.0001	CDF	Non-Sign	ificant Effect		
	50*		11.51	1.943	0.069 6	<0.0001	CDF	-	ificant Effect		
	100*		4.536	1.943	0.11 6	0.0020	CDF	_	ificant Effect		
	101*		7.698	1.895	0.075 7	<0.0001	CDF	-	ificant Effect		
ANOVA Tabl	е					***************************************					
Source	Sum Squ	ares	Mean Squ	ıare	DF	F Stat	P-Value	Decision	ι(α:5%)		
Between	0.098269	34	0.0163782	22	6	3.448	0.0112	Significar	nt Effect		
Error	0.133006		0.0047502	13	28						
Total	0.231275	3			34						
Distributiona	al Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision(α:1%)			
Variances	Bartlett E	Equality of \	/ariance	7.467	16.81	0.2798	Equal Var	iances			
Distribution	Shapiro-	Wilk W Noi	mality	0.9571	0.9146	0.1868	Normal Di	stribution			
Combined D	evelopment Rate	Summary	1								
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	0.9317	0.8644	0.9989	0.9509	0.8356	0.9661	0.02423	5.82%	0.0%
6.25		5	0.9686	0.954	0.9832	0.961	0.9588	0.9824	0.00526	1.21%	-3.96%
12.5		5	0.955	0.9141	0.9958	0.9675	0.8973	0.9761	0.01472	3.45%	-2.5%
25							0.0070				
		5	0.9592	0.9353	0.9831	0.9615	0.9371	0.9867	0.008613	2.01%	-2.96%
50		5 5	0.9592 0.9695	0.9353 0.9548	0.9831 0.9841			0.9867 0.9872	0.008613 0.005272	2.01% 1.22%	-2.96% -4.06%
						0.9615	0.9371				
50		5	0.9695	0.9548	0.9841	0.9615 0.9689	0.9371 0.9542	0.9872	0.005272	1.22%	-4.06%
50 100 101	rrected) Transfor	5 5 5	0.9695 0.8908 0.9238	0.9548 0.8091	0.9841 0.9725	0.9615 0.9689 0.9191	0.9371 0.9542 0.8014	0.9872 0.9548	0.005272 0.02942	1.22% 7.38%	-4.06% 4.39%
50 100 101	rrected) Transfor Control Type	5 5 5	0.9695 0.8908 0.9238	0.9548 0.8091	0.9841 0.9725	0.9615 0.9689 0.9191 0.911	0.9371 0.9542 0.8014	0.9872 0.9548	0.005272 0.02942	1.22% 7.38%	-4.06% 4.39%
50 100 101 Angular (Cor C-%	•	5 5 5 med Sumi	0.9695 0.8908 0.9238	0.9548 0.8091 0.8905	0.9841 0.9725 0.9571	0.9615 0.9689 0.9191 0.911	0.9371 0.9542 0.8014 0.9012	0.9872 0.9548 0.9634	0.005272 0.02942 0.01199	1.22% 7.38% 2.9%	-4.06% 4.39% 0.84%
50 100 101 Angular (Cor	Control Type	5 5 5 med Sumi Count	0.9695 0.8908 0.9238 mary Mean	0.9548 0.8091 0.8905 95% LCL	0.9841 0.9725 0.9571 95% UCL	0.9615 0.9689 0.9191 0.911	0.9371 0.9542 0.8014 0.9012	0.9872 0.9548 0.9634 Max	0.005272 0.02942 0.01199 Std Err	1.22% 7.38% 2.9% CV%	-4.06% 4.39% 0.84%
50 100 101 Angular (Cor C-%	Control Type	5 5 5 med Sumi Count 5	0.9695 0.8908 0.9238 mary Mean 1.318	0.9548 0.8091 0.8905 95% LCL 1.202	0.9841 0.9725 0.9571 95% UCL 1.435	0.9615 0.9689 0.9191 0.911 Median 1.347	0.9371 0.9542 0.8014 0.9012 Min 1.153	0.9872 0.9548 0.9634 Max 1.386	0.005272 0.02942 0.01199 Std Err 0.04197	1.22% 7.38% 2.9% CV% 7.12%	-4.06% 4.39% 0.84% %Effect 0.0%
50 100 101 Angular (Cor C- % 0 6.25	Control Type	5 5 5 med Sumi Count 5 5	0.9695 0.8908 0.9238 mary Mean 1.318 1.395	0.9548 0.8091 0.8905 95% LCL 1.202 1.351	0.9841 0.9725 0.9571 95% UCL 1.435 1.439	0.9615 0.9689 0.9191 0.911 Median 1.347 1.372	0.9371 0.9542 0.8014 0.9012 Min 1.153 1.366	0.9872 0.9548 0.9634 Max 1.386 1.438	0.005272 0.02942 0.01199 Std Err 0.04197 0.01588	1.22% 7.38% 2.9% CV% 7.12% 2.55%	-4.06% 4.39% 0.84% %Effect 0.0% -5.86%
50 100 101 Angular (Cor C-% 0 6.25 12.5	Control Type	5 5 5 med Sum Count 5 5	0.9695 0.8908 0.9238 mary Mean 1.318 1.395 1.366	0.9548 0.8091 0.8905 95% LCL 1.202 1.351 1.278	0.9841 0.9725 0.9571 95% UCL 1.435 1.439 1.453	0.9615 0.9689 0.9191 0.911 Median 1.347 1.372 1.39	0.9371 0.9542 0.8014 0.9012 Min 1.153 1.366 1.245	0.9872 0.9548 0.9634 Max 1.386 1.438 1.416	0.005272 0.02942 0.01199 Std Err 0.04197 0.01588 0.03143	1.22% 7.38% 2.9% CV% 7.12% 2.55% 5.15%	-4.06% 4.39% 0.84% %Effect 0.0% -5.86% -3.6%
50 100 101 Angular (Cor C-% 0 6.25 12.5 25	Control Type	5 5 5 med Sum Count 5 5 5	0.9695 0.8908 0.9238 mary Mean 1.318 1.395 1.366 1.373	0.9548 0.8091 0.8905 95% LCL 1.202 1.351 1.278 1.306	0.9841 0.9725 0.9571 95% UCL 1.435 1.439 1.453 1.439	0.9615 0.9689 0.9191 0.911 Median 1.347 1.372 1.39 1.373	0.9371 0.9542 0.8014 0.9012 Min 1.153 1.366 1.245 1.317	0.9872 0.9548 0.9634 Max 1.386 1.438 1.416 1.455	0.005272 0.02942 0.01199 Std Err 0.04197 0.01588 0.03143 0.02392	1.22% 7.38% 2.9% CV% 7.12% 2.55% 5.15% 3.9%	-4.06% 4.39% 0.84% %Effect 0.0% -5.86% -3.6% -4.15%

Report Date:

03 Oct-17 12:56 (p 1 of 2)

Test Code: 1708-S190 | 12-9117-2946

							rest	Code:	1700	0-2190 1	2-9117-2946
Bivalve Larv	al Survival and I	Developme 	ent Test	757	من				Nautilus	Environ	mental (CA)
Analysis ID: Analyzed:	04-2240-3522 03 Oct-17 12:5		•	evelopment R		-Two Sampl		IS Version:		.8.7	
Batch Note:	101= 100 perc										
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed	TST b	PMSD	NOEL	LOEL	TOEL	TU
Angular (Corr	ected)	NA	C*b < T	NA	NA	0.75	2.25%	101	>101	NA	0.9901
TST-Welch's	t Test										
Control	vs C-%		Test Sta	Critical	MSD DF	P-Value	P-Type	Decision	(a:5%)		
Filter Control	6.25*		16.46	1.895	0.044 7	<0.0001	CDF	· · · · · · · · · · · · · · · · · · ·	ificant Effect		
	12.5*		17.23	1.895	0.041 7	<0.0001	CDF	-	ificant Effect		
	25*		13.3	1.895	0.052 7	< 0.0001	CDF	Non-Sign	ificant Effect		
	50*		16.24	1.895	0.045 7	<0.0001	CDF		ificant Effect		
	100*		10.43	1.895	0.053 7	<0.0001	CDF	_	ificant Effect		
	101*		11.18	1.895	0.050 7	<0.0001	CDF	_	ificant Effect		
ANOVA Table	e	discinition of the second	CVC								
Source	Sum Squ		Mean So	uare	DF	F Stat	P-Value	Decision	(α:5%)		
Between	0.044888	21	0.007481	369	6	4.021	0.0050	Significan	t Effect		
Error	0.05209015 0.001860		362	28							
Total	0.096978	37 			34						
Distributiona	al Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision(α:1%)			
Variances	Bartlett E	Equality of \	/ariance	1.663	16.81	0.9479	Equal Var	iances			
Distribution	Shapiro-\	Wilk W Nor	mality	0.9785	0.9146	0.7109	Normal Di	stribution			
Development	t Rate Summary										
C-%	Control Type	Count									0/ 5554
	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Filter Control	5	Mean 0.9523	95% LCL 0.9238	95% UCL 0.9808	Median 0.9565	Min 0.913	Max 0.9689	Std Err 0.01026	CV% 2.41%	%Enect
0 6.25											
		5	0.9523	0.9238	0.9808	0.9565	0.913	0.9689	0.01026	2.41%	0.0%
6.25		5 5	0.9523 0.9686	0.9238 0.954	0.9808 0.9832	0.9565 0.961	0.913 0.9588	0.9689 0.9824	0.01026 0.00526	2.41% 1.21%	0.0% -1.71%
6.25 12.5		5 5 5	0.9523 0.9686 0.9654	0.9238 0.954 0.9515	0.9808 0.9832 0.9792	0.9565 0.961 0.9675	0.913 0.9588 0.9493	0.9689 0.9824 0.9761	0.01026 0.00526 0.004989	2.41% 1.21% 1.16%	0.0% -1.71% -1.37%
6.25 12.5 25		5 5 5 5	0.9523 0.9686 0.9654 0.9632	0.9238 0.954 0.9515 0.9413	0.9808 0.9832 0.9792 0.9851	0.9565 0.961 0.9675 0.965	0.913 0.9588 0.9493 0.9371	0.9689 0.9824 0.9761 0.9867	0.01026 0.00526 0.004989 0.007884	2.41% 1.21% 1.16% 1.83%	0.0% -1.71% -1.37% -1.14%
6.25 12.5 25 50		5 5 5 5	0.9523 0.9686 0.9654 0.9632 0.9695	0.9238 0.954 0.9515 0.9413 0.9548	0.9808 0.9832 0.9792 0.9851 0.9841	0.9565 0.961 0.9675 0.965 0.9689	0.913 0.9588 0.9493 0.9371 0.9542	0.9689 0.9824 0.9761 0.9867 0.9872	0.01026 0.00526 0.004989 0.007884 0.005272	2.41% 1.21% 1.16% 1.83% 1.22%	0.0% -1.71% -1.37% -1.14% -1.8%
6.25 12.5 25 50 100 101		5 5 5 5 5 5	0.9523 0.9686 0.9654 0.9632 0.9695 0.9305 0.9327	0.9238 0.954 0.9515 0.9413 0.9548 0.8982	0.9808 0.9832 0.9792 0.9851 0.9841 0.9629	0.9565 0.961 0.9675 0.965 0.9689 0.9363	0.913 0.9588 0.9493 0.9371 0.9542 0.8913	0.9689 0.9824 0.9761 0.9867 0.9872 0.9548	0.01026 0.00526 0.004989 0.007884 0.005272 0.01167	2.41% 1.21% 1.16% 1.83% 1.22% 2.8%	0.0% -1.71% -1.37% -1.14% -1.8% 2.29%
6.25 12.5 25 50 100 101 Angular (Cor	Filter Control	5 5 5 5 5 5	0.9523 0.9686 0.9654 0.9632 0.9695 0.9305 0.9327	0.9238 0.954 0.9515 0.9413 0.9548 0.8982	0.9808 0.9832 0.9792 0.9851 0.9841 0.9629 0.9605	0.9565 0.961 0.9675 0.965 0.9689 0.9363	0.913 0.9588 0.9493 0.9371 0.9542 0.8913	0.9689 0.9824 0.9761 0.9867 0.9872 0.9548	0.01026 0.00526 0.004989 0.007884 0.005272 0.01167	2.41% 1.21% 1.16% 1.83% 1.22% 2.8%	0.0% -1.71% -1.37% -1.14% -1.8% 2.29%
6.25 12.5 25 50 100 101 Angular (Cor C-%	Filter Control	5 5 5 5 5 5 5 5	0.9523 0.9686 0.9654 0.9632 0.9695 0.9305 0.9327	0.9238 0.954 0.9515 0.9413 0.9548 0.8982 0.905	0.9808 0.9832 0.9792 0.9851 0.9841 0.9629 0.9605	0.9565 0.961 0.9675 0.965 0.9689 0.9363 0.9301	0.913 0.9588 0.9493 0.9371 0.9542 0.8913 0.9012	0.9689 0.9824 0.9761 0.9867 0.9872 0.9548 0.9634	0.01026 0.00526 0.004989 0.007884 0.005272 0.01167 0.009987	2.41% 1.21% 1.16% 1.83% 1.22% 2.8% 2.39%	0.0% -1.71% -1.37% -1.14% -1.8% 2.29% 2.06%
6.25 12.5 25 50 100 101 Angular (Cor C-%	Filter Control rected) Transfor Control Type	5 5 5 5 5 5 5 5 7med Sumr	0.9523 0.9686 0.9654 0.9632 0.9695 0.9305 0.9327	0.9238 0.954 0.9515 0.9413 0.9548 0.8982 0.905	0.9808 0.9832 0.9792 0.9851 0.9841 0.9629 0.9605	0.9565 0.961 0.9675 0.965 0.9689 0.9363 0.9301	0.913 0.9588 0.9493 0.9371 0.9542 0.8913 0.9012	0.9689 0.9824 0.9761 0.9867 0.9872 0.9548 0.9634	0.01026 0.00526 0.004989 0.007884 0.005272 0.01167 0.009987	2.41% 1.21% 1.16% 1.83% 1.22% 2.8% 2.39%	0.0% -1.71% -1.37% -1.14% -1.8% 2.29% 2.06%
6.25 12.5 25 50 100 101 Angular (Cor C-%	Filter Control rected) Transfor Control Type	5 5 5 5 5 5 5 5 Crmed Sumr Count	0.9523 0.9686 0.9654 0.9632 0.9695 0.9305 0.9327 mary Mean 1.355	0.9238 0.954 0.9515 0.9413 0.9548 0.8982 0.905 95% LCL 1.293	0.9808 0.9832 0.9792 0.9851 0.9841 0.9629 0.9605 95% UCL 1.417	0.9565 0.961 0.9675 0.965 0.9689 0.9363 0.9301 Median 1.361	0.913 0.9588 0.9493 0.9371 0.9542 0.8913 0.9012 Min 1.271	0.9689 0.9824 0.9761 0.9867 0.9872 0.9548 0.9634 Max 1.394	0.01026 0.00526 0.004989 0.007884 0.005272 0.01167 0.009987 Std Err 0.02226	2.41% 1.21% 1.16% 1.83% 1.22% 2.8% 2.39% CV% 3.67%	0.0% -1.71% -1.37% -1.14% -1.8% 2.29% 2.06% %Effect 0.0%
6.25 12.5 25 50 100 101 Angular (Cor C- % 0 6.25	Filter Control rected) Transfor Control Type	5 5 5 5 5 5 5 5 Cmed Sumr Count 5	0.9523 0.9686 0.9654 0.9632 0.9695 0.9305 0.9327 mary Mean 1.355 1.395	0.9238 0.954 0.9515 0.9413 0.9548 0.8982 0.905 95% LCL 1.293 1.351	0.9808 0.9832 0.9792 0.9851 0.9841 0.9629 0.9605 95% UCL 1.417 1.439	0.9565 0.961 0.9675 0.965 0.9689 0.9363 0.9301 Median 1.361 1.372	0.913 0.9588 0.9493 0.9371 0.9542 0.8913 0.9012 Min 1.271 1.366	0.9689 0.9824 0.9761 0.9867 0.9872 0.9548 0.9634 Max 1.394 1.438	0.01026 0.00526 0.004989 0.007884 0.005272 0.01167 0.009987 Std Err 0.02226 0.01588	2.41% 1.21% 1.16% 1.83% 1.22% 2.8% 2.39% CV% 3.67% 2.55%	0.0% -1.71% -1.37% -1.14% -1.8% 2.29% 2.06% %Effect 0.0% -2.99%
6.25 12.5 25 50 100 101 Angular (Cor C-% 0 6.25 12.5	Filter Control rected) Transfor Control Type	5 5 5 5 5 5 5 med Sumr Count 5 5	0.9523 0.9686 0.9654 0.9632 0.9695 0.9305 0.9327 mary Mean 1.355 1.395 1.385	0.9238 0.954 0.9515 0.9413 0.9548 0.8982 0.905 95% LCL 1.293 1.351 1.348	0.9808 0.9832 0.9792 0.9851 0.9841 0.9629 0.9605 95% UCL 1.417 1.439 1.423	0.9565 0.961 0.9675 0.965 0.9689 0.9363 0.9301 Median 1.361 1.372 1.39	0.913 0.9588 0.9493 0.9371 0.9542 0.8913 0.9012 Min 1.271 1.366 1.344	0.9689 0.9824 0.9761 0.9867 0.9872 0.9548 0.9634 Max 1.394 1.438 1.416	0.01026 0.00526 0.004989 0.007884 0.005272 0.01167 0.009987 Std Err 0.02226 0.01588 0.01343	2.41% 1.21% 1.16% 1.83% 1.22% 2.8% 2.39% CV% 3.67% 2.55% 2.17%	0.0% -1.71% -1.37% -1.14% -1.8% 2.29% 2.06% **Effect 0.0% -2.99% -2.26%
6.25 12.5 25 50 100 101 Angular (Cor C-% 0 6.25 12.5 25	Filter Control rected) Transfor Control Type	5 5 5 5 5 5 5 Trmed Sumr Count 5 5 5	0.9523 0.9686 0.9654 0.9632 0.9695 0.9305 0.9327 mary Mean 1.355 1.395 1.385 1.382	0.9238 0.954 0.9515 0.9413 0.9548 0.8982 0.905 95% LCL 1.293 1.351 1.348 1.322	0.9808 0.9832 0.9792 0.9851 0.9841 0.9629 0.9605 95% UCL 1.417 1.439 1.423 1.443	0.9565 0.961 0.9675 0.965 0.9363 0.9301 Median 1.361 1.372 1.39 1.383	0.913 0.9588 0.9493 0.9371 0.9542 0.8913 0.9012 Min 1.271 1.366 1.344 1.317	0.9689 0.9824 0.9761 0.9867 0.9872 0.9548 0.9634 Max 1.394 1.438 1.416 1.455	0.01026 0.00526 0.004989 0.007884 0.005272 0.01167 0.009987 Std Err 0.02226 0.01588 0.01343 0.02191	2.41% 1.21% 1.16% 1.83% 1.22% 2.8% 2.39% CV% 3.67% 2.55% 2.17% 3.54%	0.0% -1.71% -1.37% -1.14% -1.8% 2.29% 2.06% %Effect 0.0% -2.99% -2.26% -2.04%

Analyst: A QA: \$10317

Report Date:

03 Oct-17 12:56 (p 1 of 1)

Test Code:

1708-S190 | 12-9117-2946

							lest	Code:	1708	3-5190 12	2-9117-2946
Bivalve Larva	al Survival and D)evelopme	nt Test						Nautilus	Environn	nental (CA)
Analysis ID: Analyzed:	04-8378-5783 03 Oct-17 12:5			elopment R ametric-Two				S Version: ial Results:	CETISv1.a Yes	8.7	
Batch Note:	101= 100 perce	ent sample	filtered to 0.4	5um							
Data Transfo	rm	Zeta	Alt Hyp	Trials	Seed		PMSD	Test Resu	lt		
Angular (Corre	ected)	NA	C > T	NA	NA		1.97%	Fails devel	lopment rate)	
Equal Varian	ce t Two-Sample	e Test									
Control	vs C-%		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision(α: 5%)		
Lab Control	101*		1.926	1.86	0.042 8	0.0451	CDF	Significant	Effect		
ANOVA Table	9										
Source	Sum Squ	ares	Mean Squ	are	DF	F Stat	P-Value	Decision(α:5%)		
Between	0.0046823	327	0.0046823	27	1	3.709	0.0903	Non-Signif	icant Effect		
Error	0.0100997	75	0.0012624	69	8						
Total	0.0147820	D8			9						
Distributiona	l Tests		NO. 10 (10 (10 (10 (10 (10 (10 (10 (10 (10			10000					
Attribute	Test			Test Stat	Critical	P-Value	Decision((α:1%)			
Variances	Variance	Ratio F		4.878	23.15	0.1540	Equal Var	iances			
Distribution	Shapiro-\	Wilk W Nor	mality	0.9404	0.7411	0.5579	Normal Di	istribution			
Development	t Rate Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	0.9537	0.9432	0.9642	0.9509	0.9457	0.9661	0.003785	0.89%	0.0%
101		5	0.9327	0.905	0.9605	0.9301	0.9012	0.9634	0.009987	2.39%	2.2%
Angular (Cor	rected) Transfor	med Sumr	mary								
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
		5	1.355	1.329	1.38	1.347	1.336	1.386	0.009269	1.53%	0.0%
0	Lab Control	5	1.555	1.525	1.00	1.0-77	1.000	1.000	0.000200	1.0070	

Report Date:

03 Oct-17 12:56 (p 1 of 1)

Test Code:

1708-S190 | 12-9117-2946

							rest	Code:	170	1906190	2-9117-2946
Bivalve Larv	al Survival and	Develop	ment Test						Nautilu	s Environ	mental (CA)
Analysis ID: Analyzed:	13-2592-4532 03 Oct-17 12		•	mbined Deve	•	ate		IS Version:	CETISv1	.8.7	
Batch Note:	101= 100 per	cent sam	ple filtered to 0.4	15um							
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed		PMSD	Test Resu	ult		· · · · · · · · · · · · · · · · · · ·
Angular (Cor	rected)	NA	C > T	NA	NA		4.8%	Passes co	mbined dev	velopment	rate
Equal Variar	nce t Two-Samp	le Test									
Control	vs C-%		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision(α:5%)		
Lab Control	101		0.4767	1.86	0.090 8	0.3232	CDF	Non-Signi	ficant Effect	ť	
ANOVA Tabl	е										
Source	Sum Sq	uares	Mean Squ	uare	DF	F Stat	P-Value	Decision(α:5%)		
Between	0.001337	7805	0.0013378	305	1	0.2272	0.6464	Non-Signi	ficant Effect		
Error	0.047106	502	0.0058882	253	8			_			
Total	0.048443	383			9	_					
Distributiona	al Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision(α:1%)			
Variances	Varianc	e Ratio F	Vicinitia de la constanta de l	2.969	23.15	0.3169	Equal Var	iances			
Distribution	Shapiro	-Wilk W I	Normality	0.889	0.7411	0.1651	Normal Di				
Combined D	evelopment Rat	e Summ	ary								
C-%	Control Type	Coun	t Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	0.9317	0.8644	0.9989	0.9509	0.8356	0.9661	0.02423	5.82%	0.0%
101		5	0.9238	0.8905	0.9571	0.911	0.9012	0.9634	0.01199	2.9%	0.84%
Angular (Co	rrected) Transfo	rmed Su	ımmary								
C-%	Control Type	Coun	t Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	1.318	1.202	1.435	1.347	1.153	1.386	0.04197	7.12%	0.0%
101		5	1.295	1.227	1.363	1.268	1.251	1.378	0.02436	4.21%	1.76%

Embryo Larval Bioassay

Client: AMEC/POSD	Test Species: M. galloprovincialis
Onone, / wild on OOD	i dot epodico: im: ganopro imiciano

 Sample ID:
 SIYB-3
 Start Date/Time:
 8/24/2017 1600

		Number	· Abnormal	Total Number		
Random #	Number Normal	Number Curved Shell	All other abnormal	Counted	Intials/Date	
106	184	0	8	. 192	RL 8/30/17	
107	147	Ч	6	157		
108	1 j 67	Ø	3	170		
109	1 59	5	9	173		
110	189	0	8	197		
111	146	0	1	153		
112) 48	1	6	155		
113	148	0	6	154		
114	171	0	6	177		
115	138	0	5	143		
116	123	9	6	138		
117	117	5		123		
118	155	Ò	8	163		
119	165	0	5	(A) 164 17U		
120	901	0	4	205		
121	148	0	7	150		
122	153	0	4	157		
123	135	y	8	142		
124	144	U	5	149		
125	168	0	6	179		
126	149	0	154 10	159	Q18 PT 813011	
127	144	0	8	152		
128	909	0	5	209		
129	177	0	9	129		
130	163	0	7	170		
131	154	O O	2	156		
132	158	5	4	164		
133	149	0	5	154	0.10.10.	
134	133	0	10 10	143	Q18 RL 8130111	
135	156	0	5	161		
136	155	3	7	165		
137	169	0	7	176		
138	146	5	14	162		
139	150	0	6	156		
140	131	<i>O</i>	7	138		

Comments:	(b) our or hulling		
QC Check:	A 8(30/17	Final Review: <u> </u>	

CETIS Test Data Worksheet

26 Aug-17

Start Date:

End Date:

Report Date:

21 Aug-17 18:04 (p 1 of 1) 12-9117-2946/1708-S190

Test Code:

Sample Code: 17- ○ 934

Nautilus Environmental (CA)

Bivalve Larval Survival and Development Test

24 Aug-17 Species: Mytilus galloprovincialis

Protocol: EPA/600/R-95/136 (1995) Sample Source: Shelter Island Yacht Basin

Sample Date: 23 Aug-17 Material: Ambient Water Sample Station: SIYB-3

C-%	Code	Rep	Pos	Initial Density	Final Density	# Counted	# Normal	Notes
0	LC	1	118					
0	LC	2	106					
0	LC	3	114					
0	LC	4	127					
0	LC	5	129					
6.25		1	108					
6.25		2	120					
6.25		3	130					
6.25		4	113					
6.25		5	137					
12.5		1	128					
12.5		2	133					
12.5		3	140					
12.5		4	110					
12.5		5	122					
25		1	139					
25		2	121					
25		3	125					
25		4	115					
25		5	126					
50		1	135					
50		2	119					
50		3	124					
50		4	131					
50		5	111					i
100		1	116			139	128	AC8/20/19
100		2	117				. ,	
100		3	109					
100		4	107					
100	1	5	112					
101		1	132					
100/2 101@		2	123					
erod ¹⁰¹		3	134					
101ੑ		4	136					
101	 	5	138					

QL' nd @Q18 AL 8/21/17

Marine Chronic Bioassay

Water Quality Measurements

Client: AMEC/POSD

Sample ID: SIYB-3

Sample Log No.: 17- 0934

Test No.: 1708-S [90

Test Species: M. galloprovincialis

Start Date/Time: 8/24/2017 /6: 00

End Date/Time: 8/26/2017 6 00

Concentration (%)		Salinity (ppt)		T	emperatu (°C)	re	Diss	solved Ox (mg/L)	ygen		pH (pH units)
	0	24	48	0	24	48	0	24	48	0	24	48
Lab Control	33.9	33.6	33,5	15.2	14.9	14.5	8.3	7.9	3.1	8.09	8.06	8.62
6.25		33.5	33,6	15.1	15-0	14,3	8.2	7.8	3.1	8.04	8.02	8.00
12.5	33.9	33.7	33.6	15.0	15-1	14.3	8.2	7.8	3.1	8.04	8.03	8.00
25	34.0	33.7	33. 7	153	15.1	14.3	8.2	7.8	8.1	8.05	8.03	8,00
50	34.0	33.7	33,7	15.3	15.1	14.3	8. 2	7.7	ਰ, ∖	8,04	8.03	8.00
100	34.1	33,9	33,9	149	15.1	14, 2	8.4	7.9	8.1	8,03	8.02	8.00
100 filtered	34.1	33.5	33.6	15.6	15.0	14.3 (R. 6.9	7.6	g,0	8.02	4.00	8.00

		0	24	48
Technician Initials:	WQ Readings:	AC.	CG	DM
	Dilutions made by:	ACKEG		

Comments:

0 hrs: @@)용 세 원(24)1기 24 hrs:_____

24 hrs:

48 hrs:

QC Check:

AC 8/27/17

Final Review: 6 WMM

Client:	AMECIPOSD	SIWB-	3		Start Date	e/Time:	8/24/20	17 16:00	5
Test No.:	1708-5190	, 1			End Date		8/26/20	17	
Test Species:	Mytilus galloprovincialis	, 			Technician			17 20.00	
Animal Source:	Mission Bay				i eci il liciai i	irilliais	On//rc		
Date Received:	8/2/17								
Test Chambers:	30 mL glass shell vials								
Sample Volume:	10 mL	***************************************							
oumple volume.	101112								
Spawn Information	on	1	Gamete Selec		Beaker	Conditio	on (snorm mo	tility egg den	sity, color, shape,
First Gamete Rele	ase Time: 1230) 	Sex	1	umber(s)	Conditio	on (sperm mc	etc.)	sity, color, shape,
			Male	Ø₽.	5+3,4,5	61000	dens	ity and	motility
Sex	Number Spawning		Female 1	1	J	Higha	Censity,	fall orange	LEGIOS, UN FORM ST
Male	5+		Female 2	2	2	crood	density	fair orange HAHE COI	color, un form so or, uniform so
Female	3		Female 3	3					ae color, Mif
						٠ - ١	_ /		sh 10
Embruo Stock Se	plection			Egg Fertiliza	ation Time:	131	<u>5_</u>		n
Embryo Stock Se	% of embryos at 2-ce					_			
Stock Number	division stage	"	Stoc	k(s) chosen	for testing:	1			
Female 1	99								
Female 2	100								
Female 3	100								
Number Counted:	10 8 14 8	10		Mean:	D-1	-			
	Mean	X 50 =	505	embryos/ml	ļ				
	() (1.10						
Initia Desired Final (to inoculate wit	•	=	1.66	_(dilution fac	etor)				
	ent dividing is ≥ 90, prepare t ting stock (1 part) and 125 r				culated dilut	tion factor	For examp	le, if the dilutio	on factor is 2.25,
	Time Zero Control Cou	nts							
	Rep No. Dividing	Total	% Dividing	Mean % Dividing		0 h 00. }	74 Mu-	14401.1	
	TØA 135	135	100	Dividing	— ⁴⁸	5-n QC: _	13/1/142	<u>[</u> 77 /7]	
	11/3	162	100	-		_		****	
	TØB 162	143	100						
	TØD 3134	134	801	174.4	/·				
	TØE 157	158	99.4	1					
	TØF 145	LIF	100	1					
Comments:	@CH Q18 8/24/1	7	Z.divi.	ding=	146				<u></u>
QC Check:	AC 8/27/17						Final	Review: 😕	101417

Site: SIYB-4

CETIS Summary Report

Report Date:

08 Sep-17 13:40 (p 1 of 4)

Test Code:

1708-S191 | 17-8732-6798

Bivalve Larva	l Survival and Developn	nent Test							Nautilus Environmental (C
Batch ID: Start Date: Ending Date: Duration:	24 Aug-17 16:00 F 26 Aug-17 16:00 S	Test Type: Protocol: Species: Source:	Development- EPA/600/R-95 Mytilus gallopr Mission Bay	6/136 (1995)			Analyst: Diluent: Brine: Age:		ratory Seawater Applicable
-	23 Aug-17 11:15 N 23 Aug-17 17:15 S	Code: flaterial: Source: Station:	17-0935 Ambient Wate Shelter Island SIYB-4				Client: Project:	Amed	C Foster Wheeler
Comparison S	Summary								
Analysis ID	Endpoint	NOEL	LOEL	TOEL	PMSD	TU	Meti	hod	
09-4300-8705	Combined Development	Ra 100	>100	NA	6.14%	1	Dun	nett Mu	Iltiple Comparison Test
11-7609-2573	Development Rate	100	>100	NA	2.59%	1			Iltiple Comparison Test
02-8901-1085	Survival Rate	100	>100	NA	4.32%	1			-One Rank Sum Test
Point Estimate	Summary			300 - 3					
Analysis ID	Endpoint	Level	%	95% LCL	95% UCL	TU	Meti	hod	
12-0868-5835	Combined Development	Ra EC25	>100	N/A	N/A	<1	Line	ar Inter	polation (ICPIN)
		EC50	>100	N/A	N/A	<1			political into
00-4847-7736	Development Rate	EC25	>100	N/A	N/A	<1	Line	ar Inter	polation (ICPIN)
		EC50	>100	N/A	N/A	<1			, , , , , , , , , , , , , , , , , , , ,
Test Acceptab	ility								
Analysis ID	Endpoint	Attribu	ute	Test Stat	TAC Limit	is	Ove	rlap	Decision
00-4847-7736	Development Rate	Contro	l Resp	0.9692	0.9 - NL		Yes		Passes Acceptability Criteria
11-7609-2573	Development Rate	Contro	l Resp	0.9692	0.9 - NL		Yes		Passes Acceptability Criteria
02-8901-1085	Survival Rate	Contro	l Resp	1	0.5 - NL		Yes		Passes Acceptability Criteria
	Combined Development			0.06141					· · · · · · · · · · · · · · · · · · ·

Batch note: 101=100 percent sample filtered to 0.45 mm

Analyst: QA: NOULT

Report Date:

08 Sep-17 13:40 (p 2 of 4)

Test Code:

1708-S191 | 17-8732-6798

Bivalve La	rval Survival and [Developme	nt Test							·	nental (CA)
		•							Naumus	LIMITOTIII	iemai (CA)
	Development Rate	•									
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Control	5	0.9692	0.9566	0.9817	0.9529	0.9781	0.004529	0.01013	1.05%	0.0%
6.25		5	0.9369	0.8993	0.9745	0.8836	0.9589	0.01356	0.03032	3.24%	3.33%
12.5		5	0.963	0.9398	0.9861	0.9412	0.9814	0.008355	0.01868	1.94%	0.64%
25		5	0.9064	0.7984	1	0.7808	0.9752	0.0389	0.08698	9.6%	6.48%
50		5	0.981	0.9596	1	0.9554	1	0.007708	0.01724	1.76%	-1.22%
100		5	0.9472	0.8848	1	0.8699	0.9942	0.02246	0.05021	5.3%	2.27%
101		5	0.9233	0.855	0.9917	0.8493	0.9833	0.02461	0.05503	5.96%	4.73%
Developm	ent Rate Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Control	5	0.9692	0.9566	0.9817	0.9529	0.9781	0.004529	0.01013	1.05%	0.0%
6.25		5	0.9513	0.9439	0.9587	0.9448	0.9589	0.002678	0.005988	0.63%	1.85%
12.5		5	0.9669	0.9472	0.9866	0.9412	0.9814	0.007096	0.01587	1.64%	0.23%
25		5	0.9753	0.9595	0.9911	0.9597	0.992	0.005691	0.01272	1.31%	-0.63%
50		5	0.981	0.9596	1	0.9554	1	0.007708	0.01724	1.76%	-1.22%
100		5	0.9778	0.9645	0.9912	0.9643	0.9942	0.004816	0.01077	1.1%	-0.89%
101		5	0.9672	0.9505	0.9839	0.9484	0.9833	0.00601	0.01344	1.39%	0.2%
Survival R	ate Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Control	5	1	1	1	1	1	0	0	0.0%	0.0%
6.25		5	0.9849	0.9431	1	0.9247	1	0.01507	0.03369	3.42%	1.51%
12.5		5	0.9959	0.9845	1	0.9795	1	0.00411	0.009189	0.92%	0.41%
25		5	0.9301	0.8083	1	0.7945	1	0.04388	0.09812	10.55%	6.99%
50		5	1	1	1	1	1	0	0	0.0%	0.0%
100		5	0.9685	0.9103	1	0.8904	1	0.02095	0.04686	4.84%	3.15%
101		5	0.9548	0.8822	1	0.8699	1	0.02614	0.05844	6.12%	4.52%

Analyst: QA: 10 3 17

08 Sep-17 13:40 (p 3 of 4) 1708-S191 | 17-8732-6798

							rest oode.	1700-0131 17-0732-0730
Bivalve L	arval Survival and [Developme	nt Test					Nautilus Environmental (CA)
Combine	d Development Rate	e Detail						
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Lab Control	0.974	0.9748	0.9659	0.9781	0.9529		
6.25		0.9589	0.8836	0.9463	0.9509	0.9448		
12.5		0.9688	0.9783	0.9814	0.9452	0.9412		
25		0.9752	0.9597	0.7808	0.8493	0.9669		
50		0.9934	1	0.9769	0.9554	0.9795		
100		0.9745	0.8699	0.9942	0.9726	0.9247		
101		0.9833	0.8493	0.9484	0.8836	0.9521		
Developm	nent Rate Detail							**************************************
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Lab Control	0.974	0.9748	0.9659	0.9781	0.9529		
6.25		0.9589	0.9556	0.9463	0.9509	0.9448		
12.5		0.9688	0.9783	0.9814	0.965	0.9412		
25		0.9752	0.9597	0.9828	0.992	0.9669		
50		0.9934	1	0.9769	0.9554	0.9795		
100		0.9745	0.9769	0.9942	0.9793	0.9643		
101		0.9833	0.9764	0.9484	0.9627	0.9653		
Survival F	Rate Detail							A CONTRACTOR OF THE CONTRACTOR
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Lab Control	1	1	1	1	1		
6.25		1	0.9247	1	1	1		
12.5		1	1	1	0.9795	1		
25		1	1	0.7945	0.8562	1		
50		1	1	1	1	1		
100		1	0.8904	1	0.9932	0.9589		
101		1	0.8699	1	0.9178	0.9863		

Analyst: QA: ACIODIT

08 Sep-17 13:40 (p 4 of 4) 1708-S191 | 17-8732-6798

							Test Code:	1/08-5191 17-8/32-6/98
Bivalve L	arval Survival and I	Developme	nt Test					Nautilus Environmental (CA)
Combine	d Development Rate	e Binomials						
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Lab Control	150/154	155/159	170/176	179/183	162/170		
6.25		140/146	129/146	141/149	155/163	154/163		
12.5		155/160	180/184	158/161	138/146	144/153		
25		157/161	143/149	114/146	124/146	146/151		
50		150/151	160/160	169/173	150/157	143/146		
100		153/157	127/146	170/171	142/146	135/146		
101		177/180	124/146	147/155	129/146	139/146		
Developm	nent Rate Binomials	5				10 A 20 A		
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Lab Control	150/154	155/159	170/176	179/183	162/170		- Committee of the comm
6.25		140/146	129/135	141/149	155/163	154/163		
12.5		155/160	180/184	158/161	138/143	144/153		
25		157/161	143/149	114/116	124/125	146/151		
50		150/151	160/160	169/173	150/157	143/146		
100		153/157	127/130	170/171	142/145	135/140		
101		177/180	124/127	147/155	129/134	139/144		
Survival F	Rate Binomials							
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Lab Control	146/146	146/146	146/146	146/146	146/146		
6.25		146/146	135/146	146/146	146/146	146/146		
12.5		146/146	146/146	146/146	143/146	146/146		
25		146/146	146/146	116/146	125/146	146/146		
50		146/146	146/146	146/146	146/146	146/146		

146/146

146/146

145/146

134/146

140/146

144/146

146/146

146/146

130/146

127/146

100

101

08 Sep-17 13:40 (p 1 of 6) 1708-S191 | 17-8732-6798

							1631	Code:		3-0131117	-0132-0190
Bivalve Larv	al Survival and	Developme	nt Test						Nautilus	Environm	nental (CA)
Analysis ID: Analyzed:	09-4300-8705 08 Sep-17 13:		•	mbined Deve	•			S Version:		8.7	
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU
Angular (Cori		NA	C > T	NA	NA		6.14%	100	>100	NA	1
Dunnett Mul	tiple Compariso	n Test									
Control	vs C-%		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision	(α:5%)		
Lab Control	6.25		1.35	2.362	0.131 8	0.2762	CDF		ificant Effect		
Lub Comio,	12.5		0.2532	2.362	0.131 8	0.7479	CDF	Ū	ificant Effect		
	25		2.01	2.362	0.131 8	0.0976	CDF	-	ificant Effect		
	50		-0.8819	2.362	0.131 8	0.9770	CDF	Ū	ificant Effect		
	100		0.6383	2.362	0.131 8	0.5852	CDF	•	ificant Effect		
			0.0000	2.002	0.101 0	0.0002	ODI	140II-OlgII	meant Enect		
ANOVA Tabl											
Source	Sum Squ		Mean Squ	TO THE OWNER OF THE OWNER OWNE	DF_	F Stat	P-Value	Decision	·		
Between	0.079665	_	0.0159330		5	2.087	0.1022	Non-Sign	ificant Effect		
Error	0.183208		0.0076337	/06	24	_					
Total	0.262874	3			29						
Distribution	al Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision(α:1%)			
Variances	Bartlett I	Equality of V	'ariance	11.69	15.09	0.0393	Equal Var	iances			
Distribution	Shapiro-	Wilk W Nor	mality	0.9644	0.9031	0.3986	Normal Di	stribution			
Combined D	evelopment Rat	e Summary									
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	0.9692	0.9566	0.9817	0.974	0.9529	0.9781	0.004529	1.05%	0.0%
6.25		_		0.0000	0.07.15			0.0500			3.33%
40.5		5	0.9369	0.8993	0.9745	0.9463	0.8836	0.9589	0.01356	3.24%	3.3370
12.5		5	0.9369 0.963	0.8993	0.9745 0.9862	0.9463 0.9688	0.8836 0.9412	0.9589 0.9814	0.01356 0.008355	3.24% 1.94%	0.64%
12.5 25											
		5	0.963	0.9398	0.9862	0.9688	0.9412	0.9814	0.008355	1.94%	0.64%
25		5 5	0.963 0.9064	0.9398 0.7984	0.9862 1	0.9688 0.9597	0.9412 0.7808	0.9814 0.9752	0.008355 0.0389	1.94% 9.6%	0.64% 6.48%
25 50 100	rrected) Transfo	5 5 5 5	0.963 0.9064 0.981 0.9472	0.9398 0.7984 0.9596	0.9862 1 1	0.9688 0.9597 0.9795	0.9412 0.7808 0.9554	0.9814 0.9752 1	0.008355 0.0389 0.007708	1.94% 9.6% 1.76%	0.64% 6.48% -1.22%
25 50 100	rrected) Transfo Control Type	5 5 5 5	0.963 0.9064 0.981 0.9472	0.9398 0.7984 0.9596	0.9862 1 1	0.9688 0.9597 0.9795	0.9412 0.7808 0.9554	0.9814 0.9752 1	0.008355 0.0389 0.007708	1.94% 9.6% 1.76%	0.64% 6.48% -1.22%
25 50 100 Angular (Co	•	5 5 5 5 rmed Summ	0.963 0.9064 0.981 0.9472	0.9398 0.7984 0.9596 0.8848	0.9862 1 1	0.9688 0.9597 0.9795 0.9726	0.9412 0.7808 0.9554 0.8699	0.9814 0.9752 1 0.9942	0.008355 0.0389 0.007708 0.02246	1.94% 9.6% 1.76% 5.3%	0.64% 6.48% -1.22% 2.27%
25 50 100 Angular (C od	Control Type	5 5 5 5 rmed Sumn	0.963 0.9064 0.981 0.9472 nary	0.9398 0.7984 0.9596 0.8848	0.9862 1 1 1 95% UCL	0.9688 0.9597 0.9795 0.9726	0.9412 0.7808 0.9554 0.8699	0.9814 0.9752 1 0.9942 Max	0.008355 0.0389 0.007708 0.02246 Std Err	1.94% 9.6% 1.76% 5.3%	0.64% 6.48% -1.22% 2.27%
25 50 100 Angular (Cor C- %	Control Type	5 5 5 5 rmed Summ Count	0.963 0.9064 0.981 0.9472 mary Mean 1.396	0.9398 0.7984 0.9596 0.8848 95% LCL 1.361	0.9862 1 1 1 1 95% UCL 1.431	0.9688 0.9597 0.9795 0.9726 Median 1.409	0.9412 0.7808 0.9554 0.8699 Min 1.352	0.9814 0.9752 1 0.9942 Max 1.422	0.008355 0.0389 0.007708 0.02246 Std Err 0.01255	1.94% 9.6% 1.76% 5.3% CV% 2.01%	0.64% 6.48% -1.22% 2.27% %Effect 0.0%
25 50 100 Angular (Cot C- % 0 6.25	Control Type	5 5 5 5 rmed Sum n Count 5	0.963 0.9064 0.981 0.9472 mary Mean 1.396 1.321	0.9398 0.7984 0.9596 0.8848 95% LCL 1.361 1.251	0.9862 1 1 1 1 95% UCL 1.431 1.392	0.9688 0.9597 0.9795 0.9726 Median 1.409 1.337	0.9412 0.7808 0.9554 0.8699 Min 1.352 1.223	0.9814 0.9752 1 0.9942 Max 1.422 1.367	0.008355 0.0389 0.007708 0.02246 Std Err 0.01255 0.02538	1.94% 9.6% 1.76% 5.3% CV% 2.01% 4.3%	0.64% 6.48% -1.22% 2.27% %Effect 0.0% 5.34%
25 50 100 Angular (Con C-% 0 6.25 12.5	Control Type	5 5 5 5 rmed Sum n Count 5 5 5	0.963 0.9064 0.981 0.9472 mary Mean 1.396 1.321 1.382	0.9398 0.7984 0.9596 0.8848 95% LCL 1.361 1.251 1.32	0.9862 1 1 1 95% UCL 1.431 1.392 1.444	0.9688 0.9597 0.9795 0.9726 Median 1.409 1.337 1.393	0.9412 0.7808 0.9554 0.8699 Min 1.352 1.223 1.326	0.9814 0.9752 1 0.9942 Max 1.422 1.367 1.434	0.008355 0.0389 0.007708 0.02246 Std Err 0.01255 0.02538 0.02224	1.94% 9.6% 1.76% 5.3% CV% 2.01% 4.3% 3.6%	0.64% 6.48% -1.22% 2.27% %Effect 0.0% 5.34% 1.0%

08 Sep-17 13:40 (p 2 of 6) 1708-S191 | 17-8732-6798

Bivalve Larval Survival and Development Test Nautilus Environmental (CA) 09-4300-8705 Analysis ID: Endpoint: Combined Development Rate **CETIS Version:** CETISv1.8.7 Analyzed: 08 Sep-17 13:39 Analysis: Parametric-Control vs Treatments Official Results: Yes Graphics 0.20 0.9 0.15 Combined Development Rate 8.0 0.10 0.05 0.6 0.00 0.5 -0.05 0.4 -0.10 0.3 0.2 0.1 -0.25 0 LC 6.25 12.5 25 50 100 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 C-% Rankits

08 Sep-17 13:40 (p 3 of 6) 1708-S191 | 17-8732-6798

Bivalve Larva	al Surv	vival and Develo	oment Test						Nautili	us Environr	mental (CA)
Analysis ID: Analyzed:		609-2573 Sep-17 13:39	Endpoint: D	Development Parametric-Co		Freatments		IS Version		1.8.7	
Data Transfo	rm	Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU
Angular (Corre	ected)	NA	C > T	NA	NA		2.59%	100	>100	NA	1
Dunnett Mult	iple Co	omparison Test									
Control	vs	C-%	Test Sta	at Critical	MSD	DF P-Value	P-Type	Decision	(a:5%)		

Control	vs	C-%	Test Stat	Critical	MSD	DF	P-Value	P-Type	Decision(α:5%)
Lab Control		6.25	1.752	2.362	0.064	8	0.1519	CDF	Non-Significant Effect
		12.5	0.161	2.362	0.064	8	0.7814	CDF	Non-Significant Effect
		25	-0.8082	2.362	0.064	8	0.9720	CDF	Non-Significant Effect
		50	-1.801	2.362	0.064	8	0.9986	CDF	Non-Significant Effect
		100	-1.109	2.362	0.064	8	0.9878	CDF	Non-Significant Effect

ANOVA Table						
Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(α:5%)
Between	0.02811737	0.005623473	5	3.072	0.0278	Significant Effect
Error	0.04393926	0.001830803	24			
Total	0.07205663		29			

Distributional Tests									
Attribute	Test		Test Stat Critical P-Value Decision(α:1%)		Decision(a:1%)				
Variances	Bartlett Equality of Variance	7.942	15.09	0.1595	Equal Variances				
Distribution	Shapiro-Wilk W Normality	0.9883	0.9031	0.9797	Normal Distribution				

Development Rate Summary											
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	0.9692	0.9566	0.9817	0.974	0.9529	0.9781	0.004529	1.05%	0.0%
6.25		5	0.9513	0.9439	0.9587	0.9509	0.9448	0.9589	0.002678	0.63%	1.85%
12.5		5	0.9669	0.9472	0.9866	0.9688	0.9412	0.9814	0.007096	1.64%	0.23%
25		5	0.9753	0.9595	0.9911	0.9752	0.9597	0.992	0.005691	1.31%	-0.63%
50		5	0.981	0.9596	1	0.9795	0.9554	1	0.007708	1.76%	-1.22%
100		5	0.9778	0.9645	0.9912	0.9769	0.9643	0.9942	0.004816	1.1%	-0.89%

Angular (Corrected) Transformed Summary											
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	1.396	1.361	1.431	1.409	1.352	1.422	0.01255	2.01%	0.0%
6.25		5	1.349	1.331	1.366	1.347	1.334	1.367	0.006261	1.04%	3.4%
12.5		5	1.392	1.339	1.444	1.393	1.326	1.434	0.01893	3.04%	0.31%
25		5	1.418	1.363	1.473	1.413	1.369	1.481	0.01976	3.12%	-1.57%
50		5	1.445	1.361	1.528	1.427	1.358	1.531	0.03001	4.65%	-3.49%
100		5	1.426	1.374	1.478	1.418	1.381	1.494	0.01872	2.94%	-2.15%

0.2

0.1

0.0

6.25

12.5

C-%

25

50

100

Report Date: Test Code: 08 Sep-17 13:40 (p 4 of 6) 1708-S191 | 17-8732-6798

Bivalve Larval Survival and Development Test Nautilus Environmental (CA) Analysis ID: 11-7609-2573 **CETIS Version:** Endpoint: Development Rate CETISv1.8.7 Analyzed: 08 Sep-17 13:39 Analysis: Parametric-Control vs Treatments Official Results: Yes Graphics 0.105 0.084 8.0 0.063 0.7 0.042 0.6 0,021 0.5 0.000 0.4 -0.021 0.3 -0,042

-0.063

-0.084

-2.5 -2.0

-1.5 -1.0

-0.5 0.0 0.5 1.0 1.5 2.0

Rankits

08 Sep-17 13:40 (p 5 of 6) 1708-S191 | 17-8732-6798

	_	-							Test	Code:	170	8-S191 17	'-8732-679
Bivalve Larv	al Sur	vival and E	evelopme	ent Test							Nautilus	Environm	nental (CA
Analysis ID:	02-	8901-1085	En	dpoint: Sur	vival Rate				CET	IS Version	: CETISv1	.8.7	
Analyzed:	80	Sep-17 13:0	39 A n	alysis: Nor	nparametric-	Control	vs T	reatments	Offic	ial Results	s: Yes		
Data Transfo	ırm		Zeta	Alt Hyp	Trials	Seed			PMSD	NOEL	LOEL	TOEL	TU
Angular (Cori	ected)		NA	C > T	NA	NA			4.32%	100	>100	NA	1
Steel Many-0	One R	ank Sum To	est										
Control	vs	C-%		Test Stat	Critical	Ties	DF	P-Value	P-Type	Decision	n(a:5%)		
Lab Control		6.25		25	16	1	8	0.6353	Asymp	Non-Sigr	ificant Effect		
		12.5		25	16	1	8	0.6353	Asymp	Non-Sigr	nificant Effect		
		25		22.5	16	1	8	0.3937	Asymp	Non-Sigr	nificant Effect		
		50		27.5	16	1	8	0.8333	Asymp	Non-Sigr	nificant Effect		
		100		20	16	1	8	0.1899	Asymp	Non-Sigr	ificant Effect		
ANOVA Tabl	е								accommunication to the second contract of the	CESTATE PROPERTY OF THE PARTY O	UNIVERSE VIEW PROPERTY OF THE		
Source				Mean Squ	ıare	DF		F Stat	P-Value	Decision	ι(α:5%)		
Between		0.0969400)3	0.0193880)1	5		1.534	0.2167	Non-Sigr	Non-Significant Effect		
Error		0.3032736	3	0.0126364	ļ.	24							
Total		0.4002130	3			29		_					
Distribution	al Test	s					***************************************						
Attribute		Test			Test Stat	Critica	ıl	P-Value	Decision	(α:1%)			
Variances		Mod Leve	ene Equalit	y of Variance	1.794	4.248		0.1650	Equal Vai	riances			
Variances		Levene E	Equality of \	√ariance	14.76	3.895		<0.0001	Unequal \	/ariances			
Distribution		Shapiro-\	Wilk W Nor	mality	0.8703	0.9031		0.0017	Non-norm	nal Distribut	ion		
Survival Rat	e Sum	ımary											
C-%	Con	trol Type	Count	Mean	95% LCL	95% U	CL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab	Control	5	1	1	1		1	1	1	0	0.0%	0.0%
6.25			5	0.9849	0.9431	1		1	0.9247	1	0.01507	3.42%	1.51%
12.5			5	0.9959	0.9845	1		1	0.9795	1	0.00411	0.92%	0.41%
25			5	0.9301	0.8083	1		1	0.7945	1	0.04388	10.55%	6.99%
50			5	1	1	1		1	1	1	0	0.0%	0.0%
100			5	0.9685	0.9103	1		0.9932	0.8904	1	0.02095	4.84%	3.15%
Angular (Co	rrecte	d) Transfor	med Sumi	mary									
C-%	Con	trol Type	Count	Mean	95% LCL	95% U	CL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab	Control	5	1.529	1.529	1.53		1.529	1.529	1.529	0	0.0%	0.0%
6.25			5	1.482	1.351	1.613		1.529	1.293	1.529	0.04733	7.14%	3.1%
12.5			5	1.509	1.452	1.566		1.529	1.427	1.529	0.02049	3.04%	1.34%
25			5	1.374	1.108	1.641		1.529	1.1	1.529	0.09599	15.62%	10.16%
50			5	1.529	1.529	1.53		1.529	1.529	1.529	0	0.0%	0.0%
400			_	4.400	1 07	4 500		1 400	1 222	1 500	0.05725	0.070/	6 5 4 9 /

100

5

1.429

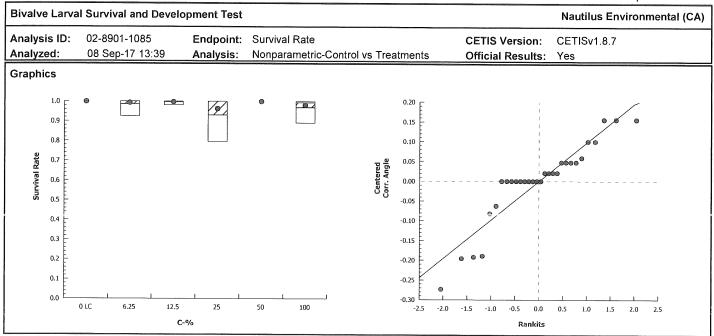
1.27

1.589

1.488

1.233

1.529


0.05735

8.97%

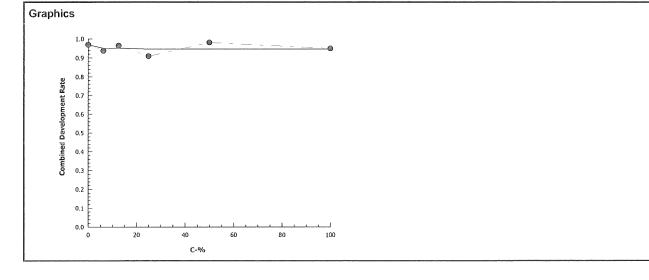
6.54%

Report Date: Test Code: 08 Sep-17 13:40 (p 6 of 6)

1708-S191 | 17-8732-6798

Report Date:

08 Sep-17 13:40 (p 1 of 2)


Test Code:

1708-S191 | 17-8732-6798

Bivalve Larva	l Survival and Devel	opment Test			Nautilus Environmental (CA)
Analysis ID:	12-0868-5835	Endpoint:	Combined Development Rate	CETIS Version:	CETISv1.8.7
Analyzed:	08 Sep-17 13:39	Analysis:	Linear Interpolation (ICPIN)	Official Results:	Yes

Linear Interpolation Options											
X Trans	form	Y Transform	Seed	1	Resamples	Exp 95% CL	Method				
Linear		Linear	1309	496	1000	Yes	Two-Point Interpolation				
Point E	stimates			***************************************							
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL					
EC25	>100	N/A	N/A	<1	NA	NA					
EC50	>100	N/A	N/A	<1	NA	NA					

Combine	ed Development Rat	e Summary	Calculated Variate(A/B)								
C-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Lab Control	5	0.9692	0.9529	0.9781	0.004529	0.01013	1.05%	0.0%	816	842
6.25		5	0.9369	0.8836	0.9589	0.01356	0.03032	3.24%	3.33%	719	767
12.5		5	0.963	0.9412	0.9814	0.008355	0.01868	1.94%	0.64%	775	804
25		5	0.9064	0.7808	0.9752	0.0389	0.08698	9.6%	6.48%	684	753
50		5	0.981	0.9554	1	0.007708	0.01724	1.76%	-1.22%	772	787
100		5	0.9472	0.8699	0.9942	0.02246	0.05021	5.3%	2.27%	727	766

Report Date:

08 Sep-17 13:40 (p 2 of 2)

Test Code:

1708-S191 | 17-8732-6798

Bivalve Larval Survival and Development T	est
---	-----

Nautilus Environmental (CA)

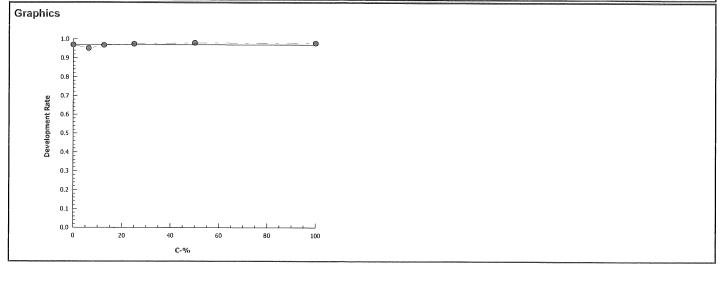
Analysis ID: 00-4847-7736 Analyzed:

08 Sep-17 13:39

Endpoint: Development Rate

Linear Interpolation (ICPIN) Analysis:

CETIS Version:


CETISv1.8.7

O	ffici	ial	Res	ults:	Yes	

Official	Results:	Yes

Linear	nterpola	tion Options						
X Trans	form	Y Transform	Seed	i	Resamples	Exp 95% CL	Method	
Linear		Linear	1899	529	1000	Yes	Two-Point Interpolation	
Point E	stimates							
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL		
EC25	>100	N/A	N/A	<1	NA	NA		
EC50	>100	N/A	N/A	<1	NA	NA		

Develop	ment Rate Summary	1									
C-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Lab Control	5	0.9692	0.9529	0.9781	0.004529	0.01013	1.05%	0.0%	816	842
6.25		5	0.9513	0.9448	0.9589	0.002678	0.005988	0.63%	1.85%	719	756
12.5		5	0.9669	0.9412	0.9814	0.007096	0.01587	1.64%	0.23%	775	801
25		5	0.9753	0.9597	0.992	0.005691	0.01272	1.31%	-0.63%	684	702
50		5	0.981	0.9554	1	0.007708	0.01724	1.76%	-1.22%	772	787
100		5	0.9778	0.9643	0.9942	0.004816	0.01077	1.1%	-0.89%	727	743

751

Report Date: Test Code: 08 Sep-17 13:42 (p 1 of 2) 1708-S191 | 17-8732-6798

				¥							-8/32-6/9
Bivalve Larv	al Survival and D	Developm	ent Test						Nautilus	Environn	nental (CA
Analysis ID: Analyzed:	04-8982-0677 08 Sep-17 13:4			ombined Deve arametric Bioe	· · · · · · · · · · · · · · · · · · ·					CETISv1.8.7 Yes	
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed	TST b	PMSD	NOEL	LOEL	TOEL	TU
Angular (Cor	rected)	NA	C*b < T	NA	NA	0.75	4.67%	101	>101	NA	0.9901
TST-Welch's	t Test										
Control	vs C-%		Test Sta	t Critical	MSD DF	P-Value	P-Type	Decision(α:5%)		
Lab Control	6.25*		10.14	2.015	0.055 5	<0.0001	CDF	Non-Signif	ficant Effect		
	12.5*		13.87	2.015	0.049 5	<0.0001	CDF	Non-Signif	icant Effect		
	25*		3.569	2.132	0.142 4	0.0117	CDF	Non-Signif	icant Effect		
	50*		12.65	2.132	0.067 4	0.0001	CDF	Non-Signif	icant Effect		
	100*		6.044	2.132	0.111 4	0.0019	CDF	Non-Signif	icant Effect		
	101*		5.268	2.132	0.105 4	0.0031	CDF	Non-Signif	icant Effect		
ANOVA Tabl	e				Discontraction (All Contractions and All Contractio	0					
Source	Sum Squares Mean S			quare	DF	F Stat	P-Value	Decision(α:5%)		
Between	0.094811		0.01580	183	6	1.927	0.1113	Non-Signit	ficant Effect		
Error	0.2296109	9	0.00820	0388	28						
Total	0.3244219	9	**************************************	·	34		<u>.</u>				
Distribution	al Tests					***************************************					
Attribute	Test			Test Stat	Critical	P-Value	Decision((α:1%)			
Variances	Bartlett E	Equality of	Variance	12.01	16.81	0.0617	Equal Var	iances			
Distribution	Shapiro-\	Wilk W No	ormality	0.9654	0.9146	0.3301	Normal Di	stribution			
Combined D	evelopment Rate	e Summai	ry								
C-%	Control Type	Count	Mean	95% LCL							
				95% LUL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	0.9692	0.9566	95% UCL 0.9817	Median 0.974	Min 0.9529	Max 0.9781	Std Err 0.004529	CV% 1.05%	%Effect 0.0%
	Lab Control	5 5		**************************************				Mark Mark Mark Committee C		***************************************	
6.25	Lab Control		0.9692	0.9566	0.9817	0.974	0.9529	0.9781	0.004529	1.05%	0.0%
6.25 12.5	Lab Control	5	0.9692 0.9369	0.9566 0.8993	0.9817 0.9745	0.974 0.9463	0.9529 0.8836	0.9781 0.9589	0.004529 0.01356	1.05% 3.24%	0.0% 3.33%
6.25 12.5 25	Lab Control	5 5	0.9692 0.9369 0.963	0.9566 0.8993 0.9398	0.9817 0.9745 0.9862	0.974 0.9463 0.9688	0.9529 0.8836 0.9412	0.9781 0.9589 0.9814	0.004529 0.01356 0.008355	1.05% 3.24% 1.94%	0.0% 3.33% 0.64%
0 6.25 12.5 25 50 100	Lab Control	5 5 5	0.9692 0.9369 0.963 0.9064	0.9566 0.8993 0.9398 0.7984	0.9817 0.9745 0.9862 1	0.974 0.9463 0.9688 0.9597	0.9529 0.8836 0.9412 0.7808	0.9781 0.9589 0.9814 0.9752	0.004529 0.01356 0.008355 0.0389	1.05% 3.24% 1.94% 9.6%	0.0% 3.33% 0.64% 6.48%
6.25 12.5 25 50 100	Lab Control	5 5 5 5	0.9692 0.9369 0.963 0.9064 0.981	0.9566 0.8993 0.9398 0.7984 0.9596	0.9817 0.9745 0.9862 1	0.974 0.9463 0.9688 0.9597 0.9795	0.9529 0.8836 0.9412 0.7808 0.9554	0.9781 0.9589 0.9814 0.9752	0.004529 0.01356 0.008355 0.0389 0.007708	1.05% 3.24% 1.94% 9.6% 1.76%	0.0% 3.33% 0.64% 6.48% -1.22%
6.25 12.5 25 50 100 101	Lab Control	5 5 5 5 5	0.9692 0.9369 0.963 0.9064 0.981 0.9472 0.9233	0.9566 0.8993 0.9398 0.7984 0.9596 0.8848	0.9817 0.9745 0.9862 1 1	0.974 0.9463 0.9688 0.9597 0.9795 0.9726	0.9529 0.8836 0.9412 0.7808 0.9554 0.8699	0.9781 0.9589 0.9814 0.9752 1 0.9942	0.004529 0.01356 0.008355 0.0389 0.007708 0.02246	1.05% 3.24% 1.94% 9.6% 1.76% 5.3%	0.0% 3.33% 0.64% 6.48% -1.22% 2.27%
6.25 12.5 25 50 100 101		5 5 5 5 5	0.9692 0.9369 0.963 0.9064 0.981 0.9472 0.9233	0.9566 0.8993 0.9398 0.7984 0.9596 0.8848	0.9817 0.9745 0.9862 1 1	0.974 0.9463 0.9688 0.9597 0.9795 0.9726	0.9529 0.8836 0.9412 0.7808 0.9554 0.8699	0.9781 0.9589 0.9814 0.9752 1 0.9942	0.004529 0.01356 0.008355 0.0389 0.007708 0.02246	1.05% 3.24% 1.94% 9.6% 1.76% 5.3%	0.0% 3.33% 0.64% 6.48% -1.22% 2.27%
6.25 12.5 25 50 100 101 Angular (Co	rrected) Transfor	5 5 5 5 5 5 5	0.9692 0.9369 0.963 0.9064 0.981 0.9472 0.9233	0.9566 0.8993 0.9398 0.7984 0.9596 0.8848 0.855	0.9817 0.9745 0.9862 1 1 1 0.9917	0.974 0.9463 0.9688 0.9597 0.9795 0.9726 0.9484	0.9529 0.8836 0.9412 0.7808 0.9554 0.8699 0.8493	0.9781 0.9589 0.9814 0.9752 1 0.9942 0.9833	0.004529 0.01356 0.008355 0.0389 0.007708 0.02246 0.02461	1.05% 3.24% 1.94% 9.6% 1.76% 5.3% 5.96%	0.0% 3.33% 0.64% 6.48% -1.22% 2.27% 4.73%
6.25 12.5 25 50 100 101 Angular (Co	rrected) Transfor Control Type	5 5 5 5 5 5 rmed Sum Count	0.9692 0.9369 0.963 0.9064 0.981 0.9472 0.9233	0.9566 0.8993 0.9398 0.7984 0.9596 0.8848 0.855	0.9817 0.9745 0.9862 1 1 1 0.9917	0.974 0.9463 0.9688 0.9597 0.9795 0.9726 0.9484	0.9529 0.8836 0.9412 0.7808 0.9554 0.8699 0.8493	0.9781 0.9589 0.9814 0.9752 1 0.9942 0.9833	0.004529 0.01356 0.008355 0.0389 0.007708 0.02246 0.02461	1.05% 3.24% 1.94% 9.6% 1.76% 5.3% 5.96%	0.0% 3.33% 0.64% 6.48% -1.22% 2.27% 4.73%
6.25 12.5 25 50 100 101 Angular (Co C-% 0 6.25	rrected) Transfor Control Type	5 5 5 5 5 5 rmed Sum Count	0.9692 0.9369 0.963 0.9064 0.981 0.9472 0.9233 nmary Mean 1.396	0.9566 0.8993 0.9398 0.7984 0.9596 0.8848 0.855	0.9817 0.9745 0.9862 1 1 1 0.9917 95% UCL	0.974 0.9463 0.9688 0.9597 0.9795 0.9726 0.9484 Median 1.409	0.9529 0.8836 0.9412 0.7808 0.9554 0.8699 0.8493 Min	0.9781 0.9589 0.9814 0.9752 1 0.9942 0.9833	0.004529 0.01356 0.008355 0.0389 0.007708 0.02246 0.02461 Std Err 0.01255	1.05% 3.24% 1.94% 9.6% 1.76% 5.3% 5.96% CV%	0.0% 3.33% 0.64% 6.48% -1.22% 2.27% 4.73% %Effect 0.0%
6.25 12.5 25 50 100 101 Angular (Co C-% 0 6.25 12.5	rrected) Transfor Control Type	5 5 5 5 5 5 mmed Sum Count 5	0.9692 0.9369 0.963 0.9064 0.981 0.9472 0.9233 nmary Mean 1.396 1.321	0.9566 0.8993 0.9398 0.7984 0.9596 0.8848 0.855 95% LCL 1.361 1.251	0.9817 0.9745 0.9862 1 1 1 0.9917 95% UCL 1.431 1.392	0.974 0.9463 0.9688 0.9597 0.9795 0.9726 0.9484 Median 1.409 1.337	0.9529 0.8836 0.9412 0.7808 0.9554 0.8699 0.8493 Min 1.352 1.223	0.9781 0.9589 0.9814 0.9752 1 0.9942 0.9833 Max 1.422 1.367	0.004529 0.01356 0.008355 0.0389 0.007708 0.02246 0.02461 Std Err 0.01255 0.02538	1.05% 3.24% 1.94% 9.6% 1.76% 5.3% 5.96% CV% 2.01% 4.3%	0.0% 3.33% 0.64% 6.48% -1.22% 2.27% 4.73% %Effect 0.0% 5.34%
6.25 12.5 25 50 100 101 Angular (Co C-% 0 6.25 12.5 25	rrected) Transfor Control Type	5 5 5 5 5 5 7med Sum Count 5 5	0.9692 0.9369 0.963 0.9064 0.981 0.9472 0.9233 mary Mean 1.396 1.321 1.382	0.9566 0.8993 0.9398 0.7984 0.9596 0.8848 0.855 95% LCL 1.361 1.251 1.32	0.9817 0.9745 0.9862 1 1 1 0.9917 95% UCL 1.431 1.392 1.444	0.974 0.9463 0.9688 0.9597 0.9795 0.9726 0.9484 Median 1.409 1.337 1.393	0.9529 0.8836 0.9412 0.7808 0.9554 0.8699 0.8493 Min 1.352 1.223 1.326	0.9781 0.9589 0.9814 0.9752 1 0.9942 0.9833 Max 1.422 1.367 1.434	0.004529 0.01356 0.008355 0.0389 0.007708 0.02246 0.02461 Std Err 0.01255 0.02538 0.02224	1.05% 3.24% 1.94% 9.6% 1.76% 5.3% 5.96% CV% 2.01% 4.3% 3.6%	0.0% 3.33% 0.64% 6.48% -1.22% 2.27% 4.73% %Effect 0.0% 5.34% 1.0%
6.25 12.5 25 50 100 101 Angular (Co C-%	rrected) Transfor Control Type	5 5 5 5 5 7 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.9692 0.9369 0.963 0.9064 0.981 0.9472 0.9233 mmary Mean 1.396 1.321 1.382 1.285	0.9566 0.8993 0.9398 0.7984 0.9596 0.8848 0.855 95% LCL 1.361 1.251 1.32 1.102	0.9817 0.9745 0.9862 1 1 1 0.9917 95% UCL 1.431 1.392 1.444 1.468	0.974 0.9463 0.9688 0.9597 0.9795 0.9726 0.9484 Median 1.409 1.337 1.393 1.369	0.9529 0.8836 0.9412 0.7808 0.9554 0.8699 0.8493 Min 1.352 1.223 1.326 1.084	0.9781 0.9589 0.9814 0.9752 1 0.9942 0.9833 Max 1.422 1.367 1.434 1.413	0.004529 0.01356 0.008355 0.0389 0.007708 0.02246 0.02461 Std Err 0.01255 0.02538 0.02224 0.06601	1.05% 3.24% 1.94% 9.6% 1.76% 5.3% 5.96% CV% 2.01% 4.3% 3.6% 11.49%	0.0% 3.33% 0.64% 6.48% -1.22% 2.27% 4.73% %Effect 0.0% 5.34% 1.0% 7.96%

Analyst: A QA: ACIDIZITI

TST

Report Date:

08 Sep-17 13:42 (p 2 of 2)

Test Code: 1708-S191 | 17-8732-6798

				1	21			Code:			7-8732-679
Bivalve Larv	/al Survival and [Developme	ent Test						Nautilus	Environ	mental (CA)
Analysis ID: Analyzed:	19-0425-4109 08 Sep-17 13:		•	Pevelopment R Parametric Bioe		-Two Samp		IS Version:		.8.7	
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed	TST b	PMSD	NOEL	LOEL	TOEL	TU
Angular (Corr	rected)	NA	C*b < T		NA	0.75	1.42%	101	>101	NA	0.9901
TST-Welch's	s t Test										
Control	vs C-%		Test Sta	at Critical	MSD DF	P-Value	P-Type	Decision	(a:5%)		
Lab Control	6.25*		26.68	1.943	0.022 6	<0.0001	CDF	Non-Sign	ificant Effect	***************************************	······································
	12.5*		16.3	2.015	0.043 5	<0.0001	CDF	Non-Sign	ificant Effect		
	25*		16.94	2.015	0.044 5	<0.0001	CDF	Non-Sign	ificant Effect		
	50*		12.65	2.132	0.067 4	0.0001	CDF	Non-Sign	ificant Effect		
	100*		18.09	2.015	0.042 5	<0.0001	CDF		ificant Effect		
	101*		17.62	1.943	0.038 6	<0.0001	CDF	Non-Sign	ificant Effect		
ANOVA Tabl	le										
Source	Sum Squares Mean		Mean S	quare	DF	F Stat	P-Value	Decision	(α:5%)		
Between	0.0287672	29	0.00479	4548	6	2.694	0.0342	Significar	nt Effect		
Error	0.049829		0.00177	9634	28						
Total	0.0785970	02			34	~~~~~					
Distributiona	al Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(a:1%)			
Variances	Bartlett E	quality of \	/ariance	8.027	16.81	0.2361	Equal Var	iances			
Distribution	Shapiro-\	Wilk W No	mality	0.9892	0.9146	0.9769	Normal Di	istribution			
Developmen	nt Rate Summary										
C-%	Control Type	Count	Mean	0.50/ 1.01							
0	Lab Control		modii	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
	Lab Control	5	0.9692	0.9566	95% UCL 0.9817	Median 0.974	Min 0.9529	Max 0.9781	Std Err 0.004529	CV%	%Effect 0.0%
6.25	Lab Control	5 5									
12.5	Lab Control		0.9692	0.9566	0.9817	0.974	0.9529	0.9781	0.004529	1.05%	0.0%
12.5 25	Lab Control	5 5 5	0.9692 0.9513	0.9566 0.9439	0.9817 0.9587	0.974 0.9509	0.9529 0.9448	0.9781 0.9589	0.004529 0.002678	1.05% 0.63%	0.0% 1.85%
6.25 12.5 25 50	Lab Control	5 5 5 5	0.9692 0.9513 0.9669 0.9753 0.981	0.9566 0.9439 0.9472	0.9817 0.9587 0.9866	0.974 0.9509 0.9688	0.9529 0.9448 0.9412	0.9781 0.9589 0.9814	0.004529 0.002678 0.007096	1.05% 0.63% 1.64%	0.0% 1.85% 0.23%
12.5 25 50 100	Lab Control	5 5 5 5	0.9692 0.9513 0.9669 0.9753	0.9566 0.9439 0.9472 0.9595 0.9596 0.9645	0.9817 0.9587 0.9866 0.9911 1 0.9912	0.974 0.9509 0.9688 0.9752 0.9795 0.9769	0.9529 0.9448 0.9412 0.9597	0.9781 0.9589 0.9814 0.992	0.004529 0.002678 0.007096 0.005691	1.05% 0.63% 1.64% 1.31%	0.0% 1.85% 0.23% -0.63% -1.22% -0.89%
12.5 25 50	Lab Control	5 5 5 5	0.9692 0.9513 0.9669 0.9753 0.981	0.9566 0.9439 0.9472 0.9595 0.9596	0.9817 0.9587 0.9866 0.9911	0.974 0.9509 0.9688 0.9752 0.9795	0.9529 0.9448 0.9412 0.9597 0.9554	0.9781 0.9589 0.9814 0.992	0.004529 0.002678 0.007096 0.005691 0.007708	1.05% 0.63% 1.64% 1.31% 1.76%	0.0% 1.85% 0.23% -0.63% -1.22%
12.5 25 50 100 101	rrected) Transfor	5 5 5 5 5	0.9692 0.9513 0.9669 0.9753 0.981 0.9778 0.9672	0.9566 0.9439 0.9472 0.9595 0.9596 0.9645	0.9817 0.9587 0.9866 0.9911 1 0.9912	0.974 0.9509 0.9688 0.9752 0.9795 0.9769	0.9529 0.9448 0.9412 0.9597 0.9554 0.9643	0.9781 0.9589 0.9814 0.992 1 0.9942	0.004529 0.002678 0.007096 0.005691 0.007708 0.004816	1.05% 0.63% 1.64% 1.31% 1.76% 1.1%	0.0% 1.85% 0.23% -0.63% -1.22% -0.89%
12.5 25 50 100 101 Angular (Cor		5 5 5 5 5	0.9692 0.9513 0.9669 0.9753 0.981 0.9778 0.9672	0.9566 0.9439 0.9472 0.9595 0.9596 0.9645	0.9817 0.9587 0.9866 0.9911 1 0.9912	0.974 0.9509 0.9688 0.9752 0.9795 0.9769	0.9529 0.9448 0.9412 0.9597 0.9554 0.9643	0.9781 0.9589 0.9814 0.992 1 0.9942	0.004529 0.002678 0.007096 0.005691 0.007708 0.004816	1.05% 0.63% 1.64% 1.31% 1.76% 1.1%	0.0% 1.85% 0.23% -0.63% -1.22% -0.89%
12.5 25 50 100 101 Angular (Cor C-%	rrected) Transfor	5 5 5 5 5 5 5	0.9692 0.9513 0.9669 0.9753 0.981 0.9778 0.9672 mary Mean 1.396	0.9566 0.9439 0.9472 0.9595 0.9596 0.9645 0.9505 95% LCL	0.9817 0.9587 0.9866 0.9911 1 0.9912 0.9839	0.974 0.9509 0.9688 0.9752 0.9795 0.9769 0.9653	0.9529 0.9448 0.9412 0.9597 0.9554 0.9643 0.9484	0.9781 0.9589 0.9814 0.992 1 0.9942 0.9833	0.004529 0.002678 0.007096 0.005691 0.007708 0.004816 0.006011	1.05% 0.63% 1.64% 1.31% 1.76% 1.1% 1.39%	0.0% 1.85% 0.23% -0.63% -1.22% -0.89% 0.2%
12.5 25 50 100 101 Angular (Cor C-% 0 6.25	rrected) Transfor Control Type	5 5 5 5 5 5 med Sumi Count 5	0.9692 0.9513 0.9669 0.9753 0.981 0.9778 0.9672 mary	0.9566 0.9439 0.9472 0.9595 0.9596 0.9645 0.9505	0.9817 0.9587 0.9866 0.9911 1 0.9912 0.9839	0.974 0.9509 0.9688 0.9752 0.9795 0.9769 0.9653	0.9529 0.9448 0.9412 0.9597 0.9554 0.9643 0.9484	0.9781 0.9589 0.9814 0.992 1 0.9942 0.9833	0.004529 0.002678 0.007096 0.005691 0.007708 0.004816 0.006011	1.05% 0.63% 1.64% 1.31% 1.76% 1.1% 1.39%	0.0% 1.85% 0.23% -0.63% -1.22% -0.89% 0.2%
12.5 25 50 100 101 Angular (Cor C-% 0 6.25 12.5	rrected) Transfor Control Type	5 5 5 5 5 5 med Sumi Count 5 5	0.9692 0.9513 0.9669 0.9753 0.981 0.9778 0.9672 mary Mean 1.396 1.349 1.392	0.9566 0.9439 0.9472 0.9595 0.9596 0.9645 0.9505 95% LCL	0.9817 0.9587 0.9866 0.9911 1 0.9912 0.9839 95% UCL 1.431	0.974 0.9509 0.9688 0.9752 0.9795 0.9769 0.9653 Median 1.409	0.9529 0.9448 0.9412 0.9597 0.9554 0.9643 0.9484 Min 1.352	0.9781 0.9589 0.9814 0.992 1 0.9942 0.9833	0.004529 0.002678 0.007096 0.005691 0.007708 0.004816 0.006011 Std Err 0.01255	1.05% 0.63% 1.64% 1.31% 1.76% 1.1% 1.39%	0.0% 1.85% 0.23% -0.63% -1.22% -0.89% 0.2% %Effect 0.0%
12.5 25 50 100 101 Angular (Cor C-% 0 6.25 12.5	rrected) Transfor Control Type	5 5 5 5 5 5 med Sum Count 5 5 5	0.9692 0.9513 0.9669 0.9753 0.981 0.9778 0.9672 mary Mean 1.396 1.349 1.392 1.418	0.9566 0.9439 0.9472 0.9595 0.9596 0.9645 0.9505 95% LCL 1.361 1.331	0.9817 0.9587 0.9866 0.9911 1 0.9912 0.9839 95% UCL 1.431 1.366	0.974 0.9509 0.9688 0.9752 0.9769 0.9653 Median 1.409 1.347	0.9529 0.9448 0.9412 0.9597 0.9554 0.9643 0.9484 Min 1.352 1.334	0.9781 0.9589 0.9814 0.992 1 0.9942 0.9833 Max 1.422 1.367	0.004529 0.002678 0.007096 0.005691 0.007708 0.004816 0.006011 Std Err 0.01255 0.006261	1.05% 0.63% 1.64% 1.31% 1.76% 1.1% 1.39% CV% 2.01% 1.04%	0.0% 1.85% 0.23% -0.63% -1.22% -0.89% 0.2% %Effect 0.0% 3.4%
12.5 25 50 100 101 Angular (Cor C-% 0 6.25 12.5 25	rrected) Transfor Control Type	5 5 5 5 5 5 med Sumi Count 5 5 5	0.9692 0.9513 0.9669 0.9753 0.981 0.9778 0.9672 mary Mean 1.396 1.349 1.392 1.418 1.445	0.9566 0.9439 0.9472 0.9595 0.9596 0.9645 0.9505 95% LCL 1.361 1.331 1.339 1.363 1.361	0.9817 0.9587 0.9866 0.9911 1 0.9912 0.9839 95% UCL 1.431 1.366 1.444 1.473 1.528	0.974 0.9509 0.9688 0.9752 0.9769 0.9653 Median 1.409 1.347 1.393 1.413 1.427	0.9529 0.9448 0.9412 0.9597 0.9554 0.9643 0.9484 Min 1.352 1.334 1.326	0.9781 0.9589 0.9814 0.992 1 0.9942 0.9833 Max 1.422 1.367 1.434	0.004529 0.002678 0.007096 0.005691 0.007708 0.004816 0.006011 Std Err 0.01255 0.006261 0.01893	1.05% 0.63% 1.64% 1.31% 1.76% 1.1% 1.39% CV% 2.01% 1.04% 3.04%	0.0% 1.85% 0.23% -0.63% -1.22% -0.89% 0.2% %Effect 0.0% 3.4% 0.31%
12.5 25 50 100 101	rrected) Transfor Control Type	5 5 5 5 5 5 med Sum Count 5 5 5	0.9692 0.9513 0.9669 0.9753 0.981 0.9778 0.9672 mary Mean 1.396 1.349 1.392 1.418	0.9566 0.9439 0.9472 0.9595 0.9596 0.9645 0.9505 95% LCL 1.361 1.331 1.339 1.363	0.9817 0.9587 0.9866 0.9911 1 0.9912 0.9839 95% UCL 1.431 1.366 1.444 1.473	0.974 0.9509 0.9688 0.9752 0.9795 0.9769 0.9653 Median 1.409 1.347 1.393 1.413	0.9529 0.9448 0.9412 0.9597 0.9554 0.9643 0.9484 Min 1.352 1.334 1.326 1.369	0.9781 0.9589 0.9814 0.992 1 0.9942 0.9833 Max 1.422 1.367 1.434 1.481	0.004529 0.002678 0.007096 0.005691 0.007708 0.004816 0.006011 Std Err 0.01255 0.006261 0.01893 0.01976	1.05% 0.63% 1.64% 1.31% 1.76% 1.1% 1.39% CV% 2.01% 1.04% 3.04% 3.12%	0.0% 1.85% 0.23% -0.63% -1.22% -0.89% 0.2% %Effect 0.0% 3.4% 0.31% -1.57%

Analyst: A QAALIDAN

Report Date:

02 Oct-17 17:14 (p 1 of 1)

Test Code:

1708-S191 | 17-8732-6798

							Test	Code:	1708	B-S191 1	7-8732-6798
Bivalve Larv	al Survival and	Developme	nt Test						Nautilus	Environ	mental (CA)
Analysis ID:	15-1063-9648	En	dpoint: Co	mbined Deve	elopment Ra	ite	CET	S Version:	CETISv1.	.8.7	
Analyzed:	02 Oct-17 17:	14 A n	alysis: Pa	rametric-Two	Sample		Offic	ial Results	: Yes		
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed		PMSD	Test Resi	ult		
Angular (Cor	rected)	NA	C > T	NA	NA		4.02%	Passes co	ombined dev	elopment	rate
Equal Variar	nce t Two-Sampl	e Test									
Control	vs C-%		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision	(α:5%)		
Lab Control	101		1.818	1.86	0.093 8	0.0533	CDF	Non-Signi	ficant Effect		
ANOVA Tabl	e										
Source	Sum Squ	ıares	Mean Squ	uare	DF	F Stat	P-Value	Decision	(α:5%)		
Between	0.020463	78	0.0204637	78	i	3.304	0.1066	Non-Signi	ficant Effect		AMAGO CONTRACTOR CONTR
Error	0.049550	82	0.0061938	353	8						
Total	0.070014	6			9	_					
Distribution	al Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision(α:1%)			
Variances	Variance	Ratio F		14.74	23.15	0.0232	Equal Var	iances			
Distribution	Shapiro-	Wilk W Nor	mality	0.9609	0.7411	0.7957	Normal Di	stribution			
Combined D	evelopment Rat	e Summary									
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	0.9692	0.9566	0.9817	0.974	0.9529	0.9781	0.004529	1.05%	0.0%
101		5	0.9233	0.855	0.9917	0.9484	0.8493	0.9833	0.02461	5.96%	4.73%
Angular (Co	rrected) Transfo	rmed Sumn	nary								
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	1.396	1.361	1.431	1.409	1.352	1.422	0.01255	2.01%	0.0%
101		5	1.306	1.172	1.439	1.342	1.172	1.441	0.04817	8.25%	6.48%

000-089-187-3 CETIS™ v1.8.7.20

Embryo Larval Bioassay

Client: AMEC/POSD	Test Species:	M. galloprovincialis
Sample ID: SIYB-4	Start Date/Time:	8/24/2017 1600

Test ID: 1708-S191	End Date/Time: 8/26/2017 1600
	•

		Number	Abnormal	Total Number			
Random #	Number Normal	Number Curved Shell	All other abnormal	Counted	Intials/Date		
141	155	Ũ	8	63	19/6/17 RL		
142	150	0	Ц	154			
143	158	0	3	161			
144	143	O	6	149			
145	129	0	5	134			
146	143	0	3	146			
147	150	0	7	157			
148	127	30	3	130	0-18 KL 9/6/17		
149	169	0	ij	173			
150	129	Ö	6	135			
151	139	0	5	144			
152	170	Ó.		171			
153	157	0	4	161			
154	124	0		135			
155	147	O	8	155			
156	179	O	4	183			
157	150	0		151			
158	153	0	4	157			
159	142	0	3	145			
160	135	2	3	140			
161	167	ð	8	170			
162	114	0	9	116			
163	138	0	5	143			
164	180	Ü	4	189			
165	160	0	Ű	160			
166	170	0	6	176			
167	146	0	5	151			
168	141	0	8	149			
169	134	Ö	3	137			
170	155	O	4	159			
171	155	D	5	160			
172	140	0	6	146			
173	154	0	9	163			
174	177	0	3	180			
175	144	U	9	153			

Comments: _			
QC Check:	AC 10/2/17	Final Review: 5 10/1/17	

Start Date:

End Date:

Report Date:

21 Aug-17 18:05 (p 1 of 1) 17-8732-6798/1708-S191

Test Code:

Nautilus Environmental (CA)

Bivalve Larval Survival and Development Test

24 Aug-17 26 Aug-17

Species: Mytilus galloprovincialis

Protocol: EPA/600/R-95/136 (1995)

Sample Code: 17- 0935

Sample Source: Shelter Island Yacht Basin

C-% Code 0 LC 0 LC 0 LC 0 LC 0 LC 0 LC 6.25 6.25 6.25 6.25 12.5 12.5 12.5 12.5 12.5 25 25 25 25 50 50 50 50	Rep Pc 1 14 2 17 3 16 4 18 5 16 1 17 2 18 3 16 5 17 1 17 2 16 3 12 4 16 5 17 1 15 2 14 3 16 3 16	12	Final Density	# Counted	# Normal	Notes
0 LC	2 17 3 16 4 18 5 16 1 17 2 18 3 16 4 12 5 17 1 17 2 16 3 14 4 12 5 17 1 17 2 16 3 14 4 12 5 17 1 17 2 16 3 14 4 12 5 17 1 17 2 16 5 17 1 17 2 16 5 17 1 17 1 17 1 17 1 17 1 17 1 17 1 17	70 66 66 67 68 68 61 68 61 63 63 63 64 63 63 63 64 63 63 64 63 63 64 65 65 65 65 65 65 65 65 65 65				
0 LC 0 LC 0 LC 0 LC 0 LC 6.25 6.25 6.25 6.25 6.25 12.5 12.5 12.5 12.5 12.5 25 25 25 50 50 50	3 16 4 15 5 16 1 17 2 18 3 16 5 17 1 17 2 16 3 14 4 16 5 17 1 15 5 17	56				
0 LC 0 LC 6.25 6.25 6.25 6.25 6.25 6.25 12.5 12.5 12.5 12.5 12.5 25 25 25 50 50 50	4 18 5 16 1 17 2 18 3 18 4 14 5 17 1 17 2 18 3 14 4 18 5 17 1 18 2 14	56				
0 LC 6.25 6.25 6.25 6.25 6.25 12.5 12.5 12.5 12.5 12.5 25 25 25 50 50 50	5 16 1 17 2 18 3 16 4 14 5 17 1 17 2 16 3 14 4 16 5 17 1 18 2 14	51 52 50 58 58 51 54 53 53 55 53 53 54				
6.25 6.25 6.25 6.25 6.25 6.25 12.5 12.5 12.5 12.5 12.5 25 25 25 50 50 50	1 17 2 15 3 16 4 14 5 17 1 17 2 16 3 14 4 16 5 17 1 15 2 14	72				
6.25 6.25 6.25 6.25 12.5 12.5 12.5 12.5 25 25 25 50 50 50	2 15 3 16 4 14 5 17 1 17 2 16 3 14 4 16 5 17 1 15	50 58 58 11 53 71 54 53 53 55 53 14				
6.25 6.25 6.25 12.5 12.5 12.5 12.5 25 25 25 50 50 50	3 16 4 12 5 17 1 17 2 16 3 12 4 16 5 17 1 15 2 14	58				
6.25 6.25 12.5 12.5 12.5 12.5 12.5 25 25 25 25 50 50 50	4 14 5 17 1 17 2 16 3 14 16 5 17 1 15 2 14	11				
6.25 12.5 12.5 12.5 12.5 12.5 25 25 25 25 25 50 50 50	5 17 1 17 2 16 3 14 4 16 5 17 1 15 2 14	73 71 64 33 63 55 53 14				
12.5 12.5 12.5 12.5 12.5 25 25 25 25 25 50 50 50	1 17 2 16 3 14 4 16 5 17 1 15 2 14	71 64 13 13 15 15 15 16 14				
12.5 12.5 12.5 12.5 25 25 25 25 25 50 50 50	2 16 3 14 4 16 5 17 1 15 2 14	33 33 75 33 44				
12.5 12.5 12.5 25 25 25 25 25 50 50 50	3 14 4 16 5 17 1 15 2 14	13 13 13 15 15 15 15 15				
12.5 12.5 25 25 25 25 25 25 25 50 50	4 16 5 17 1 15 2 14	53 75 53 14				
12.5 25 25 25 25 25 25 50 50	5 17 1 15 2 14	75 53 14				
25 25 25 25 25 25 50 50	1 15	53				
25 25 25 25 25 50 50	2 14	14				
25 25 25 50 50 50						
25 25 50 50 50	2 40	32				
25 50 50 50						
50 50 50	4 15					
50 50	5 16	37				
50	1 15	57				
	2 16	55				
50	3 14					
	4 14	17				
50	5 14	16				. 1
100	1 15			143	137	AC8[27]17
100	2 14					
100	3 15	52				
100	4 15					
100	5 16					
\101	.1 17	74				
00% 101@	2 16					
tered 101	3 15					
101\	4 14	15				
101		51				

QUIEAC 8/21/17

Marine Chronic Bioassay

Water Quality Measurements

Client: AMEC/POSD

Sample ID: SIYB-4

Sample Log No.: 17- 0935

Test No.: 1708-S / 9/

Test Species: M. galloprovincialis

Start Date/Time: 8/24/2017 /6:00

End Date/Time: 8/26/2017 16:00

Concentration (%)		Salinity (ppt)			Temperature (°C)			Dissolved Oxygen (mg/L)			pH (pH units)		
	0	24	48	0	24	48	0	24	48	0	24	48	
Lab Control	33.9	33.5	33.4	15.1	14.9	14.8	8.4	7.9	7,9	8.08	8.64	7.99	
- 6.25	33.9	33.7	33.6	14.9	14.7	14.7	8.3	7.9	7.9	8.05	8.04	€.00	
12.5	34.0	33. F	33.7	14.9	14.6	14.6	8,3	7.8	7,9	8.05	4.04	8.00	
25	33.9	33.7	33.7	14.9	14.8	14.6	8.3	7.9	7,9	8.05	8.04	₹,00	
50	33.9	337	33.7	14.9	14.7	14.5	8.3	7.9	7, 9	8.03	8.03	8.00	
100	34.1	33.9	33,9	14.8	14.7	14.5	8.6	7.8	7,9	8.03	8,03	8.00	
100 filtered	33.9	33.5	33,5	14.6	15-1	14,5	6.3	7.4	7,9	8.03	8.02		

Technician Initials:	WQ Readings: WQ Readings: A∠/E₄ Dilutions made by: A∠/E₄	48
Comments:	0 hrs: 24 hrs: 48 hrs:	
QC Check:	AC 8127/17	Final Review: by 10/2/17

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

Final Review: _ タルルク

Client: Test No.: Test Species: Animal Source: Date Received: Test Chambers: Sample Volume:	AMEC/POSD SLYPS 1708-5 [9] Mytilus galloprovincialis Mission Bay 3(2/17) 30 mL glass shell vials 10 mL	Start Date/Time: 8/24/2017 16.00 End Date/Time: 8/26/2017 16.00 Technician Initials: CH/AC
Spawn Informatio	ın	Gamete Selection
•		Beaker Condition (sperm motility, egg density, color, shape,
First Gamete Relea	se Time: 1230	Number(s) etc.) Male ASH (7000) density and modifie
Sex	Number Spawning	THE CITE CONTROL THE FILLY
Male	5+	Female 2 Crowd density, fail crange cour, un form in ape,
Female	3	
		remales 3 1/19/1 dinsity par orange color, Mitorm
Embruo Stock So	lantion.	Egg Fertilization Time: 1315
Embryo Stock Se	% of embryos at 2-cell	
Stock Number	division stage	Stock(s) chosen for testing:
Female 1	99	
Female 2	100	
Female 3	100	
Target count on Se Number Counted:	dgwick-Rafter slide for desired dens	ity is 6 embryos
	Mean X 50 =	<u>505</u> embryos/ml
Initial Desired Final (to inoculate with	•	(dilution factor)
When mean percer use 100 ml of existi	nt dividing is ≥ 90, prepare the embry ng stock (1 part) and 125 ml of diluti	o inoculum according to the calculated dilution factor. For example, if the dilution factor is 2.25, on water (1.25 parts).
	Time Zero Control Counts	
	Rep No. Dividing Total TØA 135 135 TØB 162 162 TØC 3113 113 TØD 3134 134 TØE 157 158 TØF 145 145	% Dividing Mean % Dividing 48-h QC: 131/142 (94%) 100 100 100 99.4
Comments:	BCH Q18 8/24/17	Idividing= 146

AC 8/27/17

QC Check:

Site: SIYB-5

08 Sep-17 14:08 (p 1 of 4) 1708-S192 | 19-4414-5458

							Test Code:	1708-S192 19-4414-5458		
Bivalve Larval Survival and Development Test Nautilus Environmental (CA)										
Batch ID: Start Date: Ending Date: Duration:	24 Aug-17 16:00 F	Test Type: Protocol: Species: Source:	Developmen EPA/600/R- Mytilus gallo Mission Bay	95/136 (1995) provincialis				boratory Seawater ot Applicable		
' = '	23 Aug-17 10:15 8 23 Aug-17 17:15	Code: Material: Source: Station:	17-0936 Ambient Wa Shelter Islan SIYB-5	ater nd Yacht Basin			Client: Ar Project:	nec Foster Wheeler		
Comparison S	ummary									
Analysis ID	Endpoint	NOEL	. LOEL	TOEL	PMSD	TU	Method			
16-0337-2728	Combined Developmen	t Ra 100	>100	NA	2.32%	1	Dunnett	Multiple Comparison Test		
14-1003-2877	Development Rate	100	>100	NA	2.02%	1	Dunnett	Multiple Comparison Test		
03-4175-1023	Survival Rate	100	>100	NA	0.98%	1	Steel Ma	any-One Rank Sum Test		
Point Estimate	Summary									
Analysis ID	Endpoint	Level	%	95% LCL	95% UCL	TU	Method			
12-7924-2836	Combined Developmen	t Ra EC25	>100	N/A	N/A	<1	Linear Ir	nterpolation (ICPIN)		
	·	EC50		N/A	N/A	<1		, ,		
09-4575-7413	Development Rate	EC25	>100	N/A	N/A	<1	Linear Ir	nterpolation (ICPIN)		
		EC50	>100	N/A	N/A	<1				
Test Acceptab	ility									
Analysis ID	Endpoint	Attrib	ute	Test Stat	TAC Limi	ts	Overlap	Decision		
09-4575-7413	Development Rate	Contro	ol Resp	0.9745	0.9 - NL		Yes	Passes Acceptability Criteria		
14-1003-2877	Development Rate	Contro	ol Resp	0.9745	0.9 - NL		Yes	Passes Acceptability Criteria		
03-4175-1023	Survival Rate	Contro	ol Resp	1	0.5 - NL		Yes	Passes Acceptability Criteria		
16-0337-2728	Combined Developmen	t Ra PMSD)	0.02321	NL - 0.25		No	Passes Acceptability Criteria		

Batch note: 101=100 percent sample filtered to 0.45 mm

Analyst: QA: AC 10/2/17

CETIS™ v1.8.7.20

Report Date:

08 Sep-17 14:08 (p 2 of 4)

Test Code:

1708-S192 | 19-4414-5458

Bivalve L	arval Survival and I	Developme	nt Test						Nautilus	Environr	nental (CA)	
Combined Development Rate Summary												
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect	
0	Lab Control	5	0.9745	0.952	0.997	0.9532	0.9936	0.008113	0.01814	1.86%	0.0%	
6.25		5	0.9371	0.9146	0.9597	0.911	0.9503	0.008134	0.01819	1.94%	3.83%	
12.5		5	0.949	0.9385	0.9594	0.9362	0.9565	0.003767	0.008424	0.89%	2.62%	
25		5	0.9392	0.8988	0.9796	0.8836	0.9662	0.01455	0.03253	3.46%	3.62%	
50		5	0.9546	0.9321	0.977	0.9315	0.9691	0.008095	0.0181	1.9%	2.05%	
100		5	0.9719	0.9545	0.9892	0.9573	0.9867	0.006234	0.01394	1.43%	0.27%	
101		5	0.9515	0.8849	1	0.8562	0.9826	0.02399	0.05365	5.64%	2.36%	
Developn	nent Rate Summary											
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect	
0	Lab Control	5	0.9745	0.952	0.997	0.9532	0.9936	0.008113	0.01814	1.86%	0.0%	
6.25		5	0.9436	0.9302	0.957	0.925	0.9503	0.00483	0.0108	1.14%	3.17%	
12.5		5	0.949	0.9385	0.9594	0.9362	0.9565	0.003767	0.008424	0.89%	2.62%	
25		5	0.9392	0.8988	0.9796	0.8836	0.9662	0.01455	0.03253	3.46%	3.62%	
50		5	0.9651	0.9598	0.9704	0.958	0.9691	0.001912	0.004276	0.44%	0.96%	
100		5	0.9719	0.9545	0.9892	0.9573	0.9867	0.006234	0.01394	1.43%	0.27%	
101		5	0.9668	0.942	0.9917	0.9328	0.9826	0.008942	0.02	2.07%	0.79%	
Survival I	Rate Summary											
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect	
0	Lab Control	5	1	1	1	1	1	0	0	0.0%	0.0%	
6.25		5	0.9932	0.9741	1	0.9658	1	0.006849	0.01532	1.54%	0.68%	
12.5		5	1	1	1	1	1	0	0	0.0%	0.0%	
25		5	1	1	1	1	1	0	0	0.0%	0.0%	
50		5	0.989	0.9695	1	0.9658	1	0.007052	0.01577	1.59%	1.1%	
100		5	1	1	1	1	1	0	0	0.0%	0.0%	
101		5	0.9836	0.9379	1	0.9178	1	0.01644	0.03676	3.74%	1.64%	

08 Sep-17 14:08 (p 3 of 4)

1708-S192 | 19-4414-5458

Bivalve Larval Survival and Development Test Nautilus Envi Combined Development Rate Detail C-% Control Type Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 0 Lab Control 0.9934 0.9671 0.9936 0.9532 0.9651 6.25 0.9503 0.925 0.9492 0.911 0.9503 12.5 0.9362 0.9451 0.9518 0.9553 0.9565 25 0.9412 0.9662 0.9471 0.9578 0.8836	ironmental (CA)
C-% Control Type Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 0 Lab Control 0.9934 0.9671 0.9936 0.9532 0.9651 6.25 0.9503 0.925 0.9492 0.911 0.9503 12.5 0.9362 0.9451 0.9518 0.9553 0.9565	
0 Lab Control 0.9934 0.9671 0.9936 0.9532 0.9651 6.25 0.9503 0.925 0.9492 0.911 0.9503 12.5 0.9362 0.9451 0.9518 0.9553 0.9565	
6.25 0.9503 0.925 0.9492 0.911 0.9503 12.5 0.9362 0.9451 0.9518 0.9553 0.9565	
12.5 0.9362 0.9451 0.9518 0.9553 0.9565	
25 0.9412 0.9662 0.9471 0.9578 0.8836	
50 0.9384 0.9315 0.9673 0.9691 0.9664	
100 0.9573 0.9669 0.9867 0.9617 0.9867	
101 0.8562 0.9728 0.9795 0.9664 0.9826	
Development Rate Detail	
C-% Control Type Rep 1 Rep 2 Rep 3 Rep 4 Rep 5	
0 Lab Control 0.9934 0.9671 0.9936 0.9532 0.9651	
6.25 0.9503 0.925 0.9492 0.9433 0.9503	
12.5 0.9362 0.9451 0.9518 0.9553 0.9565	
25 0.9412 0.9662 0.9471 0.9578 0.8836	
50 0.958 0.9645 0.9673 0.9691 0.9664	
100 0.9573 0.9669 0.9867 0.9617 0.9867	
101 0.9328 0.9728 0.9795 0.9664 0.9826	
Survival Rate Detail	
C-% Control Type Rep 1 Rep 2 Rep 3 Rep 4 Rep 5	
0 Lab Control 1 1 1 1 1	
6.25 1 1 1 0.9658 1	
12.5 1 1 1 1 1	
25 1 1 1 1 1	
50 0.9795 0.9658 1 1 1	
100 1 1 1 1 1	
101 0.9178 1 1 1 1	

Analyst: QA: ACODIT

08 Sep-17 14:08 (p 4 of 4) 1708-S192 | 19-4414-5458

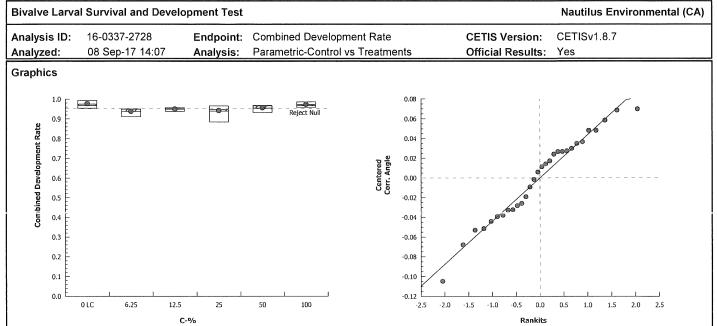
							Test Code:	1706-5192 19-4414-5456
Bivalve La	arval Survival and [Developme	nt Test					Nautilus Environmental (CA)
Combined	d Development Rate	e Binomials	•					
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Lab Control	150/151	147/152	155/156	163/171	166/172		
6.25		153/161	148/160	168/177	133/146	172/181		
12.5		176/188	155/164	158/166	171/179	154/161		
25		144/153	200/207	161/170	159/166	167/189		
50		137/146	136/146	148/153	157/162	144/149		
100		157/164	175/181	148/150	176/183	148/150		
101		125/146	179/184	191/195	144/149	169/172		
Developm	nent Rate Binomials	<u> </u>				771 77 77 77 77 77 77 77 77 77 77 77 77		
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Lab Control	150/151	147/152	155/156	163/171	166/172		
6.25		153/161	148/160	168/177	133/141	172/181		
12.5		176/188	155/164	158/166	171/179	154/161		
25		144/153	200/207	161/170	159/166	167/189		
50		137/143	136/141	148/153	157/162	144/149		
100		157/164	175/181	148/150	176/183	148/150		
101		125/134	179/184	191/195	144/149	169/172		
Survival F	Rate Binomials							
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Lab Control	146/146	146/146	146/146	146/146	146/146		
6.25		146/146	146/146	146/146	141/146	146/146		
12.5		146/146	146/146	146/146	146/146	146/146		
25		146/146	146/146	146/146	146/146	146/146		
50		143/146	141/146	146/146	146/146	146/146		
100		146/146	146/146	146/146	146/146	146/146		
101		134/146	146/146	146/146	146/146	146/146		

Report Date:

08 Sep-17 14:08 (p 1 of 6)

Test Code:

1708-S192 | 19-4414-5458


							lest	Code:	170	8-5192 1	9-4414-545
Bivalve Larv	al Survival and l	Developme	ent Test						Nautilus	Environ	mental (CA
Analysis ID: Analyzed:	16-0337-2728 08 Sep-17 14:		•	mbined Deverametric-Cor	•			IS Version		.8.7	
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU
Angular (Cor	rected)	NA	C > T	NA	NA		2.32%	100	>100	NA	1
Dunnett Mul	tiple Compariso	n Test									
Control	vs C-%		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision	(α:5%)		
Lab Control	6.25*		3.367	2.362	0.071 8	0.0055	CDF	Significar			
	12.5*		2.562	2.362	0.071 8	0.0332	CDF	Significar			
	25*		3.098	2.362	0.071 8	0.0102	CDF	Significar			
	50		2.045	2.362	0.071 8	0.0915	CDF	•	ificant Effect		
	100		0.4616	2.362	0.071 8	0.6636	CDF	•	ificant Effect		
ANOVA Tabl	e							AND			
Source	Sum Squ	ıares	Mean Squ	ıare	DF	F Stat	P-Value	Decision	(α:5%)		
Between	0.044215	13	0.0088430)26	5	3.889	0.0101	Significar	nt Effect		
Error	0.054568	13	0.0022736	672	24			Ü			
Total	0.098783	26			29	_					
Distribution	al Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision(α:1%)			
Variances	Bartlett E	Equality of \	/ariance	5.782	15.09	0.3280	Equal Var	iances			
Distribution	Shapiro-	Wilk W No	rmality	0.9678	0.9031	0.4818	Normal Di	stribution			
Combined D	evelopment Rate	e Summar	1								
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	0.9745	0.952	0.997	0.9671	0.9532	0.9936	0.008113	1.86%	0.0%
6.25		5	0.9371	0.9146	0.9597	0.9492	0.911	0.9503	0.008134	1.94%	3.83%
12.5		5	0.949	0.9385	0.9594	0.9518	0.9362	0.9565	0.003767	0.89%	2.62%
25		5	0.9392	0.8988	0.9796	0.9471	0.8836	0.9662	0.01455	3.46%	3.62%
50		5	0.9546	0.9321	0.977	0.9664	0.9315	0.9691	0.008095	1.9%	2.05%
100		5	0.9719	0.9545	0.9892	0.9669	0.9573	0.9867	0.006234	1.43%	0.27%
Angular (Co	rrected) Transfor	med Sum	mary								
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	1.421	1.341	1.501	1.388	1.353	1.491	0.02888	4.55%	0.0%
6.25		5	1.319	1.274	1.365	1.343	1.268	1.346	0.01632	2.77%	7.15%
		J									
12.5		5	1.344	1.32	1.367	1.349	1.315	1.361	0.0084	1.4%	5.44%
12.5 25				1.32 1.249	1.367 1.406	1.349 1.339	1.315 1.223	1.361 1.386	0.0084 0.02816	1.4% 4.74%	5.44% 6.58%
		5	1.344								

Analyst: QA: ALLO 2/17

Report Date:

08 Sep-17 14:08 (p 2 of 6)

Test Code: 1708-S192 | 19-4414-5458

08 Sep-17 14:08 (p 3 of 6) 1708-S192 | 19-4414-5458

st Code:	1708-S192 19

Rivalve Land	val Survival and [)evelonme	nt Test						Nautilue	Environ	nental (CA)
											(CA)
Analysis ID:			•	velopment R				S Version:	CETISv1.	8.7	
Analyzed:	08 Sep-17 14:	07 An	alysis: Pa	rametric-Con	trol vs Treat	tments	Offic	ial Results:	Yes	W	
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU
Angular (Cor	rected)	NA	C > T	NA	NA		2.02%	100	>100	NA	1
Dunnett Mul	Itiple Compariso	n Test									
Control	vs C-%		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision(α:5%)		
Lab Control	6.25*		3.268	2.362	0.064 8	0.0069	CDF	Significant	t Effect		
	12.5*		2.836	2.362	0.064 8	0.0184	CDF	Significant	t Effect		
	25*		3.43	2.362	0.064 8	0.0047	CDF	Significant	t Effect		
	50		1.383	2.362	0.064 8	0.2639	CDF	Non-Signi	ficant Effect		
	100		0.5109	2.362	0.064 8	0.6422	CDF	Non-Signi	ficant Effect		
ANOVA Tabl	le										
Source	Sum Squ	ares	Mean Sq	uare	DF	F Stat	P-Value	Decision(α:5%)		
Between	0.040430	45	0.0080860	089	5	4.358	0.0058	Significant	t Effect		
Error	0.044535	74	0.0018556	656	24						
Total	0.084966	18			29	-					
Distribution	al Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances	Bartlett E	guality of \	/ariance	14.49	15.09	0.0128	Equal Var	iances			***************************************
Distribution	Shapiro-	Wilk W Nor	rmality	0.9655	0.9031	0.4236	Normal D	istribution			
Developmer	nt Rate Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	0.9745	0.952	0.997	0.9671	0.9532	0.9936	0.008113	1.86%	0.0%
6.25		5	0.9436	0.9302	0.957	0.9492	0.925	0.9503	0.00483	1.15%	3.17%
12.5		5	0.949	0.9385	0.9594	0.9518	0.9362	0.9565	0.003767	0.89%	2.62%
25		5	0.9392	0.8988	0.9796	0.9471	0.8836	0.9662	0.01455	3.46%	3.62%
50		5	0.9651	0.9598	0.9704	0.9664	0.958	0.9691	0.001912	0.44%	0.96%
100		5	0.9719	0.9545	0.9892	0.9669	0.9573	0.9867	0.006234	1.43%	0.27%
Angular (Co	rrected) Transfo	med Sumi	mary								
	riected) Halistoi						8.61	Max	C44 E	CV%	%Effect
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	IVIAX	Std Err	CV 70	
C- %	•	Count 5	Mean 1.421	95% LCL 1.341	95% UCL 1.501	1.388	1.353	1.491	0.02888	4.55%	0.0%
	Control Type										
0	Control Type	5	1.421	1.341	1.501	1.388	1.353	1.491	0.02888	4.55%	0.0%
0 6.25	Control Type	5 5	1.421 1.332	1.341 1.304	1.501 1.36	1.388 1.343	1.353 1.293	1.491 1.346	0.02888 0.01003	4.55% 1.68%	0.0% 6.27%
0 6.25 12.5	Control Type	5 5 5	1.421 1.332 1.344	1.341 1.304 1.32	1.501 1.36 1.367	1.388 1.343 1.349	1.353 1.293 1.315	1.491 1.346 1.361	0.02888 0.01003 0.0084	4.55% 1.68% 1.4%	0.0% 6.27% 5.44%

08 Sep-17 14:08 (p 4 of 6) 1708-S192 | 19-4414-5458

Bivalve Larval Survival and Development Test Nautilus Environmental (CA) Analysis ID: 14-1003-2877 Endpoint: Development Rate **CETIS Version:** CETISv1.8.7 Analyzed: 08 Sep-17 14:07 Analysis: Parametric-Control vs Treatments Official Results: Yes Graphics 0.08 1.0 0.9 0,06 0.04 8.0 Centered Corr. Angle 0.02 0,00 0.6 -0.02 0.5 -0.04 -0.06 0.3 0.1 -0.10 0.0 -0.12 6.25 12.5 0 LC 25 50 100 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 1.0 1.5 2.0 C-% Rankits

Report Date:

08 Sep-17 14:08 (p 5 of 6)

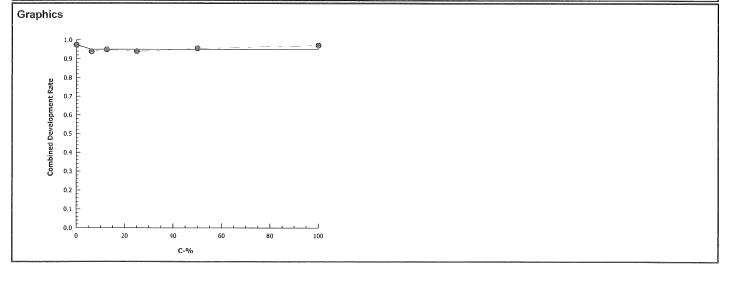
Test Code:

1708-S192 | 19-4414-5458

			Break and the second se								
Bivalve Larv	al Survival and I	Developme	nt Test						Nautilus	Environ	mental (CA
Analysis ID:	03-4175-1023	En	dpoint: Su	rvival Rate			CET	S Version:	CETISv1.	8.7	
Analyzed:	08 Sep-17 14:		-	nparametric-	Control vs T	reatments		ial Results:		· · ·	
Data Transfo		Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU
Angular (Corr		NA NA	C > T	NA	NA NA		0.98%	100	>100	NA	1
	,						0.0070	100	7 100	1471	•
•	One Rank Sum T	est									
Control	vs C-%		Test Stat		Ties DF	P-Value	P-Type	Decision(α:5%)		
Lab Control	6.25		25	16	1 8	0.6353	Asymp	Non-Signi	ficant Effect		
	12.5		27.5	16	1 8	0.8333	Asymp	Non-Signi	ficant Effect		
	25		27.5	16	1 8	0.8333	Asymp	Non-Signi	ficant Effect		
	50		22.5	16	1 8	0.3937	Asymp	Non-Signi	ficant Effect		
	100		27.5	16	1 8	0.8333	Asymp	Non-Signi	ficant Effect		
ANOVA Table	е				The second secon	от том Монтон од объектор остор и постор од остор					
Source	Sum Squ	ıares	Mean Sq	uare	DF	F Stat	P-Value	Decision(α:5%)		
Between	0.011290	03	0.0022580)07	5	1.506	0.2251	Non-Signi	ficant Effect		
Error	0.035984	32	0.0014993	347	24						
Total	0.047274	36			29	_					
Distributiona	al Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision(α:1%)			
Variances	Mod Lev	ene Equalit	y of Variance	1.594	4.248	0.2124	Equal Var	iances			
Variances	Levene E	Equality of \	/ariance	11.92	3.895	<0.0001	Unequal \	/ariances			
Distribution	Shapiro-	Wilk W Nor	mality	0.699	0.9031	<0.0001	Non-norm	al Distributio	on		
Survival Rate	e Summary										
C-%	Control Type	Count									
	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effec
0	Lab Control	5	Mean 1	95% LCL 1	95% UCL	Median 1	Min 1	Max 1	Std Err	CV%	%Effec 0.0%
0 6.25			TONITZIONINI TIONININI NININI NININI NININI		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					TANK AND DESCRIPTION OF THE PARKS	
-		5	1	1	1	1	1	1	0	0.0%	0.0%
6.25 12.5		5 5	1 0.9932	1 0.9741	1	1	1 0.9658	1	0 0.006849	0.0% 1.54%	0.0% 0.68%
6.25		5 5 5	1 0.9932 1	1 0.9741 1	1 1 1	1	1 0.9658 1	1 1 1	0 0.006849 0	0.0% 1.54% 0.0%	0.0% 0.68% 0.0%
6.25 12.5 25		5 5 5 5	1 0.9932 1 1	1 0.9741 1	1 1 1	1 1 1	1 0.9658 1 1	1 1 1 1	0 0.006849 0 0	0.0% 1.54% 0.0% 0.0%	0.0% 0.68% 0.0% 0.0%
6.25 12.5 25 50 100		5 5 5 5 5	1 0.9932 1 1 0.989	1 0.9741 1 1 0.9695	1 1 1 1	1 1 1 1	1 0.9658 1 1 0.9658	1 1 1 1	0 0.006849 0 0 0.007052	0.0% 1.54% 0.0% 0.0% 1.59%	0.0% 0.68% 0.0% 0.0% 1.1%
6.25 12.5 25 50 100 Angular (Cor	Lab Control	5 5 5 5 5	1 0.9932 1 1 0.989	1 0.9741 1 1 0.9695	1 1 1 1	1 1 1 1	1 0.9658 1 1 0.9658	1 1 1 1	0 0.006849 0 0 0.007052	0.0% 1.54% 0.0% 0.0% 1.59%	0.0% 0.68% 0.0% 0.0% 1.1% 0.0%
6.25 12.5 25 50 100 Angular (Cor	Lab Control	5 5 5 5 5 5 5	1 0.9932 1 1 0.989 1	1 0.9741 1 1 0.9695 1	1 1 1 1 1 1	1 1 1 1 1 1	1 0.9658 1 1 0.9658	1 1 1 1 1 1	0 0.006849 0 0 0.007052 0	0.0% 1.54% 0.0% 0.0% 1.59% 0.0%	0.0% 0.68% 0.0% 0.0% 1.1% 0.0%
6.25 12.5 25 50 100 Angular (Cor C-%	Lab Control rected) Transfor Control Type	5 5 5 5 5 5 rmed Sumr	1 0.9932 1 1 0.989 1 mary	1 0.9741 1 1 0.9695 1	1 1 1 1 1 1 1 95% UCL	1 1 1 1 1 1 1	1 0.9658 1 1 0.9658 1	1 1 1 1 1 1	0 0.006849 0 0 0.007052 0	0.0% 1.54% 0.0% 0.0% 1.59% 0.0%	0.0% 0.68% 0.0% 0.0% 1.1% 0.0%
6.25 12.5 25 50 100 Angular (Cor C-%	Lab Control rected) Transfor Control Type	5 5 5 5 5 5 rmed Sumr Count	1 0.9932 1 1 0.989 1 mary Mean 1.529	1 0.9741 1 1 0.9695 1 95% LCL 1.529	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0.9658 1 1 0.9658 1 Min 1.529	1 1 1 1 1 1 1 1 Max 1.529	0 0.006849 0 0 0.007052 0 Std Err	0.0% 1.54% 0.0% 0.0% 1.59% 0.0%	0.0% 0.68% 0.0% 0.0% 1.1% 0.0%
6.25 12.5 25 50 100 Angular (Cor C- % 0 6.25	Lab Control rected) Transfor Control Type	5 5 5 5 5 5 5 crmed Sumr Count 5	1 0.9932 1 1 0.989 1 mary Wean 1.529	1 0.9741 1 1 0.9695 1 95% LCL 1.529 1.42	1 1 1 1 1 1 1 1 95% UCL 1.53 1.581	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0.9658 1 1 0.9658 1 Min 1.529 1.385	1 1 1 1 1 1 1 1 1 1 1 1 1. 1 1. 1. 1. 1.	0 0.006849 0 0 0.007052 0 Std Err 0 0.02895	0.0% 1.54% 0.0% 0.0% 1.59% 0.0% CV% 0.0% 4.31%	0.0% 0.68% 0.0% 0.0% 1.1% 0.0% %Effec 0.0% 1.89%
6.25 12.5 25 50 100 Angular (Cor C-% 0 6.25 12.5	Lab Control rected) Transfor Control Type	5 5 5 5 5 5 5 Count 5 5	1 0.9932 1 1 0.989 1 mary Mean 1.529 1.5	1 0.9741 1 1 0.9695 1 95% LCL 1.529 1.42 1.529	1 1 1 1 1 1 1 95% UCL 1.53 1.581 1.53	1 1 1 1 1 1 1 1 1 1 1 1.529 1.529 1.529	1 0.9658 1 1 0.9658 1 Min 1.529 1.385 1.529	1 1 1 1 1 1 1 1 1 Max 1.529 1.529	0 0.006849 0 0 0.007052 0 Std Err 0 0.02895 0	0.0% 1.54% 0.0% 0.0% 1.59% 0.0% CV% 0.0% 4.31% 0.0%	0.68% 0.0% 0.0% 1.1% 0.0% %Effect 0.0% 1.89% 0.0%

Report Date:

08 Sep-17 14:08 (p 1 of 2)


Test Code:

1708-S192 | 19-4414-5458

Bivalve Larva	I Survival and Devel	opment Test			Nautilus Environmental (CA)
Analysis ID:	12-7924-2836	Endpoint:	Combined Development Rate	CETIS Version:	CETISv1.8.7
Analyzed:	08 Sep-17 14:07	Analysis:	Linear Interpolation (ICPIN)	Official Results:	Yes

Linear	Interpola	tion Options						
X Trans	sform	Y Transform	Seed	l	Resamples	Exp 95% CL	Method	
Linear		Linear	1906	706	1000	Yes	Two-Point Interpolation	
Point E	stimates		(1)					
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL		
EC25	>100	N/A	N/A	<1	NA	NA		
EC50	>100	N/A	N/A	<1	NA	NA		

Combine	ed Development Rat	e Summary	Calculated Variate(A/B)								
C-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Lab Control	5	0.9745	0.9532	0.9936	0.008113	0.01814	1.86%	0.0%	781	802
6.25		5	0.9371	0.911	0.9503	0.008134	0.01819	1.94%	3.83%	774	825
12.5		5	0.949	0.9362	0.9565	0.003767	0.008424	0.89%	2.62%	814	858
25		5	0.9392	0.8836	0.9662	0.01455	0.03253	3.46%	3.62%	831	885
50		5	0.9546	0.9315	0.9691	0.008095	0.0181	1.9%	2.05%	722	756
100		5	0.9719	0.9573	0.9867	0.006234	0.01394	1.43%	0.27%	804	828

EC50

>100

N/A

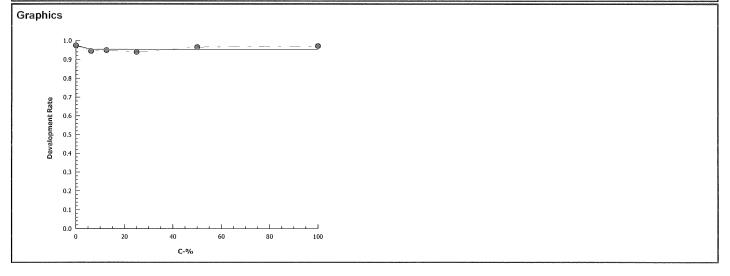
N/A

<1 NA

Report Date:

08 Sep-17 14:08 (p 2 of 2)

Test Code:


1708-S192 | 19-4414-5458

Bivalve Larva	Survival and Devel	opment Test			Nautilus Environmental (CA)
Analysis ID:	09-4575-7413	Endpoint:	Development Rate	CETIS Version:	CETISv1.8.7
Analyzed:	08 Sep-17 14:08	Analysis:	Linear Interpolation (ICPIN)	Official Results:	Yes

Linear	Interpola	tion Options					
X Trans	sform	Y Transform	Seed	t	Resamples	Exp 95% CL	Method
Linear		Linear	7123	352	1000	Yes	Two-Point Interpolation
Point E	stimates						
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL	
EC25	>100	N/A	N/A	<1	NA	NA	

NA

Developn	nent Rate Summary	/									
C-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Lab Control	5	0.9745	0.9532	0.9936	0.008113	0.01814	1.86%	0.0%	781	802
6.25		5	0.9436	0.925	0.9503	0.00483	0.0108	1.15%	3.17%	774	820
12.5		5	0.949	0.9362	0.9565	0.003767	0.008424	0.89%	2.62%	814	858
25		5	0.9392	0.8836	0.9662	0.01455	0.03253	3.46%	3.62%	831	885
50		5	0.9651	0.958	0.9691	0.001912	0.004275	0.44%	0.96%	722	748
100		5	0.9719	0.9573	0.9867	0.006234	0.01394	1.43%	0.27%	804	828

08 Sep-17 14:09 (p 1 of 2) 1708-S192 | 19-4414-5458

				101			Test	Code:	170	8-S192 1	9-4414-545
Bivalve Larv	al Survival and	Developme	ent Test						Nautilus	Environ	mental (CA)
Analysis ID: Analyzed:	07-2165-1543 08 Sep-17 14:		-	Combined Deve Parametric Bio	•			IS Version		.8.7	
Data Transfo	orm	Zeta	Alt Hy	p Trials	Seed	TST b	PMSD	NOEL	LOEL	TOEL	TU
Angular (Corr	ected)	NA	C*b <		NA	0.75	3.91%	101	>101	NA	0.9901
TST-Welch's	t Test										
Control	vs C-%		Test S	tat Critical	MSD DF	P-Value	P-Type	Decision	(α:5%)		
Lab Control	6.25*		9.354	1.895	0.051 7	<0.0001	CDF	Non-Sign	ificant Effect		
	12.5*		11.96	2.015	0.047 5	<0.0001	CDF	Non-Sign	ificant Effect		
	25*		7.368	1.895	0.067 7	<0.0001	CDF	Non-Sign	ificant Effect		
	50*		10.18	1.895	0.055 7	<0.0001	CDF	Non-Sign	ificant Effect		
	100*		11.56	1.895	0.056 7	<0.0001	CDF	Non-Sign	ificant Effect		
	101*		5.804	2.015	0.105 5	0.0011	CDF	Non-Sign	ificant Effect		
ANOVA Table	е										
Source	Sum Sqւ	iares	Mean	Square	DF	F Stat	P-Value	Decision	(α:5%)		
Between	0.044320		0.0073	86723	6	2.081	0.0877	Non-Sign	ificant Effect		
Error	0.099403		0.0035	50132	28						
Total	0.143724			-	34				4400-1400-1400-1400-1400-1400-1400-1400		
Distributiona	al Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances	Bartlett B	Equality of \	√ariance	11.36	16.81	0.0779	Equal Var	iances			
Distribution	Shapiro-	Wilk W No	rmality	0.9064	0.9146	0.0059	Non-norm	al Distributi	on		
Combined Do	evelopment Rate	e Summary	У								
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	0.9745	0.952	0.997	0.9671	0.9532	0.9936	0.008113	1.86%	0.0%
6.25		5	0.9371	0.9146	0.9597	0.9492	0.911	0.9503	0.008134	1.94%	3.83%
12.5		5	0.949	0.9385	0.9594	0.9518	0.9362	0.9565	0.003767	0.89%	2.62%
25		5	0.9392		0.9796	0.9471	0.8836	0.9662	0.01455	3.46%	3.62%
50		5	0.9546		0.977	0.9664	0.9315	0.9691	0.008095	1.9%	2.05%
100		5	0.9719		0.9892	0.9669	0.9573	0.9867	0.006234	1.43%	0.27%
101		5	0.9515	0.8849	1	0.9728	0.8562	0.9826	0.02399	5.64% 	2.36%
Angular (Cor	rected) Transfor	med Sumi	•								
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	1.421	1.341	1.501	1.388	1.353	1.491	0.02888	4.55%	0.0%
6.25		5	1.319	1.274	1.365	1.343	1.268	1.346	0.01632	2.77%	7.15%
12.5		5	1.344	1.32	1.367	1.349	1.315	1.361	0.0084	1.4%	5.44%
25		5	1.327	1.249	1.406	1.339	1.223	1.386	0.02816	4.74%	6.58%
50		5	1.359	1.306	1.412	1.387	1.306	1.394	0.01902	3.13%	4.34%
50 100 101					1.412 1.463 1.499	1.387 1.388 1.405	1.306 1.363 1.182	1.394 1.455 1.438	0.01902 0.02006 0.04735	3.13% 3.19% 7.74%	4.34% 0.98% 3.73%

Analyst: QA: ACIO2/17

000-089-187-3 CETIS™ v1.8.7.20

08 Sep-17 14:09 (p 2 of 2)

1708-S192 | 19-4414-5458

				13			1621	Code:		. 0.0-1	9-4414-5458
Bivalve Larv	/al Survival and [Developme	ent Test						Nautilus	Environr	nental (CA)
Analysis ID: Analyzed:	19-2643-5934 08 Sep-17 14:0		•	evelopment R arametric Bioe		·Two Samp		IS Version:	CETISv1. : Yes	8.7	
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed	TST b	PMSD	NOEL	LOEL	TOEL	TU
Angular (Cori	rected)	NA	C*b < T	NA	NA	0.75	1.83%	101	>101	NA	0.9901
TST-Welch's	s t Test	Name of the last o									
Control	vs C-%		Test Sta	t Critical	MSD DF	P-Value	P-Type	Decision((α:5%)		
Lab Control	6.25*		11.15	2.015	0.048 5	<0.0001	CDF	Non-Signi	ficant Effect		
	12.5*		11.96	2.015	0.047 5	<0.0001	CDF	_	ficant Effect		
	25*		7.368	1.895	0.067 7	<0.0001	CDF	Non-Signi	ficant Effect		
	50*		14.27	2.132	0.047 4	<0.0001	CDF	Non-Signi	ficant Effect		
	100*		11.56	1.895	0.056 7	<0.0001	CDF	Non-Signi	ficant Effect		
	101*		10.38	1.895	0.06 7	<0.0001	CDF	Non-Signi	ficant Effect		
ANOVA Tabl	le										
Source	Sum Squ	iares	Mean So	uare	DF	F Stat	P-Value	Decision((α:5%)		
Between	0.042948		0.007158	3116	6	3.64	0.0085	Significan	t Effect		
Error	0.0550589		0.001966	392	28	_					
Total	0.0980076	66 			34						
Distribution	al Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision((α:1%)			
Variances	Bartlett E	Equality of '	Variance	14.73	16.81	0.0225	Equal Var	iances			
Distribution	Shapiro-\	Wilk W No	rmality	0.9657	0.9146	0.3357	Normal Di	stribution			
Developmen	nt Rate Summary										
Developmen C-%	nt Rate Summary Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
•	· ·		Mean 0.9745	95% LCL 0.952	95% UCL 0.997	Median 0.9671	Min 0.9532	Max 0.9936	Std Err 0.008113	CV %	%Effect
C-%	Control Type	Count	0.9745 0.9436	0.952 0.9302	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						0.0% 3.17%
C-% 0 6.25 12.5	Control Type	5 5 5	0.9745	0.952 0.9302 0.9385	0.997 0.957 0.9594	0.9671 0.9492 0.9518	0.9532 0.925 0.9362	0.9936 0.9503 0.9565	0.008113 0.00483 0.003767	1.86% 1.15% 0.89%	0.0% 3.17% 2.62%
C-% 0 6.25 12.5 25	Control Type	5 5 5 5	0.9745 0.9436 0.949 0.9392	0.952 0.9302 0.9385 0.8988	0.997 0.957 0.9594 0.9796	0.9671 0.9492 0.9518 0.9471	0.9532 0.925 0.9362 0.8836	0.9936 0.9503 0.9565 0.9662	0.008113 0.00483 0.003767 0.01455	1.86% 1.15% 0.89% 3.46%	0.0% 3.17% 2.62% 3.62%
C-% 0 6.25 12.5 25 50	Control Type	5 5 5 5 5	0.9745 0.9436 0.949 0.9392 0.9651	0.952 0.9302 0.9385 0.8988 0.9598	0.997 0.957 0.9594 0.9796 0.9704	0.9671 0.9492 0.9518 0.9471 0.9664	0.9532 0.925 0.9362 0.8836 0.958	0.9936 0.9503 0.9565 0.9662 0.9691	0.008113 0.00483 0.003767 0.01455 0.001912	1.86% 1.15% 0.89% 3.46% 0.44%	0.0% 3.17% 2.62% 3.62% 0.96%
C-% 0 6.25 12.5 25 50 100	Control Type	5 5 5 5 5 5	0.9745 0.9436 0.949 0.9392 0.9651 0.9719	0.952 0.9302 0.9385 0.8988 0.9598	0.997 0.957 0.9594 0.9796 0.9704 0.9892	0.9671 0.9492 0.9518 0.9471 0.9664 0.9669	0.9532 0.925 0.9362 0.8836 0.958 0.9573	0.9936 0.9503 0.9565 0.9662 0.9691 0.9867	0.008113 0.00483 0.003767 0.01455 0.001912 0.006234	1.86% 1.15% 0.89% 3.46% 0.44% 1.43%	0.0% 3.17% 2.62% 3.62% 0.96% 0.27%
C-% 0 6.25 12.5 25 50	Control Type	5 5 5 5 5	0.9745 0.9436 0.949 0.9392 0.9651	0.952 0.9302 0.9385 0.8988 0.9598	0.997 0.957 0.9594 0.9796 0.9704	0.9671 0.9492 0.9518 0.9471 0.9664	0.9532 0.925 0.9362 0.8836 0.958	0.9936 0.9503 0.9565 0.9662 0.9691	0.008113 0.00483 0.003767 0.01455 0.001912	1.86% 1.15% 0.89% 3.46% 0.44%	0.0% 3.17% 2.62% 3.62% 0.96%
C-% 0 6.25 12.5 25 50 100 101 Angular (Con	Control Type Lab Control rrected) Transfor	Count 5 5 5 5 5 5 5 5 7 med Sum	0.9745 0.9436 0.949 0.9392 0.9651 0.9719 0.9668	0.952 0.9302 0.9385 0.8988 0.9598 0.9545 0.942	0.997 0.957 0.9594 0.9796 0.9704 0.9892 0.9917	0.9671 0.9492 0.9518 0.9471 0.9664 0.9669 0.9728	0.9532 0.925 0.9362 0.8836 0.958 0.9573 0.9328	0.9936 0.9503 0.9565 0.9662 0.9691 0.9867 0.9826	0.008113 0.00483 0.003767 0.01455 0.001912 0.006234 0.008942	1.86% 1.15% 0.89% 3.46% 0.44% 1.43% 2.07%	0.0% 3.17% 2.62% 3.62% 0.96% 0.27% 0.79%
C-% 0 6.25 12.5 25 50 100 101	Control Type Lab Control	5 5 5 5 5 5 5	0.9745 0.9436 0.949 0.9392 0.9651 0.9719 0.9668	0.952 0.9302 0.9385 0.8988 0.9598	0.997 0.957 0.9594 0.9796 0.9704 0.9892	0.9671 0.9492 0.9518 0.9471 0.9664 0.9669	0.9532 0.925 0.9362 0.8836 0.958 0.9573	0.9936 0.9503 0.9565 0.9662 0.9691 0.9867	0.008113 0.00483 0.003767 0.01455 0.001912 0.006234	1.86% 1.15% 0.89% 3.46% 0.44% 1.43%	0.0% 3.17% 2.62% 3.62% 0.96% 0.27%
C-% 0 6.25 12.5 25 50 100 101 Angular (Cor	Control Type Lab Control rrected) Transfor	Count 5 5 5 5 5 5 5 5 7 med Sum	0.9745 0.9436 0.949 0.9392 0.9651 0.9719 0.9668 mary Mean 1.421	0.952 0.9302 0.9385 0.8988 0.9598 0.9545 0.942 95% LCL	0.997 0.957 0.9594 0.9796 0.9704 0.9892 0.9917 95% UCL	0.9671 0.9492 0.9518 0.9471 0.9664 0.9669 0.9728 Median 1.388	0.9532 0.925 0.9362 0.8836 0.958 0.9573 0.9328 Min 1.353	0.9936 0.9503 0.9565 0.9662 0.9691 0.9867 0.9826	0.008113 0.00483 0.003767 0.01455 0.001912 0.006234 0.008942 Std Err 0.02888	1.86% 1.15% 0.89% 3.46% 0.44% 1.43% 2.07% CV% 4.55%	0.0% 3.17% 2.62% 3.62% 0.96% 0.27% 0.79% %Effect 0.0%
C-% 0 6.25 12.5 25 50 100 101 Angular (Cor C-% 0 6.25	Control Type Lab Control rrected) Transfor Control Type	Count 5 5 5 5 5 5 5 5 cmed Sum Count 5 5	0.9745 0.9436 0.949 0.9392 0.9651 0.9719 0.9668	0.952 0.9302 0.9385 0.8988 0.9598 0.9545 0.942	0.997 0.957 0.9594 0.9796 0.9704 0.9892 0.9917	0.9671 0.9492 0.9518 0.9471 0.9664 0.9669 0.9728	0.9532 0.925 0.9362 0.8836 0.958 0.9573 0.9328	0.9936 0.9503 0.9565 0.9662 0.9691 0.9867 0.9826 Max 1.491 1.346	0.008113 0.00483 0.003767 0.01455 0.001912 0.006234 0.008942 Std Err 0.02888 0.01003	1.86% 1.15% 0.89% 3.46% 0.44% 1.43% 2.07%	0.0% 3.17% 2.62% 3.62% 0.96% 0.27% 0.79% %Effect 0.0% 6.27%
C-% 0 6.25 12.5 25 50 100 101 Angular (Cor	Control Type Lab Control rrected) Transfor Control Type	Count 5 5 5 5 5 5 5 cmed Sum Count 5 5 5 5	0.9745 0.9436 0.949 0.9392 0.9651 0.9719 0.9668 mary Mean 1.421 1.332 1.344	0.952 0.9302 0.9385 0.8988 0.9598 0.9545 0.942 95% LCL	0.997 0.957 0.9594 0.9796 0.9704 0.9892 0.9917 95% UCL	0.9671 0.9492 0.9518 0.9471 0.9664 0.9669 0.9728 Median 1.388	0.9532 0.925 0.9362 0.8836 0.958 0.9573 0.9328 Min 1.353 1.293 1.315	0.9936 0.9503 0.9565 0.9662 0.9691 0.9867 0.9826 Max 1.491 1.346 1.361	0.008113 0.00483 0.003767 0.01455 0.001912 0.006234 0.008942 Std Err 0.02888	1.86% 1.15% 0.89% 3.46% 0.44% 1.43% 2.07% CV% 4.55% 1.68% 1.4%	0.0% 3.17% 2.62% 3.62% 0.96% 0.27% 0.79% %Effect 0.0% 6.27% 5.44%
C-% 0 6.25 12.5 25 50 100 101 Angular (Cor C-% 0 6.25	Control Type Lab Control rrected) Transfor Control Type	Count 5 5 5 5 5 5 5 Count Count 5 5 5 5 5 5 5 5 5 5 5 5 5	0.9745 0.9436 0.949 0.9392 0.9651 0.9719 0.9668 mary Mean 1.421 1.332	0.952 0.9302 0.9385 0.8988 0.9598 0.9545 0.942 95% LCL 1.341 1.304	0.997 0.957 0.9594 0.9796 0.9704 0.9892 0.9917 95% UCL 1.501 1.36	0.9671 0.9492 0.9518 0.9471 0.9664 0.9669 0.9728 Median 1.388 1.343	0.9532 0.925 0.9362 0.8836 0.958 0.9573 0.9328 Min 1.353 1.293	0.9936 0.9503 0.9565 0.9662 0.9691 0.9867 0.9826 Max 1.491 1.346	0.008113 0.00483 0.003767 0.01455 0.001912 0.006234 0.008942 Std Err 0.02888 0.01003	1.86% 1.15% 0.89% 3.46% 0.44% 1.43% 2.07% CV% 4.55% 1.68%	0.0% 3.17% 2.62% 3.62% 0.96% 0.27% 0.79% %Effect 0.0% 6.27%
C-% 0 6.25 12.5 25 50 100 101 Angular (Cor C-% 0 6.25 12.5	Control Type Lab Control rrected) Transfor Control Type	Count 5 5 5 5 5 5 5 Count Count 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.9745 0.9436 0.949 0.9392 0.9651 0.9719 0.9668 mary Mean 1.421 1.332 1.344 1.327 1.383	0.952 0.9302 0.9385 0.8988 0.9598 0.9545 0.942 95% LCL 1.341 1.304 1.32 1.249 1.369	0.997 0.957 0.9594 0.9796 0.9704 0.9892 0.9917 95% UCL 1.501 1.36 1.367	0.9671 0.9492 0.9518 0.9471 0.9664 0.9669 0.9728 Median 1.388 1.343 1.349	0.9532 0.925 0.9362 0.8836 0.958 0.9573 0.9328 Min 1.353 1.293 1.315 1.223 1.364	0.9936 0.9503 0.9565 0.9662 0.9691 0.9867 0.9826 Max 1.491 1.346 1.361 1.386 1.394	0.008113 0.00483 0.003767 0.01455 0.001912 0.006234 0.008942 Std Err 0.02888 0.01003 0.0084	1.86% 1.15% 0.89% 3.46% 0.44% 1.43% 2.07% CV% 4.55% 1.68% 1.4%	0.0% 3.17% 2.62% 3.62% 0.96% 0.27% 0.79% %Effect 0.0% 6.27% 5.44% 6.58% 2.65%
C-% 0 6.25 12.5 25 50 100 101 Angular (Cor C-% 0 6.25 12.5 25	Control Type Lab Control rrected) Transfor Control Type	Count 5 5 5 5 5 5 5 Count Count 5 5 5 5 5 5 5 5 5 5 5 5 5	0.9745 0.9436 0.949 0.9392 0.9651 0.9719 0.9668 mary Mean 1.421 1.332 1.344 1.327	0.952 0.9302 0.9385 0.8988 0.9598 0.9545 0.942 95% LCL 1.341 1.304 1.32 1.249	0.997 0.957 0.9594 0.9796 0.9704 0.9892 0.9917 95% UCL 1.501 1.36 1.367 1.406	0.9671 0.9492 0.9518 0.9471 0.9664 0.9669 0.9728 Median 1.388 1.343 1.349 1.339	0.9532 0.925 0.9362 0.8836 0.958 0.9573 0.9328 Min 1.353 1.293 1.315 1.223	0.9936 0.9503 0.9565 0.9662 0.9691 0.9867 0.9826 Max 1.491 1.346 1.361 1.386	0.008113 0.00483 0.003767 0.01455 0.001912 0.006234 0.008942 Std Err 0.02888 0.01003 0.0084 0.02816	1.86% 1.15% 0.89% 3.46% 0.44% 1.43% 2.07% CV% 4.55% 1.68% 1.4% 4.74%	0.0% 3.17% 2.62% 3.62% 0.96% 0.27% 0.79% %Effect 0.0% 6.27% 5.44% 6.58%

Analyst: QA: ACIDIA(1)

Report Date:

02 Oct-17 17:15 (p 1 of 1)

Test Code:

1708-S192 | 19-4414-5458

							lest	Code:	170	8-S192 1	9-4414-5458	
Bivalve Larv	al Survival and l	Developme	nt Test						Nautilus	Environ	mental (CA)	
Analysis ID: Analyzed:	11-5346-6867 02 Oct-17 17:			mbined Dev		ate	CETIS Version: CETISv1.8.7 Official Results: Yes					
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed		PMSD	Test Resu	ılt			
Angular (Cor	rected)	NA	C > T	NA	NA		3.82%					
Equal Variar	nce t Two-Sampl	e Test										
Control	vs C-%		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision(α:5%)			
Lab Control	101		0.956	1.86	0.103 8	0.1835	CDF	Non-Signit	ficant Effect	······		
ANOVA Tabl	e								4			
Source	Sum Squ	ares	Mean Sq	uare	DF	F Stat	P-Value	Decision(α:5%)			
Between	0.007027	86	0.0070278	36	1	0.9139	0.3671	Non-Significant Effect			***************************************	
Error	0.061520	49	0.0076900	061	8			3				
Total	0.068548	35			9							
Distribution	al Tests	***************************************										
Attribute	Test			Test Stat	Critical	P-Value	Decision(α:1%)				
Variances	Variance	Ratio F		2.687	23.15	0.3615	Equal Var	iances				
Distribution	Shapiro-	Wilk W Nor	mality	0.8402	0.7411	0.0443	Normal Di	stribution				
Combined D	evelopment Rate	Summary							- Hall College by San			
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect	
0	Lab Control	5	0.9745	0.952	0.997	0.9671	0.9532	0.9936	0.008113	1.86%	0.0%	
101		5	0.9515	0.8849	1	0.9728	0.8562	0.9826	0.02399	5.64%	2.36%	
Angular (Co	rected) Transfor	med Sumn	nary									
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect	
0	Lab Control	5	1.421	1.341	1.501	1.388	1.353	1.491	0.02888	4.55%	0.0%	
101		5	1.368	1.236	1.499	1.405	1.182	1.438	0.04735	7.74%	3.73%	

Analyst: AC QA: 210/417

Embryo Larval Bioassay

48-hour Development

Client: AMEC/POSD	Test Species: M. galloprovincialis
Sample ID: SIYB-5	Start Date/Time: 8/24/2017 1600
Test ID: 1708-S192	End Date/Time: 8/26/2017 1600

		Number	Abnormal	Total Number	
Random #	Number Normal	Number Curved Shell	All other abnormal	Counted	Intials/Date
176	159	0	7	166	1916/17 RL
177	155	0	9	164	
178	169	0	3	172	
179	148	0	13	160	
180	168	Û	9	177	
181	144	0	5	149	
182	148	0	2	150	
183	133	0	8	14/	
184	166	0	E	172	
185	157	0	5	162	
186	161	O	9	170	
187	191	0	4	195	
188	154	O	7	161	
189	125	6	9	134	
190	3 00	0	1	207	
191	150	0		151	
192	171	0	8	179	
193	163	0	8	171	
194	176	0	12	188	019 01 01615
195	1.76	0		+73 183	Q18 PL 9/8/17
196	172	0	9	181	
197	148	0	9	153	
198			5	153	
199	137	0	6	143	
200	157	0	7	164	
202		0	2	150	Q18 PL 91617
203	158	0		164 166	CC 8 FL 1161
204	153	0	<u>5</u>	161	
205	167	0	1.7	189	
206	144	0	5	149	
207	155	Ö		156	
208	175	0	6	181	
209	147	0	5	152	
210	179	0	5	184	
				: 0 [

Comments:			
QC Check:	Aciololia	Final Review: 15/10/2/17	

Start Date:

End Date:

Sample Date: 23 Aug-17

Report Date:

21 Aug-17 18:06 (p 1 of 1) 19-4414-5458/1708-S192

Test Code:

Nautilus Environmental (CA)

Bivalve Larval Survival and Development Test

24 Aug-17 Species: Mytilus galloprovincialis 26 Aug-17

Protocol: EPA/600/R-95/136 (1995)

Material: Ambient Water

Sample Code: 17-0936

Sample Source: Shelter Island Yacht Basin

Sample Station: SIYB-5

C-%	Code	Rep	Pos	Initial Density	Final Density	# Counted	# Normal	Notes
0	LC	1	191					
0	LC	2	209					
0	LC	3	207					
0	LC	4	193					
0	LC	5	184					
6.25		1	204					
6.25		2	179			1		
6.25		3	180					
6.25		4	183					
6.25		5	196					
12.5		1	194					
12.5		2	177					
12.5		3	202					
12.5		4	192					
12.5		5	188					
25		1	197					
25		2	190					
25		3	186					
25		4	176					
25		5	205					
50		1	199					
50		2	203					
50		3	198					
50		4	185					
50		5	206					
100		1	200			157	147	108/27/17
100		2	208				F 1 -	
100		3	182					
100		4	195	177-0-000-4270-00-00				
100		5	201					
1/01		1	189					
01, 101@		2	210					
101		3	187					
101		4	181	·				
101		5	178					

QUIS AC OLZIII

Marine Chronic Bioassay

Water Quality Measurements

Client: AMEC/POSD
Sample ID: SIYB-5

Sample Log No.: 17- 0936

Test No.: 1708-S | 92

Test Species: M. galloprovincialis
Start Date/Time: 8/24/2017 / 6:00

End Date/Time: 8/26/2017 /6:00

Concentration	Salinity			T	emperatu	re	Diss	olved Ox	ygen		рН		
(%)	(ppt)				(°C)			(mg/L)			(pH units)		
	0	24	48	0	24	48	0	24	48	0	24	48	
Lab Control	34.0	33.5	33, 4	15.0	15.0	14.6	8.3	7.9	7.9	8,09	8.06	801	
6.25	33.9	33.6	33, 6	15.1	15-0	14.4	8.0	7.9	7,9	8.05	8.05	8.01	
12.5	33.9	33.6	33,5	15-1	14,8	14,3	8.2	7.9	7,9	8.05	8.04	8.00	
25	33.9	33.7	33, 6	15.1	14.8	14.3	8,2	7.9	7.9	8.05	8.03	₹.○٥	
50	33.9	33.6	33,6	15.0	14.8	14,2	8,2	4.9	7.9	8.05	8.04	8.00	
100	341	33.9	33.9	149	15.0	14,2	8.4	7.8	7,9	8.03	8.02	8.00	
100 filtered	34.0	33.5	33,4	15.1	15.1	14,2	7./	7.5	7.8	8.02	8.02	₹,00	

		0	24	48
Technician Initials:	WQ Readings:		CG	PM
	Dilutions made by:	AC/EG		

Comments:	0 hrs:	
	24 hrs:	
	48 hrs:	
	A . C. 1	

QC Check: ACS/27/17 Final Review: 35 (0/2/17

Client:	AMEC(POSD SIYB	-5	Start Da	te/Time: 8/24/2017	16:00	
Test No.:	1708-5197/			te/Time: 8/26/2017	16:00	
Test Species:	Mytilus galloprovincialis			Initials: CH/AC	- 9 10.0	
Animal Source:	Mission Bay		roommona	City/ic		
Date Received:	3(2)17	•				
Test Chambers:	30 mL glass shell vials					
Sample Volume:	10 mL	The state of the s				
oumpie volume.						
Spawn Information	on	Gamete Selection	Davis	O		
First Gamete Rele	ase Time: 1230	Sex	Beaker Number(s)		y, egg density, color, shape, etc.)	
		Male	05+3,4,5		y and motility	
Sex	Number Spawning	Female 1	1	High density, fa	il orange color, un form so	rape,
Male	5+	Female 2	2			
Female	3	Female 3	3	High density pa	le orange color, Mifa	DEM UNE,
Stock Number Female 1 Female 2 Female 3	election % of embryos at 2-cell division stage 99 ; 00		ertilization Time: osen for testing:		19	voje
Embryo Inoculun Target count on Se Number Counted:	edgwick-Rafter slide for desired density 1	is 6 embryos Mean	10-1	-		
	Mean \(\bigcup_{\epsilon} \bigcup_{\epsilon} \) \(\text{X 50 =} \)	605embry.	os/ml			
Desired Final (to inoculate wit When mean perce		noculum according to th	n factor) e calculated dilu	ition factor. For example, i	f the dilution factor is 2.25,	
	Time Zero Control Counts	, ,				
	Rep No. Dividing Total	% Dividing Me	an %			
	Rep No. Dividing Total	% Dividing Div	iding 4	8-h QC: 137/142 (4	1%)	
	TØA 135 135	100			•	
	TØB 162 162	100				
	TØC 2143 143	100 90	91.			
	TØD 1314 134	1000	,			
	TØE 157 158	99.4				
	TØF 145 45	100				
Comments:	DCH Q18 8/24/17	Xdividio	e= 12/1			
Comments.	WH (X18 7/27/11)	N. 1 1 1 1 (V. 1)	7.140			
QC Check:	AC 8/27/17			Final Re	eview: 4 (V/2/17	

Site: SIYB-6

Report Date:

08 Sep-17 14:00 (p 1 of 4)

Test Code:

1708-S193 | 21-3901-2250

Bivalve Larval Survival and Development Test Nautilus Environmental (CA)									
Batch ID: Start Date: Ending Date: Duration:	24 Aug-17 16:00 4 26 Aug-17 16:00	Test Type: Protocol: Species: Source:	Development-S EPA/600/R-95/ Mytilus gallopro Mission Bay	136 (1995)			Analyst: Diluent: Brine: Age:		oratory Seawater Applicable
Sample ID: Sample Date: Receive Date: Sample Age:	23 Aug-17 09:15 1 23 Aug-17 17:15	Code: Material: Source: Station:	17-0937 Ambient Water Shelter Island \ SIYB-6	′acht Basin			Client: Project:	Ame	c Foster Wheeler
Comparison S	ummary							•	
Analysis ID	Endpoint	NOEL	LOEL	TOEL	PMSD	TU	Met	hod	
07-1895-8129	Combined Developmen	nt Ra 100	>100	NA	4.93%	1	Dun	nett M	ultiple Comparison Test
05-5049-1896	Development Rate	100	>100	NA	3.28%	1	Dun	nett M	ultiple Comparison Test
14-0071-4930	Survival Rate	100	>100	NA	3.31%	1	Stee	el Man	y-One Rank Sum Test
Point Estimate	Summary								
Analysis ID	Endpoint	Level	%	95% LCL	95% UCL	TU	Met	hod	
20-9707-7511	Combined Developmen	nt Ra EC25	>100	N/A	N/A	<1	Line	ear Inte	rpolation (ICPIN)
	·	EC50	>100	N/A	N/A	<1			
13-2445-7596	Development Rate	EC25	>100	N/A	N/A	<1	Line	ear Inte	rpolation (ICPIN)
	·	EC50	>100	N/A	N/A	<1			
Test Acceptab	ility								
Analysis ID	Endpoint	Attrib	ute	Test Stat	TAC Limi	ts	Ove	erlap	Decision
05-5049-1896	Development Rate	Contr	ol Resp	0.9807	0.9 - NL		Yes	;	Passes Acceptability Criteria
13-2445-7596	Development Rate	Contr	ol Resp	0.9807	0.9 - NL		Yes	;	Passes Acceptability Criteria
14-0071-4930	Survival Rate	Contr	ol Resp	0.9959	0.5 - NL		Yes	;	Passes Acceptability Criteria
07-1895-8129	Combined Developmen	nt Ra PMSD		0.04932	NL - 0.25		No		Passes Acceptability Criteria

Batch note: 101=100 percent sample follend to 0.45 um

08 Sep-17 14:00 (p 2 of 4) 1708-S193 | 21-3901-2250

was a second			·				163	Code:	170	0 0 100 2	1-3901-2250
Bivalve L	arval Survival and เ	Developme	ent Test						Nautilus	Environn	nental (CA)
Combine	d Development Rate	e Summary	1								
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Control	5	0.9767	0.9579	0.9954	0.9521	0.9888	0.006746	0.01508	1.54%	0.0%
6.25		5	0.9539	0.9318	0.976	0.9333	0.9769	0.007963	0.01781	1.87%	2.34%
12.5		5	0.9622	0.919	1	0.9079	1	0.01556	0.0348	3.62%	1.48%
25		5	0.9422	0.8858	0.9987	0.8904	0.9875	0.02034	0.04547	4.83%	3.53%
50		5	0.9475	0.8994	0.9956	0.8904	0.9937	0.01734	0.03876	4.09%	2.99%
100		5	0.9665	0.9306	1	0.9315	0.9944	0.01293	0.02891	2.99%	1.04%
101		5	0.956	0.9254	0.9865	0.9247	0.981	0.011	0.0246	2.57%	2.12%
Developm	nent Rate Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Control	5	0.9807	0.9709	0.9904	0.972	0.9888	0.003505	0.007837	0.8%	0.0%
6.25		5	0.9592	0.9362	0.9822	0.9333	0.9769	0.008288	0.01853	1.93%	2.19%
12.5		5	0.9622	0.919	1	0.9079	1	0.01556	0.0348	3.62%	1.88%
25		5	0.9772	0.963	0.9914	0.9583	0.9875	0.005112	0.01143	1.17%	0.36%
50		5	0.9731	0.9505	0.9958	0.9577	0.9937	0.008159	0.01824	1.88%	0.77%
100		5	0.9745	0.948	1	0.9394	0.9944	0.009547	0.02135	2.19%	0.63%
101		5	0.9696	0.9428	0.9964	0.9387	0.9926	0.009638	0.02155	2.22%	1.13%
Survival F	Rate Summary		,								
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Control	5	0.9959	0.9845	1	0.9795	1	0.00411	0.009189	0.92%	0.0%
6.25		5	0.9945	0.9793	1	0.9726	1	0.005479	0.01225	1.23%	0.14%
12.5		5	1	1	1	1	1	0	0	0.0%	-0.41%
25		5	0.9644	0.9038	1	0.911	1	0.02181	0.04877	5.06%	3.16%
50		5	0.974	0.9187	1	0.8973	1	0.0199	0.04449	4.57%	2.2%
100		5	0.9918	0.969	1	0.9589	1	0.008219	0.01838	1.85%	0.41%
101		5	0.9863	0.9483	1	0.9315	1	0.0137	0.03063	3.11%	0.96%

Analyst: QA: XCIOH

000-089-187-4

CETIS™ v1.8.7.20

08 Sep-17 14:00 (p 3 of 4) 1708-S193 | 21-3901-2250

							rest code.	1700-0133 21-3301-2230
Bivalve La	arval Survival and [Developme	nt Test					Nautilus Environmental (CA)
Combined	Development Rate	e Detail						
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Lab Control	0.9872	0.9521	0.973	0.9824	0.9888		
6.25		0.9452	0.9464	0.9769	0.9333	0.9675		
12.5		0.9079	1	0.9636	0.9565	0.983		
25		0.9875	0.9583	0.8973	0.9777	0.8904		
50		0.96	0.8904	0.9937	0.9618	0.9315		
100		0.9806	0.9315	0.9867	0.9394	0.9944		
101		0.9247	0.981	0.9571	0.9387	0.9786		
Developm	ent Rate Detail		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Lab Control	0.9872	0.972	0.973	0.9824	0.9888		
6.25		0.9718	0.9464	0.9769	0.9333	0.9675		
12.5		0.9079	1	0.9636	0.9565	0.983		
25		0.9875	0.9583	0.985	0.9777	0.9774		
50		0.96	0.9924	0.9937	0.9618	0.9577		
100		0.9806	0.9714	0.9867	0.9394	0.9944		
101		0.9926	0.981	0.9571	0.9387	0.9786		
Survival F	tate Detail							
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Lab Control	1	0.9795	1	1	1		
6.25		0.9726	1	1	1	1		
12.5		1	1	1	1	1		
25		1	1	0.911	1	0.911		
50		1	0.8973	1	1	0.9726		
100		1	0.9589	1	1	1		
101		0.9315	1	1	1	1		

Report Date:

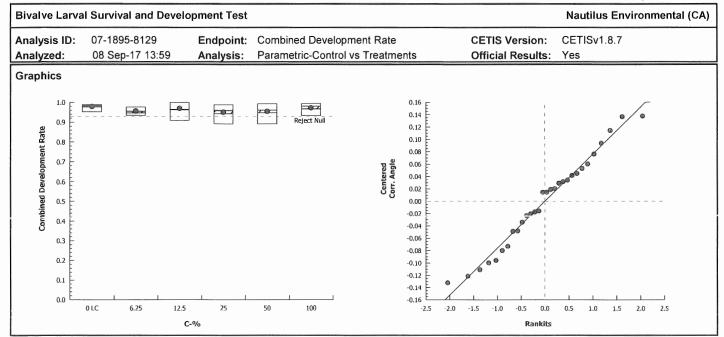
08 Sep-17 14:00 (p 4 of 4)

Test Code: 1708-S193 | 21-3901-2250

Bivalve Larval Survival and Development Test Nautilus Environmental (CA) Combined Development Rate Binomials							
0	Lab Control	154/156	139/146	144/148	167/170	177/179	
6.25		138/146	159/168	169/173	168/180	149/154	
12.5		138/152	169/169	159/165	154/161	173/176	
25		158/160	161/168	131/146	175/179	130/146	
50		168/175	130/146	158/159	151/157	136/146	
100		152/155	136/146	148/150	155/165	177/178	
101		135/146	155/158	156/163	153/163	183/187	
Developn	nent Rate Binomials	5					
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	Lab Control	154/156	139/143	144/148	167/170	177/179	
6.25		138/142	159/168	169/173	168/180	149/154	
12.5		138/152	169/169	159/165	154/161	173/176	
25		158/160	161/168	131/133	175/179	130/133	
50		168/175	130/131	158/159	151/157	136/142	
100		152/155	136/140	148/150	155/165	177/178	
101		135/136	155/158	156/163	153/163	183/187	
Survival	Rate Binomials						
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	Lab Control	146/146	143/146	146/146	146/146	146/146	
6.25		142/146	146/146	146/146	146/146	146/146	
12.5		146/146	146/146	146/146	146/146	146/146	
25		146/146	146/146	133/146	146/146	133/146	
50		146/146	131/146	146/146	146/146	142/146	
100		146/146	140/146	146/146	146/146	146/146	
101		136/146	146/146	146/146	146/146	146/146	

Analyst: QA: Ac (8) 2/17

Report Date:


08 Sep-17 14:00 (p 1 of 6)

Test Code: 1708-S193 21-3901-225	Took Code	1700 0102	124 2004 225
	Test Code:	1708-5193	21-3901-225

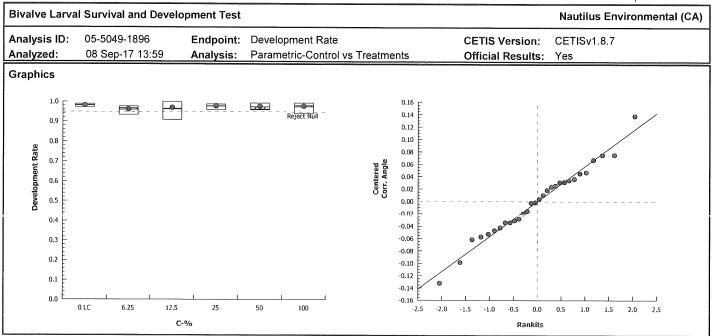
							1621	Code:	1700	0-3 193 2	1-3901-225
Bivalve Larv	al Survival and I	Developme	ent Test						Nautilus	Environi	mental (CA
Analysis ID: Analyzed:	07-1895-8129 08 Sep-17 13:		•	ombined Deve arametric-Cor	•			IS Version		.8.7	
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU
Angular (Corr	ected)	NA	C > T	NA	NA	The State of the S	4.93%	100	>100	NA	1
Dunnett Mult	tiple Compariso	n Test					10011				
Control	vs C-%		Test Sta	ıt Critical	MSD DF	P-Value	P-Type	Decision	(α:5%)		
Lab Control	6.25		1.253	2.362	0.123 8	0.3129	CDF	Non-Sign	ificant Effect		
	12.5		0.5422	2.362	0.123 8	0.6284	CDF		ificant Effect		
	25		1.509	2.362	0.123 8	0.2211	CDF	•	ificant Effect		
	50		1.311	2.362	0.123 8	0.2908	CDF	J	ificant Effect		
	100		0.4047	2.362	0.123 8	0.6876	CDF	-	ificant Effect		
ANOVA Table	е										
Source	Sum Squ	ares	Mean So	quare	DF	F Stat	P-Value	Decision	(α:5%)		
Between	0.024719	64	0.00494	3928	5	0.7294	0.6083	Non-Sign	ificant Effect		
Error	0.162663	2	0.00677	7633	24			•			
Total	0.187382	8			29						
Distributiona	l Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances	Bartlett E	quality of \	√ariance	4.423	15.09	0.4902	Equal Var	iances			
Distribution	Shapiro-	Wilk W No	rmality	0.9721	0.9031	0.5980	Normal D	istribution			
Combined D	evelopment Rate	Summan	J								
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	0.9767	0.9579	0.9954	0.9824	0.9521	0.9888	0.006746	1.54%	0.0%
6.25		5	0.9539	0.9318	0.976	0.9464	0.9333	0.9769	0.007963	1.87%	2.34%
12.5		5	0.9622	0.919	1	0.9636	0.9079	1	0.01556	3.62%	1.48%
25		5	0.9422	0.8858	0.9987	0.9583	0.8904	0.9875	0.02034	4.83%	3.53%
50		5	0.9475	0.8994	0.9956	0.96	0.8904	0.9937	0.01734	4.09%	2.99%
100		5	0.9665	0.9306	1	0.9806	0.9315	0.9944	0.01293	2.99%	1.04%
Angular (Cor	rected) Transfor	med Sum	mary								
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	1.423	1.365	1.481	1.438	1.35	1.465	0.02094	3.29%	0.0%
6.25		5	1.358	1.303	1.413	1.337	1.31	1.418	0.01992	3.28%	4.59%
12.5		5	1.395	1.271	1.519	1.379	1.262	1.532	0.04465	7.16%	1.98%
25		5	1.345	1.218	1.471	1.365	1.233	1.459	0.04563	7.59%	5.52%
50		5	1.355	1.236	1.473	1.369	1.233	1.491	0.04264	7.04%	4.8%
100		5	1.402	1.298	1.506	1.431	1.306	1.496	0.03746	5.98%	1.48%

Report Date: Test Code: 08 Sep-17 14:00 (p 2 of 6)

1708-S193 | 21-3901-2250

Report Date:

08 Sep-17 14:00 (p 3 of 6) 1708-S193 | 21-3901-2250


Test Code:		-S1	•			
		_				

	al Survival and [Developme	nt Test						Nautilus	Environr	mental (CA)
Analysis ID:	05-5049-1896	En	dpoint: Dev	velopment R	ate		CETI	S Version:	CETISv1.	8.7	
Analyzed:	08 Sep-17 13:	59 An	alysis: Par	ametric-Cor	trol vs Trea	ments	Offic	ial Results	: Yes		
Data Transfo	rm	Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU
Angular (Corr	ected)	NA	C > T	NA	NA		3.28%	100	>100	NA	1
Dunnett Mult	iple Compariso	n Test									
Control	vs C-%		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision	(α:5%)		
Lab Control	6.25		1.601	2.362	0.092 8	0.1927	CDF	Non-Sign	ificant Effect		
	12.5		0.9969	2.362	0.092 8	0.4213	CDF	Non-Sign	ificant Effect		
	25		0.2857	2.362	0.092 8	0.7355	CDF	Non-Sign	ificant Effect		
	50		0.4433	2.362	0.092 8	0.6714	CDF	Non-Sign	ificant Effect		
	100		0.3245	2.362	0.092 8	0.7203	CDF	Non-Sign	ificant Effect		
ANOVA Table)			Add							
Source	Sum Squ	iares	Mean Squ	ıare	DF	F Stat	P-Value	Decision	(α:5%)		
Between	0.013000	91	0.0026001	183	5	0.6874	0.6376	Non-Sign	ificant Effect		
Error	0.090779	51	0.0037824	18	24						
Total	0.103780	4			29						
Distributiona	i Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision(α:1%)			
Variances	Bartlett E	Equality of V	'ariance	7.182	15.09	0.2074	Equal Var	iances			
Distante 11								otribution			
Distribution	Shapiro-	Wilk W Nor	mality	0.9863	0.9031	0.9578	Normal Di	SUIDULION			
	Shapiro-' t Rate Summary		mality	0.9863	0.9031	0.9578	Normal Di	Stribution			
	•		mality Mean	0.9863 95% LCL	0.9031 95% UCL	0.9578 Median	Normal Di	Max	Std Err	CV%	%Effect
Development	t Rate Summary								Std Err 0.003505	CV% 0.8%	%Effect
Development	t Rate Summary Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max			
Development C-%	t Rate Summary Control Type	Count 5	Mean 0.9807	95% LCL 0.9709	95% UCL 0.9904	Median 0.9824	Min 0.972	Max 0.9888	0.003505	0.8%	0.0%
Development C-% 0 6.25	t Rate Summary Control Type	Count 5 5	Mean 0.9807 0.9592	95% LCL 0.9709 0.9362	95% UCL 0.9904 0.9822	Median 0.9824 0.9675	Min 0.972 0.9333	Max 0.9888 0.9769	0.003505 0.008288	0.8% 1.93%	0.0% 2.19%
Development C-% 0 6.25 12.5	t Rate Summary Control Type	Count 5 5 5	Mean 0.9807 0.9592 0.9622	95% LCL 0.9709 0.9362 0.919	95% UCL 0.9904 0.9822 1	Median 0.9824 0.9675 0.9636	Min 0.972 0.9333 0.9079	Max 0.9888 0.9769	0.003505 0.008288 0.01556	0.8% 1.93% 3.62%	0.0% 2.19% 1.88%
Development C-% 0 6.25 12.5 25	t Rate Summary Control Type	Count 5 5 5 5	Mean 0.9807 0.9592 0.9622 0.9772	95% LCL 0.9709 0.9362 0.919 0.963	95% UCL 0.9904 0.9822 1 0.9914	Median 0.9824 0.9675 0.9636 0.9777	Min 0.972 0.9333 0.9079 0.9583	Max 0.9888 0.9769 1 0.9875	0.003505 0.008288 0.01556 0.005111	0.8% 1.93% 3.62% 1.17%	0.0% 2.19% 1.88% 0.36%
Development C-% 0 6.25 12.5 25 50	t Rate Summary Control Type	Count 5 5 5 5 5 5 5 5 5	Mean 0.9807 0.9592 0.9622 0.9772 0.9731 0.9745	95% LCL 0.9709 0.9362 0.919 0.963 0.9505	95% UCL 0.9904 0.9822 1 0.9914 0.9958	Median 0.9824 0.9675 0.9636 0.9777 0.9618	Min 0.972 0.9333 0.9079 0.9583 0.9577	Max 0.9888 0.9769 1 0.9875 0.9937	0.003505 0.008288 0.01556 0.005111 0.008159	0.8% 1.93% 3.62% 1.17% 1.88%	0.0% 2.19% 1.88% 0.36% 0.77%
Development C-% 0 6.25 12.5 25 50	t Rate Summary Control Type Lab Control	Count 5 5 5 5 5 5 5 5 5	Mean 0.9807 0.9592 0.9622 0.9772 0.9731 0.9745	95% LCL 0.9709 0.9362 0.919 0.963 0.9505	95% UCL 0.9904 0.9822 1 0.9914 0.9958	Median 0.9824 0.9675 0.9636 0.9777 0.9618	Min 0.972 0.9333 0.9079 0.9583 0.9577	Max 0.9888 0.9769 1 0.9875 0.9937	0.003505 0.008288 0.01556 0.005111 0.008159	0.8% 1.93% 3.62% 1.17% 1.88%	0.0% 2.19% 1.88% 0.36% 0.77%
Development C-% 0 6.25 12.5 25 50 100 Angular (Cor	t Rate Summary Control Type Lab Control	Count 5 5 5 5 5 5 5 7med Summ	Mean 0.9807 0.9592 0.9622 0.9772 0.9731 0.9745	95% LCL 0.9709 0.9362 0.919 0.963 0.9505 0.948	95% UCL 0.9904 0.9822 1 0.9914 0.9958	Median 0.9824 0.9675 0.9636 0.9777 0.9618 0.9806	Min 0.972 0.9333 0.9079 0.9583 0.9577 0.9394	Max 0.9888 0.9769 1 0.9875 0.9937 0.9944	0.003505 0.008288 0.01556 0.005111 0.008159 0.009547	0.8% 1.93% 3.62% 1.17% 1.88% 2.19%	0.0% 2.19% 1.88% 0.36% 0.77% 0.63%
Development C-% 0 6.25 12.5 25 50 100 Angular (Cor C-%	t Rate Summary Control Type Lab Control rected) Transfor Control Type	Count 5 5 5 5 5 5 7med Summ	Mean 0.9807 0.9592 0.9622 0.9772 0.9731 0.9745 mary Mean	95% LCL 0.9709 0.9362 0.919 0.963 0.9505 0.948	95% UCL 0.9904 0.9822 1 0.9914 0.9958 1	Median 0.9824 0.9675 0.9636 0.9777 0.9618 0.9806	Min 0.972 0.9333 0.9079 0.9583 0.9577 0.9394	Max 0.9888 0.9769 1 0.9875 0.9937 0.9944	0.003505 0.008288 0.01556 0.005111 0.008159 0.009547	0.8% 1.93% 3.62% 1.17% 1.88% 2.19%	0.0% 2.19% 1.88% 0.36% 0.77% 0.63%
Development C-% 0 6.25 12.5 25 50 100 Angular (Cor C-% 0	t Rate Summary Control Type Lab Control rected) Transfor Control Type	Count 5 5 5 5 5 7 Treed Summ Count 5	Mean 0.9807 0.9592 0.9622 0.9772 0.9731 0.9745 mary Mean 1.434	95% LCL 0.9709 0.9362 0.919 0.963 0.9505 0.948 95% LCL 1.398	95% UCL 0.9904 0.9822 1 0.9914 0.9958 1 95% UCL 1.469	Median 0.9824 0.9675 0.9636 0.9777 0.9618 0.9806 Median 1.438	Min 0.972 0.9333 0.9079 0.9583 0.9577 0.9394 Min 1.403	Max 0.9888 0.9769 1 0.9875 0.9937 0.9944 Max 1.465	0.003505 0.008288 0.01556 0.005111 0.008159 0.009547 Std Err 0.01283	0.8% 1.93% 3.62% 1.17% 1.88% 2.19% CV% 2.0%	0.0% 2.19% 1.88% 0.36% 0.77% 0.63% %Effect 0.0%
Development C-% 0 6.25 12.5 25 50 100 Angular (Cor C-% 0 6.25	t Rate Summary Control Type Lab Control rected) Transfor Control Type	Count 5 5 5 5 5 7 med Summ Count 5 5	Mean 0.9807 0.9592 0.9622 0.9772 0.9731 0.9745 mary Mean 1.434 1.371	95% LCL 0.9709 0.9362 0.919 0.963 0.9505 0.948 95% LCL 1.398 1.314	95% UCL 0.9904 0.9822 1 0.9914 0.9958 1 95% UCL 1.469 1.428	Median 0.9824 0.9675 0.9636 0.9777 0.9618 0.9806 Median 1.438 1.39	Min 0.972 0.9333 0.9079 0.9583 0.9577 0.9394 Min 1.403 1.31	Max 0.9888 0.9769 1 0.9875 0.9937 0.9944 Max 1.465 1.418	0.003505 0.008288 0.01556 0.005111 0.008159 0.009547 Std Err 0.01283 0.02055	0.8% 1.93% 3.62% 1.17% 1.88% 2.19% CV% 2.0% 3.35%	0.0% 2.19% 1.88% 0.36% 0.77% 0.63% %Effect 0.0% 4.34%
Development C-% 0 6.25 12.5 25 50 100 Angular (Cor C-% 0 6.25 12.5	t Rate Summary Control Type Lab Control rected) Transfor Control Type	Count 5 5 5 5 5 7 Treed Summ Count 5 5 5	Mean 0.9807 0.9592 0.9622 0.9772 0.9731 0.9745 mary Mean 1.434 1.371 1.395	95% LCL 0.9709 0.9362 0.919 0.963 0.9505 0.948 95% LCL 1.398 1.314 1.271	95% UCL 0.9904 0.9822 1 0.9914 0.9958 1 95% UCL 1.469 1.428 1.519	Median 0.9824 0.9675 0.9636 0.9777 0.9618 0.9806 Median 1.438 1.39 1.379	Min 0.972 0.9333 0.9079 0.9583 0.9577 0.9394 Min 1.403 1.31 1.262	Max 0.9888 0.9769 1 0.9875 0.9937 0.9944 Max 1.465 1.418 1.532	0.003505 0.008288 0.01556 0.005111 0.008159 0.009547 Std Err 0.01283 0.02055 0.04465	0.8% 1.93% 3.62% 1.17% 1.88% 2.19% CV% 2.0% 3.35% 7.16%	0.0% 2.19% 1.88% 0.36% 0.77% 0.63% %Effect 0.0% 4.34% 2.71%

Analyst: QA: ACIODIT

Report Date: Test Code: 08 Sep-17 14:00 (p 4 of 6)

1708-S193 | 21-3901-2250

Report Date:

08 Sep-17 14:00 (p 5 of 6)

Test Code:

1708-S193 | 21-3901-2250

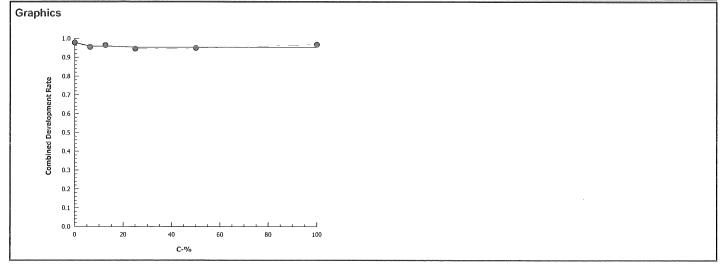
								1000	Code:			1-3901-2250
Bivalve Larv	al Survival and [Developm	ent Test							Nautilus	Environn	nental (CA)
Analysis ID: Analyzed:	14-0071-4930 08 Sep-17 13:		ndpoint: Su nalysis: No	ırvival Rate onparametric-	Control v	/s T	reatments		S Version: ial Results:	CETISv1. Yes	8.7	
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed			PMSD	NOEL	LOEL	TOEL	TU
Angular (Corr	rected)	NA	C > T	NA	NA		90000 kiribaban menenenenen (h.g., ya. 14 gus	3.31%	100	>100	NA	1
Steel Many-C	One Rank Sum T	est										
Control	vs C-%		Test Sta	t Critical	Ties	DF	P-Value	P-Type	Decision(x:5%)		
Lab Control	6.25		27	16	1	8	0.8003	Asymp	Non-Signif	icant Effect		
	12.5		30	16		8	0.9446	Asymp	_	icant Effect		
	25		24	16		8	0.5394	Asymp	•	icant Effect		
	50		24	16		8	0.5394	Asymp		icant Effect		
	100		27	16	1	8	0.8003	Asymp		icant Effect		
ANOVA Table	e	***************************************				mercu.						
Source	Sum Squ	ares	Mean So	uare	DF		F Stat	P-Value	Decision(x:5%)		
Between	0.040503	35	0.008100	0669	5		1.038	0.4185	Non-Signifi	icant Effect		
Error	0.187377	9	0.007807	'414	24				J			
Total	0.227881	3			29							
Distributiona	======================================											
Attribute	Test			Test Stat	Critical	l	P-Value	Decision	α:1%)			
Variances	Mod Lev	ene Equal	ty of Variand	e 1.121	4.248		0.3847	Equal Var	iances			
Variances	Levene F	Equality of	Variance	7.62	3.895		0.0002	Unequal \	/ariances			
Distribution	Shapiro-	Wilk W No	rmality	0.8704	0.9031		0.0017	Non-norm	al Distributio	n		
Survival Rate	e Summary					**************************************						
C-%	Control Type	Count	Mean	95% LCL	95% U	CL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	0.9959	0.9845	1		1	0.9795	1	0.00411	0.92%	0.0%
6.25		5	0.9945	0.9793	1		1	0.9726	1	0.005479	1.23%	0.14%
12.5		5	1	4	1		1	1	1	0	0.0%	-0.41%
		-	ı	1			ı	1		•		
25		5	0.9644	0.9038	1		1	0.911	1	0.02181	5.06%	3.16%
25 50							•				5.06% 4.57%	3.16% 2.2%
		5	0.9644	0.9038	1		1	0.911	1	0.02181		
50 100	rrected) Transfor	5 5 5	0.9644 0.974 0.9918	0.9038 0.9187	1		1	0.911 0.8973	1	0.02181 0.0199	4.57%	2.2%
50 100	rrected) Transfor Control Type	5 5 5	0.9644 0.974 0.9918	0.9038 0.9187	1	CL.	1	0.911 0.8973	1	0.02181 0.0199	4.57%	2.2%
50 100 Angular (Cor		5 5 5 med Sum	0.9644 0.974 0.9918 mary	0.9038 0.9187 0.969	1 1 1	CL.	1 1 1	0.911 0.8973 0.9589	1 1 1	0.02181 0.0199 0.008219	4.57% 1.85%	2.2% 0.41%
50 100 Angular (Cor C-%	Control Type	5 5 5 med Sum Count	0.9644 0.974 0.9918 mary Mean	0.9038 0.9187 0.969 95% LCL	1 1 1 95% UG	CL_	1 1 1 Median	0.911 0.8973 0.9589 Min	1 1 1 Max	0.02181 0.0199 0.008219 Std Err	4.57% 1.85% CV%	2.2% 0.41% %Effect
50 100 Angular (Cor C- %	Control Type	5 5 5 med Sum Count	0.9644 0.974 0.9918 mary Wean 1.509	0.9038 0.9187 0.969 95% LCL 1.452	1 1 1 95% UG	DL.	1 1 1 1 Median 1.529	0.911 0.8973 0.9589 Min 1.427	1 1 1 1 Max 1.529	0.02181 0.0199 0.008219 Std Err 0.02049	4.57% 1.85% CV% 3.04%	2.2% 0.41% %Effect 0.0%
50 100 Angular (Cor C- % 0 6.25	Control Type	5 5 5 rmed Sum Count 5 5	0.9644 0.974 0.9918 mary Mean 1.509 1.504	0.9038 0.9187 0.969 95% LCL 1.452 1.435	1 1 1 95% UC 1.566 1.574	CL_	1 1 1 1 Median 1.529 1.529	0.911 0.8973 0.9589 Min 1.427 1.405	1 1 1 1 Max 1.529 1.529	0.02181 0.0199 0.008219 Std Err 0.02049 0.02498	4.57% 1.85% CV% 3.04% 3.71%	2.2% 0.41% %Effect 0.0% 0.3%
50 100 Angular (Cor C-% 0 6.25 12.5	Control Type	5 5 5 rmed Sum Count 5 5 5	0.9644 0.974 0.9918 mary Mean 1.509 1.504 1.529	0.9038 0.9187 0.969 95% LCL 1.452 1.435 1.529	1 1 1 95% U0 1.566 1.574 1.53	CL	1 1 1 1 1 1.529 1.529 1.529	0.911 0.8973 0.9589 Min 1.427 1.405 1.529	1 1 1 1 1 1 1.529 1.529 1.529	0.02181 0.0199 0.008219 Std Err 0.02049 0.02498 0	4.57% 1.85% CV% 3.04% 3.71% 0.0%	2.2% 0.41% %Effect 0.0% 0.3% -1.36%

Report Date: Test Code: 08 Sep-17 14:00 (p 6 of 6) 1708-S193 | 21-3901-2250

Bivalve Larval Survival and Development Test Nautilus Environmental (CA) Analysis ID: 14-0071-4930 Endpoint: Survival Rate CETISv1.8.7 **CETIS Version:** Analyzed: 08 Sep-17 13:59 Nonparametric-Control vs Treatments Analysis: Official Results: Yes Graphics 1.0 0.20 0.9 0.15 0.8 0.10 Survival Rate 0.7 Centered Corr. Angle 0.05 0.6 0.00 -0.05 0.4 -0.10 0.3 -0.15 0.2 -0.20 0.1 -0.25 0 LC 6.25 12.5 100 50 -2.5 -2.0 -1.5 -1.0 -0,5 0.0 1.0 2.0 C-% Rankits

Report Date:

08 Sep-17 14:01 (p 1 of 2)


Test Code:

1708-S193 | 21-3901-2250

Bivalve Larva	al Survival and Devel	opment Test			Nautilus Environmental (CA)
Analysis ID:	20-9707-7511	Endpoint:	Combined Development Rate	CETIS Version:	CETISv1.8.7
Analyzed:	08 Sep-17 14:00	Analysis:	Linear Interpolation (ICPIN)	Official Results:	Yes

Linear	Interpola	tion Options						
X Trans	sform	Y Transform	Seed	i	Resamples	Exp 95% CL	Method	
Linear		Linear	1206	77	1000	Yes	Two-Point Interpolation	
Point E	stimates							
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL		
EC25	>100	N/A	N/A	<1	NA	NA		
EC50	>100	N/A	N/A	<1	NA	NA		

Combine	ed Development Rat	e Summary	Calculated Variate(A/B)								
C-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Lab Control	5	0.9767	0.9521	0.9888	0.006746	0.01508	1.54%	0.0%	781	799
6.25		5	0.9539	0.9333	0.9769	0.007963	0.01781	1.87%	2.34%	783	821
12.5		5	0.9622	0.9079	1	0.01556	0.0348	3.62%	1.48%	793	823
25		5	0.9422	0.8904	0.9875	0.02034	0.04547	4.83%	3.53%	755	799
50		5	0.9475	0.8904	0.9937	0.01734	0.03876	4.09%	2.99%	743	783
100		5	0.9665	0.9315	0.9944	0.01293	0.02891	2.99%	1.04%	768	794

Report Date:

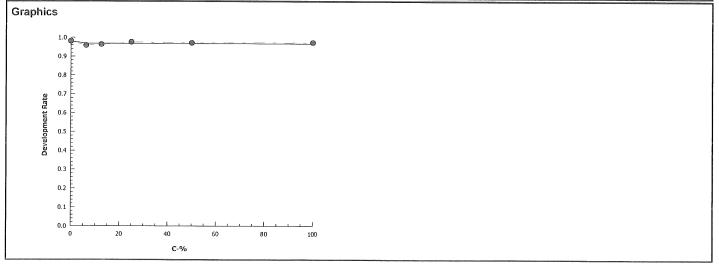
08 Sep-17 14:01 (p 2 of 2)

Test Code:

1708-S193 | 21-3901-2250

Bivalve Larval Survival and Development Test

Analysis ID: 13-2445-7596 Endpoint: Development Rate
Analyzed: 08 Sep-17 14:00 Analysis: Linear Interpolation (ICPIN)


Nautilus Environmental (CA)

CETIS Version: CETISv1.8.7

Official Results: Yes

Linear	Interpola	ation Options						
X Trans	sform	Y Transform	Seed	i	Resamples	Exp 95% CL	Method	
Linear		Linear	1132	:56	1000	Yes	Two-Point Interpolation	-
Point E	stimates	3						
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL		
EC25	>100	N/A	N/A	<1	NA	NA		***************************************
EC50	>100	N/A	N/A	<1	NA	NA		

Develop	ment Rate Summary	/	Calculated Variate(A/B)								
C-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Lab Control	5	0.9807	0.972	0.9888	0.003505	0.007837	0.8%	0.0%	781	796
6.25		5	0.9592	0.9333	0.9769	0.008288	0.01853	1.93%	2.19%	783	817
12.5		5	0.9622	0.9079	1	0.01556	0.0348	3.62%	1.88%	793	823
25		5	0.9772	0.9583	0.9875	0.005111	0.01143	1.17%	0.36%	755	773
50		5	0.9731	0.9577	0.9937	0.008159	0.01824	1.88%	0.77%	743	764
100		5	0.9745	0.9394	0.9944	0.009547	0.02135	2.19%	0.63%	768	788

Report Date:

08 Sep-17 14:02 (p 1 of 2)

	,			151			Test	Code:	1708	3-S193 2	1-3901-2250
Bivalve Larv	al Survival and I	Developm	ent Test						Nautilus	Environ	mental (CA)
Analysis ID: Analyzed:	12-7233-7266 08 Sep-17 14:		-	Combined Deve Parametric Bioe				IS Version		8.7	
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed	TST b	PMSD	NOEL	LOEL	TOEL	TU
Angular (Cori	rected)	NA	C*b < T	NA	NA	0.75	2.04%	101	>101	NA	0.9901
TST-Welch's	t Test										
Control	vs C-%		Test St	at Critical	MSD DF	P-Value	P-Type	Decision	(α:5%)		
Lab Control	6.25*		11.45	1.895	0.048 7	<0.0001	CDF	Non-Sign	ificant Effect		
	12.5*		6.92	2.132	0.101 4	0.0011	CDF	Non-Sign	ificant Effect		
	25*		5.744	2.132	0.103 4	0.0023	CDF	Non-Sign	ificant Effect		
	50*		6.327	2.015	0.092 5	0.0007	CDF	Non-Sign	ificant Effect		
	100*		8.239	2.015	0.082 5	0.0002	CDF	Non-Sign	ificant Effect		
	101*		9.414	1.943	0.062 6	<0.0001	CDF	Non-Sign	ificant Effect		
ANOVA Tabl	е							-			
Source	Sum Squ	ıares	Mean S	quare	DF	F Stat	P-Value	Decision	(α:5%)		
Between	0.025461	52	0.00424	3586	6	0.6679	0.6762	Non-Sign	ificant Effect		
Error	0.177911	2	0.00635	3972	28			-			
Total	0.203372	7			34	_					
Distributiona	al Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances	Bartlett E	Equality of	Variance	4.883	16.81	0.5590	Equal Var	iances		· · · · · · · · · · · · · · · · · · ·	
Distribution		Wilk W No		0.9777	0.9146	0.6845	Normal D				
Combined D	evelopment Rate	e Summar	<u></u>								
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	0.9767	0.9579	0.9954	0.9824	0.9521	0.9888	0.006746	1.54%	0.0%
6.25		5	0.9539	0.9318	0.976	0.9464	0.9333	0.9769	0.007963	1.87%	2.34%
12.5		5	0.9622	0.919	1	0.9636	0.9079	1	0.01556	3.62%	1.48%
25		5	0.9422	0.8858	0.9987	0.9583	0.8904	0.9875	0.02034	4.83%	3.53%
50		5	0.9475	0.8994	0.9956	0.96	0.8904	0.9937	0.01734	4.09%	2.99%
100		5	0.9665	0.9306	1	0.9806	0.9315	0.9944	0.01293	2.99%	1.04%
101		5	0.956	0.9254	0.9865	0.9571	0.9247	0.981	0.011	2.57%	2.12%
Annual Control of the				THE RESERVE THE PARTY OF THE PA							
Angular (Co	rrected) Transfor	rmed Sum	mary								
Angular (Coi	rrected) Transfor Control Type	rmed Sum Count	mary Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
•	•		•	95% LCL 1.365	95% UCL 1.481	Median	Min 1.35	Max 1.465	Std Err 0.02094	CV% 3.29%	%Effect 0.0%
C-%	Control Type	Count	Mean								
C-% 0	Control Type	Count 5	Mean 1.423	1.365	1.481	1.438	1.35	1.465	0.02094	3.29%	0.0%
C-% 0 6.25	Control Type	Count 5 5	Mean 1.423 1.358	1.365 1.303	1.481 1.413	1.438 1.337	1.35 1.31	1.465 1.418	0.02094 0.01992	3.29% 3.28%	0.0% 4.59%
C-% 0 6.25 12.5	Control Type	5 5 5	Mean 1.423 1.358 1.395	1.365 1.303 1.271	1.481 1.413 1.519	1.438 1.337 1.379	1.35 1.31 1.262	1.465 1.418 1.532	0.02094 0.01992 0.04465	3.29% 3.28% 7.16%	0.0% 4.59% 1.98%
C-% 0 6.25 12.5 25	Control Type	5 5 5 5	Mean 1.423 1.358 1.395 1.345	1.365 1.303 1.271 1.218	1.481 1.413 1.519 1.471	1.438 1.337 1.379 1.365	1.35 1.31 1.262 1.233	1.465 1.418 1.532 1.459	0.02094 0.01992 0.04465 0.04563	3.29% 3.28% 7.16% 7.59%	0.0% 4.59% 1.98% 5.52%

Analyst: A QA: ACIDIZITY

79

Report Date: Test Code: 08 Sep-17 14:02 (p 2 of 2) 1708-S193 | 21-3901-2250

				TS			Test	Code:	170	8-S193 2	1-3901-225
Bivalve Larv	al Survival and	Developme	nt Test						Nautilus	Environ	mental (CA
Analysis ID: Analyzed:	06-7833-1964 08 Sep-17 14		dpoint: alysis:	Development R		-Two Samp		IS Version		.8.7	
Data Transfo	orm	Zeta	Alt Hy	/p Trials	Seed	TST b	PMSD	NOEL	LOEL	TOEL	TU
Angular (Corr	rected)	NA	C*b <		NA	0.75	2.12%	101	>101	NA	0.9901
TST-Welch's	t Test										
Control	vs C-%		Test S	stat Critical	MSD DF	P-Value	P-Type	Decision	ι(α:5%)		
Lab Control	6.25*		13.05	2.015	0.046 5	<0.0001	CDF	Non-Sign	ificant Effect		
	12.5*		6.998	2.132	0.097 4	0.0011	CDF	_	ificant Effect		
	25*		18.44	1.943	0.037 6	<0.0001	CDF	_	ificant Effect		
	50*		11.15	2.132	0.065 4	0.0002	CDF	Non-Sign	ificant Effect		
	100*		11.25	2.132	0.066 4	0.0002	CDF	Non-Sign	ificant Effect		
T. DESTI.	101*		10.88	2.132	0.065 4	0.0002	CDF	Non-Sign	ificant Effect		
ANOVA Tabl	е										
Source	Sum Sqı	uares	Mean	Square	DF	F Stat	P-Value	Decision	(α:5%)		
Between	0.013114	58	0.0021	85764	6	0.5705	0.7502	Non-Sign	ificant Effect		
Error	0.107275	6	0.0038	33127	28						
Total	0.120390)2			34						
Distributiona	al Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(a:1%)			
Variances	Bartlett I	Equality of \	/ariance	7.207	16.81	0.3021	Equal Var	iances			
Distribution	Shapiro-	Wilk W Nor	mality	0.9888	0.9146	0.9722	Normal D	istribution			
Developmen	t Rate Summary	'									
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	0.9807	0.9709	0.9904	0.9824	0.972	0.9888	0.003505	0.8%	0.0%
6.25		5	0.9592	0.9362	0.9822	0.9675	0.9333	0.9769	0.008288	1.93%	2.19%
12.5		5	0.9622		1	0.9636	0.9079	1	0.01556	3.62%	1.88%
25		5	0.9772		0.9914	0.9777	0.9583	0.9875	0.005111	1.17%	0.36%
50		5	0.9731		0.9958	0.9618	0.9577	0.9937	0.008159	1.88%	0.77%
100		5	0.9745		1	0.9806	0.9394	0.9944	0.009547	2.19%	0.63%
101		5	0.9696	0.9428	0.9964	0.9786	0.9387	0.9926	0.009638	2.22%	1.13%
Angular (Cor	rected) Transfo	rmed Sumi	nary								
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	1.434	1.398	1.469	1.438	1.403	1.465	0.01283	2.0%	0.0%
6.25		5	1.371	1.314	1.428	1.39	1.31	1.418	0.02055	3.35%	4.34%
12.5		5	1.395	1.271	1.519	1.379	1.262	1.532	0.04465	7.16%	2.71%
25		5	1.423	1.378	1.467	1.421	1.365	1.459	0.0162	2.55%	0.78%
50		5	1.416	1.336	1.497	1.374	1.364	1.491	0.02905	4.59%	1.2%
100		5	1.421	1.34	1.502	1.431	1.322	1.496	0.0292	4.59%	0.88%
101		5	1.405	1.325	1.485	1.424	1.321	1.485	0.02872	4.57%	2.01%

Analyst: AA QA: ACIONT

000-089-187-3 CETIS™ v1.8.7.20

Report Date:

02 Oct-17 17:16 (p 1 of 1)

Test Code:

1708-S193 | 21-3901-2250

								Test	Code:	1708	3-S193 2	1-3901-2250
Bivalve Larv	Bivalve Larval Survival and Development Test									Nautilus	Environr	nental (CA)
Analysis ID:	17-530	8-7798	End	lpoint: Co	mbined Deve	elopment Ra	ite	CET	S Version:	CETISv1.	8.7	
Analyzed:	02 Oct	:-17 17:15	Ana	lysis: Pa	ametric-Two	Sample	***************************************	Offic	ial Results:	Yes		
Data Transfo	orm	Ze	eta	Alt Hyp	Trials	Seed		PMSD	Test Resu	ılt		
Angular (Cor	rected)	N.	4	C > T	NA	NA		2.15% Passes combined development rate			rate	
Equal Variar	nce t Two	-Sample Te	st									
Control	vs C	C-%		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision(α:5%)		
Lab Control	1	01		1.637	1.86	0.064 8	0.0702	CDF	Non-Signif	ficant Effect		
ANOVA Tabi	е											
Source	Si	um Squares	;	Mean Sq	Jare	DF	F Stat	P-Value	Decision(α:5%)		
Between	0.	00804282		0.0080428	32	1	2.679	0.1403	Non-Signif	icant Effect		
Error	0.	0240171		0.003002	138	8						
Total	0.	03205992				9	_					
Distribution	al Tests											
Attribute	Т	est			Test Stat	Critical	P-Value	Decision(α:1%)			
Variances	V	/ariance Rat	io F		1.739	23.15	0.6052	Equal Var	iances			***************************************
Distribution	S	Shapiro-Wilk	W Norn	nality	0.9256	0.7411	0.4065	Normal Di	stribution			
Combined D	evelopme	ent Rate Su	mmary									
C-%	Control	і Туре С	ount	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Cor	ntrol 5		0.9767	0.9579	0.9954	0.9824	0.9521	0.9888	0.006746	1.54%	0.0%
101		5		0.956	0.9254	0.9865	0.9571	0.9247	0.981	0.011	2.57%	2.12%
Angular (Co	rrected) T	ransformed	Summ	ary								
C-%	Control	Туре С	ount	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Cor	ntrol 5	A.C	1.423	1.365	1.481	1.438	1.35	1.465	0.02094	3.29%	0.0%
101		5		1.366	1.29	1.443	1.362	1.293	1.433	0.02761	4.52%	3.99%

Embryo Larval Bioassay

48-hour Development

Client: AMEC/POSD	Test Species: M. galloprovincialis
-------------------	------------------------------------

 Sample ID:
 SIYB-6
 Start Date/Time:
 8/24/2017 1600

Test ID: 1708-S193 End Date/Time: 8/26/2017 1600

		Number	· Abnormal	Total Number	
Random #	Number Normal	Number Curved Shell	All other abnormal	Total Number Counted	Intials/Date
211	155	0	3	158	RL 9/6/17
212	1.39	O	4	143	
213	159	0	9	168	
214	169	0	L	173	
215	167	0	3	176 170	Q18 PL 9/6/17
216	159	O	5	156	
217	151	0	6	157	
218	158	6	3	160	
219	144	0		148	
220	177	0	1	178	
221	136	O	G	142	
222	161	0	7	168	
223	148	0	2	150	
224	130	0		131	
225	125	Ö	3	155	
226	138	0	4	142	
227	175	0	4	179	ĺ
228	183	Ø	Ч	187	
229	155	0	10	165	
230	173	0	3	176	
231	130	0	3	133	
232	169	0	Õ	169	
233	168	0	7	175	
234	177	O	9	179	
235	154	0	7	161	RL 9/7/17
236	131	O)	133	
237	156	0	7	163	
238	135	0		136	
239	138	0	14	152	
240	158	Ø		159	
241	153		d	163	
242	149	É	5	159	
243	159	0	6	165	
244	1 68	0	12	180	
245	136	0	4	140	
	I.				L

Comments:		
	Wall I was a second of the sec	
QC Check:	AC10/8/17	Final Review: ろしいレバフ

Start Date:

End Date:

Report Date:

Sample Code: 17- 0937

21 Aug-17 18:07 (p 1 of 1) 21-3901-2250/1708-S193

Test Code:

Nautilus Environmental (CA)

Bivalve Larval Survival and Development Test

26 Aug-17

24 Aug-17 Species: Mytilus galloprovincialis

Protocol: EPA/600/R-95/136 (1995) Sample Source: Shelter Island Yacht Basin

Sample Date: 23 Aug-17 Material: Ambient Water Sample Station: SIYB-6

Sample Date	. 25 /-	rug-17	1	Waterial.	Ambient vvater			Sample Station: SIYB-6
C-%	Code	Rep	Pos	Initial Density	Final Density	# Counted	# Normal	Notes
0	LC	1	216					
0	LC	2	212					
0	LC	3	219					
0	LC	4	215					
0	LC	5	234					
6.25		1	226					
6.25		2	213	-				
6.25		3	214					
6.25		4	244					
6.25		5	242					
12.5		1	239					
12.5		2	232					
12.5		3	243					
12.5		4	235					
12.5		5	230					
25		1	218					
25		2	222					
25		3	236					
25		4	227					
25		5	231					
50		1	233					
50		2	224					
50		3	240					
50		4	217					
50		5	221					
100		1	225			156	151	AC8/27/17
100		2	245				,	
100		3	223					
100		4	229					
100		5	220					
101		1	238					
100/101@ Feres 101		2	211					
Jere (101		3	237					
			241					
101		4	241					

QQ18 LC 8/21/17

Analyst: AC QA: COUNTY

Marine Chronic Bioassay

Water Quality Measurements

Client: AMEC/POSD Test Species: M. galloprovincialis

Sample ID: SIYB-6 Start Date/Time: 8/24/2017 / 6:00

Sample Log No.: 17- 0937 End Date/Time: 8/26/2017 16: 00

Test No.: 1708-S (93

Concentration (%)		Salinity (ppt)			Temperature (°C)			Dissolved Oxygen (mg/L)			pH (pH units)		
	0	24	48	0	24	48	0	24	48	0	24	48	
Lab Control	34.0	33.6	33.6	14.8	14.9	14.9	8.5	구. 이	7,8	8.09	8.06	8.02	
6.25	34.0	33.6	33, 7	147	14.7	14.8	8.4	7.9	7.8	8.06	8.05	3.00	
12.5	34,0	33.7	33,8	14,6	14.7	14.6	8.4	7-9	7.8	8,05	8.03	7,99	
25	34.0	33.7	33.7	147	14.8	14.6	8.3	7.9	7, 8	8,04	8-03	8.00	
50	34,0	33.8	33, 8	14.7	14.7	14.7	8,3	7.8	7. &	8.02	8.03	7.99	
100	34.1	33.9	34.0	14.5	14.7	14.6	8.4	7.9	7, 8	8,02	8.02	7,99	
100 filtered	34.0	33.4	33,6	15.4	14.9	14,6	7.0	7.6	7,8	8.00	8,00	7.99	
							ŕ						

		0	24	48
Technician Initials:	WQ Readings:	- AC	Ca	Din
	Dilutions made by:	AL/EL		

Comments: 0 hrs: (2) @18 Ac 8/24/17

0 hrs: (C) Q 18 AL 8 | 24 | 17
24 hrs:
48 hrs:

QC Check: ______ \(\sigma \) \

					46.
Client:	1708-5193	48-6	Start Dat	te/Time; 8/24/201	7 16:00
Test No.:	1708-5193		End Dat	te/Time: 8/26/201	7 16:00
Test Species:	Mytilus galloprovincialis		Technician	Initials: CH/AC	
Animal Source:	Mission Bay				
Date Received:	8(2/17				
Test Chambers:	30 mL glass shell vials	*****			
Sample Volume:	10 mL				
Spawn Informatio	on	Gamete Selection			
First Gamete Relea	ase Time: 1230	Sex	Beaker Number(s)		lity, egg density, color, shape, etc.)
0	Number Consuming	Male	€5+3,4,5		ty and motility
Sex	Number Spawning	Female 1	1 2	High density, f	ail orange color, un form in a
Male	5+	Female 2			
Female	3	Female 3	1 3	High density p	all crange color, Mifor
Embryo Stock Se	Jaction	Egg	Fertilization Time:	1315	1an
Cilibiyo Stock Se	% of embryos at 2-cell				
Stock Number	division stage	Stock(s)	chosen for testing:	1	
Female 1	99				
Female 2	100				
Female 3	100				
Number Counted:	11 10 10 16 8 11 14 9 8 10	 Mea	an:	-	
	Mean X 50	= <u>505</u> emb	ryos/ml		
Initial Desired Final (to inoculate witl	•	(dilu	tion factor)		
When mean percer use 100 ml of exist	nt dividing is ≥ 90, prepare the emb ing stock (1 part) and 125 ml of dil	oryo inoculum according to ution water (1.25 parts).	the calculated dilu	tion factor. For example,	if the dilution factor is 2.25,
	Time Zero Control Counts				
	Rep No. Dividing Total		Mean % Dividing 48	B-h QC: 134/147 (4	14°13)
	TØA 135 135	1.00		3-h QC: 131/142 (6	· · · · y
	TØB 162 162	100			
	TØC 7143 143	3 100 90	991.		
	TØD 13134 134		61		
	TØE 157 158				
	TØF 145 145	.) 0 ~			
Comments:	DCH Q18 8/24/17	Xdividi	17= 146		_
			2		
QC Check:	AC 8/27/17			Final R	teview: 9 LV/2/17

Site: SIYB-REF

CETIS Summary Report

Report Date: Test Code: 03 Oct-17 12:27 (p 1 of 4) 1708-S194 | 08-6843-4483

Bivalve Larval Survival and Development Test Nautilus Environmental (CA) Batch ID: 10-7890-3308 Test Type: Development-Survival Analyst: Start Date: 24 Aug-17 16:00 Protocol: EPA/600/R-95/136 (1995) Diluent: Laboratory Seawater Ending Date: 26 Aug-17 16:00 Species: Mytilus galloprovincialis Not Applicable Brine: **Duration:** Source: Mission Bay Age: Sample ID: 19-9549-3992 17-0938 Code: Client: Amec Foster Wheeler Sample Date: 23 Aug-17 08:15 Material: **Ambient Water** Project: Receive Date: 23 Aug-17 17:15 Source: Shelter Island Yacht Basin Sample Age: 32h (11.5 °C) Station: SIYB-REF 101= 100 percent sample filtered to 0.45um Batch Note: Comparison Summary Analysis ID **Endpoint** NOEL LOEL TOEL **PMSD** TU Method 00-8314-2358 Combined Development Ra 100 >100 NA 3.87% **Dunnett Multiple Comparison Test** 1 06-2689-4439 Development Rate 100 >100 NA 4.06% 1 **Dunnett Multiple Comparison Test** 01-3399-6185 Survival Rate 100 >100 NA 2.1% Steel Many-One Rank Sum Test **Point Estimate Summary** Analysis ID **Endpoint** Level 95% LCL 95% UCL TU Method 04-9273-7903 Combined Development Ra EC25 >100 N/A <1 Linear Interpolation (ICPIN) N/A EC50 >100 N/A N/A <1 10-2372-1220 Development Rate EC25 >100 N/A N/A <1 Linear Interpolation (ICPIN) EC50 >100 N/A N/A <1 **Test Acceptability** Analysis ID **Endpoint** Attribute Test Stat TAC Limits Overlap Decision 06-2689-4439 Development Rate Control Resp 0.9608 0.9 - NL Yes Passes Acceptability Criteria 10-2372-1220 Development Rate Control Resp 0.9608 0.9 - NL Yes Passes Acceptability Criteria 01-3399-6185 0.5 - NL Survival Rate Control Resp 0.9986 Yes Passes Acceptability Criteria 00-8314-2358 Combined Development Ra PMSD 0.03874 NL - 0.25 No Passes Acceptability Criteria

Report Date:

03 Oct-17 12:27 (p 2 of 4)

	Test Code:	1708-S194 08-6843-4483
Bivalve Larval Survival and Development Test		Nautilus Environmental (CA)

Bivalve Larval Survival and Development Test Nautilus Environmental (CA)											
Combined Development Rate Summary											
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Control	5	0.9595	0.949	0.97	0.9497	0.9701	0.003787	0.008467	0.88%	0.0%
6.25		5	0.9449	0.9178	0.972	0.9178	0.9655	0.009773	0.02185	2.31%	1.52%
12.5		5	0.9478	0.9202	0.9754	0.9247	0.9835	0.009942	0.02223	2.35%	1.22%
25		5	0.9553	0.9281	0.9825	0.9178	0.9747	0.009798	0.02191	2.29%	0.44%
50		5	0.9465	0.9047	0.9883	0.9041	0.9811	0.01506	0.03367	3.56%	1.36%
100		5	0.9671	0.9461	0.9881	0.9489	0.9938	0.007573	0.01693	1.75%	-0.79%
101		5	0.9537	0.9354	0.972	0.9349	0.9706	0.006597	0.01475	1.55%	0.61%
Developm	nent Rate Summary								*		
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Control	5	0.9608	0.9499	0.9718	0.9497	0.9701	0.00396	0.008854	0.92%	0.0%
6.25		5	0.9584	0.9314	0.9854	0.925	0.9853	0.009733	0.02176	2.27%	0.25%
12.5		5	0.9478	0.9202	0.9754	0.9247	0.9835	0.009942	0.02223	2.35%	1.36%
25		5	0.9647	0.9332	0.9962	0.9306	1	0.01134	0.02537	2.63%	-0.4%
50		5	0.9679	0.947	0.9887	0.9437	0.9851	0.007506	0.01678	1.73%	-0.73%
100		5	0.9671	0.9461	0.9881	0.9489	0.9938	0.007573	0.01693	1.75%	-0.65%
101		5	0.9537	0.9354	0.972	0.9349	0.9706	0.006597	0.01475	1.55%	0.74%
Survival F	Rate Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Control	5	0.9986	0.9948	1	0.9932	1	0.00137	0.003063	0.31%	0.0%
6.25		5	0.9863	0.9483	1	0.9315	1	0.0137	0.03063	3.11%	1.24%
12.5		5	1	1	1	1	1	0	0	0.0%	-0.14%
25		5	0.9904	0.9718	1	0.9658	1	0.006711	0.01501	1.52%	0.82%
50		5	0.9781	0.9337	1	0.9178	1	0.01598	0.03572	3.65%	2.06%
100		5	1	1	1	1	1	0	0	0.0%	-0.14%
101		5	1	1	1	1	1	0	0	0.0%	-0.14%

Report Date: Test Code: 03 Oct-17 12:27 (p 3 of 4)

1708-S194 | 08-6843-4483

							rest Code:	1708-5194 08-6843-4483
Bivalve L	arval Survival and [Developme	nt Test					Nautilus Environmental (CA)
Combine	d Development Rate	e Detail						
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Lab Control	0.9532	0.9701	0.9589	0.9658	0.9497		
6.25		0.9565	0.9178	0.9597	0.9655	0.925		
12.5		0.9379	0.9408	0.9521	0.9835	0.9247		
25		0.9592	0.9591	0.9658	0.9747	0.9178		
50		0.9697	0.9041	0.9178	0.9598	0.9811		
100		0.9938	0.9608	0.9716	0.9605	0.9489		
101		0.9451	0.9706	0.9518	0.9349	0.9661		
Developn	nent Rate Detail				***************************************			
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Lab Control	0.9532	0.9701	0.9655	0.9658	0.9497		
6.25		0.9565	0.9853	0.9597	0.9655	0.925		
12.5		0.9379	0.9408	0.9521	0.9835	0.9247		
25		0.9592	0.9591	1	0.9747	0.9306		
50		0.9697	0.9851	0.9437	0.9598	0.9811		
100		0.9938	0.9608	0.9716	0.9605	0.9489		
101		0.9451	0.9706	0.9518	0.9349	0.9661		
Survival I	Rate Detail							
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Lab Control	1	1	0.9932	1	1		
6.25		1	0.9315	1	1	1		
12.5		1	1	1	1	1		
25		1	1	0.9658	1	0.9863		
50		1	0.9178	0.9726	1	1		
100		1	1	1	1	1		
101		1	1	1	1	1		

Report Date: Test Code: 03 Oct-17 12:27 (p 4 of 4)

17

1708-S194 | 08-6843-4483

							rest Code:	1708-5194 08-6843-4483
Bivalve L	arval Survival and I	Developme	nt Test					Nautilus Environmental (CA)
Combine	d Development Rate	e Binomials	3					
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Lab Control	163/171	162/167	140/146	141/146	151/159		
6.25		154/161	134/146	143/149	168/174	148/160		
12.5		151/161	143/152	139/146	179/182	135/146		
25		141/147	164/171	141/146	154/158	134/146		
50		160/165	132/146	134/146	167/174	156/159		
100		159/160	147/153	171/176	170/177	167/176		
101		172/182	165/170	158/166	158/169	171/177		
Developm	nent Rate Binomials	······································						
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Lab Control	163/171	162/167	140/145	141/146	151/159		
6.25		154/161	134/136	143/149	168/174	148/160		
12.5		151/161	143/152	139/146	179/182	135/146		
25		141/147	164/171	141/141	154/158	134/144		
50		160/165	132/134	134/142	167/174	156/159		
100		159/160	147/153	171/176	170/177	167/176		
101		172/182	165/170	158/166	158/169	171/177		
Survival F	Rate Binomials							
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Lab Control	146/146	146/146	145/146	146/146	146/146		
6.25		146/146	136/146	146/146	146/146	146/146		
12.5	•	146/146	146/146	146/146	146/146	146/146		
25		146/146	146/146	141/146	146/146	144/146		
50		146/146	134/146	142/146	146/146	146/146		
100		146/146	146/146	146/146	146/146	146/146		
101		146/146	146/146	146/146	146/146	146/146		
101		146/146	146/146	146/146	146/146	146/146		

Report Date:

03 Oct-17 12:27 (p 1 of 6)

Test Code: 1708-S194 | 08-6843-4483

							iest				5-6843-4483
Bivalve Larv	al Survival and [Developmo	ent Test						Nautilus	Environr	nental (CA)
Analysis ID: Analyzed:	00-8314-2358 03 Oct-17 12:2		•	mbined Deve				IS Version:	CETISv1. Yes	8.7	
Batch Note:	101= 100 perc	W			tion vs Treat	inchis	Onic	iai Nesuits.	103	punned by Style III (Co. An An Alberta)	
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU
Angular (Corr		NA	C > T	NA	NA		3.87%	100	>100	NA	1
Dunnett Mult	tiple Comparisor	n Test									
Control	vs C-%		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision(a:5%)		
Lab Control	6.25		0.9284	2.362	0.081 8	0.4521	CDF	Non-Signif	icant Effect		
	12.5		0.6836	2.362	0.081 8	0.5645	CDF	Non-Signif	icant Effect		
	25		0.2074	2.362	0.081 8	0.7649	CDF	Non-Signif	icant Effect		
	50		0.6549	2.362	0.081 8	0.5777	CDF	Non-Signif	icant Effect		
	100		-0.7742	2.362	0.081 8	0.9694	CDF	Non-Signif	icant Effect		
ANOVA Tabl	е										
Source	Sum Squ	ares	Mean Sq	uare	DF	F Stat	P-Value	Decision(a:5%)		
Between	0.011202	7	0.002240	54	5	0.7675	0.5823	Non-Signif	icant Effect		
Error	0.070061	79	0.002919	241	24	_					
Total	0.081264	49 			29						
Distributiona	al Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision((α:1%)			
Variances	Bartlett E	quality of	Variance	4.895	15.09	0.4288	Equal Var	iances			
Distribution		Wilk W No		0.9745	0.9031	0.6672	Normal Di	istribution			
Combined D	evelopment Rate	e Summar	у								
C-%	Control Type										
•	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	Count 5	Mean 0.9595	95% LCL 0.949	95% UCL 0.97	Median 0.9589	Min 0.9497	Max 0.9701	Std Err 0.003787	CV% 0.88%	%Effect 0.0%
0 6.25											
		5	0.9595	0.949	0.97	0.9589	0.9497	0.9701	0.003787	0.88%	0.0%
6.25		5 5	0.9595 0.9449	0.949 0.9178	0.97 0.972	0.9589 0.9565	0.9497 0.9178	0.9701 0.9655	0.003787 0.009773	0.88% 2.31%	0.0% 1.52%
6.25 12.5		5 5 5	0.9595 0.9449 0.9478	0.949 0.9178 0.9202	0.97 0.972 0.9754	0.9589 0.9565 0.9408	0.9497 0.9178 0.9247	0.9701 0.9655 0.9835	0.003787 0.009773 0.009941	0.88% 2.31% 2.35%	0.0% 1.52% 1.22%
6.25 12.5 25		5 5 5 5	0.9595 0.9449 0.9478 0.9553	0.949 0.9178 0.9202 0.9281	0.97 0.972 0.9754 0.9825	0.9589 0.9565 0.9408 0.9592	0.9497 0.9178 0.9247 0.9178	0.9701 0.9655 0.9835 0.9747	0.003787 0.009773 0.009941 0.009798	0.88% 2.31% 2.35% 2.29%	0.0% 1.52% 1.22% 0.44%
6.25 12.5 25 50 100		5 5 5 5 5 5	0.9595 0.9449 0.9478 0.9553 0.9465 0.9671	0.949 0.9178 0.9202 0.9281 0.9047	0.97 0.972 0.9754 0.9825 0.9883	0.9589 0.9565 0.9408 0.9592 0.9598	0.9497 0.9178 0.9247 0.9178 0.9041	0.9701 0.9655 0.9835 0.9747 0.9811	0.003787 0.009773 0.009941 0.009798 0.01506	0.88% 2.31% 2.35% 2.29% 3.56%	0.0% 1.52% 1.22% 0.44% 1.36%
6.25 12.5 25 50 100	Lab Control	5 5 5 5 5 5 5	0.9595 0.9449 0.9478 0.9553 0.9465 0.9671	0.949 0.9178 0.9202 0.9281 0.9047 0.9461	0.97 0.972 0.9754 0.9825 0.9883 0.9881	0.9589 0.9565 0.9408 0.9592 0.9598 0.9608	0.9497 0.9178 0.9247 0.9178 0.9041	0.9701 0.9655 0.9835 0.9747 0.9811	0.003787 0.009773 0.009941 0.009798 0.01506	0.88% 2.31% 2.35% 2.29% 3.56%	0.0% 1.52% 1.22% 0.44% 1.36%
6.25 12.5 25 50 100 Angular (Con	Lab Control	5 5 5 5 5 5 5	0.9595 0.9449 0.9478 0.9553 0.9465 0.9671	0.949 0.9178 0.9202 0.9281 0.9047 0.9461	0.97 0.972 0.9754 0.9825 0.9883 0.9881	0.9589 0.9565 0.9408 0.9592 0.9598 0.9608	0.9497 0.9178 0.9247 0.9178 0.9041 0.9489	0.9701 0.9655 0.9835 0.9747 0.9811 0.9938	0.003787 0.009773 0.009941 0.009798 0.01506 0.007573	0.88% 2.31% 2.35% 2.29% 3.56% 1.75%	0.0% 1.52% 1.22% 0.44% 1.36% -0.79%
6.25 12.5 25 50 100 Angular (Cor C-% 0 6.25	Lab Control rrected) Transfor Control Type	5 5 5 5 5 5 med Sum Count	0.9595 0.9449 0.9478 0.9553 0.9465 0.9671 mary	0.949 0.9178 0.9202 0.9281 0.9047 0.9461	0.97 0.972 0.9754 0.9825 0.9883 0.9881	0.9589 0.9565 0.9408 0.9592 0.9598 0.9608	0.9497 0.9178 0.9247 0.9178 0.9041 0.9489	0.9701 0.9655 0.9835 0.9747 0.9811 0.9938	0.003787 0.009773 0.009941 0.009798 0.01506 0.007573 Std Err	0.88% 2.31% 2.35% 2.29% 3.56% 1.75%	0.0% 1.52% 1.22% 0.44% 1.36% -0.79%
6.25 12.5 25 50 100 Angular (Cor C-%	Lab Control rrected) Transfor Control Type	5 5 5 5 5 5 med Sum Count	0.9595 0.9449 0.9478 0.9553 0.9465 0.9671 mary Mean 1.369	0.949 0.9178 0.9202 0.9281 0.9047 0.9461 95% LCL 1.342 1.279 1.274	0.97 0.972 0.9754 0.9825 0.9883 0.9881 95% UCL 1.396	0.9589 0.9565 0.9408 0.9592 0.9598 0.9608 Median 1.367	0.9497 0.9178 0.9247 0.9178 0.9041 0.9489 Min 1.345	0.9701 0.9655 0.9835 0.9747 0.9811 0.9938 Max 1.397	0.003787 0.009773 0.009941 0.009798 0.01506 0.007573 Std Err 0.009718	0.88% 2.31% 2.35% 2.29% 3.56% 1.75% CV%	0.0% 1.52% 1.22% 0.44% 1.36% -0.79% %Effect 0.0% 2.32% 1.71%
6.25 12.5 25 50 100 Angular (Con C-% 0 6.25 12.5 25	Lab Control rrected) Transfor Control Type	5 5 5 5 5 5 5 med Sum Count 5 5 5	0.9595 0.9449 0.9478 0.9553 0.9465 0.9671 mary Mean 1.369 1.337 1.346 1.362	0.949 0.9178 0.9202 0.9281 0.9047 0.9461 95% LCL 1.342 1.279 1.274 1.301	0.97 0.972 0.9754 0.9825 0.9883 0.9881 95% UCL 1.396 1.396 1.417 1.423	0.9589 0.9565 0.9408 0.9592 0.9598 0.9608 Median 1.367 1.361 1.325 1.367	0.9497 0.9178 0.9247 0.9178 0.9041 0.9489 Min 1.345 1.28 1.293 1.28	0.9701 0.9655 0.9835 0.9747 0.9811 0.9938 Max 1.397 1.384 1.442 1.411	0.003787 0.009773 0.009941 0.009798 0.01506 0.007573 Std Err 0.009718 0.02113 0.02574 0.02201	0.88% 2.31% 2.35% 2.29% 3.56% 1.75% CV% 1.59% 3.53% 4.28% 3.61%	0.0% 1.52% 1.22% 0.44% 1.36% -0.79% %Effect 0.0% 2.32% 1.71% 0.52%
6.25 12.5 25 50 100 Angular (Con C-% 0 6.25 12.5	Lab Control rrected) Transfor Control Type	5 5 5 5 5 5 med Sum Count 5 5	0.9595 0.9449 0.9478 0.9553 0.9465 0.9671 mary Mean 1.369 1.337 1.346	0.949 0.9178 0.9202 0.9281 0.9047 0.9461 95% LCL 1.342 1.279 1.274	0.97 0.972 0.9754 0.9825 0.9883 0.9881 95% UCL 1.396 1.396 1.417	0.9589 0.9565 0.9408 0.9592 0.9598 0.9608 Median 1.367 1.361 1.325	0.9497 0.9178 0.9247 0.9178 0.9041 0.9489 Min 1.345 1.28 1.293	0.9701 0.9655 0.9835 0.9747 0.9811 0.9938 Max 1.397 1.384 1.442	0.003787 0.009773 0.009941 0.009798 0.01506 0.007573 Std Err 0.009718 0.02113 0.02574	0.88% 2.31% 2.35% 2.29% 3.56% 1.75% CV% 1.59% 3.53% 4.28%	0.0% 1.52% 1.22% 0.44% 1.36% -0.79% %Effect 0.0% 2.32% 1.71%

Report Date: Test Code: 03 Oct-17 12:27 (p 2 of 6) 1708-S194 | 08-6843-4483

Bivalve Larval Survival and Development Test Nautilus Environmental (CA) Analysis ID: 00-8314-2358 Endpoint: Combined Development Rate **CETIS Version:** CETISv1.8.7 03 Oct-17 12:26 Analyzed: Analysis: Parametric-Control vs Treatments Official Results: Yes Graphics 0.100 0.9 0.075 Combined Development Rate 0.8 0.050 0.025 0.6 0.5 0.000 0.4 -0.025 0.3 -0.050 0.2 -0.075 0.1 0.0 -0.100 12.5 0 LC 6.25 25 50 100 -0.5 C-% Rankits

Report Date: Test Code:

Non-Significant Effect

03 Oct-17 12:27 (p 3 of 6) 1708-S194 | 08-6843-4483

Bivalve Larval Survival and Development Test

Nautilus Environmental (CA)

Analysis ID: 06-2689-4439 Endpoint: Development Rate CETIS Version: CETISv1.8.7

Analyzed: 03 Oct-17 12:26 Analysis: Parametric-Control vs Treatments Official Results: Yes

2.362

-0.6376

Batch Note: 101= 100 percent sample filtered to 0.45um

100

Data Transform	Zeta	Alt Hyp	Trials	Seed	PMSD	NOEL	LOEL	TOEL	TU	
Angular (Corrected)	NA	C > T	NA	NA	4.06%	100	>100	NA	1	

Dunnett Multiple Comparison Test Control vs C-% Test Stat Critical MSD DF P-Value P-Type Decision(a:5%) Lab Control 6.25 0.03761 2.362 0.8220 CDF Non-Significant Effect 0.085 8 12.5 2.362 0.7444 CDF Non-Significant Effect 0.085 8 0.5366 25 -0.6399 2.362 CDF 0.085 8 0.9571 Non-Significant Effect 50 -0.6339 2.362 0.085 8 0.9564 CDF Non-Significant Effect

ANOVA Table						
Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(α:5%)
Between	0.01013919	0.002027838	5	0.6242	0.6828	Non-Significant Effect
Error	0.07796258	0.003248441	24			
Total	0.08810177		29			

0.085 8

0.9568

CDF

Distributional T	ests				
Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)
Variances	Bartlett Equality of Variance	5.287	15.09	0.3818	Equal Variances
Distribution	Shapiro-Wilk W Normality	0.9437	0.9031	0.1146	Normal Distribution

Developm	nent Rate Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	0.9608	0.9499	0.9718	0.9655	0.9497	0.9701	0.003959	0.92%	0.0%
6.25		5	0.9584	0.9314	0.9854	0.9597	0.925	0.9853	0.009733	2.27%	0.25%
12.5		5	0.9478	0.9202	0.9754	0.9408	0.9247	0.9835	0.009941	2.35%	1.36%
25		5	0.9647	0.9332	0.9962	0.9592	0.9306	1	0.01134	2.63%	-0.4%
50		5	0.9679	0.947	0.9887	0.9697	0.9437	0.9851	0.007506	1.73%	-0.73%
100		5	0.9671	0.9461	0.9881	0.9608	0.9489	0.9938	0.007573	1.75%	-0.65%

Angular (Corrected) Transfor	med Sumr	mary								
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	1.373	1.345	1.401	1.384	1.345	1.397	0.01011	1.65%	0.0%
6.25		5	1.371	1.302	1.44	1.369	1.293	1.449	0.02492	4.06%	0.1%
12.5		5	1.346	1.274	1.417	1.325	1.293	1.442	0.02574	4.28%	1.96%
25		5	1.396	1.292	1.499	1.367	1.304	1.529	0.03737	5.99%	-1.68%
50		5	1.395	1.336	1.454	1.396	1.331	1.448	0.02127	3.41%	-1.67%
100		5	1.396	1.324	1.467	1.371	1.343	1.492	0.02576	4.13%	-1.67%

Analyst: 1 QA: WBM

000-089-187-4 CETIS™ v1.8.7.20 Analyst:_

Report Date: Test Code: 03 Oct-17 12:27 (p 4 of 6) 1708-S194 | 08-6843-4483

Bivalve Larval Survival and Development Test Nautilus Environmental (CA) Analysis ID: 06-2689-4439 Endpoint: Development Rate **CETIS Version:** CETISv1.8.7 Analyzed: 03 Oct-17 12:26 Analysis: Parametric-Control vs Treatments Official Results: Yes Graphics 0.14 1.0 0.12 0.9 0.10 8.0 Development Rate 0.08 0.7 0.06 0.6 0.5 0.02 0.00 0.4 -0,02 0.3 -0.04 0.2 -0.06 -0.08 0.0 -0.10 0 LC 6.25 12.5 100 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 C-% Rankits

Report Date:

03 Oct-17 12:27 (p 5 of 6)

Test Code:

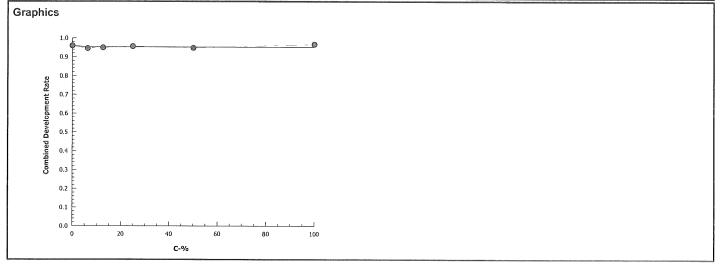
1708-S194 | 08-6843-4483

_	ı dpoint: Sur ı alysis: Nor	Trials NA Critical 16 16 16 16 16 16 16 16 16 16 19 18	Seed NA Ties D 1 8 1 8 1 8 1 8 1 8 1 8 2 9	F Stat 1.041		Non-Sigr Non-Sigr Non-Sigr Non-Sigr	ECETISv1 S: Yes LOEL >100 n(α:5%) nificant Effect nificant Effect nificant Effect nificant Effect	TOEL NA	TU 1
Name	Alt Hyp C > T Test Stat 27 30 24 24 30 Mean Squ 0.0046875	Trials NA Critical 16 16 16 16 16 16 16 18 18 18 18 18 18 18 18	Seed NA Ties D 1 8 1 8 1 8 1 8 1 8 1 8 2 9	P-Value 0.8003 0.9446 0.5394 0.5394 0.9446 F Stat	PMSD 2.1% P-Type Asymp Asymp Asymp Asymp P-Value	NOEL 100 Decisior Non-Sigr Non-Sigr Non-Sigr Non-Sigr	LOEL >100 n(α:5%) ifficant Effect difficant Effect dif	TOEL NA	
Batch Note: 101= 100 percent sample Data Transform Zeta Angular (Corrected) NA Steel Many-One Rank Sum Test Control vs C-% Lab Control 6.25 12.5 25 50 100 ANOVA Table Source Sum Squares Between 0.02343797 Error 0.1080501 Total 0.131488 Distributional Tests Attribute Test Variances Mod Levene Equality of Variances Variances Levene Equality of Variances Distribution Shapiro-Wilk W Nor Survival Rate Summary C-% Control Type Count 0 Lab Control 5 6.25 5	Alt Hyp C > T Test Stat 27 30 24 24 30 Mean Squ 0.0046875	Trials NA Critical 16 16 16 16 16 16 18 18 18 18 18 18 18	Seed NA Ties D 1 8 1 8 1 8 1 8 1 8 1 8 2 9	P-Value 0.8003 0.9446 0.5394 0.5394 0.9446 F Stat	PMSD 2.1% P-Type Asymp Asymp Asymp Asymp P-Value	NOEL 100 Decisior Non-Sigr Non-Sigr Non-Sigr Non-Sigr Decisior	LOEL >100 n(α:5%) nificant Effect nificant Effect nificant Effect nificant Effect	NA	
Data Transform	Alt Hyp C > T Test Stat 27 30 24 24 30 Mean Squ 0.0046875	Trials NA Critical 16 16 16 16 16 16 18 18 18 18 18 18 18 18 18 18	Ties D 1 8 1 8 1 8 1 8 1 8 2 DF 5 24 29	0.8003 0.9446 0.5394 0.5394 0.9446	P-Type Asymp Asymp Asymp Asymp P-Value	Decision Non-Sigr Non-Sigr Non-Sigr Non-Sigr Decision	>100 n(a:5%) nificant Effect nificant Effect nificant Effect nificant Effect	NA	
Angular (Corrected)	C > T Test Stat 27 30 24 24 30 Mean Squ 0.0046875	NA Critical 16 16 16 16 16 16 18 18 18 18	Ties D 1 8 1 8 1 8 1 8 1 8 2 DF 5 24 29	0.8003 0.9446 0.5394 0.5394 0.9446	P-Type Asymp Asymp Asymp Asymp P-Value	Decision Non-Sigr Non-Sigr Non-Sigr Non-Sigr Decision	>100 n(a:5%) nificant Effect nificant Effect nificant Effect nificant Effect	NA	
Steel Many-One Rank Sum Test	Test Stat 27 30 24 24 30 Mean Squ 0.0046875	Critical 16 16 16 16 16 16 16 18 18 18	Ties D 1 8 1 8 1 8 1 8 1 8 DF 5 24 29	0.8003 0.9446 0.5394 0.5394 0.9446	P-Type Asymp Asymp Asymp Asymp Asymp P-Value	Decisior Non-Sigr Non-Sigr Non-Sigr Non-Sigr	n(α:5%) ificant Effect ificant Effect ificant Effect ificant Effect ificant Effect		1
Control vs C-% Lab Control 6.25 12.5 25 50 100 ANOVA Table Source Sum Squares Between 0.02343797 Error 0.1080501 Total 0.131488 Distributional Tests Attribute Test Variances Mod Levene Equality Variances Levene Equality of Variances Distribution Shapiro-Wilk W Nor Survival Rate Summary C-% Control Type Count 0 Lab Control 5 6.25 5	27 30 24 24 30 Mean Squ 0.0046875	16 16 16 16 16 16 295 395	1 8 1 8 1 8 1 8 DF 5 24 29	0.8003 0.9446 0.5394 0.5394 0.9446	Asymp Asymp Asymp Asymp Asymp	Non-Sigr Non-Sigr Non-Sigr Non-Sigr Decisior	nificant Effect nificant Effect nificant Effect nificant Effect nificant Effect n(α:5%)		
Lab Control 6.25 12.5 25 50 100 ANOVA Table Source Sum Squares Between 0.02343797 Error 0.1080501 Total 0.131488 Distributional Tests Attribute Test Variances Mod Levene Equality of Variances Levene Equality of Variances Distribution Shapiro-Wilk W Nor Survival Rate Summary C-% Control Type Count 0 Lab Control 5 6.25 5	27 30 24 24 30 Mean Squ 0.0046875	16 16 16 16 16 16 295 395	1 8 1 8 1 8 1 8 DF 5 24 29	0.8003 0.9446 0.5394 0.5394 0.9446	Asymp Asymp Asymp Asymp Asymp	Non-Sigr Non-Sigr Non-Sigr Non-Sigr Decisior	nificant Effect nificant Effect nificant Effect nificant Effect nificant Effect n(α:5%)		
12.5 25 50 100	30 24 24 30 Mean Squ 0.0046875	16 16 16 16 16 18 19 19 19 19 19 19	1 8 1 8 1 8 1 8 DF 5 24 29	0.9446 0.5394 0.5394 0.9446	Asymp Asymp Asymp Asymp	Non-Sigr Non-Sigr Non-Sigr Non-Sigr	nificant Effect nificant Effect nificant Effect nificant Effect		
25 50 100	24 24 30 Mean Squ 0.0046875	16 16 16 uare 595 586	1 8 1 8 1 8 DF 5 24 29	0.5394 0.5394 0.9446 F Stat	Asymp Asymp Asymp	Non-Sigr Non-Sigr Non-Sigr Decisior	nificant Effect nificant Effect nificant Effect π(α:5%)		
Source Sum Squares	24 30 Mean Squ 0.0046875	16 16 uare 595 586	1 8 1 8 DF 5 24 29	0.5394 0.9446 F Stat	Asymp Asymp	Non-Sigr Non-Sigr Decision	nificant Effect nificant Effect n(α:5%)		
ANOVA Table Source Sum Squares	30 Mean Squ 0.0046875	16 uare 695 086	1 8 DF 5 24 29	0.9446 F Stat	Asymp P-Value	Non-Sigr Non-Sigr Decision	nificant Effect nificant Effect n(α:5%)		
ANOVA Table Source Sum Squares Between 0.02343797 Error 0.1080501 Total 0.131488 Distributional Tests Attribute Test Variances Mod Levene Equality of Variances Levene Equality of Variances Shapiro-Wilk W Nor Survival Rate Summary C-% Control Type Count 0 Lab Control 5 6.25 5	Mean Sq u	16 uare 695 086	1 8 DF 5 24 29	0.9446 F Stat	Asymp P-Value	Non-Sigr	nificant Effect n(α:5%)		
Between 0.02343797 Error 0.1080501 Total 0.131488 Distributional Tests Attribute Test Variances Mod Levene Equality Variances Levene Equality of Volistribution Shapiro-Wilk W Nor Survival Rate Summary C-% Control Type Count 0 Lab Control 5 6.25 5	0.0046875	95 986	5 24 29						
Between 0.02343797 Error 0.1080501 Total 0.131488 Distributional Tests Attribute Test Variances Mod Levene Equality of Variances Levene Equality of Variances Shapiro-Wilk W Nor Survival Rate Summary C-% Control Type Count 0 Lab Control 5 6.25 5	0.0046875	95 986	5 24 29						
Error 0.1080501 Total 0.131488 Distributional Tests Attribute Test Variances Mod Levene Equality Variances Levene Equality of North Distribution Shapiro-Wilk W North Survival Rate Summary C-% Control Type Count 0 Lab Control 5 6.25 5		086	24 29	1.041	0.4165	Non-Sigr	nificant Effect		
Total 0.131488 Distributional Tests Attribute Test Variances Mod Levene Equality of Variances Levene Equality of Variances Survival Rate Summary C-% Control Type Count 0 Lab Control 5 6.25 5	0.0045020		29					The second secon	
Distributional Tests Attribute Test Variances Mod Levene Equality of Variances Levene Equality of Variances Shapiro-Wilk W North Community Survival Rate Summary C-% Control Type Count 0 Lab Control 5 6.25 5		Toot Stat							
Attribute Variances Variances Variances Distribution Shapiro-Wilk W Nor Survival Rate Summary C-% Control Type Count Lab Control 5 6.25		Tact Stat	Critical						
Variances Mod Levene Equality Variances Levene Equality of \ Distribution Shapiro-Wilk W Nor Survival Rate Summary C-% Control Type Count 0 Lab Control 5 6.25 5		Tost Stat	Critical						
Variances Distribution Shapiro-Wilk W Nor Survival Rate Summary C-% Control Type Count 0 Lab Control 5 6.25 5		i CSt Otat	Cillical	P-Value	Decision((α:1%)			
DistributionShapiro-Wilk W NorSurvival Rate SummaryC-%Control TypeCount0Lab Control56.255	y of Variance	1.098	4.248	0.3953	Equal Var	iances			
Survival Rate Summary C-% Control Type Count 0 Lab Control 5 6.25 5	Variance	6.632	3.895	0.0005	Unequal \	/ariances			
C-% Control Type Count Count Lab Control 5 6.25 Count	mality	0.8004	0.9031	<0.0001		al Distribut	ion		
0 Lab Control 5 6.25 5									
6.25 5	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
	0.9986	0.9948	1	1	0.9932	1	0.00137	0.31%	0.0%
12.5	0.9863	0.9483	1	1	0.9315	1	0.0137	3.11%	1.24%
•	1	1	1	1	1	1	0	0.0%	-0.14%
25 5	0.9904	0.9718	1	1	0.9658	1	0.006711	1.52%	0.82%
50 5	0.9781	0.9337	1	1	0.9178	1	0.01598	3.65%	2.06%
100 5	1	1	1	1	1	1	0	0.0%	-0.14%
Angular (Corrected) Transformed Sumr	nary								
C-% Control Type Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0 Lab Control 5	1.521	1.498	1.544	1.529	1.488	1.529	0.008291	1.22%	0.0%
6.25 5	1.485	1.361	1.609	1.529	1.306	1.529	0.04468	6.73%	2.39%
12.5 5		1.529	1.53	1.529	1.529	1.529	0	0.0%	-0.55%
25 5	1.529	1.404	1.566	1.529	1.385	1.529	0.02913	4.39%	2.36%
50 5			1.593	1.529	1.28	1.529	0.04989	7.67%	4.38%
100 5	1.529 1.485 1.455	1.316	1.000			1.529		0.0%	-0.55%

Report Date: Test Code: 03 Oct-17 12:27 (p 6 of 6) 1708-S194 | 08-6843-4483

Bivalve Larval Survival and Development Test Nautilus Environmental (CA) CETISv1.8.7 Analysis ID: 01-3399-6185 Endpoint: Survival Rate **CETIS Version:** Analyzed: 03 Oct-17 12:26 Nonparametric-Control vs Treatments Analysis: Official Results: Yes Graphics 0.10 0.9 0.05 8.0 Survival Rate 0.7 Centered Corr. Angle 0,00 0.6 0.5 0,4 -0.10 0.3 0.2 -0.15 0.1 -0.20 0 LC 12.5 6.25 25 50 100 -2,5 -2.0 -1.5 -1.0 -0.5 1.5 C-% Rankits

Report Date: Test Code:


03 Oct-17 12:27 (p 1 of 2)

1708-S194 | 08-6843-4483

Bivalve Larva	I Survival and Deve	lopment Test			Nautilus Environmental (CA)
Analysis ID:	04-9273-7903	Endpoint:	Combined Development Rate	CETIS Version:	CETISv1.8.7
Analyzed:	03 Oct-17 12:26	Analysis:	Linear Interpolation (ICPIN)	Official Results:	Yes

Batch N	vote:	101= 100 perce	nt sample fi	ltered	to 0.45um			70.1
Linear	Interpola	ation Options		***************************************				
X Trans	sform	Y Transform	Seed	t	Resamples	Exp 95% CL	Method	
Linear		Linear	5047	'82	1000	Yes	Two-Point Interpolation	
Point E	stimates	5						
Levei	%	95% LCL	95% UCL	TU	95% LCL	95% UCL		
EC25	>100	N/A	N/A	<1	NA	NA		
EC50	>100	N/A	N/A	<1	NA	NA		

Combine	ed Development Rat	e Summary		Calculated Variate(A/B)							
C-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	A	В
0	Lab Control	5	0.9595	0.9497	0.9701	0.003787	0.008467	0.88%	0.0%	757	789
6.25		5	0.9449	0.9178	0.9655	0.009773	0.02185	2.31%	1.52%	747	790
12.5		5	0.9478	0.9247	0.9835	0.009941	0.02223	2.35%	1.22%	747	787
25		5	0.9553	0.9178	0.9747	0.009798	0.02191	2.29%	0.44%	734	768
50		5	0.9465	0.9041	0.9811	0.01506	0.03367	3.56%	1.36%	749	790
100		5	0.9671	0.9489	0.9938	0.007573	0.01693	1.75%	-0.79%	814	842

Report Date:

03 Oct-17 12:27 (p 2 of 2)

Test Code:

1708-S194 | 08-6843-4483

Nautilus Environmental (CA)

10-2372-1220 Analysis ID: Analyzed: 03 Oct-17 12:26

Endpoint: Development Rate Analysis:

Linear Interpolation (ICPIN)

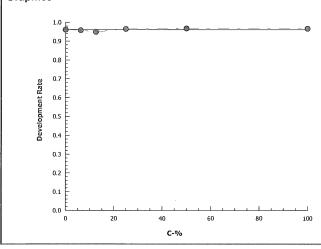
CETIS Version: Official Results: Yes

CETISv1.8.7

Batch Note:

101= 100 percent sample filtered to 0.45um

Linear I	nterpolation	Options
----------	--------------	---------


X Transform	Y Transform	Seed	Resamples	Exp 95% CL	Method
Linear	Linear	779934	1000	Yes	Two-Point Interpolation

Point Estimates

	Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL
	EC25	>100	N/A	N/A	<1	NA	NA
ĺ	EC50	>100	N/A	N/A	<1	NA	NA

Developn	nent Rate Summary	1	Calculated Variate(A/B)								
C-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Lab Control	5	0.9608	0.9497	0.9701	0.003959	0.008853	0.92%	0.0%	757	788
6.25		5	0.9584	0.925	0.9853	0.009733	0.02176	2.27%	0.25%	747	780
12.5		5	0.9478	0.9247	0.9835	0.009941	0.02223	2.35%	1.36%	747	787
25		5	0.9647	0.9306	1	0.01134	0.02537	2.63%	-0.4%	734	761
50		5	0.9679	0.9437	0.9851	0.007506	0,01678	1.73%	-0.73%	749	774
100		5	0.9671	0.9489	0.9938	0.007573	0.01693	1.75%	-0.65%	814	842

Graphics

Report Date:

03 Oct-17 12:31 (p 1 of 1)

CETIS An	alytical Rep	ort		Franciscope occipa	and a		•	ort Date:			31 (p 1 of 7
				151			Tesi	Code:	170	8-S194 C	8-6843-448
Bivalve Lar	al Survival and	Developn	nent Test						Nautilus	s Environ	mental (CA
Analysis ID:	15-2611-7165	. E	Endpoint: Co	mbined Dev	elopment Ra	ate	CET	'IS Version:	: CETISv1	.8.7	
Analyzed:	03 Oct-17 12:	30 A	Analysis: Par	ametric Bio	equivalence	-Two Samp	le Offi	cial Results	: Yes		
Batch Note:	101= 100 per	cent samp	le filtered to 0.4	15um							
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed	TST b	PMSD	NOEL	LOEL	TOEL	TU
Angular (Cor	rected)	NA	C*b < T	NA	NA	0.75	1.52%	101	>101	NA	0.9901
TST-Welch's	t Test										
Control	vs C-%		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision	(a:5%)		
Lab Control	6.25*		13.89	2.132	0.048 4	<0.0001	CDF	Non-Sign	ificant Effect		************
	12.5*		11.92	2.132	0.057 4	0.0001	CDF	_	ificant Effect		
	25*		14.46	2.132	0.049 4	< 0.0001	CDF	•	ificant Effect		
	50*		9.217	2.132	0.074 4	0.0004	CDF	-	ificant Effect		
	100*		13.77	2.132	0.057 4	<0.0001	CDF	_	ificant Effect		
	101*		18.82	2.015	0.035 5	<0.0001	CDF	_	ificant Effect		
ANOVA Tabl	е										
Source	Sum Sqı	uares	Mean Squ	ıare	DF	F Stat	P-Value	Decision	(α:5%)		
Between	0.011249	992	0.0018749	74986 6 0.		0.6988	0.6527	Non-Sign	ificant Effect		***************************************
Error	0.075123	891	0.0026829	96	28						
Total	0.086373	882			34	_					
Distribution	al Tests		5500M144								
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances	Bartlett I	Equality of	f Variance	5.799	16.81	0.4461	Equal Vai	riances			~~~~
Distribution	Shapiro-	Wilk W N	ormality	0.9789	0.9146	0.7243	Normal D				
Combined D	evelopment Rat	e Summa	ry								
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	0.9595	0.949	0.97	0.9589	0.9497	0.9701	0.003787	0.88%	0.0%
6.25		5	0.9449	0.9178	0.972	0.9565	0.9178	0.9655	0.009773	2.31%	1.52%
12.5		5	0.9478	0.9202	0.9754	0.9408	0.9247	0.9835	0.009941	2.35%	1.22%
25		5	0.9553	0.9281	0.9825	0.9592	0.9178	0.9747	0.009798	2.29%	0.44%
50		5	0.9465	0.9047	0.9883	0.9598	0.9041	0.9811	0.01506	3.56%	1.36%
100		5	0.9671	0.9461	0.9881	0.9608	0.9489	0.9938	0.007573	1.75%	-0.79%
101		5	0.9537	0.9354	0.972	0.9518	0.9349	0.9706	0.006597		0.61%
Angular (Co	rected) Transfo	rmed Sun	nmary								
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	1.369	1.342	1.396	1.367	1.345	1.397	0.009718	1.59%	0.0%
6.25		5	1.337	1.279	1.396	1.361	1.28	1.384	0.02113	3.53%	2.32%
12.5		5	1.346	1.274	1.417	1.325	1.293	1.442	0.02574	4.28%	1.71%
25		5	1.362	1.301	1.423	1.367	1.28	1.411	0.02201	3.61%	0.52%
50		5	1.347	1.253	1.441	1.369	1.256	1.433	0.03393	5.63%	1.63%
100		5	1.396	1.324	1.467	1.371	1.343	1.492	0.02576	4.13%	-1.93%
101		E	1 256	1 212	4.4	1.240	1.010	4.200	0.04504	0.000/	0.050/

2.62%

0.95%

101

5

1.356

1.312

1.4

1.349

1.313

1.398

0.01591

151

Report Date:

03 Oct-17 12:31 (p 1 of 1)

				751			Test	Code:	1708	3-S194 0	8-6843-448:
Bivalve Larv	al Survival and	Developme	ent Test						Nautilus	Environ	mental (CA)
Analysis ID: Analyzed:	04-7999-0521 03 Oct-17 12:		•	evelopment R		-Two Samo		S Version		8.7	
Batch Note:	101= 100 perc				oquivalence	Two Gamp	ome	iai Nesuita	. 103		
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed	TST b	PMSD	NOEL	LOEL	TOEL	TU
Angular (Corr	rected)	NA	C*b < T	NA	NA	0.75	1.51%	101	>101	NA	0.9901
TST-Welch's	t Test										
Control	vs C-%		Test Sta	at Critical	MSD DF	P-Value	P-Type	Decision	(α:5%)		
Lab Control	6.25*		13.12	2.132	0.056 4	<0.0001	CDF	Non-Sign	ificant Effect		
	12.5*		11.79	2.132	0.057 4	0.0001	CDF	Non-Sign	ificant Effect		
	25*		9.605	2.132	0.081 4	0.0003	CDF	Non-Sign	ificant Effect		
	50*		16.21	2.015	0.046 5	<0.0001	CDF	Non-Sign	ificant Effect		
	100*		13.64	2.132	0.057 4	<0.0001	CDF	Non-Sign	ificant Effect		
	101*		18.54	2.015	0.036 5	<0.0001	CDF	Non-Sign	ificant Effect		
ANOVA Tabl	е										
Source	Sum Sqւ	uares	Mean S	quare	DF	F Stat	P-Value	Decision	(a:5%)		
Between	0.012457	45	0.00207	6242	6	0.7002	0.6517	Non-Sign	ificant Effect		
Error	0.083024	7	0.00296	5168	28						
Total											
Total	0.095482	15			34						
Distributiona		15			34			A Balanca (Balanca) a sera a sera Sera a sera a			
		115		Test Stat	34 Critical	P-Value	Decision(α:1%)			
Distributiona	al Tests Test	:15 Equality of \	/ariance	Test Stat 6.407		P-Value 0.3792	Decision(Equal Var				
Distributiona Attribute	al Tests Test Bartlett E				Critical			iances			
Distributiona Attribute Variances Distribution	al Tests Test Bartlett E	Equality of \		6.407	Critical 16.81	0.3792	Equal Var	iances			
Distributiona Attribute Variances Distribution Developmen	al Tests Test Bartlett E Shapiro- t Rate Summary Control Type	Equality of \		6.407	Critical 16.81	0.3792	Equal Var	iances	Std Err	CV%	%Effect
Distributional Attribute Variances Distribution Developmen C-% 0	Tests Test Bartlett E Shapiro- t Rate Summary	Equality of \ Wilk W No	mality	6.407 0.9537	Critical 16.81 0.9146	0.3792 0.1467	Equal Var Normal Di	iances stribution	Std Err 0.003959	CV% 0.92%	%Effect
Distributional Attribute Variances Distribution Developmen C-% 0 6.25	al Tests Test Bartlett E Shapiro- t Rate Summary Control Type	Equality of \ Wilk W Noi , Count	mality Mean	6.407 0.9537 95% LCL	Critical 16.81 0.9146	0.3792 0.1467 Median	Equal Var Normal Di	iances stribution Max		22-22-24-24-24-24-24-24-24-24-24-24-24-2	
Distributional Attribute Variances Distribution Developmen C-% 0 6.25 12.5	al Tests Test Bartlett E Shapiro- t Rate Summary Control Type	Equality of \ Wilk W Nor Count 5 5 5	Mean 0.9608	6.407 0.9537 95% LCL 0.9499 0.9314 0.9202	Critical 16.81 0.9146 95% UCL 0.9718	0.3792 0.1467 Median 0.9655	Equal Var Normal Di Min 0.9497	iances stribution Max 0.9701	0.003959	0.92%	0.0%
Distributional Attribute Variances Distribution Developmen C-% 0 6.25	al Tests Test Bartlett E Shapiro- t Rate Summary Control Type	Equality of Now	Mean 0.9608 0.9584	6.407 0.9537 95% LCL 0.9499 0.9314	Critical 16.81 0.9146 95% UCL 0.9718 0.9854	0.3792 0.1467 Median 0.9655 0.9597	Equal Var Normal Di Min 0.9497 0.925	Max 0.9701 0.9853	0.003959 0.009733	0.92% 2.27%	0.0% 0.25%
Distributiona Attribute Variances Distribution Developmen C-% 0 6.25 12.5 25 50	al Tests Test Bartlett E Shapiro- t Rate Summary Control Type	Equality of V Wilk W Nor Count 5 5 5 5 5	Mean 0.9608 0.9584 0.9478 0.9647 0.9679	6.407 0.9537 95% LCL 0.9499 0.9314 0.9202 0.9332 0.947	Critical 16.81 0.9146 95% UCL 0.9718 0.9854 0.9754	0.3792 0.1467 Median 0.9655 0.9597 0.9408 0.9592 0.9697	Equal Var Normal Di Min 0.9497 0.925 0.9247	Max 0.9701 0.9853 0.9835	0.003959 0.009733 0.009941	0.92% 2.27% 2.35%	0.0% 0.25% 1.36%
Distributiona Attribute Variances Distribution Developmen C-% 0 6.25 12.5 25	al Tests Test Bartlett E Shapiro- t Rate Summary Control Type	Equality of \ Wilk W Nor Count 5 5 5 5 5 5 5	Mean 0.9608 0.9584 0.9478 0.9647 0.9679 0.9671	6.407 0.9537 95% LCL 0.9499 0.9314 0.9202 0.9332	Critical 16.81 0.9146 95% UCL 0.9718 0.9854 0.9754 0.9962 0.9887 0.9881	0.3792 0.1467 Median 0.9655 0.9597 0.9408 0.9592	Min 0.9497 0.925 0.9247 0.9306	Max 0.9701 0.9853 0.9835	0.003959 0.009733 0.009941 0.01134	0.92% 2.27% 2.35% 2.63%	0.0% 0.25% 1.36% -0.4%
Distributiona Attribute Variances Distribution Developmen C-% 0 6.25 12.5 25 50	al Tests Test Bartlett E Shapiro- t Rate Summary Control Type	Equality of V Wilk W Nor Count 5 5 5 5 5	Mean 0.9608 0.9584 0.9478 0.9647 0.9679	6.407 0.9537 95% LCL 0.9499 0.9314 0.9202 0.9332 0.947	Critical 16.81 0.9146 95% UCL 0.9718 0.9854 0.9754 0.9962 0.9887	0.3792 0.1467 Median 0.9655 0.9597 0.9408 0.9592 0.9697	Min 0.9497 0.925 0.9247 0.9306 0.9437	Max 0.9701 0.9853 0.9835 1 0.9851	0.003959 0.009733 0.009941 0.01134 0.007506	0.92% 2.27% 2.35% 2.63% 1.73%	0.0% 0.25% 1.36% -0.4% -0.73%
Distributiona Attribute Variances Distribution Developmen C-% 0 6.25 12.5 25 50 100 101 Angular (Cor	al Tests Test Bartlett E Shapiro- t Rate Summary Control Type	Equality of \ Wilk W Not Count 5 5 5 5 5 5 5 7	Mean 0.9608 0.9584 0.9478 0.9647 0.9679 0.9671 0.9537	6.407 0.9537 95% LCL 0.9499 0.9314 0.9202 0.9332 0.947 0.9461	Critical 16.81 0.9146 95% UCL 0.9718 0.9854 0.9754 0.9962 0.9887 0.9881	0.3792 0.1467 Median 0.9655 0.9597 0.9408 0.9592 0.9697 0.9608	Min 0.9497 0.925 0.9247 0.9306 0.9437 0.9489	Max 0.9701 0.9853 0.9835 1 0.9851 0.9938	0.003959 0.009733 0.009941 0.01134 0.007506 0.007573	0.92% 2.27% 2.35% 2.63% 1.73% 1.75%	0.0% 0.25% 1.36% -0.4% -0.73% -0.65%
Distributiona Attribute Variances Distribution Developmen C-% 0 6.25 12.5 25 50 100 101 Angular (Cor	Tests Test Bartlett E Shapiro- t Rate Summary Control Type Lab Control	Equality of Now Wilk W Now 5 5 5 5 5 5 5 5 5 5 5 Count Count Count	Mean 0.9608 0.9584 0.9478 0.9647 0.9679 0.9671 0.9537 mary Mean	6.407 0.9537 95% LCL 0.9499 0.9314 0.9202 0.9332 0.947 0.9461	Critical 16.81 0.9146 95% UCL 0.9718 0.9854 0.9754 0.9962 0.9887 0.9881	0.3792 0.1467 Median 0.9655 0.9597 0.9408 0.9592 0.9697 0.9608	Min 0.9497 0.925 0.9247 0.9306 0.9437 0.9489	Max 0.9701 0.9853 0.9835 1 0.9851 0.9938	0.003959 0.009733 0.009941 0.01134 0.007506 0.007573	0.92% 2.27% 2.35% 2.63% 1.73% 1.75%	0.0% 0.25% 1.36% -0.4% -0.73% -0.65% 0.74%
Distributiona Attribute Variances Distribution Developmen C-% 0 6.25 12.5 25 50 100 101 Angular (Cor C-% 0	Tests Test Bartlett E Shapiro- t Rate Summary Control Type Lab Control	Equality of \ Wilk W Not Count 5 5 5 5 5 5 5 7	Mean 0.9608 0.9584 0.9478 0.9647 0.9679 0.9671 0.9537 mary Mean 1.373	6.407 0.9537 95% LCL 0.9499 0.9314 0.9202 0.9332 0.947 0.9461 0.9354 95% LCL 1.345	Critical 16.81 0.9146 95% UCL 0.9718 0.9854 0.9754 0.9962 0.9887 0.9881 0.972	0.3792 0.1467 Median 0.9655 0.9597 0.9408 0.9592 0.9697 0.9608 0.9518	Min 0.9497 0.925 0.9247 0.9306 0.9437 0.9489 0.9349	Max 0.9701 0.9853 0.9835 1 0.9851 0.9938 0.9706	0.003959 0.009733 0.009941 0.01134 0.007506 0.007573 0.006597	0.92% 2.27% 2.35% 2.63% 1.73% 1.75%	0.0% 0.25% 1.36% -0.4% -0.73% -0.65% 0.74%
Distributiona Attribute Variances Distribution Developmen C-% 0 6.25 12.5 25 50 100 101 Angular (Cor C-% 0 6.25	Tests Test Bartlett E Shapiro- t Rate Summary Control Type Lab Control	Equality of V Wilk W Nor Count 5 5 5 5 5 5 5 5 5 5 5 5 5	Mean 0.9608 0.9584 0.9478 0.9647 0.9679 0.9671 0.9537 mary Mean 1.373 1.371	95% LCL 0.9499 0.9314 0.9202 0.9332 0.947 0.9461 0.9354 95% LCL 1.345 1.302	Critical 16.81 0.9146 95% UCL 0.9718 0.9854 0.9754 0.9962 0.9887 0.9881 0.972	0.3792 0.1467 Median 0.9655 0.9597 0.9408 0.9592 0.9697 0.9608 0.9518	Min 0.9497 0.925 0.9247 0.9306 0.9437 0.9489 0.9349	Max 0.9701 0.9853 0.9835 1 0.9851 0.9938 0.9706	0.003959 0.009733 0.009941 0.01134 0.007506 0.007573 0.006597	0.92% 2.27% 2.35% 2.63% 1.73% 1.75% 1.55%	0.0% 0.25% 1.36% -0.4% -0.73% -0.65% 0.74%
Distributiona Attribute Variances Distribution Developmen C-% 0 6.25 12.5 25 50 100 101 Angular (Cor C-% 0 6.25 12.5	Tests Test Bartlett E Shapiro- t Rate Summary Control Type Lab Control	Equality of VWilk W North	Mean 0.9608 0.9584 0.9478 0.9647 0.9679 0.9671 0.9537 mary Mean 1.373 1.371 1.346	6.407 0.9537 95% LCL 0.9499 0.9314 0.9202 0.9332 0.947 0.9461 0.9354 95% LCL 1.345	95% UCL 0.9718 0.9854 0.9754 0.9962 0.9887 0.9881 0.972	0.3792 0.1467 Median 0.9655 0.9597 0.9408 0.9592 0.9697 0.9608 0.9518 Median 1.384	Min 0.9497 0.925 0.9247 0.9306 0.9437 0.9489 0.9349 Min 1.345 1.293 1.293	Max 0.9701 0.9853 0.9835 1 0.9851 0.9938 0.9706 Max 1.397 1.449 1.442	0.003959 0.009733 0.009941 0.01134 0.007506 0.007573 0.006597 Std Err 0.01011	0.92% 2.27% 2.35% 2.63% 1.73% 1.75% 1.55%	0.0% 0.25% 1.36% -0.4% -0.73% -0.65% 0.74% %Effect
Distributiona Attribute Variances Distribution Developmen C-% 0 6.25 12.5 25 50 100 101 Angular (Cor C-% 0 6.25 12.5 25 25 25 25 25 25 25 25 25 25 25 25 25	Tests Test Bartlett E Shapiro- t Rate Summary Control Type Lab Control	Equality of \ Wilk W Nor Count 5 5 5 5 5 Count Count 5 5 5 5 5 5 5 5 5 5 5 5 5	Mean 0.9608 0.9584 0.9478 0.9647 0.9679 0.9671 0.9537 mary Mean 1.373 1.371 1.346 1.396	95% LCL 0.9499 0.9314 0.9202 0.9332 0.947 0.9461 0.9354 95% LCL 1.345 1.302 1.274 1.292	Critical 16.81 0.9146 95% UCL 0.9718 0.9854 0.9754 0.9962 0.9887 0.9881 0.972 95% UCL 1.401 1.44 1.417 1.499	0.3792 0.1467 Median 0.9655 0.9597 0.9408 0.9592 0.9697 0.9608 0.9518 Median 1.384 1.369 1.325 1.367	Min 0.9497 0.925 0.9247 0.9306 0.9437 0.9489 0.9349 Min 1.345 1.293 1.293 1.304	Max 0.9701 0.9853 0.9835 1 0.9851 0.9938 0.9706 Max 1.397 1.449	0.003959 0.009733 0.009941 0.01134 0.007506 0.007573 0.006597 Std Err 0.01011 0.02492	0.92% 2.27% 2.35% 2.63% 1.73% 1.75% 1.55% CV% 1.65% 4.06%	0.0% 0.25% 1.36% -0.4% -0.73% -0.65% 0.74% %Effect 0.0% 0.1% 1.96% -1.68%
Distributiona Attribute Variances Distribution Developmen C-% 0 6.25 12.5 25 50 100 101 Angular (Cor C-% 0 6.25 12.5 25 50 50	Tests Test Bartlett E Shapiro- t Rate Summary Control Type Lab Control	Equality of \ Wilk W Nor Count 5 5 5 5 Count Count 5 5 5 5 5 5 5 5 5 5 5 5 5	Mean 0.9608 0.9584 0.9478 0.9647 0.9679 0.9671 0.9537 mary Mean 1.373 1.371 1.346 1.396 1.395	6.407 0.9537 95% LCL 0.9499 0.9314 0.9202 0.9332 0.947 0.9461 0.9354 95% LCL 1.345 1.302 1.274 1.292 1.336	Critical 16.81 0.9146 95% UCL 0.9718 0.9854 0.9754 0.9962 0.9887 0.9881 0.972 95% UCL 1.401 1.44 1.417 1.499 1.454	0.3792 0.1467 Median 0.9655 0.9597 0.9408 0.9592 0.9697 0.9608 0.9518 Median 1.384 1.369 1.325 1.367 1.396	Min 0.9497 0.925 0.9247 0.9306 0.9437 0.9489 0.9349 Min 1.345 1.293 1.293 1.304 1.331	Max 0.9701 0.9853 0.9835 1 0.9851 0.9938 0.9706 Max 1.397 1.449 1.442 1.529 1.448	0.003959 0.009733 0.009941 0.01134 0.007506 0.007573 0.006597 Std Err 0.01011 0.02492 0.02574	0.92% 2.27% 2.35% 2.63% 1.73% 1.75% 1.55% CV% 1.65% 4.06% 4.28%	0.0% 0.25% 1.36% -0.4% -0.73% -0.65% 0.74% %Effect 0.0% 0.1% 1.96% -1.68% -1.68%
Distributiona Attribute Variances Distribution Developmen C-% 0 6.25 12.5 25 50 100 101 Angular (Cor C-% 0 6.25 12.5 25 25 25 25 25 25 25 25 25 25 25 25 25	Tests Test Bartlett E Shapiro- t Rate Summary Control Type Lab Control	Equality of \ Wilk W Nor Count 5 5 5 5 5 Count Count 5 5 5 5 5 5 5 5 5 5 5 5 5	Mean 0.9608 0.9584 0.9478 0.9647 0.9679 0.9671 0.9537 mary Mean 1.373 1.371 1.346 1.396	95% LCL 0.9499 0.9314 0.9202 0.9332 0.947 0.9461 0.9354 95% LCL 1.345 1.302 1.274 1.292	Critical 16.81 0.9146 95% UCL 0.9718 0.9854 0.9754 0.9962 0.9887 0.9881 0.972 95% UCL 1.401 1.44 1.417 1.499	0.3792 0.1467 Median 0.9655 0.9597 0.9408 0.9592 0.9697 0.9608 0.9518 Median 1.384 1.369 1.325 1.367	Min 0.9497 0.925 0.9247 0.9306 0.9437 0.9489 0.9349 Min 1.345 1.293 1.293 1.304	Max 0.9701 0.9853 0.9835 1 0.9851 0.9938 0.9706 Max 1.397 1.449 1.442 1.529	0.003959 0.009733 0.009941 0.01134 0.007506 0.007573 0.006597 Std Err 0.01011 0.02492 0.02574 0.03737	0.92% 2.27% 2.35% 2.63% 1.73% 1.75% 1.55% CV% 4.06% 4.28% 5.99%	0.0% 0.25% 1.36% -0.4% -0.73% -0.65% 0.74% %Effect 0.0% 0.1% 1.96% -1.68%

Report Date:

03 Oct-17 12:32 (p 1 of 1)

Test Code:

1708-S194 | 08-6843-4483

Bivalve Larv	al Surviva	al and Dev	/elopme	ent Test						Nautilus	Environ	nental (CA)
Analysis ID: Analyzed:	20-972 03 Oct-	4-8216 -17 12:31		dpoint: Dev	elopment R					.8.7		
Batch Note:	101= 10	00 percent	sample	filtered to 0.4	5um							
Data Transfo	orm	-	Zeta	Alt Hyp	Trials	Seed		PMSD	Test Res	ult		
Angular (Cori	rected) .	ľ	AV	C > T	NA	NA		1.49%	Passes d	evelopment i	rate	
Equal Variar	nce t Two-	Sample T	est									
Control	vs C	-%		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision	(α:5%)		
Lab Control	10	01		0.8739	1.86	0.035 8	0.2038	CDF	Non-Sign	ificant Effect		
ANOVA Tabl	е											
Source	Sı	ım Square	es	Mean Squ	iare	DF	F Stat	P-Value	Decision	(α:5%)		
Between	0.0006783992			2 0.0006783992 1		0.7636	0.4077	Non-Sign	ificant Effect			
Error	0.0	007106984	1	0.0008883729		8						
Total	0.0	007785383	3			9						
Distributiona	al Tests										er turner er e	
Attribute	To	est			Test Stat	Critical	P-Value	Decision(α:1%)			
Variances	V	ariance Ra	atio F		2.476	23.15	0.4014	Equal Var	iances			//
Distribution	S	hapiro-Wil	k W Nor	mality	0.96	0.7411	0.7862	Normal Di	stribution			
Developmen	t Rate Sui	mmary										
C-%	Control	Туре С	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Con	trol 5	5	0.9608	0.9499	0.9718	0.9655	0.9497	0.9701	0.003959	0.92%	0.0%
101		5	5	0.9537	0.9354	0.972	0.9518	0.9349	0.9706	0.006597	1.55%	0.74%
Angular (Co	rected) Ti	ransforme	ed Sumr	nary								
C-%	Control	Туре С	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Con	trol 5	5	1.373	1.345	1.401	1.384	1.345	1.397	0.01011	1.65%	0.0%
101		5	5	1.356	1.312	1.4	1.349	1.313	1.398	0.01591	2.62%	1.2%

Report Date:

03 Oct-17 12:32 (p 1 of 1)

Test Code:

1708-S194 | 08-6843-4483

					101			1030	oouc.	1700	010110	0040 4400
Bivalve Larv	al Surviv	al and D	evelop	nent Test						Nautilus	Environr	nental (CA)
Analysis ID: Analyzed:		61-4019 t-17 12:3		•	velopment R rametric Bioe		-Two Samp		S Version: ial Results		8.7	
Batch Note:	101=	100 perce	ent samp	ole filtered to 0.4	15um							
Data Transfo	orm		Zeta	Alt Hyp	Trials	Seed	tst b	PMSD	Test Res	ult		
Angular (Corr	rected)		NA	C*b < T	NA	NA	0.75	1.51%	Passes d	evelopment i	rate	
TST-Welch's	t Test											
Control	vs	C-%		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision	(α:5%)		
Lab Control		101*	222222222222222222222222222222222222222	18.54	2.015	0.036 5	<0.0001	CDF	Non-Sign	ificant Effect		
ANOVA Tabl	е											
Source	S	Sum Squa	ares	Mean Sq	uare	DF	F Stat	P-Value	Decision	(α:5%)		
Between	0	.0006783	3992	0.0006783	0.0006783992 1 0.763		0.7636	0.4077	Non-Sign	ificant Effect		
Error	0	.0071069	84	0.000888	0.0008883729							
Total	0	.0077853	883		·	9	······································					
Distribution	al Tests									3 constant (100, 100, 100, 100, 100, 100, 100, 100		
Attribute		Test			Test Stat	Critical	P-Value	Decision(α:1%)			
Variances	,	Variance	Ratio F		2.476	23.15	0.4014	Equal Var	iances			
Distribution	,	Shapiro-V	Vilk W N	lormality	0.96	0.7411	0.7862	Normal Di	stribution			
Developmen	t Rate S	ummary										
C-%	Contro	ol Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Co	ntrol	5	0.9608	0.9499	0.9718	0.9655	0.9497	0.9701	0.003959	0.92%	0.0%
101	арау арау араа уулан жаша торын 1111 байг	OMNER IN SOME MARKET STATE OF THE STATE OF T	5	0.9537	0.9354	0.972	0.9518	0.9349	0.9706	0.006597	1.55%	0.74%
Angular (Co	Angular (Corrected) Transformed Summary											
C-%	Contro	ol Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Co	ntrol	5	1.373	1.345	1.401	1.384	1.345	1.397	0.01011	1.65%	0.0%
101			5	1.356	1.312	1.4	1.349	1.313	1.398	0.01591	2.62%	1.2%

Client: AMEC/POSD	Test Species: M. galloprovincialis

 Sample ID:
 SIYB-REF
 Start Date/Time:
 8/24/2017 1600

Test ID: 1708-S194 End Date/Time: 8/26/2017 1600

		Number	Abnormal	Total Number	
Random #	Number Normal	Number Curved Shell	All other abnormal	Counted	Intials/Date
246	167	0	9	176	RL 9/7/17
247	141	0	0	141	
248	156	0	3	159	
249	171	0	5	176	
250	165	0	5	170	
251	60	0	5	165	
252	134	O	9	136	
253	135	O	9	134	
254	134	0	10	144	
255	143	0	9	152	
256	172	0	10	187	
257	151	Ð	8	159	
258	164	O	7	171	
259	143	ð	0	149	
260	159	0		160	
261	158	0	8	166	
262	141	Ø	6	147	
263	5	0	10	161	
264	134	0	8	14 à	
265	167	O	5	167	
266	167	0	7	174	
267	158	0	11	1 69	
268	148	0	17	160	
269	154	0	7	161	
270	141	U	5	146	
271	135	0	11	146	
272	154	6		wid 59 158	
273	140	Ð	5	145	
274	179	0	3	187	
275	170	0	7	177	
276	139	0	7	146	
277	163	Ù	8	171	
278	147	0	6	153	
279	168	0	6	174	
280	171	0	6	177	

Comments:		
QC Check:	AC9/8/17	Final Review: っし/2/17

Report Date:

21 Aug-17 18:08 (p 1 of 1) 08-6843-4483/1708-S194

Test Code:

Bivalve Larval Survival and Development Test Nautilus Environmental (CA)

Start Date: Sample Code: 17- 0938 24 Aug-17 Species: Mytilus galloprovincialis

End Date: 26 Aug-17 Protocol: EPA/600/R-95/136 (1995) Sample Source: Shelter Island Yacht Basin

Sample Date: 23 Aug-17 Material: Ambient Water Sample Station: SIYB-REF

C-%	Code	Rep	I I	Initial Density	Final Density	# Counted	# Normal	Notes
0	LC	1	277			158	147	AC8(27/17
0	LC	2	265					
0	LC	3	273					
0	LC	4	270					
0	LC	5	257					
6.25		1	269					
6.25		2	252					
6.25		3	259					
6.25		4	279					
6.25		5	268					
12.5		1	263					
12.5		2	255					
12.5		3	276	V PANSA				
12.5		4	274					
12.5		5	271					
25		1	262					
25		2	258					
25		3	247					
25		4	272					
25		5	254					
50		1	251	was				
50		2	253					
50		3	264					
50		4	266	· · · · · · · · · · · · · · · · · · ·				
50		5	248					
100		1	260			162	159	
100		2	278			1		
100		3	249					
100		4	275	11.11.11.11.11.11.11.11.11.11.11.11.11.				
100		5	246					
01		1	256					
		2	250					
0/. 101 rec 101 101		3	261					
101		4	267					
101		5	280					
61.	$-\!\!-\!\!\!-$							

QQ18 AC B/21/17

Marine Chronic Bioassay

Water Quality Measurements

 Client:
 AMEC/POSD
 Test Species:
 M. galloprovincialis

 Sample ID:
 SIYB-REF
 Start Date/Time:
 8/24/2017 /6:00

 Sample Log No.:
 17- 0938
 End Date/Time:
 8/26/2017 /6:00

Test No.: 1708-S (94

Concentration (%)		Salinity (ppt)			Temperature (°C)			Dissolved Oxygen (mg/L)			pH (pH units)		
	0	24	48	0	24	48	0	24	48	0	24	48	
Lab Control	34.0	33.5	33.3	15.0	15.0	14.8	8.2	7.9	7.8	8.09	8.06	8.01	
6.25	339	33.6	33.7	15.0	14.8	14.7	8.2	7.9	7. 8	8.05	8.03	7.00	
12.5	33.8	33.6	33,7	14.9	14.8	14.6	8.2	7.9	7.8	8.04	8.03	3.00	
25	33.8	33.7	33.7	15.0	14.8	14.6	8.3	7.8	7.8	8.03	8.03	7.99	
50	33.9	33.6	33, 7	15.0	14.8	14.6	8.3	7.9	7, 3	8.03	8-03	7.99	
100	34.0	33.8	33.9	15.0	14.9	14.5	8.4	7.8	7.8	8.03	8.02	7,99	
100 filtered	339	33.4	33.6	(55	15.3	14.4	7.1	7.5	7, 7	8.03	801	7.00	

	0 24	48	
Technician Initials:	WQ Readings: AC CA Dilutions made by: A/EG	DM	
	Dilutions made by: A/E6		
			
Comments:	0 hrs:		
	24 hrs:		

QC Check: AC 8/27/7 Final Review: 10/2/17

Client:	AMECIPOSD SIMB-REF
Test No.:	M08-5 194
Test Species:	Mytilus galloprovincialis
Animal Source:	Mission Bay
Date Received:	3/2/17
Test Chambers:	30 mL glass shell vials
Sample Volume:	10 mL

Start Date/Time:	8/24/2017	16:00	
End Date/Time:	8/26/2017	16100	
Technician Initials:	CH/AC		

Spawn Imformation

First Gamele Release Time:

1230

Sex	Number Spawning
	Transcr oparring
Male	<u>ら</u> ナ
Female	3

Gam	ıete	Sel	ect	ior

Gamete Selection			
Sex	Beaker Number(s)	Condition (sperm motility, egg density, color, shape, etc.)	
Male	AB+3,4,5	Good density and motility	
Female 1	1	High density, pall orange copy, un form snape,	lar
Female 2	2	High density, fall orange cour, un form snape, Good density for arms color, uniform snape	MU.
Female 3	3	High density pare orange color, Miform	
		shart,	

Egg Fertilization Time:	13	15
Egg Fertilization Time:	1)	

Mussel

Embryo Stock Selection

Stock Number	% of embryos at 2-cell division stage	
Female 1	99	
Female 2	100	
Female 3	100	

Stock(s) chosen for testing:

Embryo Inoculum Preparation

Target count on Sedgwick-Rafter slide for desired density is 6 embryos

Number Counted:

11	10
10	16
95	1 1
14	0
8	10

Mean: ___| D - |

Mean 0 \times 50 = 50 embryos/ml

Initial Density: 505

____(dilution facto

Desired Final Density: (to inoculate with 0.5 ml)

When mean percent dividing is \geq 90, prepare the embryo inoculum according to the calculated dilution factor. For example, if the dilution factor is 2.25, use 100 ml of existing stock (1 part) and 125 ml of dilution water (1.25 parts).

Time Zero Control Counts

Title Zero Control Counts					
Rep	No. Dividing	Total	% Dividing	Mean % Dividing	
TØ A	135	135	100		
ΤØΒ	162	162	100]	
тøс	7143	143	100	9991.	
TØ D	15134	134	801	161	
TØ E	157	158	99.4]	
TØF	145	145	100		

48-h QC: 137/142 (94%)

Comments:

@CH Q18 8/24/17

Xdividire= 146

QC Check:

AC 8/27/17

Final Review: WILA7

Pacific Topsmelt 96-hr Survival

All Sites

CETIS Summary Report

Report Date:

08 Sep-17 11:13 (p 1 of 1)

Test Code:

1708-S181 | 06-2918-2911

Pacific Topsr	nelt 96-h Acute S	Surviva	ıl Test						Nautilu	s Environm	nental (CA)
Batch ID: Start Date: Ending Date: Duration:	12-4309-9993 24 Aug-17 13:4 28 Aug-17 13:4 96h	0	Test Type: Protocol: Species: Source:	Survival (96h) EPA/821/R-02 Atherinops affi Aquatic Biosys	nis			ne: No	atural Seawat ot Applicable d	er	
	04-1881-2844 23 Aug-17 14:1 : 23 Aug-17 17:1 23h (8°C)	5 5	Code: Material: Source: Station:	17-0932 Ambient Samp Shelter Island SIYB-1			Clie Pro	nt: Ar ject:	nec Foster W	heeler	
Comparison S	Summary										
Analysis ID 11-3022-3251	Endpoint 96h Survival Ra	ate	NOEL 100	. LOEL >100	TOEL NA	PMSD 13.2%	TUa.	Method Steel Ma	nny-One Ranl	Sum Test	
96h Survival I	Rate Summary					Q	18AC 9181-	7			
C-%	Control Type	Coun	t Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0 25 33 100	Lab Control	6 6 6	0.966 0.966 1 0.933	7 0.881	1 1 1 1	0.8 0.8 1 0.6	1 1 1 1	0.03333 0.03333 0 0.06667	0.08165 0.08165 0 0.1633	8.45% 8.45% 0.0% 17.5%	0.0% 0.0% -3.45% 3.45%
96h Survival I	Rate Detail										
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6				
0 25 33 100	Lab Control	1 1 1	1 1 1	1 1 1	1 1 1 0.6	0.8 0.8 1	1 1 1				

Report Date: Test Code:

08 Sep-17 11:12 (p 1 of 1)

1708-S181 | 06-2918-2911

							Test	Code:	170	8-S181 0	6-2918-291
Pacific Topsn	nelt 96-h Acute	Surviva	l Test						Nautilu	s Environ	mental (CA)
Analysis ID: Analyzed:	11-3022-3251 08 Sep-17 11:		•	Survival Ra	ate -Control vs	Treatments		IS Version: cial Results:	CETISv1 Yes	.8.7	
Data Transfor	m	Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU
Angular (Corre	cted)	NA	C > T	NA	NA		13.2%	100	>100	NA	1
Steel Many-O	ne Rank Sum T	est									
Control	vs C-%		Test Stat	Critical	Ties DF	P-Value	P-Type	Decision(7:5%)		
_ab Control	25		39	26		0.7500	Asymp		icant Effect		
	33		42	26		0.8900	Asymp	_	icant Effect		
	100		38.5	26	1 10	0.7200	Asymp	_	icant Effect		
NOVA Table											
Source	Sum Squ	ıares	Mean Squ	iare	DF	F Stat	P-Value	Decision(a:5%)		
Between	0.017584		0.0058615	43	3	0.4338	0.7311	Non-Signif			kan filmore was says speepeng
Error	0.270238	1	0.0135119	1	20	_		5 "			
Γotal	0.287822	8			23						
Distributional	Tests										
\ttribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
/ariances	Mod Lev	ene Equa	ality of Variance	0.4338	4.938	0.7311	Equal Var	iances			
/ariances			of Variance	2.711	4.938	0.0723	Equal Var	iances			
Distribution	Shapiro-	Wilk W N	Normality	0.6216	0.884	<0.0001	Non-norm	al Distributio	n		
6h Survival F	Rate Summary										
-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
)	Lab Control	6	0.9667	0.881	1	1	8.0	1	0.03333	8.45%	0.0%
25		6	0.9667	0.881	1	1	0.8	1	0.03333	8.45%	0.0%
33 100		6 6	1 0.9333	1	1	1	1	1	0	0.0%	-3.45%
				0.762	1	1	0.6	1	0.06667	17.5%	3.45%
•	ected) Transfor	rmed Su	mmary								
	Control Type	Count		95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
	Lab Control	6	1.306	1.204	1.408	1.345	1.107	1.345	0.03969	7.45%	0.0%
25		6	1.306	1.204	1.408	1.345	1.107	1.345	0.03969	7.45%	0.0%
33 100		6 6	1.345 1.269	1.345 1.072	1.345 1.465	1.345	1.345	1.345	0	0.0%	-3.04%
		U	1.209	1.072	1.400	1.345	0.8861	1.345	0.07653	14.78%	2.82%
1.0 0.9 0.8 0.8 0.7 0.6 0.5 0.5 0.4 0.3 0.3 0.3 0.2 0.1 0.0 0.0		•	•		Centered	0.10 0.05 0.00 0.00 0.00 0.15 0.20 0.30 0.30	• •		999899		•
0.0	0 LC	25	33	100		-2.0	-1.5 -1.0	-0.5 0.0	0,5 1,	0 1.5	2.0
		C-%						Rankits			

Report Date: Test Code: 08 Sep-17 11:13 (p 1 of 1) 1708-S181 | 06-2918-2911

				$\Gamma \supset \Gamma$			1621	Code:	1700	2-2101100	0-2910-2911
Pacific Tops	melt 96-h Acute	Survival	Test						Nautilus	Environn	nental (CA)
Analysis ID:	05-4448-6447	Е	ndpoint: 96h	Survival Ra	ate		CET	IS Version	: CETISv1.	.8.7	***************************************
Analyzed:	08 Sep-17 11:	12 A	nalysis: Par	ametric Bio	equivalence	-Two Samp	le Offic	ial Result	s: Yes		
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed	TST b	PMSD	NOEL	LOEL	TOEL	TU
Angular (Cor	rected)	NA	C*b < T	NA	NA	0.8	11.1%	100	>100	NA	1
TST-Welch's	t Test										
Control	vs C-%		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision	ι(α:10%)		
Lab Control	25*		5.137	1.383	0.070 9	0.0003	CDF	Non-Sigr	ificant Effect		
	33*		9.474	1.476	0.047 5	0.0001	CDF	Non-Sigr	ificant Effect		
	100*		2.707	1.44	0.119 6	0.0176	CDF	Non-Sigr	ificant Effect		
ANOVA Tabl	e										
Source	Sum Squ	iares	Mean Squ	ıare	DF	F Stat	P-Value	Decision	n(α:5%)		
Between	0.017584	63	0.0058615	543	3	0.4338	0.7311	Non-Sigr	ificant Effect		
Error	0.270238	1	0.0135119	91	20						
Total	0.287822	8			23						
Distribution	al Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision(α:1%)			
Variances	Mod Lev	ene Equal	lity of Variance	0.4338	4.938	0.7311	Equal Var	iances		***************************************	
Variances	Levene E	Equality of	· Variance	2.711	4.938	0.0723	Equal Var	iances			
Distribution	Shapiro-	Wilk W No	ormality	0.6216	0.884	<0.0001	Non-norm	al Distribut	ion		
96h Survival	Rate Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	6	0.9667	0.881	1	1	0.8	1	0.03333	8.45%	0.0%
25		6	0.9667	0.881	1	1	0.8	1	0.03333	8.45%	0.0%
33		6	1	1	1	1	1	1	0	0.0%	-3.45%
100		6	0.9333	0.762	1	1	0.6	1	0.06667	17.5%	3.45%
Angular (Co	rrected) Transfor	med Sum	nmary								
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	6	1.306	1.204	1.408	1.345	1.107	1.345	0.03969	7.45%	0.0%
25		6	1.306	1.204	1.408	1.345	1.107	1.345	0.03969	7.45%	0.0%
33		6 1.345			1.345	1.345	1.345	1.345	0	0.0%	-3.04%
100		6	1.269	1.072	1.465	1.345	0.8861	1.345	0.07653	14.78%	2.82%
		COMPANY OF THE PARTY OF THE PAR									

Report Date:

08 Sep-17 13:21 (p 1 of 1)

Test Code:

1708-S181 | 06-2918-2911

Nautilus Environmental (CA)

Pacific Topsmelt 96-h Acute Survival Test

CETISv1 8.7

Analys Analyz		20-2723-9738 08 Sep-17 13:2	_	lpoint: ılysis:						IS Version: cial Results:	CETISv1 Yes	.8.7	
Linear	Interpo	lation Options							·				
X Trans	sform	Y Transform	See	d	Resamples	Exp 95%	CL	Method	d				
Linear		Linear	165	1919	1000	Yes	******	Two-Po	oint Interp	olation			
Point E	stimate	es											
Level	%	95% LCL	95% UCL	TU	95% LC	CL 95% UCL							
EC25	>100	N/A	N/A	<1	NA	NA		×	176				
EC50	>100	N/A	N/A	<1	NA	NA							
96h Su	rvivai R	ate Summary				Calcu	ılated '	Variate((A/B)				
C-%	C	ontrol Type	Count	Mean	Min	Max	Std	Err S	Std Dev	CV%	%Effect	Α	В
0	La	ab Control	6	0.966	7 0.8	1	0.03	333 (0.08165	8.45%	0.0%	29	30
25			6	0.966	7 0.8	1	0.03	333 (0.08165	8.45%	0.0%	29	30
33			6	1	1	1	0	C)	0.0%	-3.45%	30	30
100			6	0.933	3 0.6	1	0.06	667 (0.1633	17.5%	3.45%	28	30

Client:	AMEC/POSD	Test Species: A. affinis				Te	ch Initi	als	
Sample ID:	SIYB-1 17 - 0932	Start Date/Time: 8/24/2017	1340		0	24	48	72	96
Test No.:	1708-S 14)	End Date/Time: 8/28/2017	1340	- Counts:	AD/E	149	PH	RH	RH
				- Readings:	4	64	PA	Acs	Al
				Dilutions made by:	A(r)		ÐΑ		

Concentration	Rep			ber o ganis	f Live ms	•		•	Salinit (ppt)				Ter	npera (°C)	ture		I		lved ((mg/L		n			pH (units)	
		0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96
Lab Control	А	5	5	5	5	5	3Z · I	33.8	336	33.6	341	20,6	20.0	50,2	20,6	20.3	7.1	6.4	6.8	73	6.3	792	7.90			793
#1	В	5	5	5	5	5			34.0					203					6-1					7.93		
	С	5	5	5	5	5																				
	D	5	5	5	5	5																				
	E	5	ef	4	4	4																				
	F	5	5	5	5	5																				
25	Α	5	5	5	5	5	34.0	33.B	33,7	339	34)	20,7	10.0	20.3	20.5	10.3	7.	6.3	7,2	7,4	6.2	293	1.91	8.02	7.12	198
	В	5	5	5	5	5			34,0					20.1					6.1	·				7.93		
	С	5	5	5	5	5																				
	D	5	5	5	5	5																				
	Ε	5	4	¥	4	4																				
	F	5	3	5	5	5																				
\$20 50	Α	5	5	5	5	5	34,0	33.A	33/6	34.0	243	20.8	20.0	28,4	20.5	20,4	21	6.2	7.3	7.4	6.1	794	1.90	8.03	791	792
33	В	5	5	5	5	5			51.1					701					6.1					7.92		
	С	5	5	5	5	5																				
	D	5	5	5	5	5																				
	E	5	5	5	5	5																				
	F	5	5	5	5	5																				
100	Α	5	5	5	5	5	34,1	23.B	335	34.0	24.2	21.3	20.1	26.5	20.4	20.4	7.3	6.3	7.6	7.3	6.1	7.17	7.92	7.99	741	7.92
	В	5	5	5	5	5			34,0					20.5					6.1					7.92		
	С	5	5	5	5	5																				
	D	5	5	4	3	3																				
	Е	5	5	5	5	5																				
	F	5	6	5	5	5																				
Initial Counts QC'd by: Initiated by:	PAD	S	lancara migrana	handlings.			•			Managara and State of the State				•					•				•			

Animal Source/Date Received:

Animal Acclimation Qualifiers (circle all that apply):

Q22 / Q23 / Q24 / none

Am:

Q22 / Q23 / Q24 / none

Am:

Q24 48 72 96

Am:

Q25 MU

Comments:

i = initial reading in fresh test solution, f = final reading in test chamber prior to renewal

QC Check:

CH 8/30/17

Organisms fed prior to initiation, circle one (y) / n)

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

Final Review: AC9/8/17

CETIS Summary Report

Report Date:

08 Sep-17 11:21 (p 1 of 1)

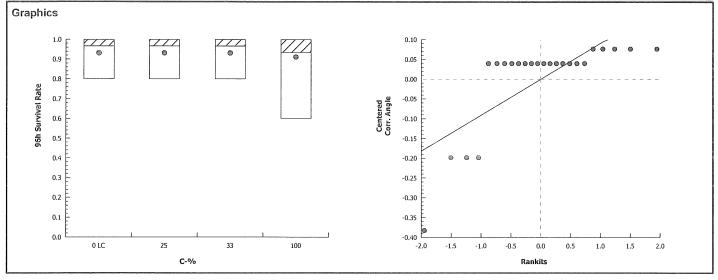
Test Code:

1708-S182 | 21-3632-0109

Pacific Topsm	nelt 96-h Acute S	Surviva	al Test								Nautilu	s Environn	nental (CA)
Batch ID: Start Date: Ending Date: Duration:	04-9688-6766 24 Aug-17 13:4 28 Aug-17 13:4 96h		Test Type: Protocol: Species: Source:	EPA Athe	rival (96h) /821/R-02-0 erinops affin atic Biosyst	is			Analy Dilue Brine Age:	nt:	Natural Seawat Not Applicable	er	
-	10-4048-3862 23 Aug-17 13:1 23 Aug-17 17:1 24h (2.5 °C)		Code: Material: Source: Station:		oient Sample Iter Island Y				Client Proje		Amec Foster W	/heeler	
Comparison S	Summary	***************************************											
Analysis ID	Endpoint		NOEL	_	LOEL	TOEL	PMSD	TU⊄	L	Metho	d		
05-6270-0406	96h Survival Ra	ate	100		>100	NA	14.1%	4.	0.49	Steel N	Many-One Ran	k Sum Test	
96h Survival F	Rate Summary						G	118 AC	9/8/	17			
C-%	Control Type	Cour	nt Mean	ı	95% LCL	95% UCL	Min	Max	(Std Er	r Std Dev	CV%	%Effect
0	Lab Control	6	0.966	7	0.881	1	0.8	1		0.0333	3 0.08165	8.45%	0.0%
25		6	0.966	7	0.881	1	0.8	1		0.0333	0.08165	8.45%	0.0%
33		6	0.966	7	0.881	1	0.8	1		0.0333	0.08165	8.45%	0.0%
100		6	0.933	3	0.762	1	0.6	1		0.0666	0.1633	17.5%	3.45%
96h Survival f	Rate Detail												
C-%	Control Type	Rep	1 Rep 2	2	Rep 3	Rep 4	Rep 5	Rep	6				
0	Lab Control	1	1		1	1	0.8	1					
25		1	1		1	1	0.8	1					
33		1	1		1	1	0.8	1					
100		1	1		1	1	0.6	1					

Report Date:

08 Sep-17 11:21 (p 1 of 1)


1708-S182 | 21-3632-0109

								Test	Code:	17	08-S182 2	1-3632-0109
Pacific Tops	melt 9	6-h Acute Surviv	al Test							Nautilu	ıs Environr	nental (CA)
Analysis ID: Analyzed:		6270-0406 Sep-17 11:20	•	ı Survival F nparametri		l vs Tre	atments		IS Version		1.8.7	
Data Transfo	rm	Zeta	Alt Hyp	Trials	Seed			PMSD	NOEL	LOEL	TOEL	TU
Angular (Corre	ected)	NA	C > T	NA	NA			14.1%	100	>100	NA	1
Steel Many-C	ne Ra	nk Sum Test			,							
Control	vs	C-%	Test Stat	Critical	Ties	DF F	P-Value	P-Type	Decision	ι(α:5%)		
Lab Control		25	39	26	2	10 0	0.7500	Asymp	Non-Sigr	ificant Effec	ct	
		33	39	26	2	10 0	0.7500	Asymp	Non-Sigr	ificant Effec	ct	
		100	38.5	26	1	10 0	0.7200	Asymp	Non-Sigr	ificant Effec	ot	
ANOVA Table	9				**************************************							
Source		Sum Squares	Mean Squ	ıare	DF	F	Stat	P-Value	Decision	ι(α:5%)		
Between		0.006109081	0.0020363	36	3	C	0.1283	0.9422	Non-Sigr	ificant Effec	ct	
Error		0.3174947	0.0158747	' 4	20							
Total		0.3236038			23							

Distributional T	ests				
Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)
Variances	Bartlett Equality of Variance	3.512	11.34	0.3192	Equal Variances
Distribution	Shapiro-Wilk W Normality	0.5751	0.884	<0.0001	Non-normal Distribution

96h Survi	ival Rate Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	6	0.9667	0.881	1	1	0.8	1	0.03333	8.45%	0.0%
25		6	0.9667	0.881	1	1	0.8	1	0.03333	8.45%	0.0%
33		6	0.9667	0.881	1	1	8.0	1	0.03333	8.45%	0.0%
100		6	0.9333	0.762	1	1	0.6	1	0.06667	17.5%	3.45%

Angular ((Corrected) Transfor	med Sumr	nary								
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	6	1.306	1.204	1.408	1.345	1.107	1.345	0.03969	7.45%	0.0%
25		6	1.306	1.204	1.408	1.345	1.107	1.345	0.03969	7.45%	0.0%
33		6	1.306	1.204	1.408	1.345	1.107	1.345	0.03969	7.45%	0.0%
100		6	1.269	1.072	1.465	1.345	0.8861	1.345	0.07653	14.78%	2.82%

Report Date: Test Code: 08 Sep-17 11:21 (p 1 of 1) 1708-S182 | 21-3632-0109

							Test	Code:	1708	3-S182 21	-3632-0109
Pacific Tops	melt 96-h Acute	Survival T	est						Nautilus	Environn	nental (CA)
Analysis ID: Analyzed:	14-8054-2473 08 Sep-17 11:		ıdpoint: 96h ıalysis: Par	Survival Ra ametric Bioe		·Two Samp		IS Version: ial Results		8.7	
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed	TST b	PMSD	NOEL	LOEL	TOEL	ΤU
Angular (Corr	ected)	NA	C*b < T	NA	NA	0.8	11.1%	100	>100	NA	1
TST-Welch's	t Test										
Control	vs C-%		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision	(α:10%)		
Lab Control	25*		5.137	1.383	0.070 9	0.0003	CDF	Non-Sign	ificant Effect		
	33*		5.137	1.383	0.070 9	0.0003	CDF	-	ificant Effect		
	100*		2.707	1.44	0.119 6	0.0176	CDF	-	ificant Effect		
ANOVA Tabl	е										
Source	Sum Squ	ares	Mean Squ	ıare	DF	F Stat	P-Value	Decision	(α:5%)		
Between	0.006109	081	0.0020363	36	3	0.1283	0.9422	Non-Sign	ificant Effect		*
Error	0.317494	7	0.0158747	' 4	20						
Total	0.323603	8			23	_					
Distributiona	al Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances	Bartlett E	Equality of \	Variance	3.512	11.34	0.3192	Equal Var	iances		A. A. I. A. A. S.	
Distribution	Shapiro-	Wilk W No	rmality	0.5751	0.884	<0.0001	Non-norm	al Distributi	on		
96h Survival	Rate Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	6	0.9667	0.881	1	1	0.8	1	0.03333	8.45%	0.0%
25		6	0.9667	0.881	1	1	0.8	1	0.03333	8.45%	0.0%
33		6	0.9667	0.881	1	1	8.0	1	0.03333	8.45%	0.0%
100		6	0.9333	0.762	1	1	0.6	1	0.06667	17.5%	3.45%
Angular (Cor	rected) Transfor	med Sumi	mary								
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	6	1.306	1.204	1.408	1.345	1.107	1.345	0.03969	7.45%	0.0%
25		6	1.306	1.204	1.408	1.345	1.107	1.345	0.03969	7.45%	0.0%
33		6	1.306	1.204	1.408	1.345	1.107	1.345	0.03969	7.45%	0.0%
100		6	1.269	1.072	1.465	1.345	0.8861	1.345	0.07653	14.78%	2.82%
		-									

Report Date:

08 Sep-17 13:21 (p 1 of 1)

Test Code:

1708-S182 | 21-3632-0109

Pacific Tops	nelt 96-h Acute Sur	rvival Test			Nautilus Environmental (CA)
Analysis ID:	20-4840-0360	Endpoint: 9	96h Survival Rate	CETIS Version:	CETISv1.8.7

Analyz		08 Sep-17 13:2					١		ial Results		.0.7	
		lation Options		., 0.0.		2		Oille	Jidi Nesult	3. 103		
	•	•				= 0=0/	01 85 4					
X Tran	storm	Y Transform	See-	<u>a</u>	Resamples	Exp 95%	CL Met	hod				
Linear		Linear	6215	51	1000	Yes	Two	o-Point Interp	olation			
Point E	Estimate	es										
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL						
EC25	>100	N/A	N/A	<1	NA	NA						P
EC50	>100	N/A	N/A	<1	NA	NA						
96h Su	ırvival R	tate Summary				Calcu	lated Vari	ate(A/B)				
C-%	С	ontrol Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	La	ab Control	6	0.966	7 0.8	1	0.03333	0.08165	8.45%	0.0%	29	30
25			6	0.966	7 0.8	1	0.03333	0.08165	8.45%	0.0%	29	30
33			6	0.966	7 0.8	1	0.03333	0.08165	8.45%	0.0%	29	30
100			6	0.933	3 0.6	1	0.06667	0.1633	17.5%	3.45%	28	30

Test No.: 1708-S182

Client: AMEC/POSD
Sample ID: SIYB-2

Test Species: A. affinis

Start Date/Time: 8/24/2017 (340 End Date/Time: 8/28/2017 1340

Counts:

Tech Initials

0 24 48 72 96

PC CG RH RH RH

ArS CG PA Ars RH

Dilutions made by:

Concentration %	Rep			ber of					Salinit (ppt)				Ter	npera (°C)	ture				lved C (mg/L		n			pH (units)	
		0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96
Lab Control	Α	5	5	5	5	5	33.9	33.8	33.6	33,6	33.0	20,6	20.0	20.2	20%	2016	7.1	6.4	6.8	7.3	Ser. T		490	798	7.90	2.90
#1	В	5	5	5	(کا	5			34,1		34.1			2.3	,	20.3			6.1		6.3			193		743
	С	5	5	5	5	5					(\Re)					8					®					Ø
	D	5	5	5	5	5																				
	E	5	4	4	4	4																				
	F	5	5	5	5	5																				
25	Α	5	5	5	5	5	34.0	33.b			33. W	26,7	20.2		20,5	20.k	7.2	6.5	7.2	7.4	6.1	7.94	190	8.05	7.93	7.90
	В	5	5	5	5	5			33.6					20.3					1.1					7.93		
	С	5	5	5	5	5																				
	D	5	5	5	5	5																				
	Ε	5	4	4	4	4																				
	F	5	5	5	5	5																				
Q20,50 33	Α	5	5	5	5	5	34.0	33.8			342	20,8	20.1		20	20.4	7,2	6.4	7.2	7.4	6.2	7,94	7.9%			193
	В	5	5	5	5	5			33.9					20.4				<u> </u>	6.1					7,92		
	С	5	5	5	5	5																				
	D	5	5	5	5	5																				
	E	5	5	5	4	4																				
	F	5	5	5	5	5																				
100	Α	5	5	5	5	5	342	33.9			341	21.2	20.3			20.4	7.3	6-3		75	6,2	7.96	4.88			792
	В	5	5	5	5	5			33.9					lar					6.1					7.91		
	С	5	5	5	5	5																				
	D	5	5	5	5	5															1					
	E	5	5	5	4	3															1					
Initial Counts OC'd by	F	5	5	5	5	5																				

Initial Counts QC'd by: ACS
Initiated by: POSS S S S S AGE Age at Initiation:

Age at Initiation:

Animal Acclimation Qualifiers (circle all that apply):

Q22 / Q23 / Q24 / none

0 24 48 72

AM: 0700 050 0855

PM: \\ \(\sigma_3 \sigma_5 \)

Feeding Times

Comments:

i = initial reading in fresh test solution, f = final reading in test chamber prior to renewal

Organisms fed prior to initiation, circle one (y // n)

(A) PHO188/28/17

QC Check:

CH 8130/17

Final Review:

AC9/8/17

96

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

CETIS Summary Report

Report Date:

08 Sep-17 11:26 (p 1 of 1)

Test Code:

1708-S183 | 10-4327-8680

Start Date: 24 Aug-17 13:40 Protocol: EPA/821/R-02-012 (2002) Biluent: Natural Seawater Brine: Not Applicable Age: 11d										1621	σαe:		170	0-3103 10	-4327-8680
Start Date: 24 Aug-17 13:40 Protocol: EPA/821/R-02-012 (2002) Biluent: Natural Seawater Brine: Not Applicable Age: 11d	Pacific Topsm	nelt 96-h Acute S	Surviva	al Test									Nautilus	Environm	ental (CA)
Sample Date: 23 Aug-17 12:15 Material: Ambient Sample Project: Receive Date: 23 Aug-17 17:15 Source: Shelter Island Yacht Basin Sample Age: 25h (3.5 °C) Station: SIYB-3 Station	Batch ID: Start Date: Ending Date: Duration:	24 Aug-17 13:4 28 Aug-17 13:4		Protocol: Species:	EPA/821/R-02-012 (2002) Atherinops affinis					Dilue Brine	nt: :	Not App		er	
Analysis ID		23 Aug-17 12:1 23 Aug-17 17:1		Material: Source:	Ambient Sample Shelter Island Yacht Basin							Amec F	oster W	heeler	
12-9459-3484 96h Survival Rate 100 >100 NA 8.86% 1 0 0 Steel Many-One Rank Sum Test	Comparison S	Summary													
26h Survival Rate Summary C-% Control Type Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% %Effect D Lab Control 6 0.9667 0.881 1 0.8 1 0.03333 0.08165 8.45% 0.0% 25 6 1 1 1 1 1 1 1 0 0 0 0.0% -3.45% 33 6 0.9667 0.881 1 0.8 1 0.03333 0.08165 8.45% 0.0% 26h Survival Rate Detail C-% Control Type Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Rep 6 D Lab Control 1 1 1 1 0.8 1 25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Analysis ID												no Danie	Cum Took	
C-% Control Type Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% %Effect D Lab Control 6 0.9667 0.881 1 0.8 1 0.03333 0.08165 8.45% 0.0% E5 6 1 1 1 1 1 1 1 0 0 0 0 0.0% -3.45% B100 6 1 1 1 1 1 1 1 0 0 0 0 0.0% -3.45% E6h Survival Rate Detail C-% Control Type Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Rep 6 D Lab Control 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12-94-09-0464	9011 Survival Na		100		7100	INA					iviany-O	ne Rank	Sum rest	
Lab Control 6 0.9667 0.881 1 0.8 1 0.03333 0.08165 8.45% 0.0% 25 6 1 1 1 1 1 1 0 0 0 0.0% -3.45% 33 6 0.9667 0.881 1 0.8 1 0.03333 0.08165 8.45% 0.0% 460 6 1 1 1 1 1 1 1 0 0 0 0 0.0% -3.45% 466h Survival Rate Detail C-% Control Type Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Rep 6 D Lab Control 1 1 1 1 1 0.8 1 25 1 1 1 1 1 1 1 1 1 33 0.8 1 1 1 1 1	96h Survival f	Rate Summary						ð	218 A	- 918	3/17				
25 6 1 1 1 1 1 1 1 0 0 0 0.0% -3.45% 33 6 0.9667 0.881 1 0.8 1 0.03333 0.08165 8.45% 0.0% 100 6 1 1 1 1 1 1 0 0 0 0 0.0% -3.45% 3.45	C-%	Control Type	Cour	t Mean	9	5% LCL	95% UCL	Min	Max		Std E	rr St	d Dev	CV%	%Effect
6 0.9667 0.881 1 0.8 1 0.03333 0.08165 8.45% 0.0% 100 6 1 1 1 1 1 1 0 0 0 0 0.0% -3.45% 0.66h Survival Rate Detail C-% Control Type Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Rep 6 D Lab Control 1 1 1 1 1 0.8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	Lab Control	6	0.966	7 0).881	1	8.0	1		0.0333	33 0.	08165	8.45%	0.0%
100 6 1 1 1 1 1 1 0 0 0 0	25		6	•	1		1	1	1		0	_		0.0%	-3.45%
Och Survival Rate Detail C-% Control Type Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Rep 6 0 Lab Control 1 1 1 0.8 1 25 1 1 1 1 1 1 33 0.8 1 1 1 1 1	33		_	0.966	7 0).881	1	8.0	1				08165		
C-% Control Type Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Rep 6 D Lab Control 1 1 1 1 0.8 1 25 1 1 1 1 1 1 1 1 33 0.8 1 1 1 1 1 1	100	***	6	1	1		1	1	1		0	0		0.0%	-3.45%
D Lab Control 1 1 1 1 0.8 1 25 1 1 1 1 1 1 1 33 0.8 1 1 1 1 1	96h Survival F	Rate Detail													
25 1 1 1 1 1 1 1 33 0.8 1 1 1 1 1	C-%	Control Type	Rep '	l Rep 2	. R	Rep 3	Rep 4	Rep 5	Rep	6					
33 0.8 1 1 1 1 1	0	Lab Control	1	1	1		1	0.8	1						
	25		1	1	1		1	1	1						
100 1 1 1 1 1 1	33		8.0	1	1		1	1	1						
	100		1	1	1		1	1	1						

Report Date:

08 Sep-17 11:25 (p 1 of 1)

	,						Test	Code:	1708	3-S183 1	0-4327-868
Pacific Tops	melt 96-h Acute	Survival 1	est				Nautilus	Environ	mental (CA		
Analysis ID: Analyzed:	12-9459-3484 08 Sep-17 11		ndpoint: 96h nalysis: Nor	reatments ⁻		IS Version: ial Results:	CETISv1. Yes	8.7			
Data Transfo	rm	Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	ΤU
Angular (Corr	ected)	NA	C > T	NA	NA		8.86%	100	>100	NA	1
Steel Many-C	one Rank Sum 1	Гest									
Control	vs C-%		Test Stat	Critical	Ties DF	P-Value	P-Type	Decision(α:5%)		
Lab Control	25		42	26	1 10	0.8900	Asymp	Non-Signif	icant Effect		
	33		39	26	2 10	0.7500	Asymp	_	icant Effect		
	100		42	26	1 10	0.8900	Asymp	Non-Signif	icant Effect		
ANOVA Table	e										
Source	Sum Sq	uares	Mean Squ	are	DF	F Stat	P-Value	Decision(a: 5 %)		
Between	0.009451	317	0.0031504		3	0.6667	0.5823	Non-Signif	icant Effect		
Error	0.094513		0.0047256	58	20	_					
Total	0.103964	15			23						
Distributiona	I Tests										
Attribute	Test			Test Stat		P-Value	Decision				
Variances			ty of Variance		4.938	0.5823	Equal Var				
Variances		Equality of		4.167	4.938	0.0191	Equal Var				
Distribution	Shapiro-	-Wilk W No	rmality	0.5451	0.884	<0.0001	Non-norm	al Distributio	n		140
96h Survival	Rate Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	6	0.9667	0.881	1	1	8.0	1	0.03333	8.45%	0.0%
25		6	1	1	1	1	1	1	0	0.0%	-3.45%
33		6 6	0.9667	0.881	1	1	0.8	1	0.03333	8.45%	0.0%
100			1	1	1	1	1	1	0	0.0%	-3.45%
-	rected) Transfo		mary								
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	6	1.306	1.204	1.408	1.345	1.107	1.345	0.03969	7.45%	0.0%
25 33		6	1.345	1.345	1.345	1.345	1.345	1.345	0	0.0%	-3.04%
100		6 6	1.306 1.345	1.204 1.345	1.408 1.345	1.345 1.345	1.107 1.345	1.345 1.345	0.03969 0	7.45% 0.0%	0.0% -3.04%
Graphics						7.010	1.010	1,010		0.070	0.0470
этартноз											
1.0 E	Z	•		•		0.05		i	000096	9 9	•
0.9						F		1			
0.8						0.00 [0000000	5		
96h Survival Rate					79	9					
0.6 E					tere	Corr. Angle		/ :			
in Su					Ö	5		I I			
- E								1			
0.4						-0.10		l I			
0.3						ļ		1			
0.2						-0.15		1			
0.1						ŀ		i I			
[1	i	ı		ı	2.25	.		1 1	1	
0.0	0 LC	25	33	100	-	-0.20 😂 -2.0	-1.5 -1.0	-0.5 0.0	0.5 1.0	1.5	2.0

Rankits

C-%

Report Date: Test Code: 08 Sep-17 11:26 (p 1 of 1) 1708-S183 | 10-4327-8680

6				101			Test	Code:	170	8-S183 1	10-4327-8680	
Pacific Tops	smelt 96-h Acute	Surviva	l Test						Nautilus	Environ	mental (CA)	
Analysis ID:	10-0548-4241		Endpoint: 96	Sh Survival Ra	ate		CET	IS Version:	CETISv1.	.8.7		
Analyzed:	08 Sep-17 11:	25 .	Analysis: Pa	arametric Bio	equivalence	-Two Samp	le Offic	cial Results:				
Data Transf	orm	Zeta	Alt Hyp	Trials	Seed	TST b	PMSD	NOEL	LOEL	TOEL	TU	
Angular (Cor	rected)	NA	C*b < T	NA	NA	0.8	6.3%	100	>100	NA	1	
TST-Welch's	s t Test											
Control	vs C-%		Test Sta	t Critical	MSD DF	P-Value	P-Type	Decision(α:10%)			
Lab Control	25*		9.474	1.476	0.047 5	0.0001	CDF	Non-Signif	icant Effect			
	33*		5.137	1.383	0.070 9	0.0003	CDF	Non-Signif	icant Effect			
	100*		9.474	1.476	0.047 5	0.0001	CDF	Non-Signif	icant Effect			
ANOVA Tab	le											
Source	Sum Squ	iares	Mean Sc	luare	DF	F Stat	P-Value	Decision(α:5%)			
Between	0.009451	317	0.003150)439	3	0.6667	0.5823	Non-Signif	icant Effect			
Error	0.094513	16	0.004725	658	20							
Total	0.103964	5			23							
Distribution	al Tests					THE RESERVE OF THE PERSON OF T						
Attribute	Test			Test Stat	Critical	P-Value	Decision((α:1%)				
Variances	Mod Lev	ene Equa	ality of Varianc	e 0.6667	4.938	Equal Var	iances					
Variances	Levene E	Equality of	of Variance	4.167	4.938	0.0191	Equal Variances					
Distribution	Shapiro-	Wilk W N	lormality	0.5451	0.884	<0.0001	Non-normal Distribution					
96h Surviva	Rate Summary											
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect	
0	Lab Control	6	0.9667	0.881	1	1	0.8	1	0.03333	8.45%	0.0%	
25		6	1	1	1	1	1	1	0	0.0%	-3.45%	
33		6	0.9667	0.881	1	1	8.0	1	0.03333	8.45%	0.0%	
100		6	1	1	1	1	1	1	0	0.0%	-3.45%	
Angular (Co	rrected) Transfor	med Su	mmary									
		Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect	
C-%	Control Type	- GOGIII										
0 0	Lab Control	6	1.306	1.204	1.408	1.345	1.107	1.345	0.03969	7.45%	0.0%	
0 25			1.306 1.345	1.204 1.345	1.408 1.345	1.345 1.345	1.107 1.345	1.345 1.345	0.03969 0	7.45% 0.0%	0.0% -3.04%	
0		6	-									

Analyst: 4) QA: AC9 817

Pacific Topsmelt 96-h Acute Survival Test

Report Date:

08 Sep-17 13:22 (p 1 of 1)

Test Code:

1708-S183 | 10-4327-8680

Nautilus Environmental (CA)

Analysis ID: 18-9732-1925

Linear Interpolation Options

08 Sep-17 13:21

Y Transform

Linear

Endpoint: 96h Survival Rate

1000

Analysis: Linear Interpolation (ICPIN)

Resamples

CETIS Version: Official Resi

Two-Point Interpolation

CETISv1.8.7

ulte	Yes	

Method			

Point	Estimates

Analyzed:

X Transform

Linear

Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL
EC25	>100	N/A	N/A	<1	NA	NA
EC50	>100	N/A	N/A	<1	NΔ	NΙΔ

Seed

61078

96h Sur	vivai Rate Summary				CALCULATION CONTRACTOR AND COMM						
C-%	Control Type	Count	Mean	Min	Max	Std Err	%Effect	Α	В		
0	Lab Control	6	0.9667	0.8	1	0.03333	0.08165	8.45%	0.0%	29	30
25		6	1	1	1	0	0	0.0%	-3.45%	30	30
33		6	0.9667	0.8	1	0.03333	0.08165	8.45%	0.0%	29	30
100		6	1	1	1	0	0	0.0%	-3.45%	30	30

Exp 95% CL

Yes

Client: AMEC/POSD Sample ID: SIYB-3

Test No.: 1708-S 183

Test Species: A. affinis 1340 Start Date/Time: 8/24/2017

1340 End Date/Time: 8/28/2017

Tech Initials 96 R41 RH RH Readings: Dilutions made by:

Concentration	Rep			ber o		•		,	Salinit (ppt)				Ten	nperat (°C)	ure			Disso	ved C (mg/L		n			pH (units)	
		0	24	48	72	96	0	24	48	72	96	0	24	48	720	96	0	24	48	72	96	0	24	48	72	96
Lab Control	Α	5	5	5	5	5	33.9	33.8	33.6	33.6	341	20. L	w.0	20.7	300	96)26 ?	7.1	6.4	6.8	73	63	792	7.40	78	790	793
#1	В	5	5	5	5	5			342					20.3					6.1					7.93		
	С	5	5	5	5	5																				
	D	5	5	5	5	5																				
	Е	5	134	4	4	ч																				
	F	5	5	5	5	45																				
25	A	5	5	5	5	5	33.9	33.6	33,5	33.6	33. E	20.8	20-3	204	₩S	20.6	7.1				6.1	7,94	7.84	802	292	7.90
	В	5	5	5	5	5			36					20,5					6.0					7.91		
	С	5	5	5	6	5																				
	D	5	5	5	5	5																				
	E	5	5	5	5	5																				
	F	5	5	5	5	5																		-		
Q20 50 33	А	5	ч	4	4	4	344	33 3			33.8	21,0	10-2		205	20.5	7.1	6.4	7. 2	7.5	6.2	7.95	7.81	8.02	195	7.91
	В	5	5	5	5	5			53.6					26.5				16	726	.				7.92	,	
	С	5	5	5	5	5																				
	D	5	5	5	5	5																				-
	E	5	5	5	5	5													1							<u> </u>
	F	5	5	5	5	5																				
100	Α	5	5	5	5	5	34,2	33.			34.1	21,7	20.2			106	7.4	6.2	7.9	7.6	6.2	297	1.8			7-90
	В	5	3	5	5	5			33,8					20,5	1				6.3					7.91		
	С	5	5	5	5	5																				_
	D	5	5	5	5																					
	E	5	5	5	5	5																				
	F	5	6	5	5	5																				

Initial Counts QC'd by:	<u>S</u>						
Initiated by:	<u>,/(</u> 6						
Animal Source/Date Rece	ived: 18 8 8 8 8 8 8 9 Age at Initiation:			Feed	ding Ti	mes	
Animal Acclimation Quali	fiers (circle all that apply): Q22 / Q23 / Q24 / none		0	24	48	72	96
7		AM:		0100	0810	0855	6400
Comments:	i = initial reading in fresh test solution, f = final reading in test chamber prior to renewal	L	163	>			
	Organisms fed prior to initiation, circle one (y) n)						

Organisms fed prior to initiation, circle one (y) n) (x) (y) (yCH 8/30/17

QC Check:

Final Review: AC 9/8/17

CETIS Summary Report

Report Date:

08 Sep-17 11:32 (p 1 of 1)

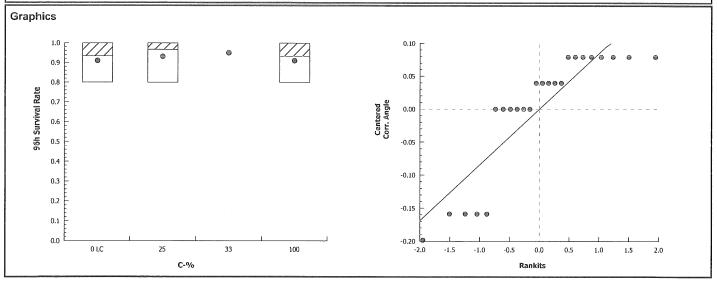
Test Code:

1708-S184 | 07-0584-1714

Pacific Topsn	nelt 96-h Acute	Surviva	al Test						Nautilu	s Environm	ental (CA)
Batch ID: Start Date: Ending Date: Duration:	08-1528-4396 24 Aug-17 14:0 28 Aug-17 14:0 96h		Test Type: Protocol: Species: Source:	Survival (96h) EPA/821/R-02 Atherinops aff Aquatic Biosy	2-012 (2002) i̇̃nis			ne: N	latural Seawat lot Applicable 1d	er	
	17-1645-0419 23 Aug-17 11:1 23 Aug-17 17:1 27h (3°C)		Code: Material: Source: Station:	17-0935 Ambient Sam Shelter Island SIYB-4			ent: A ject:	mec Foster W	/heeler		
Comparison S	Summary										
Analysis ID 14-4778-8074	Endpoint 96h Survival Ra	ate	NOEL 100	. LOEL >100	TOEL NA	PMSD 11.6%	TUQ 40,4	Method	d lany-One Ranl	k Sum Test	N. W. W. W. W.
96h Survival I	Rate Summary						618 AC9	<u> </u>			
C-%	Control Type	Coun	it Mean	95% LCL	_ 95% UCL	Min	Max	Std En	Std Dev	CV%	%Effect
0 25 33 100	Lab Control	6 6 6	0.933 0.966 1 0.933	7 0.881	1 1 1	0.8 0.8 1 0.8	1 1 1	0.04210 0.03333 0 0.04210	0.08165 0	11.07% 8.45% 0.0% 11.07%	0.0% -3.57% -7.14% 0.0%
96h Survival F	Rate Detail										
C-%	Control Type	Rep 1	l Rep 2	Rep 3	Rep 4	Rep 5	Rep 6				
0 25 33	Lab Control	0.8 1 1	1 1 1	1 1 1	1 1 1	1 0.8 1	0.8 1 1				
100		1	1	0.8	1	1	0.8				

Report Date:

08 Sep-17 11:32 (p 1 of 1) 1708-S184 | 07-0584-1714


Test Code:

				Name				1631	Code.		00-3104 0	7-0504-1714	
Pacific Topsn	nelt 9	6-h Acute Surviv	al Test							Nautili	ıs Environr	nental (CA)	
Analysis ID: Analyzed:		1778-8074 Sep-17 11:32	Endpoint: Analysis:	reatments		IS Version		1.8.7					
Data Transfor	rm	Zeta	Alt Hy	p Trials	Seed			PMSD	NOEL	LOEL	TOEL	TU	
Angular (Corre	ected)	NA	C > T	NA	NA			11.6%	100	>100	NA	1	
Steel Many-O	ne Ra	ınk Sum Test											
Control	vs	C-%	Test S	tat Critical	Ties	DF	P-Value	P-Type	Decision(α:5%)				
Lab Control		25	42	26	2	10	0.8900	Asymp	Non-Sig	nificant Effe	ct		
		33	45	26	1	10	0.9626	Asymp	Non-Sig	nificant Effe	ct		
		100	39	26	2	10	0.7500	Asymp	Non-Sig	nificant Effe	ct		
ANOVA Table	!												
Source		Sum Squares	Mean S	Square	DF		F Stat	P-Value	Decisio	n(α:5%)			
Between		0.02599112	0.0086	63706	3		0.873	0.4715	Non-Sig	nificant Effec			
Error		0.1984776	0.0099	23882	20				•				
Total		0.2244688			23		-						

Distributional Tes	ts				
Attribute	Test	Test Stat	Critical	P-Value	Decision(a:1%)
Variances	Mod Levene Equality of Variance	0.873	4.938	0.4715	Equal Variances
Variances	Levene Equality of Variance	7.917	4.938	0.0011	Unequal Variances
Distribution	Shapiro-Wilk W Normality	0.7659	0.884	<0.0001	Non-normal Distribution

96h Survi	val Rate Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	6	0.9333	0.8249	1	1	8.0	1	0.04216	11.07%	0.0%
25		6	0.9667	0.881	1	1	8.0	1	0.03333	8.45%	-3.57%
33		6	1	1	1	1	1	1	0	0.0%	-7.14%
100		6	0.9333	0.8249	1	1	8.0	1	0.04216	11.07%	0.0%

Angular (Corrected) Transfor	med Sumr	mary								
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	6	1.266	1.137	1.395	1.345	1.107	1.345	0.0502	9.71%	0.0%
25		6	1.306	1.204	1.408	1.345	1.107	1.345	0.03969	7.45%	-3.14%
33		6	1.345	1.345	1.345	1.345	1.345	1.345	0	0.0%	-6.27%
100		6	1.266	1.137	1.395	1.345	1.107	1.345	0.0502	9.71%	0.0%

TST

Report Date: Test Code: 08 Sep-17 11:32 (p 1 of 1) 1708-S184 | 07-0584-1714

							1631	Coue.	170	0-0104101	-0304-1712		
Pacific Tops	melt 96-h Acute	Survival [*]	Test						Nautilus	Environn	nental (CA)		
Analysis ID:	10-5041-2600	E	ndpoint:	96h Survival Ra	ate		CET	IS Version	: CETISv1	.8.7			
Analyzed:	08 Sep-17 11:	32 A	nalysis:	Parametric Bio	equivalence	-Two Samp	le Offic	ial Results	s: Yes				
Data Transfo	rm	Zeta	Alt Hy	p Trials	Seed	TST b	PMSD	NOEL	LOEL	TOEL	TU		
Angular (Corr	ected)	NA	C*b < 7	ΓNA	NA	0.8	8.63%	100	>100	NA	1		
TST-Welch's	t Test							•					
Control	vs C-%		Test S	tat Critical	MSD D	P-Value	P-Type	Decision	η(α:10%)				
Lab Control	25*		5.187	1.383	0.078 9	0.0003	CDF	Non-Sigr	nificant Effect				
	33*		8.28	1.476	0.059 5	0.0002	CDF	Non-Sigr	nificant Effect				
	100*		3.938	1.383	0.089 9	0.0017	CDF		nificant Effect				
ANOVA Table)												
Source	Sum Squ	ares	Mean S	Square	DF	F Stat	P-Value	Decision	η(α:5%)				
Between	0.025991	12	0.0086	63706	3	0.873	0.4715	Non-Sigr	ificant Effect				
Error	0.198477	6	0.0099	23882	20			-					
Total	0.224468	8			23								
Distributiona	l Tests												
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)					
Variances	Mod Lev	ene Equal	ity of Varia	nce 0.873	4.938	0.4715	Equal Variances						
Variances	Levene E	Equality of	Variance	7.917	4.938	0.0011	Unequal Variances						
Distribution	Shapiro-'	Wilk W No	ormality	0.7659	0.884	<0.0001	Non-norm	al Distribut	ion				
96h Survival	Rate Summary												
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect		
0	Lab Control	6	0.9333	0.8249	1	1	0.8	1	0.04216	11.07%	0.0%		
25		6	0.9667	0.881	1	1	0.8	1	0.03333	8.45%	-3.57%		
33		6	1	1	1	1	1	1	0	0.0%	-7.14%		
100		6	0.9333	0.8249	1	1	8.0	1	0.04216	11.07%	0.0%		
Angular (Cor	rected) Transfor	med Sum	mary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect		
0	Lab Control	6	1.266	1.137	1.395	1.345	1.107	1.345	0.0502	9.71%	0.0%		
25		6	1.306	1.204	1.408	1.345	1.107	1.345	0.03969	7.45%	-3.14%		
33		6	1.345	1.345	1.345	1.345	1.345	1.345	0	0.0%	-6.27%		
100		6	1.266	1.137	1.395	1.345	1.107	1.345	0.0502	9.71%	0.0%		

Report Date:

08 Sep-17 13:20 (p 1 of 1)

Test Code:

1708-S184 | 07-0584-1714

Pacific Topsmelt 96-h Acute Survival TestNautilus Environmental (CA)Analysis ID:00-7339-4803Endpoint:96h Survival RateCETIS Version:CETISv1.8.7Analyzed:08 Sep-17 13:19Analysis:Linear Interpolation (ICPIN)Official Results:Yes

Linear	Interpola	tion Options						
X Trans	sform	Y Transform	Seed	d	Resamples	Exp 95% CL	Method	
Linear		Linear	5384	179	1000	Yes	Two-Point Interpolation	
Point E	stimates				***************************************			
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL		
EC25	>100	N/A	N/A	<1	NA	NA		
EC50	>100	N/A	N/A	<1	NA	NA		

96h Sur	vivai Rate Summary										
C-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Lab Control	6	0.9333	0.8	1	0.04216	0.1033	11.07%	0.0%	28	30
25		6	0.9667	8.0	1	0.03333	0.08165	8.45%	-3.57%	29	30
33		6	1	1	1	0	0	0.0%	-7.14%	30	30
100		6	0.9333	8.0	1	0.04216	0.1033	11.07%	0.0%	28	30

Water Quality Measurements & Test Organism Survival

Tech Initials Client: AMEC/POSD Test Species: A. affinis 48 96 17-0935 1400 Sample ID: SIYB-4 Start Date/Time: 8/24/2017 c4 RH Counts: Test No.: 1708-S 184 1400 End Date/Time: 8/28/2017 Readings: MS Dilutions made by:

Concentration	Rep		Num Org	ber of		!			Salinit (ppt)	-			Ten	nperat	ture			Disso	lved C (mg/L		n			pH (units)	
		0	24	48	72	96	0	24	37.0 48 ₀	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96
Lab Control	Α	5	4	Ч	4	U	33.8	33.6	243	33.7	33.b	20,3	20.2	20,3	20.5	205	7.4	6.4	0.8	7.4	6.4	7.98	4.89		792	790
#2	В	5	5	5	5	6			33.9					20.2					8.1					7.92		
	С	5	5	5	5	5																				
	D	5	5	5	5	5																				
	Ε	5	5	5	5	5																				
	F	5	И	4	4	4																				
25	Α	5	5	5	5	5	340	33.8	33,6	34.0	343	20,8	w·1	20.6	20,2	20.3	7.1	6.2	7.2	7.4	62	7.95	7.88	8.05	292	7.89
	В	5	5	5	5	5			33,9					2013					6.0					7.91		
	С	5	5	5	5	5																				
	D	5	5	5	5	5																				
	E	5	5	ч	Ч	4																				
	F	5	5	5	5	5																				
Q20 .50 33	Α	5	5	5	.5	6	34.1	33.7	336	34,2	34.5	20,9	W.0	v,y	20.7	20.3	7.1	6.5	7.3	7.5	63	7.96	7.91		7,85	7.93
	В	5	5	5	5	5			33,4					የ					62					7.94		
	С	5	5	5	5	5																				
	D	5	5	5	5	5																				
	E	5	5	5	5	6																				
	F	5	5	5	5	6																				
100	Α	5	5	5	5	5	34,2	33.4	33,4	34.3	34,6	21.6	701	21,2	20.1	20.3	7.3	65		7.4	6.1	7.96	7.91			7.92
	В	5	5	5	5	5			34.0					203					6.2	,				7.42		
	С	5	5	5	5	u																				
	D	5	5	5	5	5																				
	E	5	5	5	5	5																				
	F	5	4	4	4	Ц																				

Initial Counts QC'd by:

Animal Source/Date Receiv	red: PBS 8 2011 Age at Initiation: 1/0		Feed	ding Ti	mes	
Animal Acclimation Qualific	ers (circle all that apply): Q22 / Q23 / Q24 / none	0	24	48	72	96
	AM:		Olto	2410	0855	out
Comments: i =	= initial reading in fresh test solution, f = final reading in test chamber prior to renewal	1630)			
0	organisms fed prior to initiation, circle one (y) / n) (中) はない いんり					

QC Check:

CH 8/30/17

Final Review: AC9/8/17

CETIS Summary Report

Report Date:

08 Sep-17 11:36 (p 1 of 1)

Test Code:

1708-S185 | 07-6123-5784

									oot oodc.		170	0-0100101	0120 010
Pacific Topsr	nelt 96-h Acute	Surviva	al Test								Nautilus	Environm	ental (CA)
Batch ID: Start Date: Ending Date: Duration:	Start Date: 24 Aug-17 14:00 Proto Ending Date: 28 Aug-17 14:00 Speci Duration: 96h Source				rvival (96h) A/821/R-02- erinops affin uatic Biosyst	nis		D B	nalyst: biluent: brine: .ge:		ıral Seawate Applicable	∋r	
•	23 Aug-17 10:1 : 23 Aug-17 17:1	Code: Material: Source: Station:	rial: Ambient Sample ce: Shelter Island Yacht Basin					:lient: 'roject:	Ame	ec Foster W	heeler	-	
Comparison S	Summary												
Analysis ID	Endpoint	NOEI	_	LOEL	TOEL	PMSD	TUQ	Meth					
19-2393-0925	96h Survival Ra	ate	100		>100	NA	12.3%	40.		l Man	y-One Rank	Sum Test	
96h Survival I	Rate Summary						(Q18 Ac 9	18/17				
C-%	Control Type	Coun	it Mean)	95% LCL	95% UCL	Min	Max	Std I	Err	Std Dev	CV%	%Effect
0	Lab Control	6	0.933	3	0.8249	1	0.8	1	0.042	216	0.1033	11.07%	0.0%
25		6	1		1	1	1	1	0		0	0.0%	-7.14%
33		6	0.933	3	0.8249	1	8.0	1	0.042	216	0.1033	11.07%	0.0%
100		6	0.933	3	0.8249	1	0.8	1	0.042	216	0.1033	11.07%	0.0%
96h Survival I	Rate Detail						3-4/1 · · · · · · · · · · · · · · · · · · ·						
C-%	Control Type	Rep 1	Rep 2	2	Rep 3	Rep 4	Rep 5	Rep 6					
0	Lab Control	0.8	1		1	1	1	0.8					
25		1	1		1	1	1	1					
33		1	0.8		0.8	1	1	1					
100		1	1		1	1	0.8	0.8					

Report Date: Test Code:

08 Sep-17 11:36 (p 1 of 1)

1708-S185 | 07-6123-5784

		Commence of the second			A =			rest	Code:	170	8-5185 0	7-6123-578
Pacific	Topsr	melt 96-h Acute	Surviva	l Test	50400					Nautilus	Environi	mental (CA
Analysi Analyze		19-2393-0925 08 Sep-17 11		•	6h Survival Ra Ionparametric		Treatments		IS Version: cial Results:	CETISv1 Yes	.8.7	
Data Tr	ansfo	rm	Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU
Angular	(Corre	ected)	NA	C > T	NA	NA		12.3%	100	>100	NA	1
steel M	lany-O	ne Rank Sum 1	Гest									
Control	l	vs C-%		Test Sta	at Critical	Ties DI	F P-Value	P-Type	Decision(α:5%)		
ab Cor	ntrol	25		45	26	1 10	0.9626	Asymp	Non-Signif	icant Effect		············
		33		39	26	2 10	0.7500	Asymp	Non-Signif	icant Effect		
		100		39	26	2 10	0.7500	Asymp	Non-Signif	icant Effect		
NOVA	Table)										
ource		Sum Sq	uares	Mean S	quare	DF	F Stat	P-Value	Decision(α: 5 %)		
Betweer	n	0.028353	395	0.00945	1317	3	0.8333	0.4913	Non-Signif	icant Effect		
rror		0.226831		0.01134	158	20	South Audi					
otal		0.255185	55			23		Notes in the second se				
istribu	utional	l Tests			9090 9000000000000000000000000000000000							
Attribut		Test	- 20000		Test Stat	Critical	P-Value	Decision	(α:1%)			
/ariance				ality of Variand		4.938	0.4913	Equal Var				
/ariance				of Variance	13.33	4.938	<0.0001	Unequal \				
istribut	tion	Shapiro-	-Wilk W N	Normality	0.7174	0.884	<0.0001	Non-norm	al Distributio	n		
6h Sur	rvival I	Rate Summary										
:-%	72-74-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
1		Lab Control	6	0.9333	0.8249	1	1	0.8	1	0.04216	11.07%	0.0%
5			6	1	1	1	1	1	1	0	0.0%	-7.14%
3			6	0.9333	0.8249	1	1	8.0	1	0.04216	11.07%	0.0%
00			6	0.9333	0.8249	1	1	0.8	1	0.04216	11.07%	0.0%
ngular	r (Corr	rected) Transfo	rmed Su	mmary								
C-%		Control Type	Count	: Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
		Lab Control	6	1.266	1.137	1.395	1.345	1.107	1.345	0.0502	9.71%	0.0%
25			6	1.345	1.345	1.345	1.345	1.345	1.345	0	0.0%	-6.27%
33			6	1.266	1.137	1.395	1.345	1.107	1.345	0.0502	9.71%	0.0%
00			6	1.266	1.137	1.395	1.345	1.107	1.345	0.0502	9.71%	0.0%
raphic	s											
	1.0 F	<i>777</i> 3			777		0.08 F		,© (368888 9 6	9 9	•
	0.9	9	•	*			0.06		1			
	0.8						0.04		F.			
	F						0.02		l F			
<u> </u>	0.7					ā	0.00					_
96h Survival Rate	0.6					g E	0.00					
ShS	0.5					Č	-0.04 E		/ ;			
							-0.06					
-	0.4 ⊢						-0.08	/	/			
	0.4						· E		1			
	0.4						-0.10 E	/	1			
	E						-0.10 E		 			
	0.3						-0.12		1 1 1			
	0.3			ı	1	Ţ	-0.12			1		
	0.3	0 LC	25	33	100	1	-0.12	-1.5 -1.0	-0.5 0.0	0.5 1.0	0 1.5	2.0

Report Date: Test Code: 08 Sep-17 11:36 (p 1 of 1) 1708-S185 | 07-6123-5784

			10				Test	Code:	1708	3-5185 07	'-6123-578 ²
Pacific Tops	smelt 96-h Acute	Survival Te	est						Nautilus	Environn	nental (CA)
Analysis ID: Analyzed:	12-8591-8681 08 Sep-17 11:		dpoint: 96h alysis: Para			-Two Sample		S Version: ial Results:	CETISv1. Yes	8.7	
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed	TST b	PMSD	NOEL	LOEL	TOEL	TU
Angular (Cor	rected)	NA	C*b < T	NA	NA	0.8	8.63%	100	>100	NA	1
TST-Welch's	t Test										
Control	vs C-%		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision(α:10%)		
Lab Control	25*		8.28	1.476	0.059 5	0.0002	CDF	Non-Signif	icant Effect		
	33*		3.938	1.383	0.089 9	0.0017	CDF	Non-Signif	icant Effect		
	100*		3.938	1.383	0.089 9	0.0017	CDF	Non-Signif	icant Effect		
ANOVA Tabl	e					***************************************					
Source	Sum Squ	ares	Mean Squ	are	DF	F Stat	P-Value	Decision(a:5%)		
Between	0.0283539	95	0.0094513	17	3	0.8333	0.4913	Non-Signif	icant Effect		
Error	0.2268316	6	0.0113415	8	20						
Total	0.2551855	5			23	_					
Distribution	al Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision(α:1%)			
Variances	Mod Leve	ene Equality	of Variance	0.8333	4.938	0.4913	Equal Var	iances			
Variances	Levene E	Equality of V	ariance	13.33	4.938	<0.0001	Unequal V	/ariances			
Distribution	Shapiro-\	Wilk W Norr	nality	0.7174	0.884	<0.0001	Non-norm	al Distributio	n		
96h Survival	Data Cumman										
	Rate Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
C-%	-	Count 6	Mean 0.9333	95% LCL 0.8249	95% UCL 1	Median	Min 0.8	Max 1	Std Err 0.04216	CV% 11.07%	%Effect
	Control Type							***************************************			
0	Control Type	6	0.9333	0.8249	1	1	0.8	1	0.04216	11.07%	0.0%
0 25	Control Type	6 6	0.9333 1	0.8249 1	1 1	1 1	0.8 1	1	0.04216 0	11.07% 0.0%	0.0% -7.14%
0 25 33 100	Control Type	6 6 6	0.9333 1 0.9333 0.9333	0.8249 1 0.8249	1 1 1	1 1 1	0.8 1 0.8	1 1 1	0.04216 0 0.04216	11.07% 0.0% 11.07%	0.0% -7.14% 0.0%
0 25 33 100	Control Type Lab Control	6 6 6	0.9333 1 0.9333 0.9333	0.8249 1 0.8249	1 1 1	1 1 1	0.8 1 0.8	1 1 1	0.04216 0 0.04216	11.07% 0.0% 11.07%	0.0% -7.14% 0.0%
0 25 33 100 Angular (Coo	Control Type Lab Control rrected) Transfore	6 6 6 6 med Summ	0.9333 1 0.9333 0.9333	0.8249 1 0.8249 0.8249	1 1 1 1	1 1 1	0.8 1 0.8 0.8	1 1 1 1	0.04216 0 0.04216 0.04216	11.07% 0.0% 11.07% 11.07%	0.0% -7.14% 0.0% 0.0%
0 25 33 100 Angular (Cor	Control Type Lab Control rrected) Transford Control Type	6 6 6 6 med Summ	0.9333 1 0.9333 0.9333 mary	0.8249 1 0.8249 0.8249	1 1 1 1 1 95% UCL	1 1 1 1 Median	0.8 1 0.8 0.8	1 1 1 1 Max	0.04216 0 0.04216 0.04216	11.07% 0.0% 11.07% 11.07%	0.0% -7.14% 0.0% 0.0%
0 25 33 100 Angular (Cor C-%	Control Type Lab Control rrected) Transford Control Type	6 6 6 6 med Summ Count	0.9333 1 0.9333 0.9333 mary Mean 1.266	0.8249 1 0.8249 0.8249 95% LCL 1.137	1 1 1 1 1 95% UCL 1.395	1 1 1 1 1 Median 1.345	0.8 1 0.8 0.8 .8 Min 1.107	1 1 1 1 1 Max 1.345	0.04216 0 0.04216 0.04216 Std Err 0.0502	11.07% 0.0% 11.07% 11.07% CV% 9.71%	0.0% -7.14% 0.0% 0.0% • Effect

Report Date: Test Code:

08 Sep-17 13:20 (p 1 of 1)

1708-S185 | 07-6123-5784

Nautilus Environmental (CA)

Analysis ID: 10-2513-5968

Analyzed:

Pacific Topsmelt 96-h Acute Survival Test

08 Sep-17 13:20

Endpoint: 96h Survival Rate

Analysis: Linear Interpolation (ICPIN

CETIS Version:

CETISv1.8.7

۷)	Official Results:	Yes	

Linearir	nterpolat	tion Options						
X Transf	form	Y Transform	Seed	i	Resamples	Exp 95% CL	Method	
Linear		Linear	1625	683	1000	Yes	Two-Point Interpolation	
Point Es	timates							
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL		
EC25	>100	N/A	N/A	<1	NA	NA		***************************************
EC50	>100	N/A	N/A	<1	NA	NA		

96h Sur	vival Rate Summary				Cal	culated Varia	te(A/B)				
C-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Lab Control	6	0.9333	0.8	1	0.04216	0.1033	11.07%	0.0%	28	30
25		6	1	1	1	0	0	0.0%	-7.14%	30	30
33		6	0.9333	0.8	1	0.04216	0.1033	11.07%	0.0%	28	30
100		6	0.9333	8.0	1	0.04216	0.1033	11.07%	0.0%	28	30

Water Quality Measurements & Test Organism Survival

Client	: AME	EC/POSD	Test Spo	ecies: A. affinis			Te	ch Initi	als	
Sample ID	: SIYI	3-5 17-09	36 Start Date/	Time: 8/24/2017 1400		0	24	48	72	96
Test No.	: 170	3-s 185	End Date/	Time: 8/28/2017 1400	Counts:	A	206	PH	RH	RH
					Readings:		CG	PA	45	RH
					Dilutions made by:	(Y)		PA		
centration	Rep	Number of Live Organisms	Salinity (ppt)	Temperature (°C)	Dissolved Oxygen (mg/L)			pH (units))	

Concentration	Rep		Numl Org	ber o ganis		•		S	Salinit (ppt)	у			Ter	npera	ture				lved C (mg/L		n			pH (units)	
		0	24	48	72	96	0	24	48	72		0	24	48	72		0	24	48	72	96	0	24	48	72	96
Lab Control	Α	5	Ц	4	4	4	37.8	33.V	33.6	33.7	33.6	20,3	20-2	jo3	20,5	20.5	24	6.41	6.8	7.4	6.4	7.98				790
#2	В	5	5	5	5	55			33.9					202					6.)					5.9	2,	
	С	5	5	5	5	5																				
	D	5	5	5	5	5																				
	E	5	學	5	5	5																				
	F	5	Ч	4	4	4																				
25	A	5	5	5	5	5	340	33.W	33.6	33,6	33.6	30.7	101	505	20,4	20.5	7.2	63	7.1	2.2	6.1	7.96	4.89			790
	В	5	5	5	5	5			\$3.7					20,3					6.1					7,92		
	С	5	5	5	5	5																				
	D	5	5	5	5	5																				
	Е	5	5	5	5	5																				
	F	5	5	5	5	5																				
Q20,50 33	А	5	5	5	5	5	34.1	23,8	33.7	33.9	341	20.6	W.0	2G.6	20,3	20.2	7.4	6.3	7.2	7.1	6.0	7.99	7.88			79
	В	5	5	4	4	4			33,4					20,2					5.3					7.90		
	С	5	5	ij	Ч	N																				
	D	5	5	5	5	5																				
	Е	5	5	5	5	5																				
	F	5	5	5	5	5																				
100	Α	5	5	5	5	5	34,2	94.O	35.8	34.1	343	21/3	1-45		20.3	20.2	7.3	63	\$.D	7.2	5.9	7.9;			7.91	7.89
	В	5	5	5	5	5			34,1					20.2					6.0					290		
	С	5	5	5	5	5																				
	D	5	5	5	5	5																				
	E	5	5	5	5	4																				
	F	5	Li	L	ч	u																				

Initiated by: Feeding Times Age at Initiation: Animal Source/Date Received: 0 24 48 72 96 Q22 / Q23 / Q24 / none Animal Acclimation Qualifiers (circle all that apply): 090008100355191 AM: i = initial reading in fresh test solution, f = final reading in test chamber prior to renewal PM: Comments: Organisms fed prior to initiation, circle one (y / n)

QC Check:

CH 8139/17

inal Review:

AC 9/8/17

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

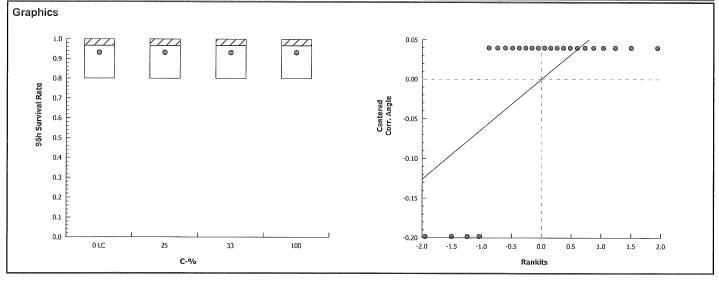
CETIS Summary Report

Report Date:

08 Sep-17 11:40 (p 1 of 1)

Test Code:

1708-S186 | 09-9579-0031


Pacific Topsn	nelt 96-h Acute	Surviva	al Test							Nautilu	s Environm	ental (CA)
Batch ID: Start Date: Ending Date: Duration:	14-5089-9384 24 Aug-17 14:0 28 Aug-17 14:0 96h		Test Type: Protocol: Species: Source:	EPA/ Athe	ival (96h) /821/R-02- rinops affin atic Biosyst	is		Di Bi	rine:	Natural Seawal Not Applicable 11d	er	
Sample ID: Sample Date: Receive Date: Sample Age:	•		Code: Material: Source: Station:		ient Sampl ter Island Y	e ⁄acht Basin			lient: roject:	Amec Foster W	/heeler	
Comparison S	Summary								V 60.000 - 12.600 - 12.600 - 12.600 - 12.600 - 12.600 - 12.600 - 12.600 - 12.600			
Analysis ID 10-7991-7688	Endpoint 96h Survival R	ate	NOEI 100		LOEL >100	TOEL NA	PMSD 11.4%	TU a	Metho ろ Steel	od Many-One Ran	k Sum Test	No. of the second secon
96h Survival I	Rate Summary	CONCERNATION AND ADDRESS OF THE PARTY OF THE			THE COLUMN TWO IS NOT THE PERSON OF THE PERS		6	218 AC 9	18/17			
C-%	Control Type	Cour	ıt Mean	ì	95% LCL	95% UCL	Min	Max	Std E	rr Std Dev	CV%	%Effect
0 25 33 100	Lab Control	6 6 6	0.966 0.966 0.966 0.966	7 7	0.881 0.881 0.881 0.881	1 1 1	0.8 0.8 0.8 0.8	1 1 1	0.0333 0.0333 0.0333	0.08165 0.08165	8.45% 8.45% 8.45% 8.45%	0.0% 0.0% 0.0% 0.0%
96h Survival í	Rate Detail											
C-%	Control Type	Rep '	1 Rep 2	2	Rep 3	Rep 4	Rep 5	Rep 6				
0 25	Lab Control	1	1		1	1	0.8	1				
33 100		1 1	0.8 1		1 0.8	1 1	1 1	1 1				

Report Date:

08 Sep-17 11:40 (p 1 of 1) 1708-S186 I 09-9579-0031

Test Code:

							rest	Code:	1700	3-310010	9-9579-003
Pacific Topsr	melt 96-h Acute	Survival Te	st						Nautilus	Environ	nental (CA
Analysis ID: Analyzed:	10-7991-7688 08 Sep-17 11:		-	Survival Ra		reatments		IS Version: ial Results:	CETISv1. Yes	8.7	
Data Transfo	rm	Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU
Angular (Corre	ected)	NA	C > T	NA	NA		11.4%	100	>100	NA	1
Steel Many-O	ne Rank Sum T	est									
Control	vs C-%		Test Stat	Critical	Ties DF	P-Value	P-Type	Decision(α:5%)		
Lab Control	25		39	26	2 10	0.7500	Asymp	Non-Signif	icant Effect		
	33		39	26	2 10	0.7500	Asymp	Non-Signif	icant Effect		
	100		39	26	2 10	0.7500	Asymp	-	icant Effect		
ANOVA Table											
Source	Sum Squ	ares	Mean Squ	ıare	DF	F Stat	P-Value	Decision(a: 5 %)		
Between	0		0		3	0	1.0000	Non-Signif	icant Effect		
Error	0.1890263	3	0.0094513	317	20						
Total	0.189026	3			23	_					
Distributional	l Tests								A CONTRACTOR OF THE CONTRACTOR		
Attribute	Test			Test Stat	Critical	P-Value	Decision(α:1%)			
Variances	Mod Leve	ene Equality	of Variance	0	4.938	1.0000	Equal Var	iances			······································
variances				_							
Variances	Levene E	Equality of V	ariance	0	4.938	1.0000	Equal Var	iances			
		Equality of Vi Wilk W Norn		0 0.4538	4.938 0.884	1.0000 <0.0001	•	iances al Distributio	n		
Variances Distribution							•		n		
Variances Distribution	Shapiro-\						•		n Std Err	CV%	%Effect
Variances Distribution 96h Survival I	Shapiro-\ Rate Summary	Wilk W Norn	nality	0.4538	0.884	<0.0001	Non-norm	al Distributio		CV% 8.45%	%Effect 0.0%
Variances Distribution 96h Survival I C-%	Shapiro-\ Rate Summary Control Type	Wilk W Norn	nality Mean	0.4538 95% LCL	0.884 95% UCL	<0.0001 Median	Non-norm	al Distributio	Std Err		
Variances Distribution 96h Survival I C-% 0	Shapiro-\ Rate Summary Control Type	Wilk W Norn Count 6	Mean 0.9667	0.4538 95% LCL 0.881	0.884 95% UCL	<0.0001 Median 1	Min 0.8	al Distributio Max 1	Std Err 0.03333	8.45%	0.0%
Variances Distribution 96h Survival I C-% 0 25	Shapiro-\ Rate Summary Control Type	Count 6 6	Mean 0.9667 0.9667	0.4538 95% LCL 0.881 0.881	0.884 95% UCL 1	<0.0001 Median 1	Min 0.8 0.8	Max 1	Std Err 0.03333 0.03333	8.45% 8.45%	0.0%
Variances Distribution 96h Survival I C-% 0 25 33 100	Shapiro-\ Rate Summary Control Type	Count 6 6 6 6	Mean 0.9667 0.9667 0.9667 0.9667	0.4538 95% LCL 0.881 0.881 0.881	0.884 95% UCL 1 1	<0.0001 Median 1 1 1	Min 0.8 0.8 0.8	Max 1 1 1	Std Err 0.03333 0.03333 0.03333	8.45% 8.45% 8.45%	0.0% 0.0% 0.0%
Variances Distribution 96h Survival I C-% 0 25 33 100 Angular (Corr	Shapiro-N Rate Summary Control Type Lab Control	Count 6 6 6 6	Mean 0.9667 0.9667 0.9667 0.9667	0.4538 95% LCL 0.881 0.881 0.881	0.884 95% UCL 1 1	<0.0001 Median 1 1 1	Min 0.8 0.8 0.8	Max 1 1 1	Std Err 0.03333 0.03333 0.03333	8.45% 8.45% 8.45%	0.0% 0.0% 0.0%
Variances Distribution 96h Survival I C-% 0 25 33 100 Angular (Corr	Shapiro-Nate Summary Control Type Lab Control rected) Transfor	Count 6 6 6 6 6 med Summ	Mean 0.9667 0.9667 0.9667 0.9667	95% LCL 0.881 0.881 0.881	95% UCL 1 1 1 1	<0.0001 Median 1 1 1 1	Min 0.8 0.8 0.8 0.8	Max 1 1 1	Std Err 0.03333 0.03333 0.03333 0.03333	8.45% 8.45% 8.45% 8.45%	0.0% 0.0% 0.0% 0.0%
Variances Distribution 96h Survival I C-% 0 25 33 100	Shapiro-Nate Summary Control Type Lab Control rected) Transfor Control Type	Count 6 6 6 6 med Summ	Mean 0.9667 0.9667 0.9667 0.9667 ary	95% LCL 0.881 0.881 0.881 0.881	95% UCL 1 1 1 1 95% UCL	<0.0001 Median 1 1 1 1 1 Median	Min 0.8 0.8 0.8 0.8 0.8	Max 1 1 1 1 Max	Std Err 0.03333 0.03333 0.03333 0.03333	8.45% 8.45% 8.45% 8.45%	0.0% 0.0% 0.0% 0.0%
Variances Distribution 96h Survival I C-% 0 25 33 100 Angular (Corr C-% 0	Shapiro-Nate Summary Control Type Lab Control rected) Transfor Control Type	Count 6 6 6 6 med Summ Count 6	Mean 0.9667 0.9667 0.9667 0.9667 ary Mean 1.306	95% LCL 0.881 0.881 0.881 0.881 1.881	95% UCL 1 1 1 1 1 1 1 1 1 1. 1. 1. 1. 1. 1. 1.	<0.0001 Median 1 1 1 1 Median 1.345	Min 0.8 0.8 0.8 0.8 1.107	Max 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Std Err 0.03333 0.03333 0.03333 0.03333 Std Err 0.03969	8.45% 8.45% 8.45% 8.45% 7.45%	0.0% 0.0% 0.0% 0.0% WEffect

Report Date:

08 Sep-17 11:40 (p 1 of 1)

•	•	7.1
est Code:	1708-S186	09-9579-00

Pacific Tops	melt 96-h Acute	Survival	Test						Nautilus	s Environ	mental (CA
Analysis ID:	12-2966-7869	E	E ndpoint : 96h	Survival Ra	ate		CET	IS Version	: CETISv1	.8.7	
Analyzed:	08 Sep-17 11:	40 <i>A</i>	Analysis: Par	ametric Bioe	equivalence	-Two Samp	le Offic	ial Result	s: Yes		
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed	TST b	PMSD	NOEL	LOEL	TOEL	TU
Angular (Corr	rected)	NA	C*b < T	NA	NA	0.8	7.77%	100	>100	NA	1
TST-Welch's	t Test										
Control	vs C-%		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision	η(α:10%)		
Lab Control	25*		5.137	1.383	0.070 9	0.0003	CDF	Non-Sigr	nificant Effect		
	33*		5.137	1.383	0.070 9	0.0003	CDF	Non-Sigr	nificant Effect		
	100*		5.137	1.383	0.070 9	0.0003	CDF	Non-Sigr	nificant Effect		
ANOVA Tabl	e										
Source	Sum Squ	ares	Mean Squ	ıare	DF	F Stat	P-Value	Decision	n(α:5%)		
Between	0		0		3	0	1.0000	Non-Sigr	nificant Effect		
Error	0.189026	3	0.0094513	317	20						
Total	0.189026	3			23						
Distributiona	al Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision(α:1%)			
Variances	Mod Lev	ene Equa	ality of Variance	0	4.938	1.0000	Equal Var	iances			
Variances	Levene E	Equality o	f Variance	0	4.938	1.0000	Equal Var	iances			
Distribution	Shapiro-	Wilk W N	ormality	0.4538	0.884	<0.0001	Non-norm	al Distribut	ion		
96h Survival	Rate Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	6	0.9667	0.881	1	1	0.8	1	0.03333	8.45%	0.0%
25		6	0.9667	0.881	1	1	8.0	1	0.03333	8.45%	0.0%
33		6	0.9667	0.881	1	1	8.0	1	0.03333	8.45%	0.0%
100		6	0.9667	0.881	1	1	0.8	1	0.03333	8.45%	0.0%
Angular (Cor	rected) Transfor	med Sur	nmary								
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effec
0	Lab Control	6	1.306	1.204	1.408	1.345	1.107	1.345	0.03969	7.45%	0.0%
25		6	1.306	1.204	1.408	1.345	1.107	1.345	0.03969	7.45%	0.0%
33		6	1.306	1.204	1.408	1.345	1.107	1.345	0.03969	7.45%	0.0%
100		6	1.306	1.204	1.408	1.345	1.107	1.345	0.03969	7.45%	0.0%

Analyst: QA: <u>AC9/8</u>/17

33

100

000-089-187-4

6

6

0.9667

0.9667

8.0

8.0

Report Date:

08 Sep-17 13:18 (p 1 of 1)

Test Code:

1708-S186 | 09-9579-0031

30

30

Pacific Topsn	nelt 96-h Acute Si	urvival Test			Nautilus Environmental (CA)
Analysis ID:	15-1267-4793	Endpoint:	96h Survival Rate	CETIS Version:	CETISv1.8.7

Analyzed:	08 Sep-17 13:18	Analysis:	Linear Interpolation (ICPIN)	Official Results:	Yes

Linear	Interpola	tion Options										<u> </u>
X Trans	sform	Y Transform	Seed	k	Resamples	Exp 95%	CL Met	hod				
Linear		Linear	1391	381	1000	Yes	Two	-Point Interp	olation			
Point E	stimates											
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL						
EC25	>100	N/A	N/A	<1	NA	NA						
EC50	>100	N/A	N/A	<1	NA	NA						
96h Su	rvival Ra	te Summary				Calcu	lated Varia	ite(A/B)				
C-%	Co	ntrol Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Lat	Control	6	0.9667	7 0.8	1	0.03333	0.08165	8.45%	0.0%	29	30
25			6	0.9667	7 0.8	1	0.03333	0.08165	8.45%	0.0%	29	30

1

1

0.03333

0.03333

0.08165

0.08165

8.45%

8.45%

0.0%

0.0%

29

29

Analyst: A QA: 29/1/17

CETIS™ v1.8.7.20

Marine Acute Bioassay Static-Renewal Conditions

Water Quality Measurements & Test Organism Survival

Client: AMEC/POSD		Test Species: A. affinis				Te	ch Initi	ials	
Sample ID: SIYB-6	17-0937	Start Date/Time: 8/24/2017	1430		0	24	48	72	96
Test No.: 1708-S186		End Date/Time: 8/28/2017	1405	Counts:	(6)	LG	PH	RH	RH
				Readings:	Al (Ca	ACG	Ars	PH
				Dilutions made by:	Ŕ		PA	®	

Concentration	Rep			ber c ganis	of Live sms	•		;	Salinit (ppt)				Tei	mpera (°C)	ture				lved ((mg/L	Oxyge .)	n			pH (units	.)	
		0	24	48	72	96	0	24	48		96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96
Lab Control	Α	5	5	5	5	5	336	33.5	326	33.6	33.8	20,2	าม.บ	20,3	20,3	20.3	7.4	6.3	7.0	75	6.1	8.00		8,07		
#3	В	5	5	5	5	5			336					20,2					1.2					7.9		
	С	5	Š	5	5	5																				
	D	5	5	5	5	5																				
	Е	5	ч	4	4	4																				
	F	5	5	5	5	5																				
25	Α	5	5	5	5	5	33, 1	33.H	33.7	34.6	343	20.4	w.0	20,7	20,2	10.2	7,4	6.4	6.9	7.6	6.3	7.99	392	8.03	7.94	7.93
	В	5	5	5	5	5			\$3,4					203					6.3					7,93		
	С	5	5	5	5	5																				
	D	5	5	5	5	5																				
	Ε	5	μ	4	4	ч																				
	F	5	5	5	5	5																				
Q20 50 33	Α	5	5	5	.5	5	34.0	35.4	\$5,7	340	24.2	205	20.0	20.9	20.2	10.2	7.5	6.3	7.1	7.4	4.V	298	1,83	8.02	7.93	7.91
	В	5	5	5	5	Й			33.46					202		_{20.} 1			6.3					7.40	,	,
	С	5	5	5	5	5																				
	D	5	5	5	5	5																				
	Е	5	5	5	5	5																				
	F	5	5	5	5	5																				
100	А	5	5	5	5	5	34.3	34.0	33,8	34.	34.V	21.4	wi	209	20.3	20.7	フス	6.3	7.9	6.2	6.2	7.96	488	7.97	731	7.92
	В	5	5	5	5	5			34,1	,		,		20.2					63					7.91		
	С	5	4	4	4	4													,							
	D	5	5	15	5	5																				
	E	5	5	5	5	5																				
	F	5	5	5	5	5																				

Animal Source/Date Received:

Animal Acclimation Qualifiers (circle all that apply):

Q22 / Q23 / Q24 / none

Comments:

i = initial reading in fresh test solution, f = final reading in test chamber prior to renewal

Organisms fed prior to initiation, circle one (y / n) PATA Q88/2017

QC Check:

OH 8/30/17

Final Review: AC 9/8/17

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

CETIS Summary Report

Report Date:

08 Sep-17 11:43 (p 1 of 1)

Test Code:

1708-S187 | 06-6676-6511

Pacific Topsm	nelt 96-h Acute S	Surviva	al Test						Nautilu	s Environn	nental (CA)
Batch ID: Start Date: Ending Date: Duration:	15-0080-3621 24 Aug-17 14:3 28 Aug-17 14:0 96h		Test Type: Protocol: Species: Source:	Atherinops	-02-012 (2002)		Ana Dilu Brin Age	ent: Na e: No	tural Seawat t Applicable d	er	` '
•	08-1545-0123 23 Aug-17 08:1 23 Aug-17 17:1 30h (11.5 °C)		Code: Material: Source: Station:	17-0938 Ambient Sa Shelter Isla SIYB-REF	imple nd Yacht Basin		Clie Proj		nec Foster W	heeler	
Comparison S	Summary										
Analysis ID 09-1117-6949	Endpoint 96h Survival Ra	ite	NOEL 100	. LOEL >100	TOEL NA	PMSD 11.4%	TUCK 1.0.31	Method Steel Ma	iny-One Ranl	s Sum Test	
96h Survival F	Rate Summary						618 AC 9	1811			
C-%	Control Type	Cour	ıt Mean	95% L	.CL 95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0 25 33 100	Lab Control	6 6 6	0.966 0.966 0.966 0.966	7 0.881 7 0.881	1 1 1	0.8 0.8 0.8 0.8	1 1 1 1	0.03333 0.03333 0.03333 0.03333	0.08165 0.08165 0.08165 0.08165	8.45% 8.45% 8.45% 8.45%	0.0% 0.0% 0.0% 0.0%
96h Survival F	Rate Detail										
	Control Type	Rep '	l Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	NX.9194993.5500016.55		00-500-00-00-0	
0 25 33	Lab Control	1 1 1	1 1 1	1 1 1	1 1 1	0.8 1 1	1 0.8 0.8				
100		0.8	1	1	1	1	1				

Report Date:

08 Sep-17 11:43 (p 1 of 1)

Pacific Topsmelt 96-h Acute Survival Test

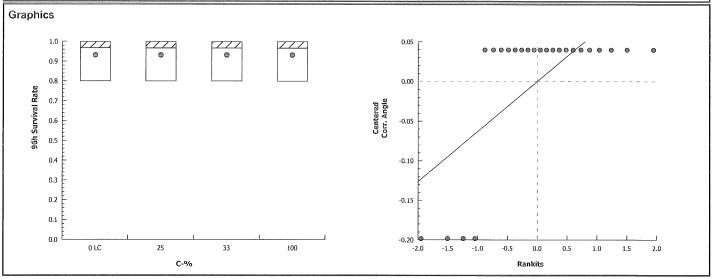
Nautilus Environmental (CA)

Applysis ID: 09 1117 6949 Englacity 96h Supplyal Reta

Analysis ID:	09-1117-6949	Endpoint:	96h Survival Rate	CETIS Version:	CETISv1.8.7
Analyzed:	08 Sep-17 11:43	Analysis:	Nonparametric-Control vs Treatments	Official Results:	Yes

Data Transform	Zeta	Alt Hyp	Trials	Seed	PMSD	NOEL	LOEL	TOEL	TU
Angular (Corrected)	NA	C > T	NA	NA	11.4%	100	>100	NA	1

Steel Many-One Rank Sum Test


Control	vs	C-%	Test Stat	Critical	Ties	DF P-Value	P-Type	Decision(α:5%)
Lab Control		25	39	26	2	10 0.7500	Asymp	Non-Significant Effect
		33	39	26	2	10 0.7500	Asymp	Non-Significant Effect
		100	39	26	2	10 0.7500	Asymp	Non-Significant Effect

ANOVA Table						
Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(α:5%)
Between	0	0	3	0	1.0000	Non-Significant Effect
Error	0.1890263	0.009451317	20			
Total	0.1890263		23			

Distributional Tests Attribute Test Test Stat Critical P-Value Decision(a:1%) Variances Mod Levene Equality of Variance 0 4.938 1.0000 **Equal Variances** Variances Levene Equality of Variance 0 4.938 1.0000 **Equal Variances** Distribution Shapiro-Wilk W Normality 0.884 0.4538 < 0.0001 Non-normal Distribution

96h Surviva	I Rate Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	6	0.9667	0.881	1	1	0.8	1	0.03333	8.45%	0.0%
25		6	0.9667	0.881	1	1	8.0	1	0.03333	8.45%	0.0%
33		6	0.9667	0.881	1	1	8.0	1	0.03333	8.45%	0.0%
100		6	0.9667	0.881	1	1	8.0	1	0.03333	8.45%	0.0%

Angular (Co	orrected) Transfor	med Sumr	nary								
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	6	1.306	1.204	1.408	1.345	1.107	1.345	0.03969	7.45%	0.0%
25		6	1.306	1.204	1.408	1.345	1.107	1.345	0.03969	7.45%	0.0%
33		6	1.306	1.204	1.408	1.345	1.107	1.345	0.03969	7.45%	0.0%
100		6	1.306	1.204	1.408	1.345	1.107	1.345	0.03969	7.45%	0.0%

Analyst: QA.A.C.91817

000-089-187-3 CETIS™ v1.8.7.20

Report Date: Test Code: 08 Sep-17 11:43 (p 1 of 1) 1708-S187 | 06-6676-6511

							res	t Code:	17	08-S187 0	06-6676-651
Pacific Tops	melt 96-h Acute	Surviva	al Test						Nautilu	s Environ	mental (CA
Analysis ID:	11-5855-5801		Endpoint:	96h Survival	Rate		CE.	TIS Version	n: CETISv	1.8.7	
Analyzed:	08 Sep-17 11	:43	Analysis:	Parametric B	ioequivalend	e-Two Sam	nple Off i	icial Result	ts: Yes		
Data Transfe	orm	Zeta	Alt H	p Trials	Seed	TST b	PMSD	NOEL	LOEL	TOEL	TU
Angular (Cor	rected)	NA	C*b <	T NA	NA	0.8	7.77%	100	>100	NA	1
TST-Welch's	t Test										
Control	vs C-%		Test S	stat Critical	MSD E	F P-Value	P-Type	Decisio	n(α:10%)		
Lab Control	25*		5.137	1.383	0.070 9	0.0003	CDF		nificant Effec	t	
	33*		5.137	1.383	0.070	0.0003	CDF		nificant Effec		
	100*		5.137	1.383	0.070 9	0.0003	CDF		nificant Effec		
ANOVA Tabl	e			The state of the s							
Source	Sum Squ	ıares	Mean	Square	DF	F Stat	P-Value	Decisio	n(α:5%)		
Between	0		0		3	0	1.0000		nificant Effec	t	
Error	0.189026	3	0.0094	51317	20			Ū			
Total	0.189026	3		T. Washington	23						
Distributiona	al Tests										
Attribute	Test			Test Sta	t Critical	P-Value	Decision	ı(α:1%)			
Variances	Mod Lev	ene Equ	ality of Varia	nce 0	4.938	1.0000	Equal Va	riances	***************************************		
Variances	Levene E	Equality (of Variance	0	4.938	1.0000	Equal Va	riances			
Distribution	Shapiro-	Wilk W I	Vormality	0.4538	0.884	<0.0001	Non-norn	nal Distribut	tion		
96h Survival	Rate Summary										
C-%	Control Type	Coun	t Mean	95% LCI	_ 95% UCI	_ Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	6	0.9667	0.881	1	1	0.8	1	0.03333	8.45%	0.0%
25		6	0.9667	0.881	1	1	0.8	1	0.03333	8.45%	0.0%
33		6	0.9667	0.881	1	1	0.8	1	0.03333	8.45%	0.0%
100	****	6	0.9667	0.881	1	1	0.8	1	0.03333	8.45%	0.0%
Angular (Cor	rected) Transfor	med Su	mmary								
C-%	Control Type	Count	Mean_	95% LCI	_ 95% UCL	. Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	6	1.306	1.204	1.408	1.345	1.107	1.345	0.03969	7.45%	0.0%
25		6	1.306	1.204	1.408	1.345	1.107	1.345	0.03969	7.45%	0.0%
33		6	1.306	1.204	1.408	1.345	1.107	1.345	0.03969	7.45%	0.0%
100		6	1.306	1.204	1.408	1.345	1.107	1.345	0.03969	7.45%	0.0%

6

0.9667

8.0

100

Report Date:

08 Sep-17 15:09 (p 1 of 1)

Test Code:

1708-S187 | 06-6676-6511

Pacific Topsr	nelt 96-h Acute Survi		Nautilus Environmental (CA)		
Analysis ID:	00-5501-9416	Endpoint:	96h Survival Rate	CETIS Version:	CETISv1.8.7
Analyzed:	08 Sep-17 13 18	Analysis:	Linear Interpolation (ICPIN)	Official Posults:	Vas

Analyz	ed:	08 Sep-17 13:1	8 Ana	lysis:	Linear Interpola	ation (ICPIN	s: Yes	***************************************						
Linear Interpolation Options														
X Transform Y Transform				d	Resamples	Ехр 95%	CL Me	thod						
Linear		Linear	1560	3566	1000	Yes	Yes Two-Point Interpolation							
Point E	stimate	es												
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL								
EC25	>100	N/A	N/A	<1	NA	NA				**************************************	··········			
EC50	>100	N/A	N/A	<1	NA	NA								
96h Su	96h Survival Rate Summary Calculated Variate(A/B)													
C-%	Control Type		Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В		
0	L	ab Control	6	0.966	7 0.8	1	0.03333	0.08165	8.45%	0.0%	29	30		
25			6	0.966	7 0.8	1	0.03333	0.08165	8.45%	0.0%	29	30		
33			6	0.966	7 0.8	1	0.03333	0.08165	8.45%	0.0%	29	30		

1

0.03333

0.08165

8.45%

0.0%

29

30

Analyst: AC QA: 99/3/7

000-089-187-4 CETIS™ v1.8.7.20

Marine Acute Bioassay Static-Renewal Conditions

Water Quality Measurements & Test Organism Survival

Client: AMEC/POSD							Test Species: A. affinis															Ter	ch Initi	als		
Sample ID:					1	7~	00	13	Ř.	Start	Date/	Time:	8/24/	/2017	14	30						0	24	48	72	96
Test No.:												Time:				POF	<u> </u>			С	ounts:	(ਖ	CG	PH	RH	RH
		,	,													1	,		•		dings:					RH
																			Dilutio		de by:	's -	100000	BA	٦	
																					,	V				
	П		Num	ber of	f Live								Dissol	ved C	xyge	n	рН									
Concentration %	Rep	Organisms					(ppt)				(°C)					(mg/L)					(units)					
		0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96
Lab Control	Α	5	5	5	5		33.b	33.6	23 k	33.6	B.8	20,2	20.0	203	20,3	20.3	7.4	63	7.0	7.5	6.)	8.00		8.07	17.94	790
#3	В	5	5	5	5	5			336					20.V					12				•	491		
	С	5	5	5	5	5																				
	D	5	5	5	5	5																				
	Ε	5	4	4	4	И																				
	F	5	5	5	5	5																				
25	Α	5	5	5	5	5	34.0	33.5	33,6	33.7	33.7	20,4	10-1	20,5	20,3	205	7.6	6.3	7,2	7.4	$\psi.V$	8.00	7.91	4.05	7.93	7.87
	В	5	5	5	5	5			33,6					203					63					7.89		
	С	5	5	5	5	5																				
	D	5	5	5	5	5																				
	Ε	5	5	5	5	5																				
	F	5	5	5	5	4																				
Q20.50 33	Α	5	5	5	5	5	34.0	23.¥	33.6	33.8	34.1	20.6	20.0	20,6	203	20.4	7.4	6.2	7.1		6.2	8,00	7胎	8.05	7.94	789
	В	5	5	5	5	5			33.7					204					300A					7.90		
	С	5	5	5	5	5													6.0							
	D	5	5	5	5	5																				
	E	5	5	5	5	6																				
	F	5	5	5	5	4																				
100	Α	5	5	5	5	4	34.2	23.9	33.6	34/1	343	21,4	100	2024	20.3	20.4	7.3	6.2	7.6	7.4	6.2	7.91	7.87	800	7.93	7.89
	В	5	5	5	5	5			34.1					20.5					6.1					7.90		
	С	5	5	5	5	5																				
	D	5	5	6	5	5																				
,	E	5	5	5	5	5																				
	E	E	E/	-	6	6																				

Animal Source/Date Received:

Animal Acclimation Qualifiers (circle all that apply):

Q22 / Q23 / Q24 / none

Am:

Q40 / G00 /

QC Check:

Initial Counts QC'd by:

CH 8/36/17

Organisms fed prior to initiation, circle one (y // n)

Final Review: AC 9/8/17

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

Appendix B

Sample Receipt Information

Client: Amec Foster Wheeler/PC	DSD	Tes	sts Performed:	Acute Topsme	lt, Chronic Mus	sel Developme	nt	Sample Description	ns:
Project: SIYB Annual Monitoring			Test ID No.(s) :	1708-S	181 to	5194		2)	clear, no odor, no a
Sample ID:	1) SIYB-1	2) SIYB-2	3) SIYB-3	4) SIYB-4	5) SIYB-5	6) SIYB-6	7) SIYB-REF	4)	
Log-in No. (17-xxxx):	0932	0933	0934	0935	0936	0937	0938	5)*************************************	
Sample Collection Date & Time:	3/23/17/415	8/12/17/13/5	8/23/17 12/5	8/23/17 1115	8/23/17 1015	8/23/17 1919	5 8123/17 0815	6)	
Sample Receipt Date & Time:	8/23/17 1715-						-5	7)	
Number of Containers & Container Type:	2, 10ccub;						->		
Approx. Total Volume Received (L):	~16 -						→	COC Complete?	(Ŷ) N
Check-in Temp (°C)	9.0	2.5	3.5	3.0	5.0	13,0	11.5		
Temperature OK? ¹	ŶN	Ŷ N	Y) N	ŶN	(Y)N	Ø N	ŶN	Filtration for Organ	isms?
DO (mg/L)	8.2	9.2	9.1	9.0	88	7.3	8.1		(Ŷ) N
pH (units)	8.62	8,05	8.09	8.09	8,06	8.00	8.04	Pore Size:	0,45 mm (A)
Conductivity (µS/cm)		-	_		-				
Salinity (ppt)	35.7	33.9	33.7	33.7	33.8	34.1	33.9	pH Adjustment?	Y (N)
Alkalinity (mg/L) ²	117	107	110	112	112	109	111		
Hardness (mg/L) ^{2, 3}	_	sear .	, across		-		~	Cl₂ Adjustment?	Y (N)
Total Chlorine (mg/L)	20.02	40.02	40.02	40.02	20,02	60.02	0.02		
Technician Initials	CH/AC	CH/AC	CH/AC	CH/AC	CH/AC	CH/AC	CH/AC	Sample Aeration?	Y (N
Marine Tests:	ART SW	Other:		All-15-14 1	25 alia	ity: <u>34 0</u> ,0			onal Chemistry Required? Y/N
Control/Dilution Water Source: LAB SW						•	7	NH3	Other
Additional Control? Y N				Alkalinity:	Salin	ity:		Tech Initials	<u>1955 - 1952</u> - Honor State (1956) (1956) 1956 - Honor State (1956) (1956)
Sample Salted w/ artificial salt? Y N									
Sample salted w/brine? Y N	ii yes, taiget p	hr	_						
Notes ¹ Temperature for sample mus	t be 0-6°C if recei	ived >24 hours p	ast collection tim	e.					
² mg/L as CaCO3, ³ Measu									
Additional Comments All samples were un delated sample	e tested u was filten	m-filtered ul to 0.	for the c 15 mm and t	delution step	erres " 12 de companson	ditionally,	th		
QC Check: AC 8 30 17								Final R	Review: 5 (V/3/17

Appendix C

Chain of Custody Form

Nautilus Environmental

Chain of Custody (electronic)

4340 Vandever Ave. San Diego, CA 92120

Date 08 23/19 Page [of_

					octure			de la completa de la				
Sample Collection By:				& Infrastructure					ANALYS	SES REQ	UIRED	
	Report to:			-	Invoice to:	Barry Snyder / Chris Stransky	=	, ,				
	barry.snyder@				1	cfw.com / chris.stransky@amecfw.com	Į į	Dev.				1 10
Company	Amec Foster			nfrastructure	 	eeler Environment & Infrastructure	Survival	and				
Address	9210 Sky P	ark Ct. Ste 2	200		9210 Sky Par	k Ct. Ste 200		<u>a</u>				l le
City/State/Zip	San Diego,	CA 92123			San Diego, C	A 92123	Acute	≥				lat
Contact	Chris Strans	sky			Chris Stransk	у] <u>'</u>	Survival				ရုံ
Phone	858-300-43	50 / 858-77	5-5547 cell		858-300-4350) / 858-775-5547 cell	96-hr ,	48-hr				ei
Email	chris.stransky	@amec.com			chris.stransky@	amec.com	i ii	48				
SAMPLE ID	DATE	TIME	MATRIX	CONTAINER TYPE	# OF CONTAINERS	Topsmelt	Mussel				Receipt Temperature	
SIYB-1	8/23/2017	1415	SW	10-L Poly	2	Х	Х				4.0	
SIYB-2	8/23/2017	1315	sw	10-L Poly	2		X	Х				25
SIYB-3	8/23/2017	1215	SW	10-L Poly	2		X	Х				3,5
SIYB-4	8/23/2017	1145	SW	10-L Poly	2		Х	Х		-		3,0
SIYB-5	8/23/2017	1015	SW	10-L Poly	2		Х	Х				5.0
SIYB-6	8/23/2017	0915	SW	10-L Poly	2		X	Х				13-0
SIYB-REF	8/23/2017	0815	SW	10-L Poly	2		Х	Х				11.5
PROJECT INFOR	MATION		SAMPLE R	ECEIPT	Relinquished	d By:	Rece	ived I	By (cou	rier):		
Client:		Total # Co	ntainers:	14	Signature:	\$\\\ 3\\\ 17\\\ Date	Sign	ature:				Date
P.O. No.:		Good Con	dition?	ý	Print Name:	therthalf 1715	Print	Name	e:			Time
Shipped Via:		Matches T			Company:	AMEC FEV.	Corn	pany:				
ompped via.		Schedule ²	?	Y	Relinquished	d By (courier):	Rece	ived I	By Lab:			
Comments: Concurrent ref. tox. test	for both spec	ies (Topsme	elt 0,50,100,2	200,400,800 ug/L)	Signaturo			ature:	Cath	4	/1	973/17 Date
(Bivalve ref. tox. test co Topsmelt at 3 concentra	pper conc. of	0, 2.5, 5.0, 1	10, 20 and 40) μg/L)	Print Name:			Name	e: Ca	iHin	Harrey	/ \715 Time
Bivalve testing 5 concer a control. Also a 100%	ntrations (6.25	5, 12.5, 25, 5	0, and 100 p	ercent), and	Company:			pany:	Na	UHILUS	5 .	

Additional costs may be required for sample disposal or storage. Net 30 unless otherwise contracted.

Natilus ID'S = 170932 - 170938

Appendix D

Reference Toxicant Tests

Test Data and Statistical Analyses

CETIS Summary Report

Report Date:

08 Sep-17 14:28 (p 1 of 3)

Test Code:

170824msdv | 21-2285-7954

									17002411341 21-2203-7334
Bivalve Larval	Survival and Develop	ment Test					***************************************		Nautilus Environmental (CA)
Batch ID: Start Date: Ending Date: Duration:	-	Test Type: Protocol: Species: Source:	Development- EPA/600/R-95 Mytilus gallopr Mission Bay	/136 (1995)			Analyst: Diluent: Brine: Age:		d Natural Seawater pplicable
Sample ID: Sample Date: Receive Date: Sample Age:	24 Aug-17 24 Aug-17	Code: Material: Source: Station:	170824msdv Copper chlorid Reference Tox Copper Chlorid	cicant			Client: Project:	Intern	al
Comparison S	ummary								
Analysis ID	Endpoint	NOEL	LOEL	TOEL	PMSD	TU	Meth	nod	
14-5939-3672 11-0947-9271 21-1959-9972	Combined Developme Development Rate Survival Rate	nt Ra 5 5 10	10 10 20	7.071 7.071 14.14	4.46% 4.43% 1.98%		Dunr	nett Mu	Itiple Comparison Test Itiple Comparison Test One Rank Sum Test
Point Estimate	Summary					***************************************		-	
Analysis ID	Endpoint	Level	μg/L	95% LCL	95% UCL	TU	Meth	nod	
11-9849-6620	Combined Developme	nt Ra EC25 EC50	6.187 7.468	5.861 7.252	6.298 7.549		Linea	ar Interp	polation (ICPIN)
18-4397-7467	Development Rate	EC25 EC50	6.187 7.468	5.892 7.269	6.299 7.551		Linea	ar Interp	polation (ICPIN)
04-8243-0487	Survival Rate	EC25 EC50	22.34 28.23	19.55 26.37	24.64 29.76		Linea	ar Interp	polation (ICPIN)
Test Acceptab	ility								
Analysis ID	Endpoint	Attrib	ute	Test Stat	TAC Limi	ts	Over	rlap	Decision
18-4397-7467 04-8243-0487	Development Rate Development Rate Survival Rate Survival Rate	Contro Contro	ol Resp ol Resp ol Resp ol Resp	0.9588 0.9588 1	0.9 - NL 0.9 - NL 0.5 - NL 0.5 - NL		Yes Yes Yes Yes		Passes Acceptability Criteria Passes Acceptability Criteria Passes Acceptability Criteria Passes Acceptability Criteria
14-5939-3672	Combined Developmen	nt Ra PMSD		0.04465	NL - 0.25		No		Passes Acceptability Criteria

08 Sep-17 14:28 (p 2 of 3)

Test Code:

170824msdv | 21-2285-7954

Bivalve Larv	al Survival and [Developmer	nt Test						Nautilus	Environm	nental (CA)
Combined D	evelopment Rate	e Summary									
C-μg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Control	5	0.9588	0.9326	0.9851	0.9427	0.9942	0.00946	0.02115	2.21%	0.0%
2.5		5	0.9584	0.9391	0.9777	0.9447	0.9784	0.006951	0.01554	1.62%	0.04%
5		5	0.9377	0.869	1	0.8477	0.9841	0.02477	0.05538	5.91%	2.2%
10		5	0.005757	0	0.01423	0	0.01667	0.003051	0.006821	118.5%	99.4%
20		5	0	0	0	0	0	0	0		100.0%
40		5	0	0	0	0	0	0	0		100.0%
Developmen	nt Rate Summary										
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Control	5	0.9588	0.9326	0.9851	0.9427	0.9942	0.00946	0.02115	2.21%	0.0%
2.5		5	0.9597	0.9419	0.9776	0.9447	0.9784	0.006434	0.01439	1.5%	-0.09%
5		5	0.9377	0.869	1	0.8477	0.9841	0.02477	0.05538	5.91%	2.2%
10		5	0.005757	0	0.01423	0	0.01667	0.003051	0.006821	118.5%	99.4%
20		5	0	0	0	0	0	0	0		100.0%
40		5	0	0	0	0	0	0	0		100.0%
Survival Rat	e Summary										
C-μg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Control	5	1	1	1	1	1	0	0	0.0%	0.0%
2.5		5	0.9986	0.9948	1	0.9932	1	0.00137	0.003063	0.31%	0.14%
5		5	1	1	1	1	1	0	0	0.0%	0.0%
10		5	1	1	1	1	1	0	0	0.0%	0.0%
20		5	0.8493	0.7159	0.9827	0.7329	0.9521	0.04804	0.1074	12.65%	15.07%
40		5	0	0	0	0	0	0	0		100.0%
Combined D	evelopment Rate	Detail	, , , , , , , , , , , , , , , , , , ,								
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
0	Lab Control	0.9487	0.9624	0.9461	0.9942	0.9427				With the telephone and the second an	
2.5		0.9784	0.9714	0.9452	0.9447	0.9524					
5		0.9841	0.9694	0.8477	0.9222	0.9653					
10		0.005495	0	0.006623	0.01667	0					
20		0	0	0	0	0					
40		0	0	0	0	0					
Developmen	t Rate Detail		T. POTATAA.								
C-μg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
0	Lab Control	0.9487	0.9624	0.9461	0.9942	0.9427	Managara (1904)				
2.5		0.9784	0.9714	0.9517	0.9447	0.9524					
5		0.9841	0.9694	0.8477	0.9222	0.9653					
10		0.005495	0.5554	0.006623	0.01667	0.5055					
20		0.000433	0	0.000023	0.01007	0					
40		0	0	0	0	0					
Survival Rate	e Detail	***************************************	-		-	-					
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
0	Lab Control	1'	1	1	1	1					
2.5		1	1	0.9932	1	1					
5		1	1	1	1	1					
10		1	1	1		1					
		0.0524	0.7329		1	1					
20 40		0.9521 0	0.7329	0.9178 0	0.7329 0	0.911 0					
		V	U	U	U	0					

Analyst: QA: Sa/IU/V

Report Date: Test Code: 08 Sep-17 14:28 (p 3 of 3)

170824msdv | 21-2285-7954

							rest code.	170024111301 21-2203-7334
Bivalve La	rval Survival and I	Developme	nt Test					Nautilus Environmental (CA)
Combined	Development Rate	e Binomials	}					
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Lab Control	148/156	179/186	158/167	172/173	148/157		
2.5		181/185	170/175	138/146	188/199	200/210		
5		186/189	190/196	128/151	154/167	167/173		
10		1/182	0/158	1/151	3/180	0/189		
20		0/146	0/146	0/146	0/146	0/146		
40		0/146	0/146	0/146	0/146	0/146		
Developm	ent Rate Binomials	3			And the second designation of the second		11001-15	
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
Û	Lab Control	148/156	179/186	158/167	172/173	148/157		
2.5		181/185	170/175	138/145	188/199	200/210		
5		186/189	190/196	128/151	154/167	167/173		
10		1/182	0/158	1/151	3/180	0/189		
20		0/139	0/107	0/134	0/107	0/133		
40		0/1	0/1	0/1	0/1	0/1		
Survival R	ate Binomials				10000			7744A
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Lab Control	146/146	146/146	146/146	146/146	146/146		
2.5		146/146	146/146	145/146	146/146	146/146		
5		146/146	146/146	146/146	146/146	146/146		
10		146/146	146/146	146/146	146/146	146/146		
20		139/146	107/146	134/146	107/146	133/146		
40		0/146	0/146	0/146	0/146	0/146		

Analyst: QA: GA!

08 Sep-17 14:29 (p 1 of 4)

Test Code:

170824msdv | 21-2285-7954

No. 10 10 10 10 10 10 10 10 10 10 10 10 10										rest	Code:	17002	4msav 2	1-2285-7954
Bivalve Larv	al Sur	vival and D	evelop	omen	t Test							Nautilus	Environn	nental (CA)
Analysis ID: Analyzed:		5939-3672 Sep-17 14:2	28		•	mbined Deve ametric-Cor	•				S Version: ial Results:	CETISv1. Yes	8.7	
Data Transfo	rm		Zeta		Alt Hyp	Trials	Seed			PMSD	NOEL	LOEL	TOEL	TU
Angular (Corr	ected)		NA		C > T	NA	NA			4.46%	5	10	7.071	
Dunnett Mult	tiple C	omparison	Test											
Control	vs	C-µg/L			Test Stat	Critical	MSD D	F	P-Value	P-Type	Decision(α:5%)		
Lab Control		2.5			0.1585	2.227	0.099 8		0.6900	CDF	Non-Signif	icant Effect		
		5			0.8893	2.227	0.099 8		0.3760	CDF	Non-Significant Effect			
		10*			29.36	2.227	0.099 8		<0.0001	CDF	Significant			
ANOVA Table	е													
Source		Sum Squa	ares		Mean Squ	are	DF		F Stat	P-Value	Decision(a:5%)		
Between		6.224197			2.074732		3		421.1	<0.0001	Significant	Effect		
Error		0.0788247	'9		0.0049265	49	16				-			
Total		6.303022					19							
Distributiona	l Test	>												
Attribute		Test				Test Stat	Critical		P-Value	Decision(α:1%)			
Variances		Bartlett E	quality	of Va	riance	5.334	11.34		0.1489	Equal Var	iances			
Distribution		Shapiro-V	Vilk W	Norm	ality	0.926	0.866		0.1292	Normal Di	stribution			
Combined Do	evelop	ment Rate	Sumn	nary										
C-μg/L	Cont	rol Type	Cour	nt	Mean	95% LCL	95% UCL	_	Median	Min	Max	Std Err	CV%	%Effect
0	Lab (Control	5		0.9588	0.9326	0.9851		0.9487	0.9427	0.9942	0.00946	2.21%	0.0%
2.5			5		0.9584	0.9391	0.9777		0.9524	0.9447	0.9784	0.006951	1.62%	0.04%
5			5		0.9377	0.869	1		0.9653	0.8477	0.9841	0.02477	5.91%	2.2%
10			5		0.005757	0	0.01423		0.005495	0	0.01667	0.003051	118.5%	99.4%

Angular (C	Corrected) Transfor	med Sum	mary								
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	1.376	1.29	1.461	1.342	1.329	1.495	0.03081	5.01%	0.0%
2.5		5	1.369	1.318	1.42	1.351	1.333	1.423	0.01836	3.0%	0.51%
5		5	1.336	1.201	1.471	1.383	1.17	1.444	0.04868	8.15%	2.87%
10		5	0.07226	0.02538	0.1191	0.07419	0.03638	0.1295	0.01689	52.25%	94.75%
20		5	0.04139	0.04139	0.0414	0.04139	0.04139	0.04139	0	0.0%	96.99%
40		5	0.04139	0.04139	0.0414	0.04139	0.04139	0.04139	0	0.0%	96.99%

0

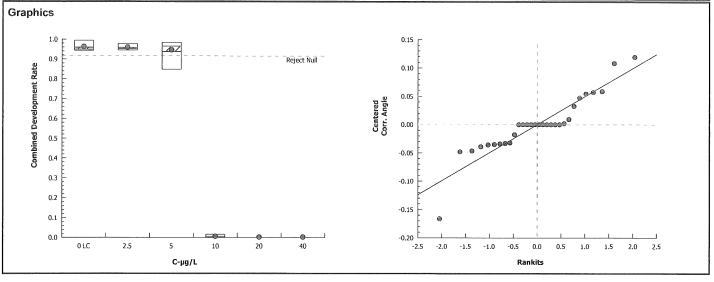
0

0

0

0

0


0

0

0

100.0%

100.0%

20

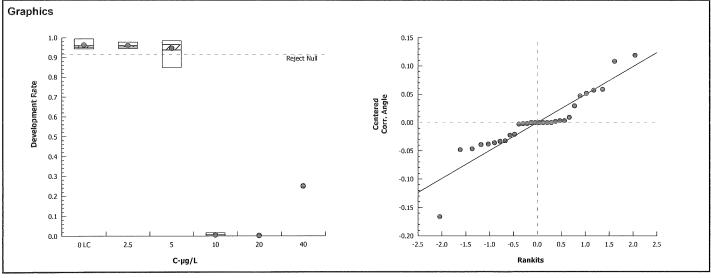
40

5

5

0

0


08 Sep-17 14:29 (p 2 of 4)

Test Code: 170824msdv | 21-2285-7954

						lest	Code:	17082	4msav 2	1-2285-7954
Bivalve Larval S	urvival and Develo	pment Test						Nautilus	Environr	nental (CA)
	1-0947-9271 08 Sep-17 14:28	•	velopment R ametric-Cor		tments		S Version: ial Results		8.7	
Data Transform	Zeta	a Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU
Angular (Correcte	ed) NA	C > T	NA	NA		4.43%	5	10	7.071	
Dunnett Multiple	Comparison Test									
Control	vs C-μg/L	Test Stat	Critical	MSD DF	P-Value	P-Type	Decision	(α:5%)		
Lab Control	2.5	0.09256	2.227	0.098 8	0.7157	CDF	Non-Sign	ificant Effect		
	5	0.894	2.227	0.098 8	0.3741	CDF	Non-Sign	ificant Effect		
	10*	29.52	2.227	0.098 8	<0.0001	CDF	Significar	nt Effect		
ANOVA Table										
Source	Sum Squares	Mean Squ	ıare	DF	F Stat	P-Value	Decision	(α:5%)		
Between	6.233977	2.077992		3	426.3	<0.0001	Significar	nt Effect		
Error	0.07799377	0.0048746	§1	16						
Total	6.311971			19						
Distributional Te	ests		mary and a substitute confidence of the substitute of the substitu							
Attribute	Test		Test Stat	Critical	P-Value	Decision(α:1%)			
Variances	Bartlett Equalit	y of Variance	5.657	11.34	0.1296	Equal Var	iances			
Distribution	Shapiro-Wilk V	/ Normality	0.9299	0.866	0.1540	Normal Di	stribution			
Development Ra	ite Summary									

Developme	ent Rate Summary										
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	0.9588	0.9326	0.9851	0.9487	0.9427	0.9942	0.00946	2.21%	0.0%
2.5		5	0.9597	0.9419	0.9776	0.9524	0.9447	0.9784	0.006434	1.5%	-0.09%
5		5	0.9377	0.869	1	0.9653	0.8477	0.9841	0.02477	5.91%	2.2%
10		5	0.005757	0	0.01423	0.005495	0	0.01667	0.003051	118.5%	99.4%
20		5	0	0	0	0	0	0	0		100.0%
40		5	0	0	0	0	0	0	0		100.0%

Angular (C	orrected) Transfor	med Sumn	nary								
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	1.376	1.29	1.461	1.342	1.329	1.495	0.03081	5.01%	0.0%
2.5		5	1.372	1.324	1.419	1.351	1.333	1.423	0.01719	2.8%	0.3%
5		5	1.336	1.201	1.471	1.383	1.17	1.444	0.04868	8.15%	2.87%
10		5	0.07226	0.02538	0.1191	0.07419	0.03638	0.1295	0.01689	52.25%	94.75%
20		5	0.04514	0.04147	0.04881	0.04337	0.04242	0.04836	0.001322	6.55%	96.72%
40		5	0.5236	0.5234	0.5238	0.5236	0.5236	0.5236	0	0.0%	61.94%

08 Sep-17 14:29 (p 3 of 4)

Test Code:

170824msdv | 21-2285-7954

												1 2200 100-
Bivalve Larv	al Survival and	Developme	ent Test							Nautilus	Environn	nental (CA)
Analysis ID:	21-1959-9972	En	ıdpoint: Sur	vival Rate			***************************************	CET	IS Version:	CETISv1	8.7	
Analyzed:	08 Sep-17 14:		•	nparametric	-Control v	/s T	reatments		ial Results		.0,7	
Data Transfo		Zeta	Alt Hyp	Trials	Seed			PMSD	NOEL	LOEL	TOEL	TU
Angular (Corr	rected)	NA	C > T	NA	NA			1.98%	10	20	14.14	
Steel Many (One Benk Sum T	Too!										
•	One Rank Sum T	est	T1 01-1	0.33	_ .							
Control	vs C-µg/L		Test Stat	Critical			P-Value	P-Type	Decision		44Wannangan	
Lab Control	2.5		25	17		8	0.5912	Asymp	•	ficant Effect		
	5		27.5	17		8	0.8000	Asymp	_	ficant Effect		
	10		27.5	17		8	0.8000	Asymp	Non-Signi	ficant Effect		
	20*		15	17 	0	8	0.0158	Asymp	Significan	t Effect		
ANOVA Tabl	e											
Source	Sum Squ	uares	Mean Squ	are	DF		F Stat	P-Value	Decision	(α:5%)		
Between	0.453736	8	0.1134342		4		24.17	<0.0001	Significan	t Effect		
Error	0.093863	}	0.0046931	5	20							
Total	0.547599	8			24		-					
Distributiona	i Tests		A 500 000 000 000 000 000 000 000 000 00									
Attribute	Test			Test Stat	Critical		P-Value	Decision	(α:1%)			
Variances	Mod Lev	ene Equalit	y of Variance	5.865	4.893		0.0048	Unequal \	/ariances			
Variances	Levene I	Equality of \	√ariance	40.9	4.431		< 0.0001	Unequal \	/ariances			
Distribution	Shapiro-	Wilk W Noi	mality	0.6906	0.8877		<0.0001	Non-norm	al Distribution	on		
Survival Rate	e Summary											
C-μg/L	Control Type	Count	Mean	95% LCL	95% UC	CL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	1	1	1		1	1	1	0	0.0%	0.0%
2.5		5	0.9986	0.9948	1		1	0.9932	1	0.00137	0.31%	0.14%
5		5	1	1	1		1	1	1	0	0.0%	0.0%
10		5	1	1	1		1	1	1	0	0.0%	0.0%
20		5	0.8493	0.7159	0.9827		0.911	0.7329	0.9521	0.04804	12.65%	15.07%
40		5	0	0	0		0	0	0	0		100.0%
Angular (Cor	rected) Transfor	rmed Sumr	mary			CONTRACT CONTRACT						
C-µg/L	Control Type	Count	Mean	95% LCL	95% UC	CL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	1.529	1.529	1.53		1.529	1.529	1.529	0	0.0%	0.0%
2.5		5	1.521	1.498	1.544		1.529	1.488	1.529	0.008291	1.22%	0.54%
5		5	1.529	1.529	1.53		1.529	1.529	1.529	0.000231	0.0%	0.0%
10		5	1.529	1.529	1.53		1.529	1.529	1.529	0	0.0%	0.0%
20		5	1.191	1.002	1.379		1.329	1.028	1.329			
40		5	0.04139							0.068	12.77%	22.15%
40		J	0.04139	0.04139	0.0414		0.04139	0.04139	0.04139	0	0.0%	97.29%

Analyst: QA: b-9/16/17

C-µg/L

Report Date: Test Code:

Rankits

08 Sep-17 14:29 (p 4 of 4) 170824msdv | 21-2285-7954

Nautilus Environmental (CA) **Bivalve Larval Survival and Development Test** CETISv1.8.7 Analysis ID: 21-1959-9972 Endpoint: Survival Rate **CETIS Version:** Analyzed: 08 Sep-17 14:28 Analysis: Nonparametric-Control vs Treatments Official Results: Yes Graphics 0.20 0.9 0.15 8.0 0.10 Survival Rate 0.7 0.05 0.6 0.4 -0.05 0.3 -0.10 0.1 0.0 2.5 10 20 -1.0 0 LC -2.5 0.0 1.5 2.0 -2.0 -1.5 -0.5 1.0

Report Date:

08 Sep-17 14:29 (p 1 of 3)

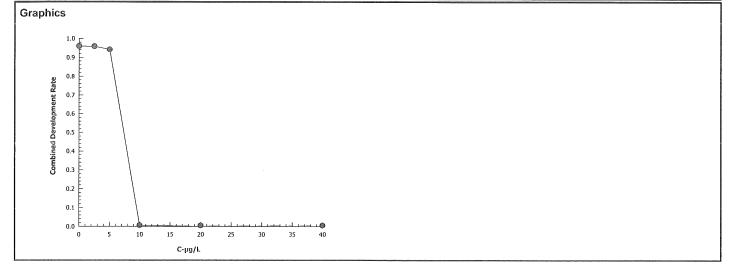
Test Code:

170824msdv | 21-2285-7954

Bivalve Larval Survival and Development Test

Analysis ID: 11-9849-6620 Endpoint: Combined Development Rate
Analyzed: 08 Sep-17 14:28 Analysis: Linear Interpolation (ICPIN)

Nautilus Environmental (CA)


CETIS Version: CETISv1.8.7

Official Results: Yes

Linear Interpol	ation Options				
X Transform	Y Transform	Seed	Resamples	Exp 95% CL	Method
Linear	Linear	547296	1000	Yes	Two-Point Interpolation

Linear		Lilicai	J41230	1000	162	Two-Point interpolation	
Point	Estimates						
Level	μg/L	95% LCL	95% UCL				
EC25	6.187	5.861	6.298				
EC50	7.468	7.252	7.549				

Combined	i Development Rat	e Summary									
C-µg/L	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Lab Control	5	0.9588	0.9427	0.9942	0.00946	0.02115	2.21%	0.0%	805	839
2.5		5	0.9584	0.9447	0.9784	0.006951	0.01554	1.62%	0.04%	877	915
5		5	0.9377	0.8477	0.9841	0.02477	0.05538	5.91%	2.2%	825	876
10		5	0.005757	0	0.01667	0.003051	0.006821	118.5%	99.4%	5	860
20		5	0	0	0	0	0		100.0%	0	730
40		5	0	0	0	0	0		100.0%	0	730

Analyst: QA: QA:

Report Date:

08 Sep-17 14:29 (p 2 of 3)

Test Code:

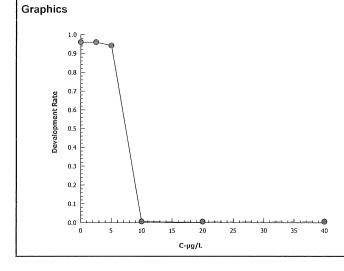
170824msdv | 21-2285-7954

Bivalve Larval Survival and Development Test

Analysis ID: 18-4397-7467

Endpoint: Development Rate

CETIS Version: CETISv1.8.7


Analyzed: 08 Sep-17 14:28 Analysis: Linear Interpolation (ICPIN) Official Results: Yes

Linear Interpola	tion Options				
X Transform	Y Transform	Seed	Resamples	Exp 95% CL	Method
Linear	Linear	577398	1000	Yes	Two-Point Interpolation

Point Estimates

Level	μg/L	95% LCL	95% UCL
EC25	6.187	5.892	6.299
EC50	7.468	7.269	7.551

Developm	ent Rate Summary	,									
C-μg/L	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Lab Control	5	0.9588	0.9427	0.9942	0.00946	0.02115	2.21%	0.0%	805	839
2.5		5	0.9597	0.9447	0.9784	0.006434	0.01439	1.5%	-0.09%	877	914
5		5	0.9377	0.8477	0.9841	0.02477	0.05538	5.91%	2.2%	825	876
10		5	0.005757	0	0.01667	0.003051	0.006821	118.5%	99.4%	5	860
20		5	0	0	0	0	0		100.0%	0	620
40		5	0	0	0	0	0		100.0%	0	5

Report Date:

08 Sep-17 14:29 (p 3 of 3)

Test Code:

170824msdv | 21-2285-7954

Bivalve Larval Survival and Development Test

Nautilus Environmental (CA)

Analysis ID: 04-8243-0487 Analyzed:

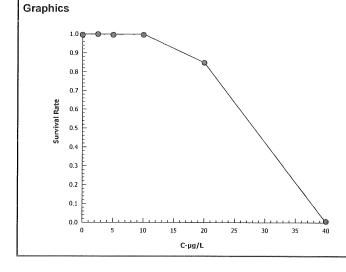
08 Sep-17 14:28

Endpoint: Survival Rate

Analysis:

Linear Interpolation (ICPIN)

CETIS Version: Official Results: Yes


CETISv1.8.7

Linear Interpola	ation Options				
X Transform	Y Transform	Seed	Resamples	Exp 95% CL	Method
Linear	Linear	1731960	1000	Yes	Two-Point Interpolation

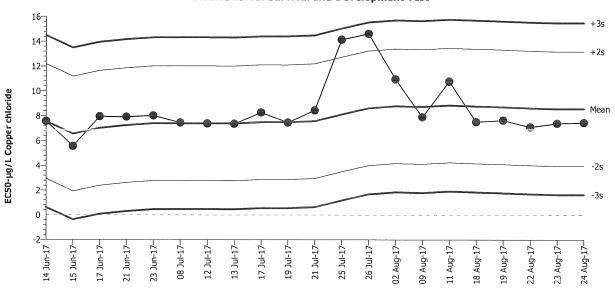
Point Estimates

Level	μg/L	95% LCL	95% UC
EC25	22.34	19.55	24.64
EC50	28.23	26.37	29.76

Survival I	Rate Summary										
C-µg/L	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Lab Control	5	1	1	1	0	0	0.0%	0.0%	730	730
2.5		5	0.9986	0.9932	1	0.00137	0.003063	0.31%	0.14%	729	730
5		5	1	1	1	0	0	0.0%	0.0%	730	730
10		5	1	1	1	0	0	0.0%	0.0%	730	730
20		5	0.8493	0.7329	0.9521	0.04804	0.1074	12.65%	15.07%	620	730
40		5	0	0	0	0	0		100.0%	0	730

Analyst: QA: 69/10/17

Report Date: 08 Sep-17 14:30 (1 of 1)


Bivalve Larval Survival and Development Test

Nautilus Environmental (CA)

Test Type: Development-Survival Organism: Mytilus galloprovincialis (Bay Mussel EPA/600/R-95/136 (1995) Protocol:

Copper chloride Material: Endpoint: Combined Development Rate Source: Reference Toxicant-REF

Bivalve Larval Survival and Development Test

wean:	8.58	Count:	20	-2s Warning Limit:	3.956	-3s Action Limit:	1.644
Sigma:	2.312	CV:	26.90%	+2s Warning Limit:	13.2	+3s Action Limit:	15.52

Quali	ty Con	trol Data	а								
Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2017	Jun	14	16:35	7.566	-1.014	-0.4387			12-0557-7207	08-7414-9539
2			15	17:00	5.556	-3.024	-1.308			13-0760-5590	03-3919-2352
3			17	16:35	7.953	-0.627	-0.2712			06-8514-5892	02-3705-3274
4			21	16:20	7.917	-0.6632	-0.2868			15-2492-6549	01-5703-6353
5			23	15:35	8.021	-0.5591	-0.2418			03-5559-2705	13-4205-1983
6		Jul	8	16:50	7.45	-1.13	-0.4886			09-7553-8130	03-1268-7503
7			12	18:15	7.386	-1.194	-0.5163			11-9742-7964	05-1413-9875
8			13	17:30	7.363	-1.217	-0.5262			12-3376-7311	02-9708-5395
9			17	16:45	8.281	-0.2991	-0.1294			00-0340-3065	08-2357-6973
10			19	18:00	7.466	-1.114	-0.4816			08-1164-4379	15-0985-1465
11			21	21:15	8.458	-0.1224	-0.05293			10-9068-8609	04-8762-9687
12			25	19:20	14.17	5.592	2.419	(+)		05-3850-9598	09-6508-4828
13			26	18:30	14.65	6.068	2.625	(+)		05-2549-4056	14-4663-8834
14		Aug	2	16:20	10.97	2.387	1.033			08-8844-0166	17-3344-3445
15			9	15:10	7.909	-0.6713	-0.2904			02-3647-7872	04-4249-9948
16			11	14:20	10.8	2.217	0.9589			10-7776-3483	16-8717-2487
17			18	14:30	7.523	-1.057	-0.4572			01-8895-2121	19-7759-2811
18			19	14:30	7.653	-0.9271	-0.401			05-2766-7107	17-8527-5868
19			22	14:40	7.109	-1.471	-0.6363			11-6889-8330	18-9664-5070
20			23	14:35	7.405	-1.175	-0.508			07-0702-1232	04-1416-1884
21			24	16:00	7.468	-1.112	-0.4809			21-2285-7954	11-9849-6620

08 Sep-17 14:30 (1 of 1)

Bivalve Larval Survival and Development Test

Nautilus Environmental (CA)

Test Type: Development-Survival **Protocol:** EPA/600/R-95/136 (1995)

Mean:

Sigma:

8.725

2.281

Count:

CV:

20

26.10%

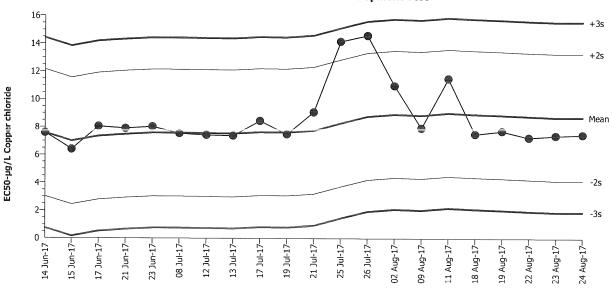
Organism: Mytilus galloprovincialis (Bay Mussel

Endpoint: Development Rate

Material: Copper chloride

-3s Action Limit:

+3s Action Limit:


1.882

15.57

Source:

Reference Toxicant-REF

Bivalve Larval Survival and Development Test

-2s Warning Limit:

+2s Warning Limit:

13.29

Quality Control Data Point Year Month Day Time QC Data Delta Sigma Warning Action Test ID Analysis ID 1 2017 Jun 14 16:35 7.583 -1.142 -0.5005 10-9601-5201 12-0557-7207 2 15 17:00 6.401 -2.324-1.019 13-0760-5590 15-4777-0261 3 17 16:35 8.048 -0.6775 -0.29706-8514-5892 00-7550-1834 4 21 16:20 7.908 -0.8171 -0.358217-9069-9248 15-2492-6549 5 23 15:35 8.036 -0.6887 -0.301903-5559-2705 13-7037-9907 6 Jul 8 16:50 7.546 -1.179 -0.516709-7553-8130 00-6258-4410 7 12 18:15 7.433 -1.292-0.566511-9742-7964 11-5734-0468 8 13 17:30 7.386 -1.339 -0.587212-3376-7311 15-3421-1133 9 17 16:45 8.451 -0.2743-0.1202 00-0340-3065 09-2980-0913 10 19 18:00 7.496 -1.229-0.5388 08-1164-4379 20-4392-5711 11 21 21:15 9.087 0.3618 0.1586 10-9068-8609 09-7178-0760 12 25 19:20 14.17 5.442 2.386 (+)05-3850-9598 01-9984-8541 13 26 18:30 14.6 5.876 2.576 (+) 05-2549-4056 20-9765-2987 14 Aug 2 16:20 10.99 2.268 0.9941 08-8844-0166 05-7741-7079 15 9 15:10 7.943 -0.7824 -0.343 02-3647-7872 09-5424-7081 16 11 14:20 11.51 2.782 1.219 10-7776-3483 16-6128-1875 17 14:30 18 7.514 -1.211 -0.530901-8895-2121 10-0830-7403 18 19 14:30 7.734 -0.9912 -0.4346 05-2766-7107 05-5439-6759 22 19 14:40 7.267 -1.458 -0.6393 11-6889-8330 01-5646-6901 20 23 14:35 7.403 -1.322 -0.579407-0702-1232 08-7168-2267 21 16:00 24 7.468 -1.257-0.55121-2285-7954 18-4397-7467

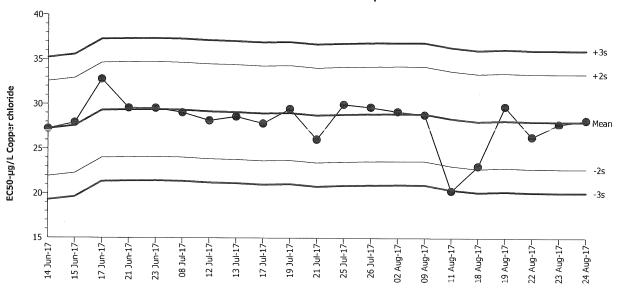
08 Sep-17 14:30 (1 of 1)

Bivalve Larval Survival and Development Test

Nautilus Environmental (CA)

Test Type: Development-Survival

Organism: Mytilus galloprovincialis (Bay Mussel


Protocol: EPA/600/R-95/136 (1995)

Endpoint: Survival Rate

Material: Copper chloride Source:

Reference Toxicant-REF

Bivalve Larval Survival and Development Test

Mean: Sigma:

28.08 2.657 Count: CV:

20

9.46%

-2s Warning Limit: 22.76

+2s Warning Limit: 33.39 -3s Action Limit: 20.1

+3s Action Limit: 36.05

ality Con	trol Data	а								
int Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
2017	Jun	14	16:35	27.26	-0.8248	-0.3104			12-0557-7207	17-4389-1847
		15	17:00	27.94	-0.1446	-0.05442			13-0760-5590	01-2901-9440
		17	16:35	32.78	4.704	1.77			06-8514-5892	18-3535-8269
		21	16:20	29.57	1.492	0.5616			15-2492-6549	21-3845-5267
		23	15:35	29.56	1.483	0.5583			03-5559-2705	09-9147-5836
	Jul	8	16:50	29.07	0.9937	0.374			09-7553-8130	16-1250-7746
		12	18:15	28.18	0.09881	0.03719			11-9742-7964	02-2541-9916
		13	17:30	28.63	0.5536	0.2083			12-3376-7311	16-6236-5156
		17	16:45	27.87	-0.2109	-0.07936			00-0340-3065	18-8492-6597
		19	18:00	29.5	1.422	0.5351			08-1164-4379	09-1332-3273
		21	21:15	26.08	-1.997	-0.7515			10-9068-8609	07-4575-2126
		25	19:20	30	1.92	0.7226			05-3850-9598	15-3015-3104
		26	18:30	29.69	1.614	0.6075			05-2549-4056	19-4893-7601
	Aug	2	16:20	29.21	1.131	0.4257			08-8844-0166	16-2044-0559
		9	15:10	28.85	0.7658	0.2882			02-3647-7872	13-2689-5538
		11	14:20	20.3	-7.778	-2.927	(-)		10-7776-3483	06-8118-7108
		18	14:30	23.07	-5.008	-1.885			01-8895-2121	15-7798-9971
		19	14:30	29.76	1.678	0.6315			05-2766-7107	12-0400-9839
		22	14:40	26.37	-1.715	-0.6453			11-6889-8330	16-1091-0593
		23	14:35	27.81	-0.2732	-0.1028			07-0702-1232	06-5821-2066
		24	16:00	28.23	0.1458	0.05488			21-2285-7954	04-8243-0487

Start Date:

End Date:

Report Date:

23 Aug-17 09:12 (p 1 of 1)

Nautilus Environmental (CA)

Test Code:

21-2285-7954/170824msdv

Bivalve Larval Survival and Development Test

24 Aug-17 Species: Mytilus galloprovincialis 26 Aug-17

Protocol: EPA/600/R-95/136 (1995)

Sample Code: Sample Source: Reference Toxicant

170824msdv

Sample Date: 24 Aug-17 Material: Copper chloride Sample Station: Copper Chloride

C-µg/L	Code	Rep	Pos	Initial Density	Final Density	# Counted	# Normal	Notes
			1			189	186	8/29/17
			2			186	186	
			3			107	0	
			4			182	1	
			5			167	154	
			6			0	0	
			7			167	128	
			8			189	0	
			9			196	190	
			10			175	170	
			11			180	3	
			12	7000000		185	181	
			13			113	167	
			14	1000 Mills I I I I I I I I I I I I I I I I I I		156	148	
			15			U	i	
			16			157	148	
			17			199	188	
***************************************			18			134	0	
			19			151	1501	Q18 RL 9/8/17
			20			O	0	
			21			107	0	
			22			145	138	
			23			173	170	
			24			0	0	
			25				0	
			26			210	7 00	
			27			133	0	
			28			158	0	
			29			139	0	
			30			151	138	

CETIS Test Data Worksheet

Start Date:

End Date:

Sample Date: 24 Aug-17

Report Date:

23 Aug-17 09:12 (p 1 of 1) 21-2285-7954/170824msdv

Test Code:

Nautilus Environmental (CA)

Bivalve Larval Survival and Development Test

24 Aug-17

26 Aug-17

Species: Mytilus galloprovincialis **Protocol**: EPA/600/R-95/136 (1995) Sample Code: Sample Source: Reference Toxicant

170824msdv

Material: Copper chloride Sample Station: Copper Chloride

-μg/L	Code	Rep	Pos	Initial Density	Final Density	# Counted		l .
0	LC	1	14			135	125	AC8[27]17
0	LC	2	2					,
0	LC	3	7					
0	LC	4	23					
0	LC	5	16					
2.5		1	12			163	156	
2.5		2	10					
2.5		3	22					
2.5		4	17	100000000000000000000000000000000000000				
2.5		5	26					
5		1	1			155	147	
5		2	9				/	
5		3	30					
5		4	5					
5		5	13					
10		1	4			144	2	
10		2	28					
10		3	19		V			
10		4	11					
10	-	5	8					
20		1	29			120	0	
20		2	3			1		
20		3	18					
.20		4	21					
20		5	27					
40		1	25			0	0	cells lysed
40		2	24					1300
40		3	6					
40		4	20					
40		5	15					

000

Marine Chronic Bioassay

Water Quality Measurements

Client: Internal	Test Species: M. galloprovincialis
Sample ID: CuCl₂	Start Date/Time: 8/24/2017 6:00
Test No.: 170824msdv	End Date/Time: 8/26/2017 16: 00

Concentration (μg/L)	Salinity (ppt)			T	emperatu (°C)	ire	Diss					pH pH units)		
	0				0 24 48		0	0 24		0	24	48		
Lab Control	31.9	31.5	31.6	15.1	14-5	14.6	8.5	7.9	8.1	8.04	8.03	7.99		
2.5	319	31.7	31,8	14.8	14.3	14.4	8.4	8.0	8.1	8.02	8.02	7.98		
5	32.0	31.7	31.7	14-7	14.3	14.3	8.3	7.9	8.1	8.01	8.01	7.98		
10	32.0	31.7	31,8	149	14.5	14.3	8.3	8.0	8.1	8.00	8.02	7,98		
20	31.9	31.7	31,7	14.8	14.5	14.4	8.3	8-0	8.0	8.02	8. UZ			
40	31.9	31.6	31.7	14.8	14.3	14.3	8.3	7.9	3.1	8.03	8.03	7.99		
									· · · · · · · · · · · · · · · · · · ·		7.1			

Technician Initials:	WQ Readings: → Dilutions made by: △	0 24 AC CG H	48 0 M	High conc. made (μg/L): Vol. Cu stock added (mL): Final Volume (mL): Cu stock concentration (μg/L):	40 2.0 500 10,200
Comments:	0 hrs: 24 hrs: 48 hrs:				
QC Check:	Ac 8/27/17	<u>-</u>		Final Review	69/W17

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

Final Review: W/17

Client;	Internal		Start Dat	e/Time: 8/24/2017	16:00
Test No.:	170824ms	od V	End Dat		16:00
Test Species:	Mytilus galloprovincialis			Initials: CH/AC	. g 100
Animal Source:	Mission Bay			<u> </u>	
Date Received:	8/2/17				
Test Chambers:	30 mL glass shell vials	Name			
Sample Volume:	10 mL				
Spawn Information	on	Gamete Select	ion		
First Gamete Relea	ase Time: 1230	Sex	Beaker Number(s)		r, egg density, color, shape, tc.)
		Male	@5+3,4,5	Good densite	, and motility
Sex	Number Spawning	Female 1	i i	High density, pal	l orange color, uniforms
Male	5+	Female 2		Grood density for	ate color, miforms
Female	3	Female 3	3	High density par	e orange color, Mi
		i		1215	10
Embryo Stock Se	lection		Egg Fertilization Time:	1313	N
	% of embryos at 2-cell	ī			
Stock Number	division stage		(s) chosen for testing:		
Female 1	99				
Female 2	100				
Female 3	100				
Embryo Inoculum Target count on Se Number Counted:	n Preparation dgwick-Rafter slide for desir	red density is 6 embryos			
	- 5 - 14 - 5	17 9	Mean:		
	Mean	x 50 = <u>505</u>	embryos/ml		
Initial Desired Final (to inoculate with		= 1.66	dilution factor)		
When mean percer use 100 ml of existi	nt dividing is ≥ 90, prepare th ng stock (1 part) and 125 m	ne embryo inoculum accordinç Il of dilution water (1.25 parts)	g to the calculated dilut	ion factor. For example, if	the dilution factor is 2.25,
	Time Zero Control Coun	its			
	Rep No. Dividing	Total % Dividing	Mean %	3 3	
			Dividing 48	i-h QC: 139/142 (94	(c/ ^u)
		35 100		hamiltonia .	
		62 100			
			49.41		
	TØE 157	34 108			
	TØF 145	145 100			
Comments:			1100- 1111		
Comments.	BCH Q18 8/24/17	V 0 1 1 10	7.1.10	3309000	

AC 8/27/17

QC Check:

CETIS Summary Report

Report Date:

30 Aug-17 14:32 (p 1 of 1)

Test Code:

170824aara | 04-3270-4077

		•						est code.	170	024aaia 0-	, 5270 707
Pacific Topsm	nelt 96-h Acute S	Surviva	al Test						Nautilu	s Environm	nental (CA
Batch ID: Start Date: Ending Date: Duration:	20-7573-7771 24 Aug-17 14:4 28 Aug-17 14:1 95h		Test Type: Protocol: Species: Source:	Survival (96h EPA/821/R-0 Atherinops af Aquatic Biosy	2-012 (2002) finis		C E	Brine:	Diluted Natural Not Applicable 11d	Seawater	
Sample ID: Sample Date: Receive Date: Sample Age:	: 24 Aug-17 Source: Reference Toxicant										
Comparison S	Summary										
Analysis ID	Endpoint		NOEL	LOEL	TOEL.	PMSD	TU	Metho	od		
18-9387-7082	18-9387-7082 96h Survival Rate 100 200 141.4 16.5% Dunnett Multiple Comparison					nparison Tes	st				
Point Estimate	e Summary										
Analysis ID	Endpoint		Level	μg/L	95% LCL	95% UCL	TU	Metho	od		
21-0546-3622		ate	EC50		130.3	153.5			Trimmed Spearman-Kärber		
96h Survival F	Rate Summary										
	Control Type	Cour	ıt Mean	95% LC	L 95% UCL	Min	Max	Std E	r Std Dev	CV%	%Effect
0	Lab Control	4	1	1	1	1	1	0	0	0.0%	0.0%
50		4	0.9	0.7163	1	0.8	1	0.0577	74 0.1155	12.83%	10.0%
100		4	0.9	0.7163	1	0.8	1	0.0577	74 0.1155	12.83%	10.0%
200		4	0.1	0	0.2837	0	0.2	0.0577	74 0.1155	115.5%	90.0%
400		4	0	0	0	0	0	0	0		100.0%
800		4	0	0	0	0	0	0	0		100.0%
96h Survival F	Rate Detail										
C-µg/L	Control Type	Rep	1 Rep 2	Rep 3	Rep 4						
0	Lab Control	1	1	1	1						
50		1	8.0	1	8.0						
100		0.8	8.0	1	1						
100			^	0	0.2						
200		0.2	0	U	O. _						
		0.2 0	0	0	0						

Report Date:

30 Aug-17 14:29 (p 1 of 1)

Test Code:

170824aara | 04-3270-4077

						Test	Code:	170	824aara 0	4-3270-4077	
Pacific Tops	melt 96-h Acute	Surviva	al Test						Nautilu	ıs Environi	mental (CA)
Analysis ID: Analyzed:	18-9387-7082 30 Aug-17 14		•	h Survival Ra rametric-Coi		itments		IS Version: cial Results:	CETISv Yes	1.8.7	
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU
Angular (Cori	rected)	NA	C > T	NA	NA		16.5%	100	200	141.4	
Dunnett Mul	tiple Compariso	n Test									
Control	vs C-μg/L		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision(7:5%		
Lab Control	50		1.414	2.287	0.193 6	0.1976	CDF	Non-Signif			
	100		1.414	2.287	0.193 6	0.1976	CDF	Non-Signif			
	200*		11.89	2.287	0.193 6	<0.0001	CDF	Significant			
ANOVA Tabl	е										
Source	Sum Squ	ıares	Mean Squ	uare	DF	F Stat	P-Value	Decision(x:5%)		
Between	2.584321		0.8614403	3	3	60.76	<0.0001	Significant		W. W	
Error	0.170123		0.0141769	98	12	_		<u>-</u>			
Total	2.754445				15						
Distributiona	al Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision(α:1%)			
Distribution	Shapiro-	Wilk W	Normality	0.7761	0.8408	0.0013	Non-norm	al Distributio	n		
96h Survival	Rate Summary										
C-µg/L	Control Type	Coun	t Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	cv%	%Effect
0	Lab Control	4	1	1	1	1	1	1	0	0.0%	0.0%
50		4	0.9	0.7163	1	0.9	0.8	1	0.05774	12.83%	10.0%
100		4	0.9	0.7163	1	0.9	8.0	1	0.05774	12.83%	10.0%
200		4	0.1	0	0.2837	0.1	0	0.2	0.05774	115.5%	90.0%
400		4	0	0	0	0	0	0	0		100.0%
800		4	0	0	0	0	0	0	0		100.0%
Angular (Cor	rected) Transfoi	med Su	ımmary								
C-µg/L	Control Type	Coun	t Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	4	1.345	1.345	1.346	1.345	1.345	1.345	0	0.0%	0.0%
50		4	1.226	1.007	1.445	1.226	1.107	1.345	0.06874	11.21%	8.85%
100		4	1.226	1.007	1.445	1.226	1.107	1.345	0.06874	11.21%	8.85%
200 400		4	0.3446	0.1258	0.5634	0.3446	0.2255	0.4636	0.06874	39.9%	74.39%
800 800		4 4	0.2255 0.2255	0.2255 0.2255	0.2256 0.2256	0.2255	0.2255	0.2255	0	0.0%	83.24%
		7	0.2233	0.2233	0.2230	0.2255	0.2255	0.2255	0	0.0%	83.24%
Graphics											
1.0 E	•					0.12		1	0 0	• • •	•
0.9	0	0				-		!			
0.8		- [Reject Null		0.08		1			
0.7						w F					
7. 0.6					ered	0.04		1			
3					Cen	Corr. Angle					
5 0.5						0.00			6066		-
0.4						ļ					
0.3						-0.04					
0.2						ļ	/				
E			8			-0.08		1			
0.1						ţ		1			
0.0	0 LC 50	100	200 400	800	I	-0.12 -2.0	-1.5 -1.0	-0,5 0,0	0.5 1	.0 1.5	 2.0
		C-µg/	L					Rankits	•	=:=	-

Analyst: QA: MP9 417

Report Date:

30 Aug-17 14:29 (p 1 of 1)

Test Code:

170824aara | 04-3270-4077

Pacific Topsmelt 96-h Acute Survival Test

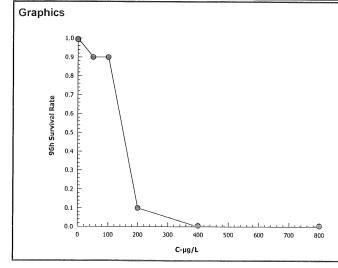
Nautilus Environmental (CA)

Analysis ID: 21-0546-3622 Analyzed:

30 Aug-17 14:29

Endpoint: 96h Survival Rate Analysis:

Trimmed Spearman-Kärber


CETIS Version: Official Results:

CETISv1.8.7 Yes

Trimmed Spearman-Kärber Estimates

Threshold Option	Threshold	Trim	Mu	Sigma	EC50	95% LCL	95% UCL
Control Threshold	0	10.00%	2.151	0.01785	141.4	130.3	153.5

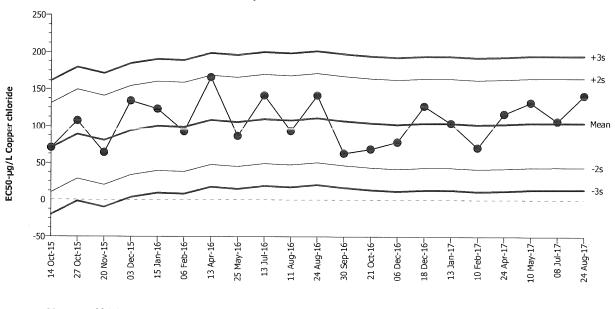
96h Survi	val Rate Summary		Calculated Variate(A/B)								
C-µg/L	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Lab Control	4	1	1	1	0	0	0.0%	0.0%	20	20
50		4	0.9	8.0	1	0.05774	0.1155	12.83%	10.0%	18	20
100		4	0.9	0.8	1	0.05774	0.1155	12.83%	10.0%	18	20
200		4	Û. İ	Ō	0.2	0.05774	0.1155	115.5%	90.0%	2	20
400		4	0	0	0	0	0		100.0%	0	20
800		4	0	0	0	0	0		100.0%	0	20

30 Aug-17 14:36 (1 of 1)

Pacific Topsmelt 96-h Acute Survival Test

Nautilus Environmental (CA)

Test Type: Survival (96h)
Protocol: EPA/821/R-02-012 (2002)


Organism: Atherinops affinis (Topsmelt)

2) Endpoint: 96h Survival Rate

Material: Copper chloride

Source: Reference Toxicant-REF

Pacific Topsmelt 96-h Acute Survival Test

Mean:	104.4	Count:	20	-2s Warning Limit:	43.97	-3s Action Limit:	13.77
Sigma:	30.2	CV:	28.90%	+2s Warning Limit:	164.8	+3s Action Limit:	195

Quali	ty Con	trol Data	9								
Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2015	Oct	14	16:40	70.71	-33.69	-1.116			04-4161-7095	03-6097-1513
2			27	14:25	107.2	2.777	0.09196			14-6236-0417	02-8139-5398
3		Nov	20	14:30	64.04	-40.36	-1.336			19-0245-3966	16-7196-4812
4		Dec	3	12:45	134	29.6	0.9801			14-5323-4110	02-2362-6984
5	2016	Jan	15	14:35	123.1	18.71	0.6197			04-1357-8814	05-9418-7197
6		Feb	6	14:30	92.59	-11.81	-0.3911			02-5371-2482	06-5272-0912
7		Apr	13	17:00	166	61.55	2.038	(+)		07-1307-5309	15-4685-4143
8		May	25	11:00	86.55	-17.85	-0.5909			06-1822-8551	00-5811-9532
9		Jul	13	16:15	141.4	37.02	1.226			13-5507-2356	11-2506-0217
10		Aug	11	15:10	93.3	-11.1	-0.3674			09-9737-0225	18-1616-8617
11			24	11:55	141.4	37.02	1.226			01-7126-4959	07-2284-8883
12		Sep	30	15:30	63	-41.4	-1.371			15-5016-1485	00-5251-2482
13		Oct	21	15:05	68.85	-35.55	-1.177			12-5359-1342	08-1980-0032
14		Dec	6	14:00	78.46	-25.94	-0.859			11-0191-2089	11-9997-9668
15			18	14:30	127.1	22.69	0.7513			07-4756-7914	09-8348-7658
16	2017	Jan	13	16:05	103.9	-0.4741	-0.0157			06-1491-3172	18-6378-7266
17		Feb	10	14:50	70.71	-33.69	-1.116			15-5537-9211	16-0070-6651
18		Apr	24	13:15	116.7	12.28	0.4067			04-2593-1548	15-9565-1968
19		May	10	15:25	132	27.55	0.9123			18-0705-1608	09-7991-9714
20		Jul	8	11:00	106.5	2.058	0.06813			02-7767-0662	04-3078-9331
21		Aug	24	14:45	141.4	37.02	1.226			04-3270-4077	21-0546-3622

Water Quality Measurements & Test Organism Survival

Client: Interna	al	Test Species: A. affinis			Te	ch Initi	als	
Sample ID: CuCl ₂		Start Date/Time: 8/24/2017 1445		0	24	48	72	96
Test No.: 17082	4aara	End Date/Time: 8/28/2017 1415	Counts:	(H	CG	RH	RH	RH
		, , , ,	Readings:	ACS	CG	8	MS	RH
			Dilutions made by:	BO	Salaria.	8	e.com	-
			High conc. made (μg/L):	000	1	200	-	
			Vol. Cu stock added (mL):	16.1		4.0	-	
		Cu stock concentration (µg/L):	Final Volume (mL):	1	-	2000	-	
			, ,					
					· · · · · · · · · · · · ///			

Concentration	Rand #		Number of Live Organisms			Salinity (ppt)			Temperature (°C)				Dissolved Oxygen (mg/L)				pH (units)									
	ĺĺ	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96
Lab Control	22	5	5	5	5	5	30.4	30.35	30,2	30,2	36,6	20,2 147to	20.3	20,2	20.7	20.t	7.1	62	6.4	7.2	6.3	7.17	4.83	8,02	787	784
	2	5	5	5	5	5			30.4					20,4					6.0					7.87		
	10	5	5	5	5	5												0.000								
	15	5	5	5	5	5																				
50	24	5	5	5	5	5	30,5	30.3	30.2	30.3	30,L	20.5	102	26.3	20.6	20.5	7.2	6.2		7,4	6.3	8,00	7.85	8.04	7.90	73b
	8	5	5	5	5	4			30,4					2014					6.0					7.86		
	17	5	5	5	5	5																				
	11	5	5	5	5	4							÷			274.00										
100	12	5	5	5	4	4	30,4	30-3	302	30.3	30.4	20.4	20.2	20.4	20.5	20.4	7.2	6.3		7.3	6.3	7.99-	T.87	8.05	7.90	186
	4	5	5	5	4	4			30,3					20.4	list.				8.2					7.96		
	1	5	5	5	5	5							-													
	19	5	5	5	5	5																				
200	23	5	3	3	3	1	30.5	30.4	30.1	3023	30.4	20,2	10.1			203	73	6.4	6.9	7.6	6.6	7.97	4.84		7.94	792
	13	5	2	2	0	Married San			30.5					204					6.4					7.90		
	14	5	١	Option (print)	ì	0																	110			
	18	5	4	3	3	١																				
400	9	5	O		0	f	305	30.4	i Ingganere	-	-	20,2	20.1	1	-	_	23	6.4	-			797	18	8 \	_	-
	16	5	Ó	6		1			f					[_					<u> </u> -					<u>ا</u>		
	7	5	0		Ko	d.																				
	5	5	0	/	00																					
800	3	5	Ø				30,4	303		-	~	20.1	20.0		-	_	23	6.4	-			7.95	7.87		-	
	21	5	U	Co		1			f					ر أ					<u> </u>					ľ –		
	6	5	ŋ		10																					
	20	5	·Ò																							
Rand # OC:	11-																									

Initial Counts QC'd by Initiated by: Feeding Times Animal Source/Date Received: Age at Initiation: 24 48 72 96 Q22 / Q23 / Q24 / none Animal Acclimation Qualifiers (circle all that apply): ×900 0810 0855 AM: i = initial reading in fresh test solution, f = final reading in test chamber prior to renewal Comments: Organisms fed prior to initiation, circle one (y

QC Check:

U+ 8/30/17

Final Review: KP AIU

Appendix E Laboratory Qualifier Codes

Glossary of Qualifier Codes:

- Q1 Temperatures out of recommended range; corrective action taken and recorded in Test Temperature Correction Log
- Q2 Temperatures out of recommended range; no action taken, test terminated same day
- Q3 Sample aerated prior to initiation or renewal due to dissolved oxygen (D.O.) levels below 6.0 mg/L
- Q4 Test aerated; D.O. levels dropped below 4.0 mg/L
- Q5 Test initiated with aeration due to an anticipated drop in D.O.
- Q6 Airline obstructed or fell out of replicate and replaced; drop in D.O. occurred
- Q7 Salinity out of recommended range
- Q8 Spilled test chamber/ Unable to recover test organism(s)
- Q9 Inadequate sample volume remaining, 50% renewal performed
- Q10 Inadequate sample volume remaining, no renewal performed
- Q11 Sample out of holding time; refer to QA section of report
- Q12 Replicate(s) not initiated; excluded from data analysis
- Q13 Survival counts not recorded due to poor visibility or heavy debris
- Q14 D.O. percent saturation was checked and was ≤ 110%
- Q15 Did not meet minimum test acceptability criteria. Refer to QA section of report.
- Q16 Percent minimum significant difference (PMSD) was <u>below</u> the lower bound limit for acceptability. This indicates that statistics may be over-sensitive in detecting a difference from the control due to low variability in the data set.
- Q17 Percent minimum significant difference (PMSD) was <u>above</u> the upper bound limit for acceptability. This indicates that statistics may be under-sensitive in detecting a difference from the control due to high variability in the data set.
- Q18 Incorrect Entry
- Q19 Illegible Entry
- Q20 Miscalculation
- Q21 Other (provide reason in comments section)
- Q22 Greater than 10% mortality observed upon receipt and/or in holding prior to test initiation.
 Organisms acclimated to test conditions at Nautilus and ultimately deemed fit to use for testing.
- Q23 Test or ganisms r eceived at a <u>temperature</u> greater than 3°C ou tside the r ecommended t est temperature range. However, due to age-specific protocol requirements and/or sample holding time constraints, the organisms were used to initiate tests upon the day of arrival. O rganisms were acclimated to the appropriate test conditions upon receipt and prior to test initiation.
- Q24 Test organisms received at <u>salinity</u> greater than 3 ppt outside of the recommended test salinity range. H owever, due t o age -specific pr otocol r equirements and/ or s ample ho lding t ime constraints, the organisms were used to initiate tests upon the day of arrival. Organisms were acclimated to the appropriate test conditions upon receipt and prior to test initiation.

Updated: 6/30/15

WATER QUALITY RESULTS 2017 ANNUAL SIYB TMDL ANALYTICAL RESULTS (WECK)

FINAL REPORT

Work Orders: 7H23002 **Report Date:** 9/11/2017

Received Date: 8/23/2017

Project: Annual Shelter Island Yacht Basin TMDL Monitoring

Turnaround Time:

Normal

Phones: (858) 300-4320

Fax: (858) 300-4301

P.O. #:

Billing Code:

Attn: Barry Snyder

Client: Amec Foster Wheeler - San Diego 2

9210 Sky Park Court, Suite 200

San Diego, CA 92123

DoD-ELAP #L2457 • ELAP-CA #1132 • EPA-UCMR #CA00211 • Guam-EPA #17-008R • HW-DOH # • ISO 17025 #L2457.01 • LACSD #10143 • NELAP-OR #4047 • NJ-DEP #CA015 • SCAQMD #93LA1006

This is a complete final report. The information in this report applies to the samples analyzed in accordance with the chain-of-custody document. Weck Laboratories certifies that the test results meet all requirements of TNI unless noted by qualifiers or written in the Case Narrative. This analytical report must be reproduced in its entirety.

Dear Barry Snyder,

Enclosed are the results of analyses for samples received 8/23/17 with the Chain-of-Custody document. The samples were received in good condition, at 4.8 °C and on ice. All analyses met the method criteria except as noted in the case narrative or in the report with data qualifiers.

Reviewed by:

Brandon Gee For Chris Samatmanakit

Project Manager

FINAL REPORT

Amec Foster Wheeler - San Diego 2 9210 Sky Park Court, Suite 200 San Diego, CA 92123 Project Number: Annual Shelter Island Yacht Basin TMDL

Monitoring

09/11/2017 13:59

Reported:

Project Manager: Barry Snyder

Case Narrative

Preliminary report submitted on 9/8/17 CSS.

Sample Summary

Sample Name	Sampled By	Lab ID	Matrix	Sampled	Qualifiers
SIYB-1	Corey Sheredy/Chris Stransky	7H23002-01	Water	08/23/17 14:15	
SIYB-1 (REP)	Corey Sheredy/Chris Stransky	7H23002-02	Water	08/23/17 14:55	
SIYB-2	Corey Sheredy/Chris Stransky	7H23002-03	Water	08/23/17 13:15	
SIYB-3	Corey Sheredy/Chris Stransky	7H23002-04	Water	08/23/17 12:15	
SIYB-4	Corey Sheredy/Chris Stransky	7H23002-05	Water	08/23/17 11:15	
SIYB-5	Corey Sheredy/Chris Stransky	7H23002-06	Water	08/23/17 10:15	
SIYB-6	Corey Sheredy/Chris Stransky	7H23002-07	Water	08/23/17 09:15	
SIYB (REF)	Corey Sheredy/Chris Stransky	7H23002-08	Water	08/23/17 08:15	
SIYB-ER	Corey Sheredy/Chris Stransky	7H23002-09	Water	08/23/17 06:45	
SIYB-FB	Corey Sheredy/Chris Stransky	7H23002-10	Water	08/23/17 15:25	

FINAL REPORT

Amec Foster Wheeler - San Diego 2 9210 Sky Park Court, Suite 200 San Diego, CA 92123 Project Number: Annual Shelter Island Yacht Basin TMDL

Monitoring

Reported: 09/11/2017 13:59

Project Manager: Barry Snyder

Sa	ample Results
Cample	CIVD 1

Sample: SIYB-1			S	ampled: 08/23	3/17 14:15	by Corey Sheredy/	Chris Stransky
7H23002-01 (Water)							
Analyte	Result	MDL	MRL	Units	Dil	Analyzed	Qualifie
Conventional Chemistry/Physical Parameters by AP	HA/EPA/ASTM Methods						
Method: SM 2540D	Batch ID: W7H1597		Prepared: 08/2	25/17 12:39			Analyst: ajk
Total Suspended Solids	13		5	mg/l	1	08/28/17 09:40	
Method: SM 5310B	Batch ID: W7H1582		Prepared: 08/2	25/17 07:00			Analyst: jlp
Total Organic Carbon (TOC)	1.7	0.016	0.10	mg/l	1	08/25/17 08:54	
Method: SM 5310B	Batch ID: W7H1662		Prepared: 08/2	28/17 10:09			Analyst: jlp
Dissolved Organic Carbon	1.5	0.016	0.10	mg/l	1	08/28/17 11:39	
Netals - Low Level by 1600 Series Methods							
Method: EPA 1640	Batch ID: W7I0139		Prepared: 09/0)5/17 12:17			Analyst: gza
Copper, Total			0.010	ug/l	1	09/09/17 02:08	
Zinc, Total			0.20	ug/l	1	09/09/17 02:08	
Method: EPA 1640	Batch ID: W7I0140		Prepared: 09/0)5/17 12:20			Analyst: gza
Copper, Dissolved	12		0.010	ug/l	1	09/08/17 21:43	, , , , , , , , , , , , , , , , , , ,
Zinc, Dissolved	31		0.20	ug/l	1	09/08/17 21:43	
Zinc, Dissolved Sample: SIYB-1 (REP)	31			-		09/08/17 21:43 by Corey Sheredy/	Chris Stransky
Zinc, Dissolved	31 Result	MDL		-			·
Sample: SIYB-1 (REP) 7H23002-02 (Water)	Result	MDL	S	ampled: 08/23	3/17 14:55	by Corey Sheredy/	·
Zinc, Dissolved Sample: SIYB-1 (REP) 7H23002-02 (Water) Analyte	Result	MDL	S	ampled: 08/23	3/17 14:55	by Corey Sheredy/	Qualifier
Zinc, Dissolved Sample: SIYB-1 (REP) 7H23002-02 (Water) Analyte Conventional Chemistry/Physical Parameters by AP	Result HA/EPA/ASTM Methods	MDL	S. MRL	ampled: 08/23	3/17 14:55	by Corey Sheredy/	Qualifier
Zinc, Dissolved Sample: SIYB-1 (REP) 7H23002-02 (Water) Analyte Conventional Chemistry/Physical Parameters by AP Method: SM 2540D	Result HA/EPA/ASTM Methods Batch ID: W7H1597	MDL	MRL Prepared: 08/2	Units 25/17 12:39 mg/l	3/17 14:55 Dil	by Corey Sheredy/G	Qualifier Analyst: ajk
Zinc, Dissolved Sample: SIYB-1 (REP) 7H23002-02 (Water) Analyte Conventional Chemistry/Physical Parameters by AP Method: SM 2540D Total Suspended Solids	Result HA/EPA/ASTM Methods Batch ID: W7H159716	MDL 0.016	MRL Prepared: 08/2 5	Units 25/17 12:39 mg/l	3/17 14:55 Dil	by Corey Sheredy/G	Qualifier Analyst: ajk
Zinc, Dissolved Sample: SIYB-1 (REP) 7H23002-02 (Water) Analyte Conventional Chemistry/Physical Parameters by AP Method: SM 2540D Total Suspended Solids Method: SM 5310B	Result HA/EPA/ASTM Methods Batch ID: W7H1597 16 Batch ID: W7H1582		MRL Prepared: 08/2 5 Prepared: 08/2	Units 25/17 12:39 mg/l 25/17 07:00 mg/l	Dil	Analyzed 08/28/17 09:40	Qualifier Analyst: ajk Analyst: jlp
Zinc, Dissolved Sample: SIYB-1 (REP) 7H23002-02 (Water) Analyte Conventional Chemistry/Physical Parameters by AP Method: SM 2540D Total Suspended Solids Method: SM 5310B Total Organic Carbon (TOC)	Result HA/EPA/ASTM Methods Batch ID: W7H1597 16 Batch ID: W7H1582 1.5		MRL Prepared: 08/2 5 Prepared: 08/2 0.10	Units 25/17 12:39 mg/l 25/17 07:00 mg/l	Dil	Analyzed 08/28/17 09:40	Qualifier Analyst: ajk Analyst: jlp
Zinc, Dissolved Sample: SIYB-1 (REP) 7H23002-02 (Water) Analyte Conventional Chemistry/Physical Parameters by AP Method: SM 2540D Total Suspended Solids Method: SM 5310B Total Organic Carbon (TOC)	Result HA/EPA/ASTM Methods Batch ID: W7H1597 16 Batch ID: W7H1582 1.5 Batch ID: W7H1662	0.016	MRL Prepared: 08/2 5 Prepared: 08/2 0.10 Prepared: 08/2	Units 25/17 12:39 mg/l 25/17 07:00 mg/l	3/17 14:55 Dil 1	Analyzed 08/28/17 09:40 08/25/17 09:15	Qualifier Analyst: ajk Analyst: jlp
Zinc, Dissolved Sample: SIYB-1 (REP) 7H23002-02 (Water) Analyte Conventional Chemistry/Physical Parameters by AP Method: SM 2540D Total Suspended Solids Method: SM 5310B Total Organic Carbon (TOC) Method: SM 5310B Dissolved Organic Carbon	Result HA/EPA/ASTM Methods Batch ID: W7H1597 16 Batch ID: W7H1582 1.5 Batch ID: W7H1662	0.016	MRL Prepared: 08/2 5 Prepared: 08/2 0.10 Prepared: 08/2	Units 25/17 12:39 mg/l 25/17 07:00 mg/l 28/17 10:09 mg/l	3/17 14:55 Dil 1	Analyzed 08/28/17 09:40 08/25/17 09:15	Qualifier Analyst: ajk Analyst: jlp Analyst: jlp
Zinc, Dissolved Sample: SIYB-1 (REP) 7H23002-02 (Water) Analyte Conventional Chemistry/Physical Parameters by AP Method: SM 2540D Total Suspended Solids Method: SM 5310B Total Organic Carbon (TOC) Method: SM 5310B Dissolved Organic Carbon Metals - Low Level by 1600 Series Methods	Result HA/EPA/ASTM Methods Batch ID: W7H1597 16 Batch ID: W7H1582 1.5 Batch ID: W7H1662 1.6	0.016	MRL Prepared: 08/2 5 Prepared: 08/2 0.10 Prepared: 08/2 0.10	Units 25/17 12:39 mg/l 25/17 07:00 mg/l 28/17 10:09 mg/l	3/17 14:55 Dil 1	Analyzed 08/28/17 09:40 08/25/17 09:15	Qualifier Analyst: ajk Analyst: jlp Analyst: jlp
Zinc, Dissolved Sample: SIYB-1 (REP) 7H23002-02 (Water) Analyte Conventional Chemistry/Physical Parameters by AP Method: SM 2540D Total Suspended Solids Method: SM 5310B Total Organic Carbon (TOC) Method: SM 5310B Dissolved Organic Carbon Method: SM 5310B Dissolved Organic Carbon Method: EPA 1640	Result HA/EPA/ASTM Methods Batch ID: W7H1597 16 Batch ID: W7H1582 1.5 Batch ID: W7H1662 1.6 Batch ID: W7H1662	0.016	MRL Prepared: 08/2 5 Prepared: 08/2 0.10 Prepared: 08/2 0.10	Units 25/17 12:39 mg/l 25/17 07:00 mg/l 28/17 10:09 mg/l	3/17 14:55 Dil 1 1	Analyzed 08/28/17 09:40 08/25/17 09:15 08/28/17 11:56	Qualifier Analyst: ajk Analyst: jlp Analyst: jlp
Zinc, Dissolved Sample: SIYB-1 (REP) 7H23002-02 (Water) Analyte Conventional Chemistry/Physical Parameters by AP Method: SM 2540D Total Suspended Solids Method: SM 5310B Total Organic Carbon (TOC) Method: SM 5310B Dissolved Organic Carbon Method: EPA 1640 Copper, Total	Result HA/EPA/ASTM Methods Batch ID: W7H1597 16 Batch ID: W7H1582 1.5 Batch ID: W7H1662 1.6 Batch ID: W7H0139 13	0.016	MRL Prepared: 08/2 5 Prepared: 08/2 0.10 Prepared: 08/2 0.10 Prepared: 09/0 0.010	Units 25/17 12:39 mg/l 25/17 07:00 mg/l 28/17 10:09 mg/l 05/17 12:17 ug/l ug/l	Dii 1 1 1	Analyzed 08/28/17 09:40 08/25/17 09:15 08/28/17 11:56	Qualifier Analyst: ajk Analyst: jlp Analyst: jlp
Zinc, Dissolved Sample: SIYB-1 (REP) 7H23002-02 (Water) Analyte Conventional Chemistry/Physical Parameters by AP Method: SM 2540D Total Suspended Solids Method: SM 5310B Total Organic Carbon (TOC) Method: SM 5310B Dissolved Organic Carbon Metals - Low Level by 1600 Series Methods Method: EPA 1640 Copper, Total Zinc, Total	Result HA/EPA/ASTM Methods Batch ID: W7H1597	0.016	MRL Prepared: 08/2 5 Prepared: 08/2 0.10 Prepared: 08/2 0.10 Prepared: 09/0 0.010 0.20	Units 25/17 12:39 mg/l 25/17 07:00 mg/l 28/17 10:09 mg/l 05/17 12:17 ug/l ug/l	Dii 1 1 1	Analyzed 08/28/17 09:40 08/25/17 09:15 08/28/17 11:56	Qualifier Analyst: ajk Analyst: jlp Analyst: jlp Analyst: gza Analyst: gza

FINAL REPORT

Amec Foster Wheeler - San Diego 2 9210 Sky Park Court, Suite 200 San Diego, CA 92123

Sample Results

Project Number: Annual Shelter Island Yacht Basin TMDL

Monitoring

Reported: 09/11/2017 13:59

Project Manager: Barry Snyder

Sa Sa	ample Resu	lts					((Continued)
Sample:	SIYB-2			9	Sampled: 08/23	3/17 13:15	by Corey Sheredy/	Chris Stransky
	7H23002-03 (Wat	er)						
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
Conventional	Chemistry/Physical Page 1	rameters by APHA/EPA/ASTM Methods						
Method: SM	I 2540D	Batch ID: W7H1597		Prepared: 08/	25/17 12:39			Analyst: ajk
Total Susp	pended Solids	11		5	mg/l	1	08/28/17 09:40	
Method: SM	I 5310B	Batch ID: W7H1582		Prepared: 08/	25/17 07:00			Analyst: jlp
Total Orga	anic Carbon (TOC)	1.5	0.016	0.10	mg/l	1	08/25/17 09:32	
Method: SM	I 5310B	Batch ID: W7H1662		Prepared: 08/	28/17 10:09			Analyst: jlp
Dissolved	l Organic Carbon	1.5	0.016	0.10	mg/l	1	08/28/17 12:14	
/letals - Low l	Level by 1600 Series N	lethods						

Metals - Low Level by 1600 Series Methods						
Method: EPA 1640	Batch ID: W7I0139	Prepared: 09/0		Analyst: gza		
Copper, Total	13	0.010	ug/l	1	09/09/17 02:36	
Zinc, Total		0.20	ug/l	1	09/09/17 02:36	
Method: EPA 1640	Batch ID: W7I0140	Prepared: 09/0	5/17 12:20			Analyst: gza
Copper, Dissolved	13	0.010	ug/l	1	09/08/17 22:11	
Zinc, Dissolved	 28	0.20	ug/l	1	09/08/17 22:11	
Sample: SIVR-3		Sa	mnled: 08/23	/17 12·15	by Corey Sheredy/	Chris Stransky

7H23002-04 (Water)						
Analyte	Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
Conventional Chemistry/Physic	al Parameters by APHA/EPA/ASTM Methods						
Method: SM 2540D	Batch ID: W7H1597		Prepared: 08/2	5/17 12:39			Analyst: ajk
Total Suspended Solids	11		5	mg/l	1	08/28/17 09:40	
Method: SM 5310B	Batch ID: W7H1582		Prepared: 08/2	5/17 07:00			Analyst: jlp

Total Organic Carbon (TOC)	1.4	0.016	0.10	mg/l	1	08/25/17 09:49	. 3,
Method: SM 5310B	Batch ID: W7H1662		Prepared: 08/2	8/17 10:09			Analyst: jlp
Dissolved Organic Carbon	1.7	0.016	0.10	mg/l	1	08/28/17 12:27	

Metals - Low Level by 1600 Series Methods						
Method: EPA 1640	Batch ID: W7I0139	Prepared: 09/05/17 12:17				
Copper, Total	9.8	0.010	ug/l	1	09/09/17 02:50	
Zinc, Total	21	0.20	ug/l	1	09/09/17 02:50	
Method: EPA 1640	Batch ID: W7I0140	Prepared: 09/05	/17 12:20			Analyst: gza
Copper, Dissolved	9.1	0.010	ug/l	1	09/08/17 22:25	
Zinc, Dissolved	20	0.20	ug/l	1	09/08/17 22:25	

Copper, Dissolved

Zinc, Dissolved

Certificate of Analysis

FINAL REPORT

Amec Foster Wheeler - San Diego 2 9210 Sky Park Court, Suite 200 San Diego, CA 92123

Project Number: Annual Shelter Island Yacht Basin TMDL

Monitoring

Reported: 09/11/2017 13:59

09/08/17 22:53

09/08/17 22:53

Project Manager: Barry Snyder

Sample Re	esults						((Continued)
Sample: SIYB-4				S	ampled: 08/23	3/17 11:15	by Corey Sheredy/	Chris Stransky
7H23002-05	(Water)							
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
Conventional Chemistry/Phys	ical Parameters by APHA/EP	A/ASTM Methods						
Method: SM 2540D		Batch ID: W7H1597		Prepared: 08/2	5/17 12:39			Analyst: ajk
Total Suspended Solids		12		5	mg/l	1	08/28/17 09:40	
Method: SM 5310B		Batch ID: W7H1582		Prepared: 08/2	25/17 07:00			Analyst: jlp
Total Organic Carbon (TO)C)	1.7	0.016	0.10	mg/l	1	08/25/17 10:06	
Method: SM 5310B		Batch ID: W7H1662		Prepared: 08/2	8/17 10:09			Analyst: jlp
Dissolved Organic Carbo	n	1.5	0.016	0.10	mg/l	1	08/28/17 12:45	, ,,
Metals - Low Level by 1600 Se	eries Methods							
Method: EPA 1640		Batch ID: W7I0139		Prepared: 09/0	5/17 12:17			Analyst: gza
Copper, Total		8.3		0.010	ug/l	1	09/09/17 03:03	•
Zinc, Total				0.20	ug/l	1	09/09/17 03:03	
Method: EPA 1640		Batch ID: W7I0140		Prepared: 09/0	5/17 12:20			Analyst: gza
Copper, Dissolved		7.9		0.010	ug/l	1	09/08/17 22:39	•
Zinc, Dissolved				0.20	ug/l	1	09/08/17 22:39	
Sample: SIYB-5				S	ampled: 08/23	3/17 10:15	by Corey Sheredy/	Chris Stransky
7H23002-06	i (Water)				•			
Analyte	(**************************************	Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
Conventional Chemistry/Phys	ical Parameters by APHA/EP	A/ASTM Methods					•	-
Method: SM 2540D	·	Batch ID: W7H1597		Prepared: 08/2	5/17 12:39			Analyst: ajk
Total Suspended Solids		13		5	mg/l	1	08/28/17 09:40	raidiyəti ajı
Method: SM 5310B		Batch ID: W7H1582		Prepared: 08/2	5/17 07:00			Analyst: jlp
Total Organic Carbon (TO)C)	1.7	0.016	0.10	mg/l	1	08/25/17 10:27	7
Method: SM 5310B		Batch ID: W7H1662		Prepared: 08/2	8/17 10:09			Analyst: jlp
Dissolved Organic Carbo	n	2.5	0.016	0.10	mg/l	1	08/28/17 13:02	·
Metals - Low Level by 1600 Se	eries Methods							
Method: EPA 1640		Batch ID: W7I0139		Prepared: 09/0	5/17 12:17			Analyst: gza
Copper, Total		3.9		0.010	ug/l	1	09/09/17 03:17	, g.
Zinc, Total				0.20	ug/l	1	09/09/17 03:17	
Method: EPA 1640		Batch ID: W7I0140		Prepared: 09/0	15/17 12:20			Analyst: gza
Mediod. LIA 1040		Datel 10. W/10140		1 repareu. 03/0	3) 11 12.20			Allaiyst. 92a

0.010

0.20

ug/l

ug/l

1

FINAL REPORT

Amec Foster Wheeler - San Diego 2 9210 Sky Park Court, Suite 200 Project Number: Annual Shelter Island Yacht Basin TMDL

Monitoring

Reported: 09/11/2017 13:59

Project Manager: Barry Snyder

San Die	ego, CA 92123	•
XX	Sample	Results

(Continued)

Campie results							
Sample: SIYB-6			S	Sampled: 08/2	3/17 9:15	by Corey Sheredy/	Chris Stransk
7H23002-07 (Water)							
Analyte	Result	MDL	MRL	Units	Dil	Analyzed	Qualifi
onventional Chemistry/Physical Parameters by APHA/EPA/ASTM N	Methods						
Method: SM 2540D	Batch ID: W7H1597		Prepared: 08/2	5/17 12:39			Analyst: a
Total Suspended Solids	14		5	mg/l	1	08/28/17 09:40	•
Method: SM 5310B	Batch ID: W7H1582		Prepared: 08/2	5/17 07:00			Analyst:
Total Organic Carbon (TOC)	1.4	0.016	0.10	mg/l	1	08/25/17 10:46	
Method: SM 5310B	Batch ID: W7H1662		Prepared: 08/2	8/17 10:09			Analyst: j
Dissolved Organic Carbon	2.1	0.016	0.10	mg/l	1	08/28/17 13:19	
etals - Low Level by 1600 Series Methods							
Method: EPA 1640	Batch ID: W7I0139		Prepared: 09/0	5/17 12:17			Analyst: g
Copper, Total	2.3		0.010	ug/l	1	09/09/17 03:31	
Zinc, Total	6.6		0.20	ug/l	1	09/09/17 03:31	
	Batch ID: W7I0140		Prepared: 09/0	5/17 12:20			Analyst: g
Method: EPA 1640	Datch ID. W/10140						
Method: EPA 1640 Copper, Dissolved	1.8		0.010	ug/l	1	09/08/17 23:07	
			0.010 0.20	ug/l ug/l	1	09/08/17 23:07 09/08/17 23:07 by Corey Sheredy/	Chris Strans
Copper, Dissolved Zinc, Dissolved Sample: SIYB (REF) 7H23002-08 (Water)	1.8 5.6	MDL	0.010 0.20	ug/l ug/l Sampled: 08/2:	1 3/17 8:15	09/08/17 23:07 by Corey Sheredy/	
Copper, Dissolved Zinc, Dissolved Sample: SIYB (REF)	1.8 5.6 Result	MDL	0.010 0.20	ug/l ug/l	1	09/08/17 23:07	
Copper, Dissolved Zinc, Dissolved Sample: SIYB (REF) 7H23002-08 (Water) Analyte	1.8 5.6 Result	MDL	0.010 0.20 S	ug/l ug/l Sampled: 08/2: Units	1 3/17 8:15	09/08/17 23:07 by Corey Sheredy/	Qualifi
Copper, Dissolved Zinc, Dissolved Sample: SIYB (REF) 7H23002-08 (Water) Analyte Inventional Chemistry/Physical Parameters by APHA/EPA/ASTM N	1.8 5.6 Result	MDL	0.010 0.20	ug/l ug/l Sampled: 08/2: Units	1 3/17 8:15	09/08/17 23:07 by Corey Sheredy/	Chris Stransl Qualifi Analyst: a
Copper, Dissolved Zinc, Dissolved Sample: SIYB (REF) 7H23002-08 (Water) Analyte Inventional Chemistry/Physical Parameters by APHA/EPA/ASTM N	Result Methods Batch ID: W7H1739	MDL	0.010 0.20 MRL Prepared: 08/2	ug/l ug/l Sampled: 08/2: Units 9/17 09:17 mg/l	1 3/17 8:15 Dil	09/08/17 23:07 by Corey Sheredy/ Analyzed	Qualifi Analyst: a
Copper, Dissolved Zinc, Dissolved Sample: SIYB (REF) 7H23002-08 (Water) Analyte Inventional Chemistry/Physical Parameters by APHA/EPA/ASTM Notes that the conventional Chemistry of the	Result Methods Batch ID: W7H1739 10	MDL 0.016	0.010 0.20 MRL Prepared: 08/2	ug/l ug/l Sampled: 08/2: Units 9/17 09:17 mg/l	1 3/17 8:15 Dil	09/08/17 23:07 by Corey Sheredy/ Analyzed	Qualifi Analyst: a
Copper, Dissolved Zinc, Dissolved Sample: SIYB (REF) 7H23002-08 (Water) Analyte Inventional Chemistry/Physical Parameters by APHA/EPA/ASTM Notes that the conventional Simple S	Result Methods Batch ID: W7H1739 10 Batch ID: W7H1582		0.010 0.20 MRL Prepared: 08/2 5	ug/l ug/l Sampled: 08/2: Units 9/17 09:17 mg/l 5/17 07:00 mg/l	1 3/17 8:15 Dil	09/08/17 23:07 by Corey Sheredy/ Analyzed 08/29/17 10:10	Qualifi
Copper, Dissolved Zinc, Dissolved Sample: SIYB (REF) 7H23002-08 (Water) Analyte Onventional Chemistry/Physical Parameters by APHA/EPA/ASTM N Method: SM 2540D Total Suspended Solids Method: SM 5310B Total Organic Carbon (TOC)	Result Methods Batch ID: W7H1739 10 Batch ID: W7H1582 1.5		0.010 0.20 MRL Prepared: 08/2 5 Prepared: 08/2 0.10	ug/l ug/l Sampled: 08/2: Units 9/17 09:17 mg/l 5/17 07:00 mg/l	1 3/17 8:15 Dil	09/08/17 23:07 by Corey Sheredy/ Analyzed 08/29/17 10:10	Qualifi Analyst: a Analyst:
Copper, Dissolved Zinc, Dissolved Sample: SIYB (REF) 7H23002-08 (Water) Analyte Onventional Chemistry/Physical Parameters by APHA/EPA/ASTM N Method: SM 2540D Total Suspended Solids Method: SM 5310B Total Organic Carbon (TOC) Method: SM 5310B	Result Methods Batch ID: W7H1739 10 Batch ID: W7H1582 1.5 Batch ID: W7H1662	0.016	0.010 0.20 MRL Prepared: 08/2 5 Prepared: 08/2 0.10 Prepared: 08/2	ug/l ug/l Sampled: 08/2: Units 9/17 09:17 mg/l 5/17 07:00 mg/l 8/17 10:09	1 3/17 8:15 Dil 1	09/08/17 23:07 by Corey Sheredy/ Analyzed 08/29/17 10:10 08/25/17 11:04	Qualifi Analyst: a Analyst:
Copper, Dissolved Zinc, Dissolved Sample: SIYB (REF) 7H23002-08 (Water) Analyte Inventional Chemistry/Physical Parameters by APHA/EPA/ASTM Notal Suspended Solids Method: SM 5310B Total Organic Carbon (TOC) Method: SM 5310B Dissolved Organic Carbon	Result Methods Batch ID: W7H1739 10 Batch ID: W7H1582 1.5 Batch ID: W7H1662	0.016	0.010 0.20 MRL Prepared: 08/2 5 Prepared: 08/2 0.10 Prepared: 08/2	ug/l ug/l Sampled: 08/2: Units 9/17 09:17 mg/l 5/17 07:00 mg/l 8/17 10:09 mg/l	1 3/17 8:15 Dil 1	09/08/17 23:07 by Corey Sheredy/ Analyzed 08/29/17 10:10 08/25/17 11:04	Qualifi Analyst: a Analyst: j
Copper, Dissolved Zinc, Dissolved Sample: SIYB (REF) 7H23002-08 (Water) Analyte Inventional Chemistry/Physical Parameters by APHA/EPA/ASTM Notes that the properties of the	Result Methods Batch ID: W7H1739 10 Batch ID: W7H1582 1.5 Batch ID: W7H1662 1.5	0.016	0.010 0.20 MRL Prepared: 08/2 5 Prepared: 08/2 0.10 Prepared: 08/2 0.10	ug/l ug/l Sampled: 08/2: Units 9/17 09:17 mg/l 5/17 07:00 mg/l 8/17 10:09 mg/l	1 3/17 8:15 Dil 1	09/08/17 23:07 by Corey Sheredy/ Analyzed 08/29/17 10:10 08/25/17 11:04	Qualif Analyst: a
Copper, Dissolved Zinc, Dissolved Sample: SIYB (REF) 7H23002-08 (Water) Analyte Inventional Chemistry/Physical Parameters by APHA/EPA/ASTM Notes that the properties of the	Result Methods Batch ID: W7H1739 10 Batch ID: W7H1582 1.5 Batch ID: W7H1662 1.5 Batch ID: W7H1662	0.016	0.010 0.20 MRL Prepared: 08/2 5 Prepared: 08/2 0.10 Prepared: 08/2 0.10	ug/l ug/l Sampled: 08/2: Units 9/17 09:17 mg/l 5/17 07:00 mg/l 8/17 10:09 mg/l	1 3/17 8:15 Dil 1	09/08/17 23:07 by Corey Sheredy/ Analyzed 08/29/17 10:10 08/25/17 11:04 08/28/17 13:35	Qualif Analyst: Analyst: Analyst:
Copper, Dissolved Zinc, Dissolved Sample: SIYB (REF) 7H23002-08 (Water) Analyte Inventional Chemistry/Physical Parameters by APHA/EPA/ASTM Method: SM 2540D Total Suspended Solids Method: SM 5310B Total Organic Carbon (TOC) Method: SM 5310B Dissolved Organic Carbon etals - Low Level by 1600 Series Methods Method: EPA 1640 Copper, Total	Result Methods Batch ID: W7H1739 10 Batch ID: W7H1582 1.5 Batch ID: W7H1662 1.5 Batch ID: W7H162	0.016	0.010 0.20 MRL Prepared: 08/2 5 Prepared: 08/2 0.10 Prepared: 08/2 0.10 Prepared: 09/0	ug/l ug/l Sampled: 08/2: Units 9/17 09:17 mg/l 5/17 07:00 mg/l 8/17 10:09 mg/l 5/17 12:17 ug/l ug/l	1 3/17 8:15 Dil 1 1 1	09/08/17 23:07 by Corey Sheredy/ Analyzed 08/29/17 10:10 08/25/17 11:04 08/28/17 13:35	Qualif Analyst: Analyst: Analyst:
Copper, Dissolved Zinc, Dissolved Sample: SIYB (REF) 7H23002-08 (Water) Analyte Inventional Chemistry/Physical Parameters by APHA/EPA/ASTM Method: SM 2540D Total Suspended Solids Method: SM 5310B Total Organic Carbon (TOC) Method: SM 5310B Dissolved Organic Carbon etals - Low Level by 1600 Series Methods Method: EPA 1640 Copper, Total Zinc, Total Method: EPA 1640	Result Methods Batch ID: W7H1739 10 Batch ID: W7H1582 1.5 Batch ID: W7H1662 1.5 Batch ID: W7H162 4.4	0.016	0.010 0.20 MRL Prepared: 08/2 5 Prepared: 08/2 0.10 Prepared: 08/2 0.10 Prepared: 09/0 0.010 0.20	ug/l ug/l Sampled: 08/2: Units 9/17 09:17 mg/l 5/17 07:00 mg/l 8/17 10:09 mg/l 5/17 12:17 ug/l ug/l	1 3/17 8:15 Dil 1 1 1	09/08/17 23:07 by Corey Sheredy/ Analyzed 08/29/17 10:10 08/25/17 11:04 08/28/17 13:35	Qualifi Analyst: a Analyst:

FINAL REPORT

Amec Foster Wheeler - San Diego 2 9210 Sky Park Court, Suite 200 San Diego, CA 92123 Project Number: Annual Shelter Island Yacht Basin TMDL

Monitoring

Reported: 09/11/2017 13:59

Project Manager: Barry Snyder

J	,					
5	56	am	nple) -	(esi	ults

(Continued)

Sample Nesults							
Sample: SIYB-ER			9	Sampled: 08/2	3/17 6:45	by Corey Sheredy/	Chris Stransl
7H23002-09 (Water)							
Analyte	Result	MDL	MRL	Units	Dil	Analyzed	Qualifi
nventional Chemistry/Physical Parameters by APHA	A/EPA/ASTM Methods						
Method: SM 2540D	Batch ID: W7H1739		Prepared: 08/2	9/17 09:17			Analyst:
Total Suspended Solids			5	mg/l	1	08/29/17 10:10	
Method: SM 5310B	Batch ID: W7H1582		Prepared: 08/2	25/17 07:00			Analyst:
Total Organic Carbon (TOC)	0.64	0.016	0.10	mg/l	1	08/25/17 11:21	
Method: SM 5310B	Batch ID: W7H1662		Prepared: 08/2	8/17 10:09			Analyst:
Dissolved Organic Carbon	1.4	0.016	0.10	mg/l	1	08/28/17 13:53	
etals - Low Level by 1600 Series Methods							
Method: EPA 1640	Batch ID: W7I0139		Prepared: 09/0	5/17 12:17			Analyst:
Copper, Total	0.042		0.010	ug/l	1	09/09/17 03:59	
Zinc, Total	4.2		0.20	ug/l	1	09/09/17 03:59	
							Amaluate
Method: EPA 1640	Batch ID: W7I0140		Prepared: 09/0	15/17 12:20			Analyst:
Method: EPA 1640 Copper, Dissolved	Batch ID: W7I0140 0.069		Prepared: 09/0	05/17 12:20 ug/l	1	09/08/17 23:34	Analyst: (
Copper, Dissolved Zinc, Dissolved			0.010 0.20	ug/l ug/l	1	09/08/17 23:34	
Copper, Dissolved Zinc, Dissolved Sample: SIYB-FB 7H23002-10 (Water)	0.069	140	0.010 0.20	ug/l ug/l ampled: 08/23	1 3/17 15:25	09/08/17 23:34 by Corey Sheredy/	Chris Strans
Copper, Dissolved Zinc, Dissolved Sample: SIYB-FB 7H23002-10 (Water) Analyte	0.069 3.7 Result	MDL	0.010 0.20	ug/l ug/l	1	09/08/17 23:34	Chris Strans
Copper, Dissolved Zinc, Dissolved Sample: SIYB-FB 7H23002-10 (Water) Analyte Inventional Chemistry/Physical Parameters by APHA	0.069 3.7 Result	MDL	0.010 0.20 S	ug/l ug/l ampled: 08/23 Units	1 3/17 15:25	09/08/17 23:34 by Corey Sheredy/	Chris Strans Quali
Copper, Dissolved Zinc, Dissolved Sample: SIYB-FB 7H23002-10 (Water) Analyte	0.069 3.7 Result	MDL	0.010 0.20	ug/l ug/l ampled: 08/23 Units	1 3/17 15:25	09/08/17 23:34 by Corey Sheredy/	Chris Strans Quali
Copper, Dissolved Zinc, Dissolved Sample: SIYB-FB 7H23002-10 (Water) Analyte onventional Chemistry/Physical Parameters by APHA Method: SM 2540D Total Suspended Solids	Result A/EPA/ASTM Methods Batch ID: W7H1739 ND	MDL	0.010 0.20 S MRL Prepared: 08/2	ug/l ug/l ampled: 08/23 Units 19/17 09:17 mg/l	1 3/17 15:25 Di l	09/08/17 23:34 by Corey Sheredy/ Analyzed	Chris Strans Quali Analyst:
Copper, Dissolved Zinc, Dissolved Sample: SIYB-FB 7H23002-10 (Water) Analyte Inventional Chemistry/Physical Parameters by APHA Method: SM 2540D Total Suspended Solids Method: SM 5310B	Result A/EPA/ASTM Methods Batch ID: W7H1739	MDL 0.016	0.010 0.20 S MRL Prepared: 08/2	ug/l ug/l ampled: 08/23 Units 19/17 09:17 mg/l	1 3/17 15:25 Di l	09/08/17 23:34 by Corey Sheredy/ Analyzed	Chris Strans Quali Analyst:
Copper, Dissolved Zinc, Dissolved Sample: SIYB-FB 7H23002-10 (Water) Analyte Onventional Chemistry/Physical Parameters by APHA Method: SM 2540D Total Suspended Solids Method: SM 5310B Total Organic Carbon (TOC)	Result A/EPA/ASTM Methods Batch ID: W7H1739 ND Batch ID: W7H1582 0.24		0.010 0.20 S MRL Prepared: 08/2 5 Prepared: 08/2 0.10	ug/l ug/l ampled: 08/23 Units 19/17 09:17 mg/l 15/17 07:00 mg/l	1 3/17 15:25 Dil 1	09/08/17 23:34 by Corey Sheredy/ Analyzed 08/29/17 10:10	Chris Strans Quali Analyst: Analyst:
Copper, Dissolved Zinc, Dissolved Sample: SIYB-FB 7H23002-10 (Water) Analyte Onventional Chemistry/Physical Parameters by APHA Method: SM 2540D Total Suspended Solids Method: SM 5310B Total Organic Carbon (TOC) Method: SM 5310B	Result A/EPA/ASTM Methods Batch ID: W7H1739 ND Batch ID: W7H1582		0.010 0.20 S MRL Prepared: 08/2 5	ug/l ug/l ampled: 08/23 Units 19/17 09:17 mg/l 15/17 07:00 mg/l	1 3/17 15:25 Dil 1	09/08/17 23:34 by Corey Sheredy/ Analyzed 08/29/17 10:10	Chris Strans Quali Analyst: Analyst:
Copper, Dissolved Zinc, Dissolved Sample: SIYB-FB 7H23002-10 (Water) Analyte Inventional Chemistry/Physical Parameters by APHA Method: SM 2540D Total Suspended Solids Method: SM 5310B Total Organic Carbon (TOC) Method: SM 5310B Dissolved Organic Carbon	Result A/EPA/ASTM Methods Batch ID: W7H1739 ND Batch ID: W7H1582 0.24 Batch ID: W7H1662	0.016	0.010 0.20 S MRL Prepared: 08/2 5 Prepared: 08/2 0.10 Prepared: 08/2	ug/l ug/l ampled: 08/23 Units 19/17 09:17 mg/l 15/17 07:00 mg/l	1 3/17 15:25 Dil 1	09/08/17 23:34 by Corey Sheredy/ Analyzed 08/29/17 10:10 08/25/17 11:36	Chris Strans Quali Analyst: Analyst:
Copper, Dissolved Zinc, Dissolved Sample: SIYB-FB 7H23002-10 (Water) Analyte Inventional Chemistry/Physical Parameters by APHA Method: SM 2540D Total Suspended Solids Method: SM 5310B Total Organic Carbon (TOC) Method: SM 5310B Dissolved Organic Carbon etals - Low Level by 1600 Series Methods	Result A/EPA/ASTM Methods Batch ID: W7H1739 ND Batch ID: W7H1582 0.24 Batch ID: W7H1662 0.55	0.016	0.010 0.20 S MRL Prepared: 08/2 5 Prepared: 08/2 0.10 Prepared: 08/2 0.10	ug/l ug/l ampled: 08/23 Units 19/17 09:17 mg/l 15/17 07:00 mg/l 18/17 10:09 mg/l	1 3/17 15:25 Dil 1	09/08/17 23:34 by Corey Sheredy/ Analyzed 08/29/17 10:10 08/25/17 11:36	Quali Analyst: Analyst:
Copper, Dissolved Zinc, Dissolved Sample: SIYB-FB 7H23002-10 (Water) Analyte Inventional Chemistry/Physical Parameters by APHA Method: SM 2540D Total Suspended Solids Method: SM 5310B Total Organic Carbon (TOC) Method: SM 5310B Dissolved Organic Carbon etals - Low Level by 1600 Series Methods Method: EPA 1640	Result A/EPA/ASTM Methods Batch ID: W7H1739 ND Batch ID: W7H1582 0.24 Batch ID: W7H1662 0.55	0.016	0.010 0.20 S MRL Prepared: 08/2 5 Prepared: 08/2 0.10 Prepared: 08/2 0.10	ug/l ug/l ampled: 08/23 Units 19/17 09:17 mg/l 15/17 07:00 mg/l 18/17 10:09 mg/l	1 3/17 15:25 Dil 1 1	09/08/17 23:34 by Corey Sheredy/s Analyzed 08/29/17 10:10 08/25/17 11:36 08/28/17 14:09	Quali Analyst: Analyst:
Copper, Dissolved Zinc, Dissolved Sample: SIYB-FB 7H23002-10 (Water) Analyte Inventional Chemistry/Physical Parameters by APHA Method: SM 2540D Total Suspended Solids Method: SM 5310B Total Organic Carbon (TOC) Method: SM 5310B Dissolved Organic Carbon etals - Low Level by 1600 Series Methods Method: EPA 1640 Copper, Total	Result A/EPA/ASTM Methods Batch ID: W7H1739 ND Batch ID: W7H1582 0.24 Batch ID: W7H1662 0.55 Batch ID: W7I0139 0.021	0.016	0.010 0.20 S MRL Prepared: 08/2 5 Prepared: 08/2 0.10 Prepared: 08/2 0.10	ug/l ug/l ampled: 08/23 Units 19/17 09:17 mg/l 15/17 07:00 mg/l 18/17 10:09 mg/l 15/17 12:17 ug/l	1 3/17 15:25 Dil 1 1	09/08/17 23:34 by Corey Sheredy/s Analyzed 08/29/17 10:10 08/25/17 11:36 08/28/17 14:09 09/09/17 04:13	Quali Analyst: Analyst:
Copper, Dissolved Zinc, Dissolved Sample: SIYB-FB 7H23002-10 (Water) Analyte Inventional Chemistry/Physical Parameters by APHA Method: SM 2540D Total Suspended Solids Method: SM 5310B Total Organic Carbon (TOC) Method: SM 5310B Dissolved Organic Carbon etals - Low Level by 1600 Series Methods Method: EPA 1640	Result A/EPA/ASTM Methods Batch ID: W7H1739 ND Batch ID: W7H1582 0.24 Batch ID: W7H1662 0.55	0.016	0.010 0.20 S MRL Prepared: 08/2 5 Prepared: 08/2 0.10 Prepared: 08/2 0.10	ug/l ug/l ampled: 08/23 Units 19/17 09:17 mg/l 15/17 07:00 mg/l 18/17 10:09 mg/l	1 3/17 15:25 Dil 1 1	09/08/17 23:34 by Corey Sheredy/s Analyzed 08/29/17 10:10 08/25/17 11:36 08/28/17 14:09	Quali Analyst: Analyst:
Copper, Dissolved Zinc, Dissolved Sample: SIYB-FB 7H23002-10 (Water) Analyte Inventional Chemistry/Physical Parameters by APHA Method: SM 2540D Total Suspended Solids Method: SM 5310B Total Organic Carbon (TOC) Method: SM 5310B Dissolved Organic Carbon etals - Low Level by 1600 Series Methods Method: EPA 1640 Copper, Total Zinc, Total Method: EPA 1640	Result A/EPA/ASTM Methods Batch ID: W7H1739 ND Batch ID: W7H1582 0.24 Batch ID: W7H1662 0.55 Batch ID: W7I0139 0.021 ND Batch ID: W7I0140	0.016	0.010 0.20 S MRL Prepared: 08/2 5 Prepared: 08/2 0.10 Prepared: 08/2 0.10 Prepared: 09/0 0.010 0.20 Prepared: 09/0	ug/l ug/l ampled: 08/23 Units 19/17 09:17 mg/l 15/17 07:00 mg/l 18/17 10:09 mg/l 15/17 12:17 ug/l ug/l	1 3/17 15:25 Dil 1 1 1	09/08/17 23:34 by Corey Sheredy/s Analyzed 08/29/17 10:10 08/25/17 11:36 08/28/17 14:09 09/09/17 04:13 09/09/17 04:13	Quali Analyst: Analyst: Analyst:
Copper, Dissolved Zinc, Dissolved Sample: SIYB-FB 7H23002-10 (Water) Analyte Inventional Chemistry/Physical Parameters by APHA Method: SM 2540D Total Suspended Solids Method: SM 5310B Total Organic Carbon (TOC) Method: SM 5310B Dissolved Organic Carbon etals - Low Level by 1600 Series Methods Method: EPA 1640 Copper, Total	Result A/EPA/ASTM Methods Batch ID: W7H1739 ND Batch ID: W7H1582 0.24 Batch ID: W7H1662 0.55 Batch ID: W7I0139 0.021 ND	0.016	0.010 0.20 S MRL Prepared: 08/2 5 Prepared: 08/2 0.10 Prepared: 08/2 0.10 Prepared: 09/0 0.010 0.20	ug/l ug/l ampled: 08/23 Units 19/17 09:17 mg/l 15/17 07:00 mg/l 18/17 10:09 mg/l 15/17 12:17 ug/l ug/l	1 3/17 15:25 Dil 1 1	09/08/17 23:34 by Corey Sheredy/s Analyzed 08/29/17 10:10 08/25/17 11:36 08/28/17 14:09 09/09/17 04:13	Analyst: Q Analyst: Q Analyst: Q Analyst: Q Analyst: Q

FINAL REPORT

Amec Foster Wheeler - San Diego 2 9210 Sky Park Court, Suite 200 San Diego, CA 92123

Project Number: Annual Shelter Island Yacht Basin TMDL

Monitoring

09/11/2017 13:59

Reported:

Project Manager: Barry Snyder

		7

Quality Control Poculto

Conventional Chemistry/Physical Parameters	by APHA/EPA/ASTM Method	ds							
			Spike	Source		%REC		RPD	
Analyte	Result MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
atch: W7H1582 - SM 5310B									
Blank (W7H1582-BLK1)			Prepared & /	Analyzed: 08/	25/17				
Total Organic Carbon (TOC)	ND 0.0090	mg/l	opuiou ou	y_ca co,					
Blank (W7H1582-BLK2) Total Organic Carbon (TOC)	0.0170 0.0090	ma/l	Prepared & /	Analyzed: 08/	25/17				
Total Organic Carbon (100)	0.0090	mg/l							
LCS (W7H1582-BS1)			•	Analyzed: 08/					
Total Organic Carbon (TOC)	0.980 0.0090	mg/l	1.00		98	80-120		10	
LCS (W7H1582-BS2)			Prenared &	Analyzed: 08/	25/17				
Total Organic Carbon (TOC)	2.14 0.0090	mg/l	2.00	analyzea. 00,	107	80-120		10	
Matrix Spike (W7H1582-MS1)	Source: 7H2300		•	Analyzed: 08/		80-120		10	
Total Organic Carbon (TOC)	3.34 0.0090	mg/l	2.00	1.69	82	80-120		10	
Matrix Spike Dup (W7H1582-MSD1)	Source: 7H2300	2-01	Prepared & /	Analyzed: 08/	25/17				
Total Organic Carbon (TOC)	3.30 0.0090	mg/l	2.00	1.69	80	80-120	1	10	
atch: W7H1597 - SM 2540D									
Blank (W7H1597-BLK1)	ND		repared: 08/25/	17 Analyzed	: 08/28/1	7			
Total Suspended Solids	· ND	mg/l							
LCS (W7H1597-BS1)		F	repared: 08/25/	17 Analyzed	: 08/28/1	7			
Total Suspended Solids	61.0	mg/l	56.9		107	90-110			
Duplicate (W7H1597-DUP1)	Source: 7H2300	2.01		17 Analyzad	. 00/20/1	7			
Total Suspended Solids	13.0	2-01 r mg/l	repared: 08/25/	13.0	. 00/20/1	1	0	20	
•		3.							
Duplicate (W7H1597-DUP2)	Source: 7H2300		repared: 08/25/	-	: 08/28/1	7	•	00	
Total Suspended Solids	17.0	mg/l		16.0			6	20	
atch: W7H1662 - SM 5310B									
Blank (W7H1662-BLK1)			Propaged &	Analyzed: 08/	28/17				
Dissolved Organic Carbon	ND 0.013	mg/l	r repared a z	analyzea. 00,	20,17				
5		, and the second							
LCS (W7H1662-BS1)	4.40 0.040		•	Analyzed: 08/		00.400		00	
Dissolved Organic Carbon	1.10 0.013	mg/l	1.00		110	80-120		20	
Matrix Spike (W7H1662-MS1)	Source: 7H2300	2-01	Prepared &	Analyzed: 08/	28/17				
Dissolved Organic Carbon	3.26 0.013	mg/l	2.00	1.53	87	80-120		20	
Matrin Suiles Dun (M7114662 MCD4)	Source: 7H2300	2.04	Durana and Or	N a la a de 00 /	20/17				
Matrix Spike Dup (W7H1662-MSD1) Dissolved Organic Carbon	3.36 0.013	mg/l	2.00	Analyzed: 08/ 1.53	91	80-120	3	20	
		9					_		
atch: W7H1739 - SM 2540D									
Blank (W7H1739-BLK1)			Prepared & A	Analyzed: 08/	29/17				
Total Suspended Solids	ND	mg/l		-					
I.C. (M711720 BC4)			Ducmanide	\mak \ 00 f	20/17				
LCS (W7H1739-BS1) Total Suspended Solids	63.0	mg/l	57.7	Analyzed: 08/	29/17 109	90-110			
Casponaca Condo		mg/i	O1.1		.55	00 110			
Duplicate (W7H1739-DUP1)	Source: 7H2100	1-02	Prepared & A	Analyzed: 08/	29/17				
Total Suspended Solids	2.00	mg/l		3.00			40	20	R-03,

FINAL REPORT

Amec Foster Wheeler - San Diego 2 9210 Sky Park Court, Suite 200 San Diego, CA 92123 Project Number: Annual Shelter Island Yacht Basin TMDL

Monitoring

Reported: 09/11/2017 13:59

Project Manager: Barry Snyder

		(

Quality Control Results

(Continued)

Conventional Chemistry/Physical Parameters	by APHA/EPA/AST	M Methods (Continu	ed)							
				Spike	Source		%REC		RPD	
Analyte	Result	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
atch: W7H1739 - SM 2540D (Continued)										
Duplicate (W7H1739-DUP2)		e: 7H21001-03		Prepared & A	-	29/17				
Total Suspended Solids	ND		mg/l		1.00			200	20	R-0
Metals - Low Level by 1600 Series Methods										
				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
atch: W7I0139 - EPA 1640										
Blank (W7I0139-BLK1)				pared: 09/05/1	7 Analyzed	: 09/09/17	7			
Copper, Total	ND	0.010	ug/l							
Zinc, Total	ND	0.20	ug/l							
LCS (W7I0139-BS1)			Pre	pared: 09/05/1	7 Analyzed	: 09/09/17	7			
Copper, Total	1.89	0.010	ug/l	2.00	•	94	73-122			
Zinc, Total	9.73	0.20	ug/l	10.0		97	75-127			
Matrix Spike (W7I0139-MS1)	Sourc	e: 7H23002-01	Pre	pared: 09/05/1	7 Analyzed	: 09/09/17	7			
Copper, Total		0.010	ug/l	10.0	12.9	103	60-138			
Zinc, Total	62.7	0.20	ug/l	30.0	31.1	105	68-132			
Matrix Spike Dup (W7I0139-MSD1)	Sourc	e: 7H23002-01	Pre	pared: 09/05/1	7 Analyzed	: 09/09/17	7			
Copper, Total	23.2	0.010	ug/l	10.0	12.9	103	60-138	0.3	30	
Zinc, Total	64.2	0.20	ug/l	30.0	31.1	110	68-132	2	30	
atch: W7I0140 - EPA 1640										
Blank (W7I0140-BLK1)			Pre	pared: 09/05/1	7 Analyzed	: 09/08/17	7			
Copper, Dissolved	ND	0.010	ug/l							
Zinc, Dissolved	ND	0.20	ug/l							
LCS (W7I0140-BS1)			Pre	pared: 09/05/1	7 Analyzed	: 09/08/17	7			
Copper, Dissolved	2.27	0.010	ug/l	2.00		114	70-130			
Zinc, Dissolved	10.9	0.20	ug/l	10.0		109	75-127			
Matrix Spike (W7I0140-MS1)	Sourc	e: 7H23002-01	Pre	pared: 09/05/1	7 Analyzed	: 09/08/17	7			
Copper, Dissolved	22.1	0.010	ug/l	10.0	12.1	100	70-130			
Zinc, Dissolved	62.6	0.20	ug/l	30.0	30.7	106	68-132			
Matrix Spike Dup (W7I0140-MSD1)		e: 7H23002-01	Pre	pared: 09/05/1	7 Analyzed	: 09/08/17	7			
Copper, Dissolved	22.3	0.010	ug/l	10.0	12.1	101	70-130	0.6	30	
Zinc, Dissolved		0.20	ug/l	30.0	30.7	106	68-132	0.03	30	

FINAL REPORT

Amec Foster Wheeler - San Diego 2 9210 Sky Park Court, Suite 200 San Diego, CA 92123 Project Number: Annual Shelter Island Yacht Basin TMDL

Monitoring

Reported: 09/11/2017 13:59

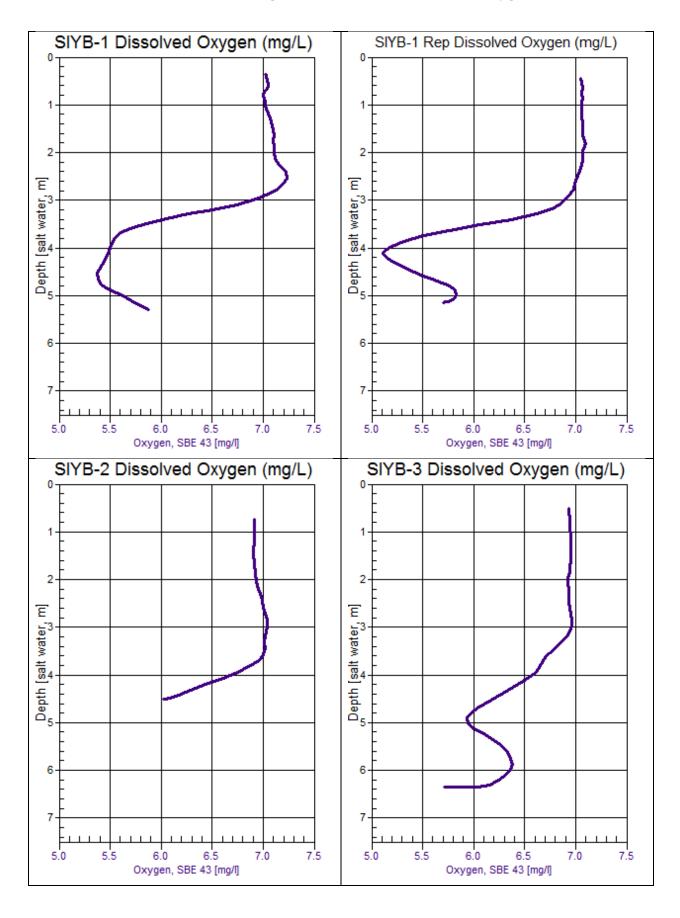
Project Manager: Barry Snyder

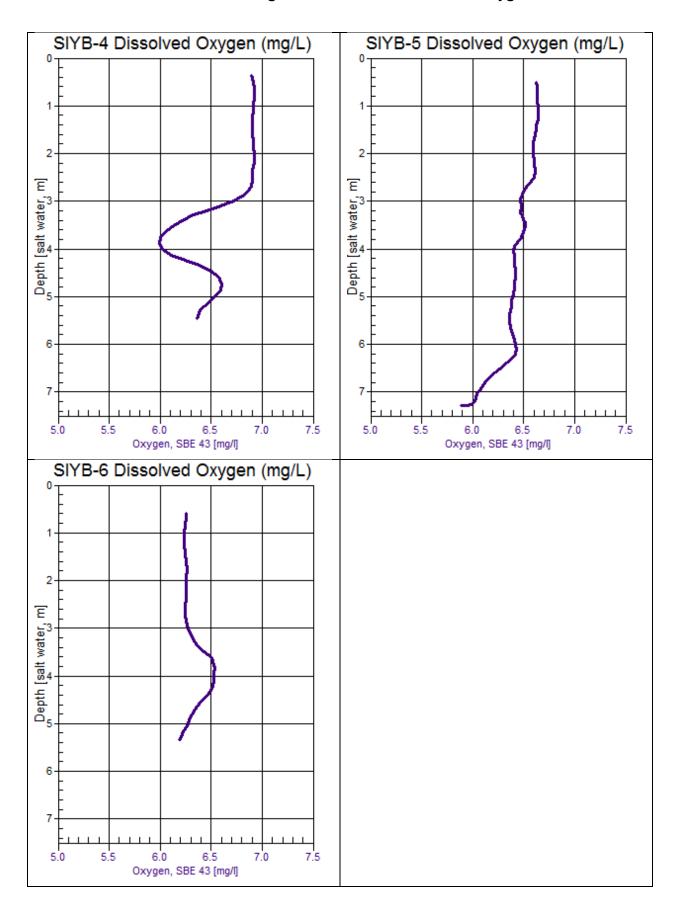
Item

Notes and Definitions

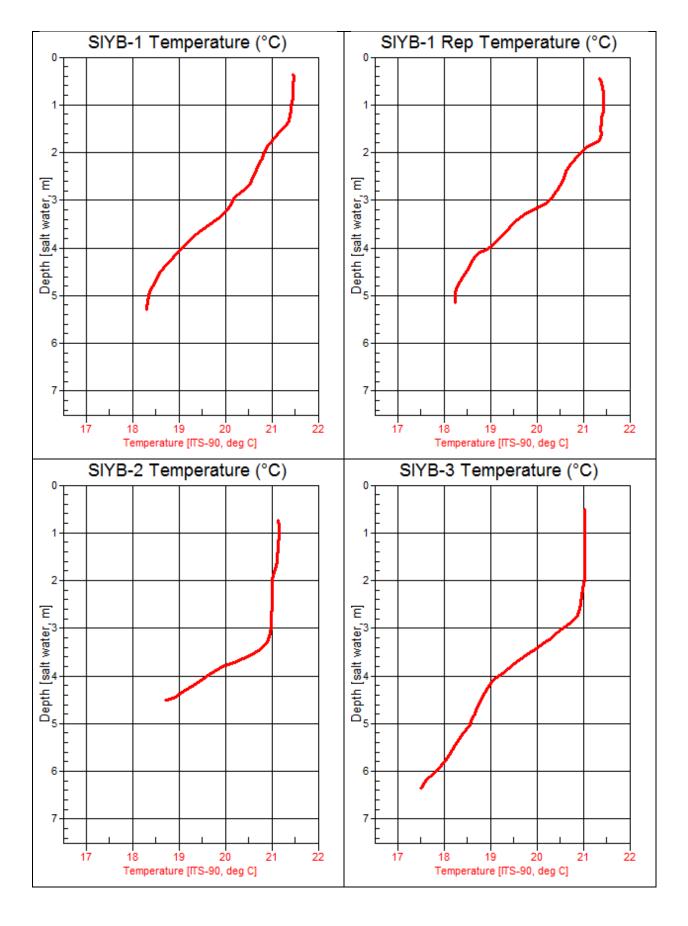
Estimated conc. detected <MRL and >MDL.

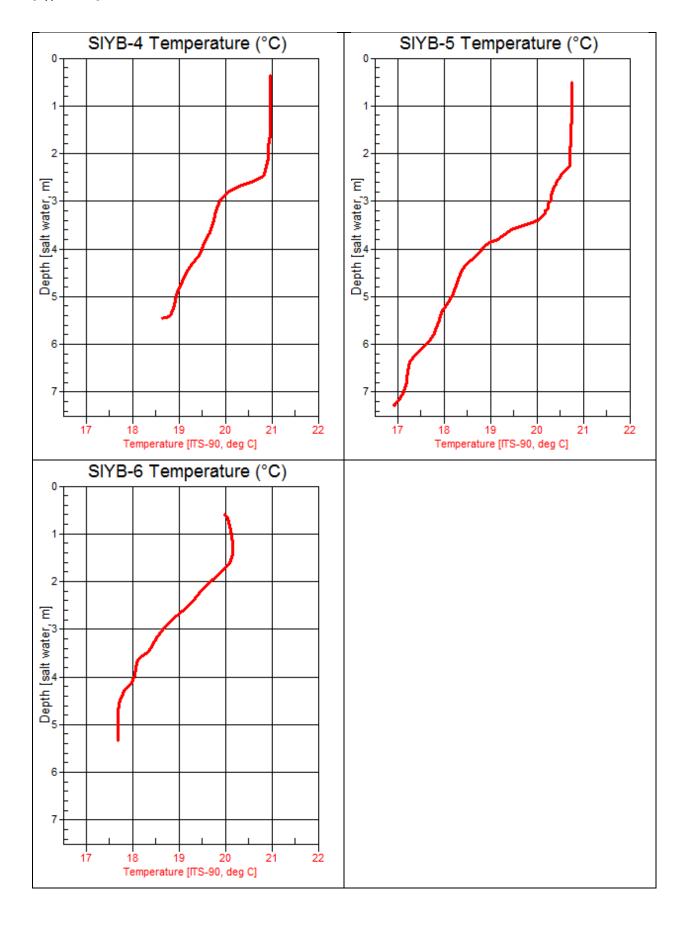
U	Estimated 66/16, detected 4Wite and 4Wibe.
R-03	The RPD is not applicable for result below the reporting limit (either ND or J value).
ND	NOT DETECTED at or above the Method Reporting Limit (MRL). If Method Detection Limit (MDL) is reported, then ND means not detected at or above the MDL.
Dil	Dilution
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
% Rec	Percent Recovery
Source	Sample that was matrix spiked or duplicated.
MDL	Method Detection Limit
MRL	The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence. The MRL is also known as Limit of Quantitation (LOQ) and Detection Limit for Reporting (DLR)
MDA	Minimum Detectable Activity
NR	Not Reportable
TIC	Tentatively Identified Compound (TIC) using mass spectrometry. The reported concentration is relative concentration based on the nearest internal standard. If the library search produces no matches at, or above 85%, the compound is reported as unknown.

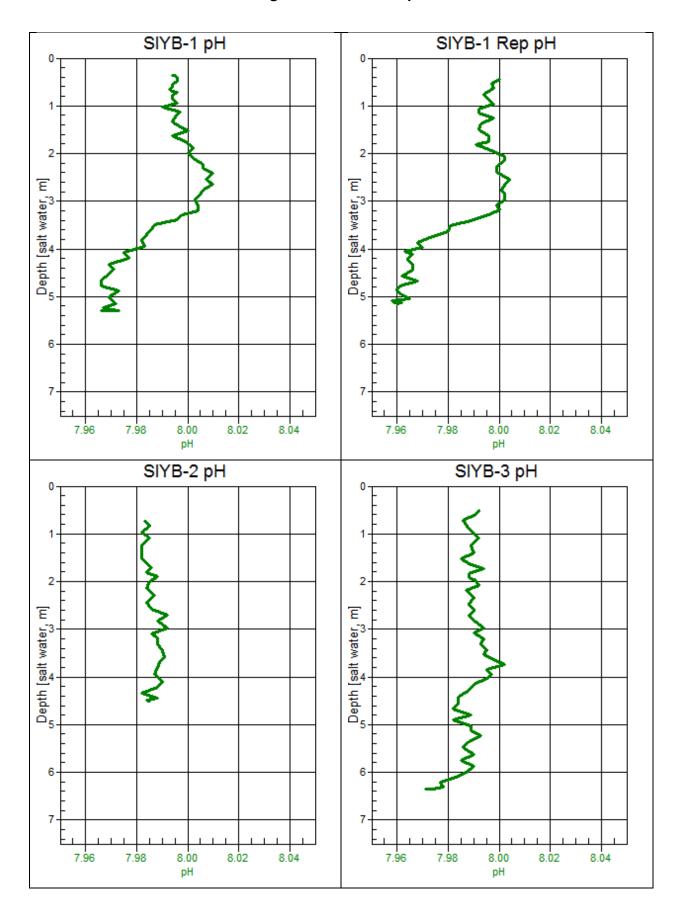

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

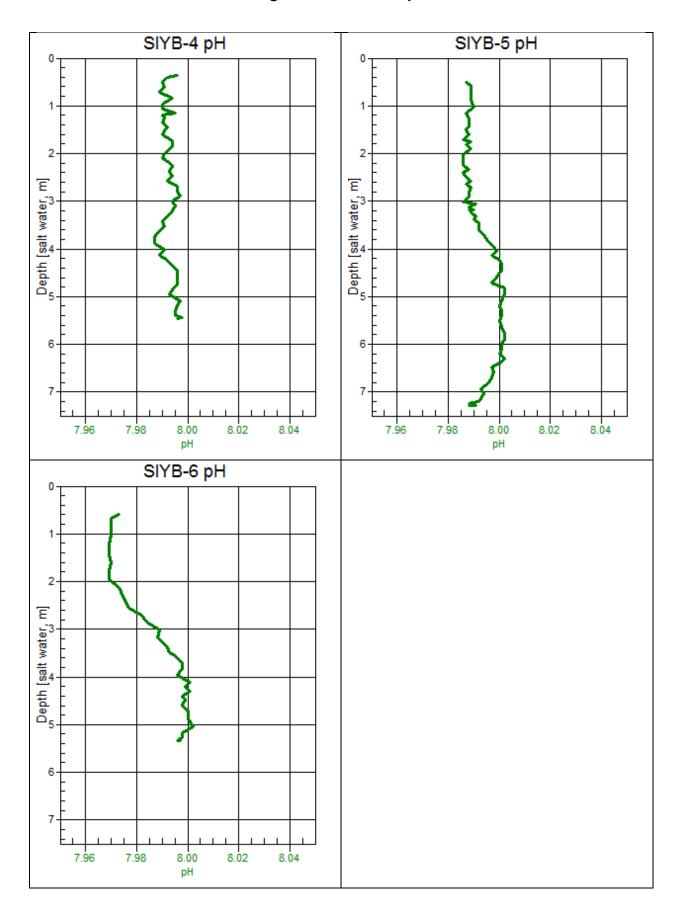

An Absence of Total Coliform meets the drinking water standards as established by the California State Water Resources Control Board (SWRCB)

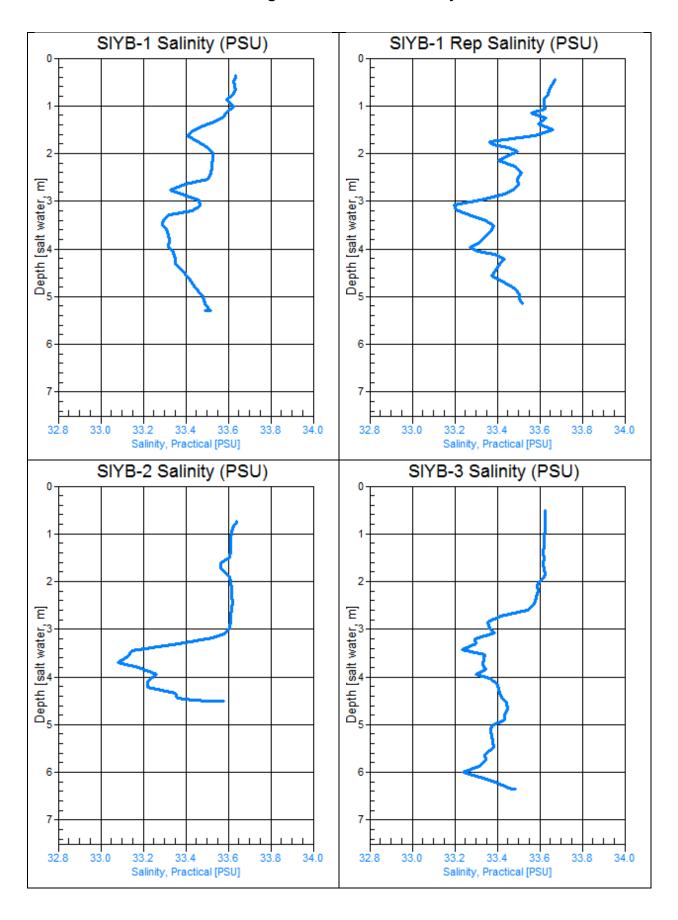
All results are expressed on wet weight basis unless otherwise specified.

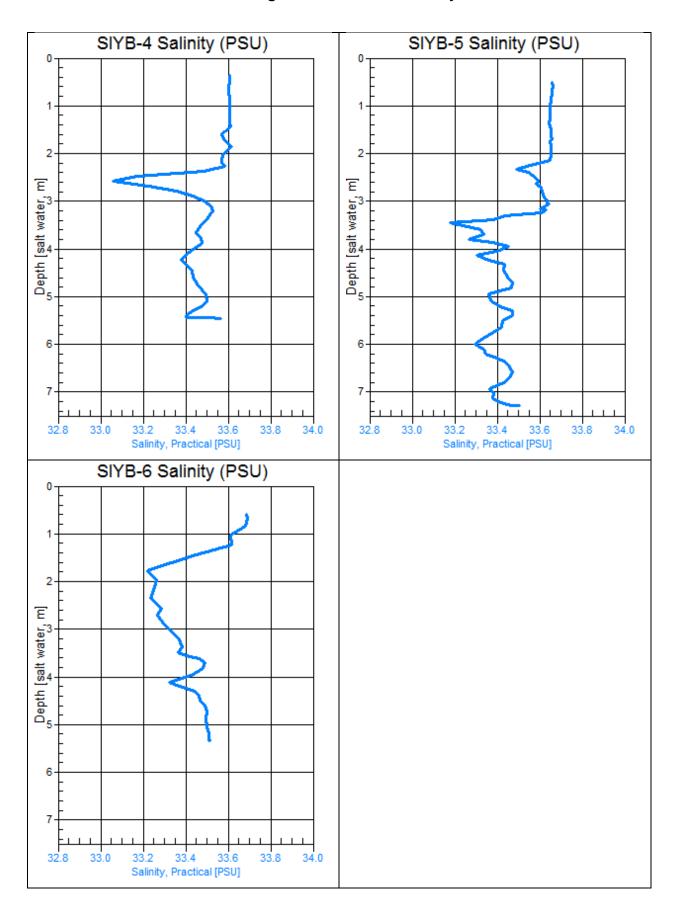

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS 002.

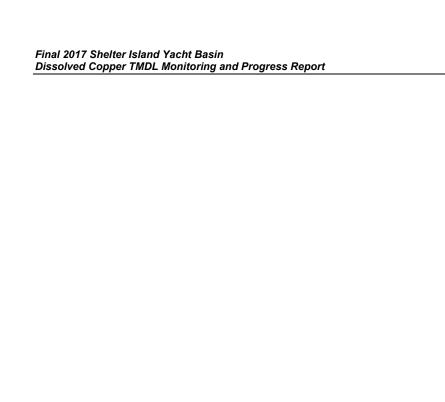

WATER QUALITY RESULTS CTD PROFILES: DISSOLVED OXYGEN




WATER QUALITY RESULTS CTD PROFILES: TEMPERATURE




WATER QUALITY RESULTS CTD PROFILES: pH



WATER QUALITY RESULTS CTD PROFILES: SALINITY

APPENDIX E 2018 TIME SERIES STUDY

This page intentionally left blank

March 2018

FINAL 24-HOUR TIME SERIES ANALYSIS OF DISSOLVED COPPER IN SHELTER ISLAND YACHT BASIN

TECHNICAL MEMORANDUM

Prepared for: San Diego Unified Port District

Prepared by:

Amec Foster Wheeler Environment & Infrastructure, Inc. 9210 Sky Park Court, Suite 200
San Diego, California 92123

March 2018

Amec Foster Wheeler Project No. 1715100611

TABLE OF CONTENTS

			Page
ACRO	MYNC	S AND ABBREVIATIONS	iii
UNIT	S OF I	MEASURE	iii
1.0	INTF	RODUCTION	1-1
	1.1	Background	1-1
2.0	COL	LECTION METHODS AND ANALYSIS	2-1
	2.1	Sample Collection Methods	2-1
		2.1.1 Sampling Stations	2-1
		2.1.2 Collection Schedule	2-2
		2.1.3 Field Procedures	2-4
	2.2	Analytical Analysis	2-6
		2.2.1 Quality Assurance and Quality Control	2-6
		2.2.2 Data Review and Management	2-6
3.0	RES	ULTS	3-1
	3.1	Dissolved Copper Results	3-1
	3.2	In situ Measurements	3-3
	3.3	QA/QC Summary	3-5
4.0	DISC	CUSSION	4-1
5.0	REF	ERENCES	5-1
LIST	OF T	ABLES	
Table	2-1.	Station Location and Coordinates	2-1
Table	2-2.	Tide Times and Heights for the Time Series Study and Annual TMDL	
		Monitoring Events	2-2
Table	2-3.	Sample Collection Timing Matrix	2-3
Table	2-4.	Analytical Methods and Measurement Accuracy	2-6
Table	3-1.	Dissolved Copper Concentrations during the SIYB Time Series Study	
Table	3-2.	Range of Water Quality Measurements	
Table	4-1.	Comparison of Tidal Bracket Average Concentrations by Station and	
		by Tidal Phase	4-4

March 2018

LIST OF FIGURES

Figure 1-1.	Collection Event Versus Tidal Cycle During the SIYB TMDL Monitoring	
	Event (2014–2017) and 2016 Enhanced Water Quality Special Study Event.	1-3
Figure 2-1.	Shelter Island Yacht Basin Time Series Study Sampling Locations	2-2
Figure 2-2.	Sample Collection Relative to the Tidal Cycle (1/3/2018–1/4/2018)	2-3
Figure 3-1.	Time Series Study Surface Water Dissolved Copper Concentrations versus	
_	Tide Sequence	3-3
Figure 3-2.	Mean Dissolved Copper Concentrations at Each Time Series Study Station	3-3
Figure 3-3.	Time Series Study Surface Water Temperatures	3-4
Figure 3-4.	Time Series Study Surface Water Salinities	3-4
Figure 3-5.	Time Series Study Surface Water pH	3-5
Figure 4-1.	Squared differences from the Average Measured Concentrations	
_	at Each Station	4-2
Figure 4-2.	Dissolved Copper Concentrations at Each Sampling Station	4-2
Figure 4-3.	Similar and Dissimilar Tidal Swings of the Time Series Study throughout the	
	Tidal Cycle	4-4
Figure 4-4.	Time Series Station Comparisons by Tidal Phase as Compared to	
	Closest TMDL Station	4-5
LIST OF A	PPENDICES	
APPENDIX .	A 24-HOUR TIME SERIES ANALYSIS OF DISSOLVED COPPER IN SIYB	
	SAMPLING AND ANALYSIS PLAN/ QUALITY ASSURANCE PROJECT P	LAN
APPENDIX	B QA/QC FIELD CHECKLIST FORMS	
APPENDIX	C CHAIN-OF-CUSTODY FORMS	

W:\2018\Projects\17-151-00611 SIYB\R318-011\Final 2018 Time Series Study Technical Report_2018-03-23.docx

APPENDIX D ANALYTICAL REPORTS APPENDIX E FIELD DATA FORMS r island Yacht Basin
Foster Wheeler Project No. 1715100611 March 2018

ACRONYMS AND ABBREVIATIONS

Environment & Infrastructure, Inc.)

COC chain of custody
DI deionized

ER equipment rinsate

FB field blank

GPS Global Positioning System

ID identification

MLLW mean lower low water

NA not applicable

PDF Portable Data Format

Port of San Diego or Port San Diego Unified Port District

QA quality assurance

QAPP Quality Assurance Project Plan

QC quality control

Regional Board San Diego Regional Water Quality Control Board

REP replicate

SAP Sampling and Analysis Plan

SD standard deviation

SEM standard error of the mean SIYB Shelter Island Yacht Basin

SIYB TMDL Total Maximum Daily Load for Dissolved Copper in the San Diego Shelter

Island Yacht Basin

SS Special Study

State Board State Water Resources Control Board SWAMP Surface Water Ambient Monitoring Program

Time Series Study 24-Hour Time Series Study of Dissolved Copper in SIYB

TMDL total maximum daily load

TS time series

USEPA United States Environmental Protection Agency

YSI YSI Incorporated

UNITS OF MEASURE

% percent \pm plus or minus $^{\circ}$ C degree(s) Celsius

< less than series years than series years.

≤ less than or equal to
≥ greater than or equal to
μg/L microgram(s) per liter

µm Micrometerft feet or footm meter(s)mL milliliter(s)

pH hydrogen ion concentration ppt part(s) per thousand

Final Report 24-Hour Time Series Analysis of Dissolved Copper in Shelter Island Yacht Basin Amec Foster Wheeler Project No. 1715100611 March 2018 This page intentionally left blank

March 2018

1.0 INTRODUCTION

This report presents the results of the 24-Hour Time Series Analysis of Dissolved Copper (Time Series Study) conducted in the Shelter Island Yacht Basin (SIYB) in January 2018. This water quality investigation was designed to evaluate possible variations in dissolved copper concentrations resulting from tidal fluctuations. This study was completed in January 2018 through the combined efforts of the San Diego Unified Port District (Port of San Diego or Port) and Amec Foster Wheeler Environment & Infrastructure, Inc. (Amec Foster Wheeler).

Surface water quality monitoring is completed on an annual basis to analyze primarily for dissolved copper concentrations as part of the SIYB Dissolved Copper Total Maximum Daily Load (SIYB TMDL). The sampling is completed on similar tidal heights each year during the peak summer months (i.e., August or September); this sampling consequently does not allow for characterization of tidal influence on the surface concentrations of dissolved copper throughout the basin. In an effort to better understand tidal influence on the concentrations of dissolved copper in the surface waters of SIYB, the Time Series Study was conducted in January of 2018 over the duration of one full mixed semidiurnal tidal cycle (approximately 25 hours).

The objective of the Time Series Study is to answer the following question:

How do tidal variations affect the concentrations of dissolved copper in the surface waters of SIYB?

The parameters monitored in the Time Series Study were dissolved copper and general water quality characteristics (e.g., temperature, pH, and salinity). Details regarding sample collection procedures are summarized in Section 2 (Collection Methods and Analysis) of this report, and are discussed in more detail in the project-specific Sampling and Analysis Plan (SAP)/Quality Assurance Project Plan (QAPP) (Amec Foster Wheeler, 2017a; Appendix A).

1.1 Background

Since 2011, dissolved copper concentrations in the surface waters of SIYB have been evaluated each year at six specific locations within the basin as part of the SIYB Dissolved Copper TMDL monitoring program. The annual monitoring results are submitted to the San Diego Regional Water Quality Control Board (Regional Board) as a component of the annual TMDL monitoring report.

Each year, the collection date for the annual monitoring program is selected to target a tidal cycle with a high tide of approximately +5.5 to +6.5 feet mean lower low water (MLLW), and a tidal range between consecutive high and low tides of 5 to 7 feet. Careful effort is made by field scientists to collect samples at each of the six TMDL monitoring stations from year to year at approximately the same time period relative to the tide. Furthermore, the samples are collected at the stations in the same sequence each year, moving from the mouth of the basin to bracket the slack high tide, thus providing relative consistency between monitoring years. For example, Figure 1-1 illustrates the time of collection at each TMDL station compared with tide height during the annual TMDL compliance monitoring events from 2014 through 2017 and during a special study (the 2016 Enhanced Water Quality Special Study). The special study was performed in

Final Report 24-Hour Time Series Analysis of Dissolved Copper in Shelter Island Yacht Basin Amec Foster Wheeler Project No. 1715100611

March 2018

conjunction with the 2016 TMDL compliance monitoring to supplement the existing TMDL stations with additional stations and monitoring depths (Amec Foster Wheeler, 2017b).

Because of its configuration, the major factor responsible for water circulation in SIYB is the daily tidal exchange between the basin and San Diego Bay (Regional Board, 2005). Tidal mixing has the potential to affect the ambient concentrations of dissolved copper within the water column. Understanding the degree by which dissolved copper fluctuates over a tidal cycle will allow for a better understanding of how representative the single point-in-time annual SIYB sample dissolved copper concentrations compare to other points in the daily tidal cycle.

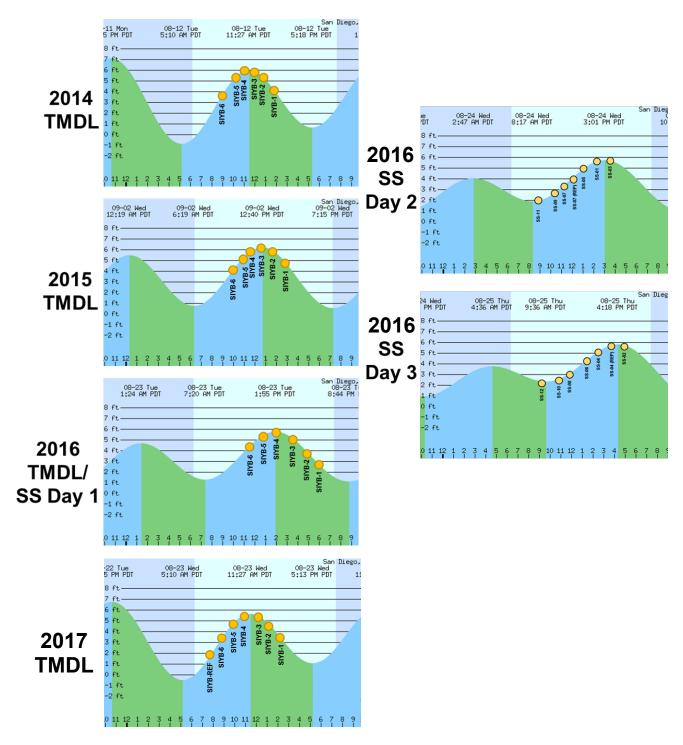
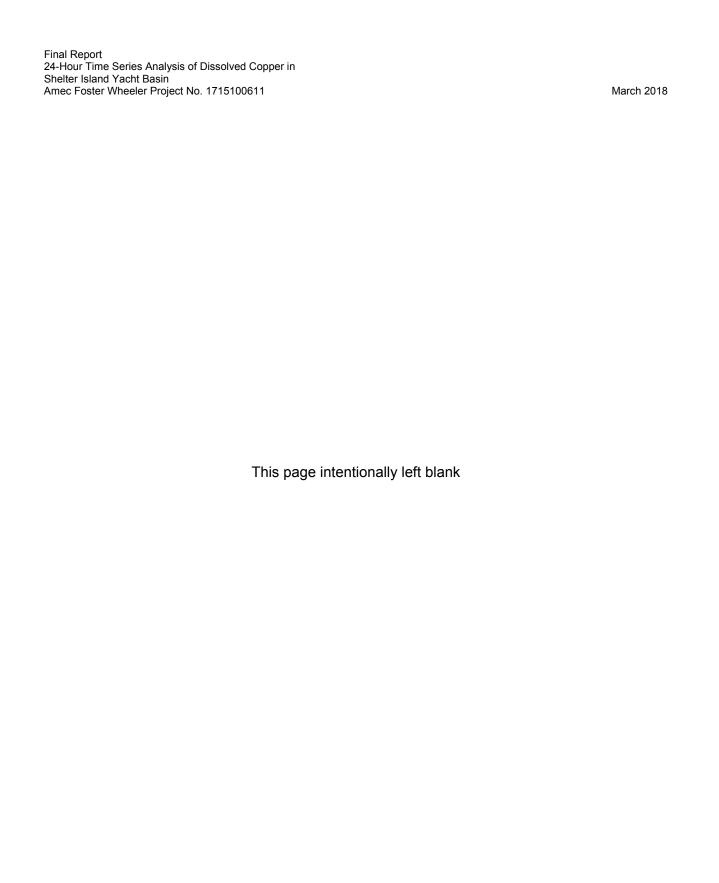



Figure 1-1. Collection Event Versus Tidal Cycle During the SIYB TMDL Monitoring Event (2014–2017) and 2016 Enhanced Water Quality Special Study Event

Note: orange dot = time of collection; SS = Special Study

2.0 COLLECTION METHODS AND ANALYSIS

This section describes the Time Series Study collection methods, including methods to evaluate how tidal variations may influence dissolved copper levels in surface waters of SIYB, and project-specific quality assurance (QA) and quality control (QC) procedures used during water quality monitoring.

2.1 Sample Collection Methods

Water quality samples were collected from surface water (i.e., 1 meter below the surface) at three locations throughout SIYB. These locations were chosen to characterize different areas of the basin. Samples were collected approximately every two hours throughout one full mixed semidiurnal tidal cycle; the sampling days (January 3–4, 2018) were selected to specifically correspond with the tidal ranges observed during the annual TMDL monitoring.

2.1.1 Sampling Stations

As discussed in Section 2.1, samples were collected at three locations throughout SIYB that reflect distance from the mouth. Station TS-1 was located near the head of the basin, at the southwestern end of the fuel dock. Discrete water samples at this station were collected directly from the dock. Station TS-2 was located approximately mid-basin and a Port-operated vessel with non-biocide paint was used for discrete sample collection. Station TS-3 was at the mouth of SIYB at the southwestern end of the Transient Dock, and as with TS-1, discrete water samples at TS-3 were collected directly from the dock. Figure 2-1 shows the target and actual sampling locations. Target coordinates and actual sampling coordinates for the stations are provided in Table 2-1.

Table 2-1.
Station Location and Coordinates

Station ID	Location	Target Sampling Coordinates		Actual Sampling Coordinates	
Station ID	Location	Latitude (dd.ddddd°)	Longitude (ddd·ddddo)	Latitude (dd.dddddo)	Longitude (ddd·ddddo)
TS-1	Southwestern end of Pearson's Fuel Dock	32.71864	-117.22612	32.71864	-117.22612
TS-2	Mid-Basin	32.71550	-117.22989	32.71575	-117.22977
TS-3	Southwestern end of the Transient Dock	32.71013	-117.23450	32.71013	-117.23450

Notes

ddd/dd.ddddo = decimal degrees, ID = identification; TS = time series

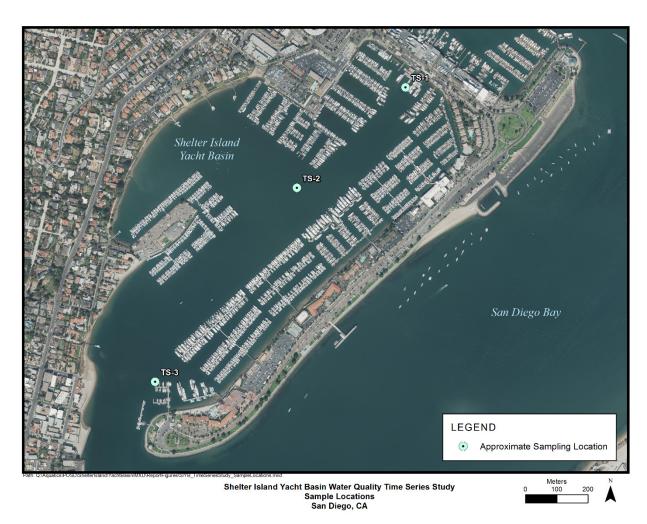


Figure 2-1. Shelter Island Yacht Basin Time Series Study Sampling Locations

2.1.2 Collection Schedule

Sample collections at the three stations were performed synchronously throughout the full semidiurnal tidal cycle on January 3 and 4, 2018. As discussed, the sampling date was selected primarily on the basis of the tidal range (i.e., tidal heights similar to those selected for TMDL sampling events) and practicality (i.e., a non-holiday or weekend day for reduced vessel traffic). Table 2-2 provides the tide times and heights for the Time Series Study and the most recent TMDL monitoring event.

Table 2-2.

Tide Times and Heights for the Time Series Study and Annual TMDL Monitoring Events

Date	Low Tide	High Tide	Low Tide	High Tide	Low Tide
		ti	me/height [feet]		
1/3/2018 (Primary)	16:42 (-1.9 ft)	23:11 (+7.0 ft)	04:15 (+1.6 ft)	10:24 (+7.0 ft)	17:29 (-1.4 ft)
8/23/2017 (2017 TMDL)	5:19 (+1.4 ft)	11:33 (+5.6 ft)	18:06 (+0.9 ft)		

Field collection began at slack low tide; samples were collected approximately every 2 hours for 25 hours, bracketing two high tides. Figure 2-2 provides an illustration of the sample collection schedule timing, and Table 2-3 provides a matrix of the collection times. Collection at all three stations occurred simultaneously, using three trained sampling teams.

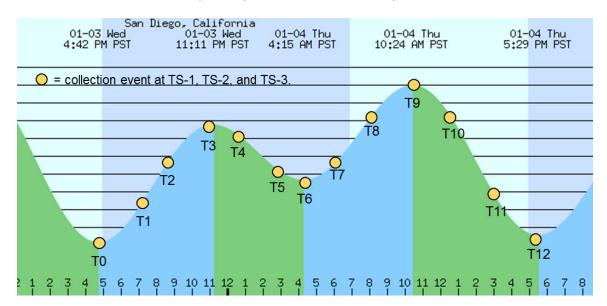


Figure 2-2. Sample Collection Relative to the Tidal Cycle (1/3/2018–1/4/2018)

Table 2-3.
Sample Collection Timing Matrix

Sample ID	Time
TS-[station]-ER	Prior to T0 collection
TS-[station]-T0	16:42 (1/3/2018)
TS-[station]-T1	18:50 (1/3/2018)
TS-[station]-T2	21:00 (1/3/2018)
TS-[station]-T3	23:11 (1/3/2018)
TS-[station]-T4	01:00 (1/4/2018)
TS-[station]-T5	03:00 (1/4/2018)
TS-[station]-T6	04:15 (1/4/2018)
TS-[station]-T7	06:20 (1/4/2018)
TS-[station]-T8	08:20 (1/4/2018)
TS-[station]-T9	10:24 (1/4/2018)
TS-[station]-T10	13:00 (1/4/2018)
TS-[station]-T11	15:15 (1/4/2018)
TS-[station]-T12	17:29 (1/4/2018)
TS-[station]-T12-REP	Immediately followed T12 collection
TS-[station]-FB	Followed T12-REP collection

Notes:

ER = equipment rinsate; FB = field blank; ID = identification; REP = replicate; TS = time series

March 2018

2.1.3 Field Procedures

Collection methods are presented in Sections 2.3.1 through 2.3.5. Field procedures are described in detail in the project-specific SAP/QAPP (Amec Foster Wheeler, 2017a; Appendix A).

2.1.3.1 Collection Station Positioning

Dockside stations (TS-1 and TS-3) were accessed by land and were located using a Global Positioning System (GPS) device. The mid-basin station (TS-2) was accessed by vessel. Under the direction of the Port Harbor Police¹, positioning and anchoring safety for overnight sampling played a large role in determining the final placement of TS-2, which was positioned at the perimeter of La Playa Anchorage, closest to the main channel of SIYB.

For the mid-channel station (TS-2), the vessel was anchored on station for most of the duration of the sampling event. Upon anchoring on station, the boat engine was turned off for a period of at least 5 minutes before collection activities commenced. During all field efforts, each field team scanned the surrounding area for nearby ongoing vessel maintenance activities and took notes and photographs of these activities (and other factors of note near the collection site), when warranted.

2.1.3.2 Sample Collection Conditions

To ensure sample integrity, specific sample collection conditions were required, as described in the project-specific SAP/QAPP (Amec Foster Wheeler, 2017a; Appendix A). These conditions included taking special care during the anchoring process at TS-2 to ensure that the anchor did not cause excessive sediment resuspension. Once the boat was anchored, the engine was turned off, and a minimum period of 5 minutes elapsed prior to commencing collection activities to allow any potential resuspended sediment to settle.

2.1.3.3 Sample Collection Procedures

To ensure consistency between sampling locations, each sampling team was equipped with a precleaned Niskin bottle, prelabeled bottle kits and extra bottles, precleaned vacuum filtration system units, a filtration pump, a plastic-lined 5-gallon bucket (to store the Niskin in between sample collection times), coolers, and ice.

All sampling steps followed the Surface Water Ambient Monitoring Program (SWAMP)-defined "clean hands" techniques (State Water Resources Control Board [State Board], 2014). For each sample collection event at each station, discrete water samples were collected using a Niskin bottle deployed from the sampling vessel or dock. Surface samples at each station were collected at a depth of 1 meter. Sample timing at each station followed the schedule matrix in Table 2-3 (approximately every two hours). As required by SWAMP protocols, the program included collecting a field replicate at each station. The field replicate sample consisted of a second complete set of samples collected immediately following the collection of the last sample collected

Amec Foster Wheeler Environment & Infrastructure, Inc.

¹ The Port Harbor Police requested via telephone correspondence that the sampling vessel be positioned outside the main channel.

March 2018

at each station (TS-[station]-12). In addition to the field replicate, each batch of samples (i.e., each station) included an equipment rinse blank and field blank using laboratory-provided deionized water. The equipment rinse blank was collected prior to collection of TS-[station]-0, and the field blank was collected immediately after the collection of the replicate sample (i.e., following collection of TS-[station]-12-REP) (Table 2-3).

Discrete water samples were filtered in the field (to comply with United States Environmental Protection Agency [USEPA] Method 1640 protocol). Two 500-milliliter (mL) aliquots of water from each Niskin bottle grab sample were filtered through a precleaned² 0.45-micrometer (µm) glass fiber filter using a Whatman brand Klari-flex bottle top vacuum filtration system. To ensure that a clean sample was collected, the first 500-mL aliquot was discarded. The second 500-mL aliquot was directly transferred into a prelabeled nonpreserved³ sample bottle containing ultra-pure nitric acid for preservation. The field team ensured that no airspace remained in the sample bottle once capped. Once confirmed, the sample bottle was immediately transferred to a cooler containing ice. Cooler ice was replenished during the 12-hour shift change and following the conclusion of sampling.

Following the water sample collection, field measurements of pH, temperature, and salinity of the surface water at each station (i.e., within 1 meter of the surface) were made using a YSI meter according to the manufacturer's specifications. Field measurements and any observations (if applicable) were recorded in the field log for that collection event. Completed field logs are provided in Appendix B.

2.1.3.4 Sample Collection Completeness

Upon completion of the sample collection and field measurements, the field crew completed the station- and sample-specific QA/QC checklist to ensure the completeness and accuracy of the field data logs and analytical samples (provided in Appendix B). Once the QA/QC checklist was deemed complete, the field crew prepped for the next sample collection.

Once the entire suite of samples was collected, water samples were logged on a chain-of-custody (COC) form, replaced in newly iced containers, and transported to the analytical laboratory on January 5, 2018.

2.1.3.5 Equipment Decontamination and Cleaning

Prior to field collection, the Niskin bottle was thoroughly cleaned using soapy water and then rinsed thoroughly with deionized water. Upon sample collection, the Niskin bottle was rinsed thoroughly with site water and soaked at the sampling depth (1 meter below the water surface) for at least for one minute prior to sample collection. After collection, water samples were

² The entire filtration apparatus was acid-washed and rinsed thoroughly with deionized (DI) water prior to sample collection

³ In the SAP/QAPP, it was stated that sample bottles would contain ultra-pure nitric acid for preservation. In December 29, 2017, email correspondence from the analytical laboratory, it was specified that the samples should be preserved at the laboratory.

transferred from the Niskin bottle to a laboratory-certified, contaminant-free bottle top filtration system. In between sampling times, the Niskin bottle was stored in a plastic-lined, 5-gallon bucket.

2.2 Analytical Analysis

Surface water samples were analyzed for dissolved copper following certified USEPA test methods. The analytical test methods and reporting limits are provided in Table 2-4. Surface water field measurements were taken *in situ* following each sample collection for pH, salinity, and temperature using a YSI data sonde. Measurement accuracy for *in situ* water quality measurements is provided in Table 2-4.

Table 2-4.

Analytical Methods and Measurement Accuracy

Water Quality Measurement	Method	Method Detection Limit	Reporting Limit
Dissolved Copper	USEPA Method 1640	0.0038 μg/L	0.010 μg/L
Salinity	YSI sonde	NA	± 0.1 ppt
Temperature	YSI sonde	NA	± 0.1 °C
рН	YSI sonde	NA	± 0.1 pH unit

Notes:

2.2.1 Quality Assurance and Quality Control

Sampling process QA/QC included preparation prior to, during, and after collection of the samples to minimize the possibility of compromising sample integrity. The sample collection team was trained in and followed field sampling operating procedures in accordance with the Special Study SAP/QAPP (Amec Foster Wheeler, 2017a; Appendix A). COC procedures were used for all samples throughout the collection, transport, and analytical process. Completed COC forms are provided in Appendix C. The project-specific SAP/QAPP (Amec Foster Wheeler, 2017a; Appendix A) provides more information regarding COC procedures.

2.2.2 Data Review and Management

Field and laboratory data were reviewed for completeness and accuracy prior to analysis and reporting, and were stored in a database, as described in Sections 2.2.2.1 and 2.2.2.2.

2.2.2.1 Data Review

After the sampling event, field data sheets were checked for completeness and accuracy by the field crew and the Field QA Officer. In addition, all sample COC forms were checked against sample labels prior to transportation to the analytical laboratory. In the laboratory, technicians documented sample receipt and sample preparation activities in laboratory logbooks or on bench sheets. Data validation included use of dated and signed entries by technicians on the data sheets and logbooks used for samples, sample tracking and numbering systems to track the progress of samples through the laboratory, and QC criteria to reject or accept specific data. Data for

 $^{^{\}circ}$ C = degrees Celsius; μ g/L = micrograms per liter; NA = not applicable; pH = hydrogen ion concentration; ppt = part(s) per thousand;

USEPA = United States Environmental Protection Agency; YSI = YSI Incorporated

March 2018

laboratory analyses were entered directly onto data sheets. Data sheets were filled out in ink and signed by the technician, who checked the sheet to ensure completeness and accuracy. The technician who generated the data had primary responsibility for the accuracy and completeness of the data. Each technician reviewed the data to ensure the following:

- The sample description information was correct and complete.
- The analysis information was correct and complete.
- The results were correct and complete.
- The documentation was complete.

All data were reviewed and verified by participating team laboratories to determine whether data quality objectives had been met, and whether appropriate corrective actions had been taken when necessary.

2.2.2.2 Data Management

All laboratory-supplied analytical results were provided as Adobe Portable Data Format (PDF) files. Analytical laboratory results were reviewed by the laboratory QA/QC Officer, and then forwarded to Amec Foster Wheeler for review and reporting. All laboratory records are provided in Appendix D.

2.2.2.3 Data Analysis

The water quality data is presented in tabular format. The dissolved copper concentrations are displayed graphically as a temporal distribution versus the tidal cycle. Analysis of water quality data includes calculations of the range, averages, and standard deviations at each station and study-wide.

March 2018

3.0 RESULTS

This section discusses and summarizes the analytical chemistry results and *in situ* measurements of the January 2018 Time Series Study. Surface water samples were collected on January 3–4, 2018 at three stations within SIYB. Water samples were tested for concentrations of dissolved copper. Analytical results of the survey are presented in Table 3-1. A QA/QC summary of the analytical laboratory data is provided in Section 3.3. The chemistry results reports submitted by the analytical laboratory are provided in Appendix D.

3.1 Dissolved Copper Results

Table 3-1 provides the surface water dissolved copper concentrations measured at approximately two-hour intervals for the three stations over the 25-hour collection period. Figure 3-1 shows dissolved copper concentrations at the three respective stations throughout the tidal cycle. Figure 3-2 provides the mean concentrations ± standard deviation at each of the three stations. In general, the findings of the Time Series Study showed the following:

- Dissolved copper concentrations in the surface waters of TS-1, located at the fuel dock (nearest to the head of SIYB), ranged from 8.9 μg/L to 10 μg/L over the duration of the study. The average measured concentration over the full semidiurnal tidal cycle was 9.5 μg/L ± 0.34 μg/L (standard deviation). Concentrations over the tidal cycle were the most consistent at this station, compared with results from the other two stations.
- Dissolved copper concentrations at the surface waters of TS-2, located approximately mid-basin and mid-channel, ranged from 2.0 μ g/L to 7.1 μ g/L; the average concentration over the duration of the study was 5.5 μ g/L \pm 1.2 μ g/L; concentrations varied with the tide more at this station when compared to the values measured at TS-1.
- Dissolved copper concentrations at the surface waters at TS-3, located at the southwestern end of the Transient Dock, ranged from 1.0 μ g/L to 4.8 μ g/L; the average concentration over the duration of the study was 3.0 μ g/L \pm 1.2 μ g/L. Concentrations of dissolved copper generally varied the greatest with the tidal cycle at this station.

Table 3-1.

Dissolved Copper Concentrations during the SIYB Time Series Study

Sample	Station TS-1 (Pearson's Fuel Dock)	Station TS-2 (Mid-Channel)	Station TS-3 (Transient Dock)
Sequence		Concentration (µg/L)	
T0	9.5	5.5	2.7
T1	9.5	6.4	3.2
T2	9.1	4.1	4.1
<i>T</i> 3	9.4	5.0	4.8
T4	9.6	5.7	3.5
T5	9.3	5.3	4.1
T6	9.5	5.4	3.9
<i>T7</i>	9.0	5.5	2.1
T8	8.9	6.4	1.2
<i>T</i> 9	10	2.0	1.0
T10	9.8	6.2	1.4
T11	9.9	6.6	3.0
T12	9.9	7.1	3.9
T12-REP	10	7.0	3.9
ER	0.059	0.025	0.044
FB	ND	0.023	0.028

Notes:

 μ g/L = micrograms per liter; SIYB = Shelter Island Yacht Basin; TS = time series; ER = equipment rinsate; FB = field blank

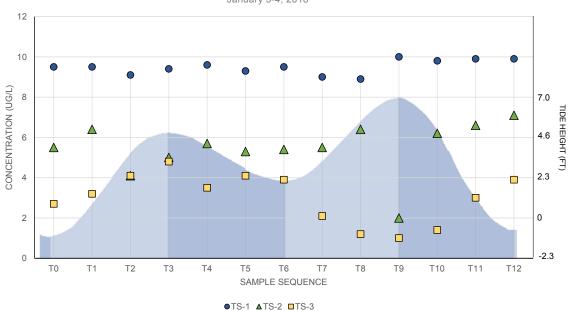


Figure 3-1. Time Series Study Surface Water Dissolved Copper Concentrations versus Tide Sequence

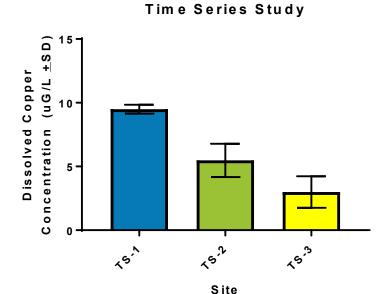


Figure 3-2. Mean Dissolved Copper Concentrations at Each Time Series Study Station

3.2 In situ Measurements

Following water collection, the surface water quality indicators were measured using a YSI data sonde. The ranges of each indicator at each station is presented in Table 3-2. Figures 3-3 through 3-5 present the measured values of temperature, salinity, and pH measured over the duration of the study. The field data logs are provided in Appendix E.

Table 3-2.
Range of Water Quality Measurements

Station	Temperature (°C)	рН	Salinity (ppt)
TS-1	15.9 – 16.4	8.1 – 8.5	33.3 – 33.7
TS-2	15.6 – 16.2	8.0 – 8.4	33.4 – 33.9
TS-3	15.8 – 16.2	8.0 – 8.2	33.5 – 33.7

Notes:

°C = degrees Celsius; ppt = parts per thousand

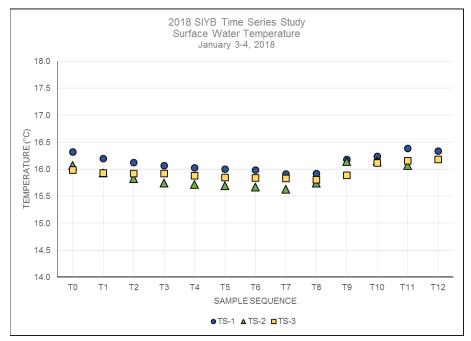


Figure 3-3. Time Series Study Surface Water Temperatures

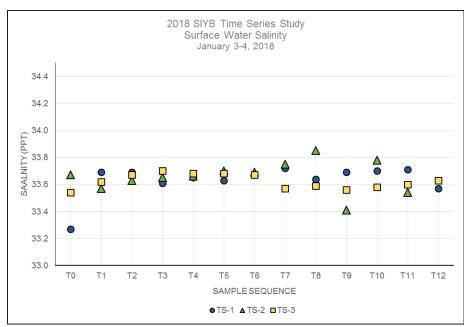


Figure 3-4. Time Series Study Surface Water Salinities

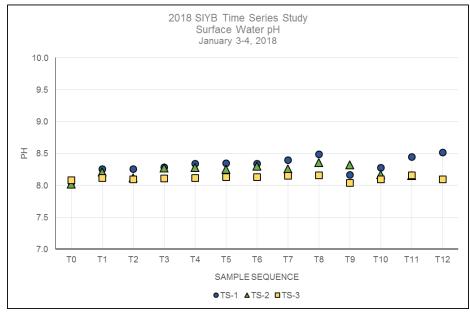


Figure 3-5. Time Series Study Surface Water pH

3.3 QA/QC Summary

All samples were submitted to the analytical laboratory on January 5, 2018. All samples were received in good condition at Weck, at or below 4°C and on ice. Samples for dissolved metals were filtered in the field using a 0.45-µm acid-rinse bottle top filtration system and preserved at the laboratory. Holding time requirements for analysis were met for all samples.

Analytical chemistry results underwent a thorough QA/QC evaluation; they were determined to meet the data quality objectives outlined in the SAP/QAPP and were deemed acceptable for reporting purposes, with the qualifications noted in the QA section of the individual laboratory reports (these issues are summarized below). The analytical laboratory reports in Appendix D have specific QA/QC sections that highlight any qualified data.

March 2018

4.0 DISCUSSION

The goal of this Time Series Study was to better understand how tidal variations affects the concentration of dissolved copper in the surface waters of SIYB.

In general, the results of the Time Series Study showed the following:

- Dissolved copper concentrations at Station TS-1 (off the fuel dock) showed little variation between phase of the tide or sampling times, suggesting that tides may not have as great an influence in the back-basin areas. This is demonstrated in Figures 4-1 and 4-2. Figure 4-1 provides the squared difference from the average concentration for each sample at TS-1, which depicts the measured spread of each data point from the average concentration; the observed sample variance of concentrations at TS-1 was 0.124. Figure 4-2 provides the distribution of concentrations measured at TS-1; concentrations ranged from 8.9 μg/L to 10 μg/L over the duration of the study. Overall, concentrations at TS-1 were the highest compared with results from the other two stations and variability was the least; the mean concentration (±SD) at TS-1 over the duration of the study was 9.5 μg/L ± 0.34 μg/L.
- Dissolved copper concentrations at the mid-channel station and the station closest to the mouth, TS-2 and TS-3, respectively, exhibited more variability than concentrations observed at TS-1 (Figure 4-1; sample variance at TS-2 was 1.70, sample variance at TS-3 was 1.52), suggesting that tides may affect dissolved copper concentrations over the course of a full tidal cycle. Concentrations at TS-2 were lower than those observed at TS-1; the mean concentration (\pm SD) of dissolved copper at TS-2 over the duration of the study was 5.5 μ g/L \pm 1.2 μ g/L, while the concentrations ranged from 2.0 μ g/L to 7.1 μ g/L. Variability was the greatest at TS-2. Concentrations at TS-3 were the lowest overall for the three stations; the mean concentration (\pm SD) at TS-3 over the duration of the study was 3.0 μ g/L \pm 1.2 μ g/L, and the concentrations ranged from 1.0 μ g/L to 4.8 μ g/L (Figure 4-2).

Amec Foster Wheeler Environment & Infrastructure, Inc.

⁴ The sample variance is determined by the sum of squares divided by the adjusted number of values in the dataset. Variance values closer to zero indicate that values within a data set are similar, while larger values indicate higher scatter of data.

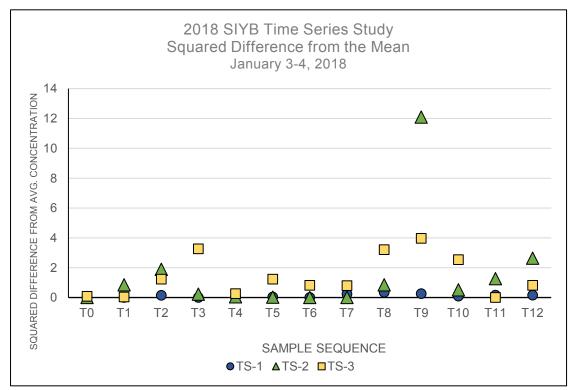


Figure 4-1. Squared differences from the Average Measured Concentrations at Each Station

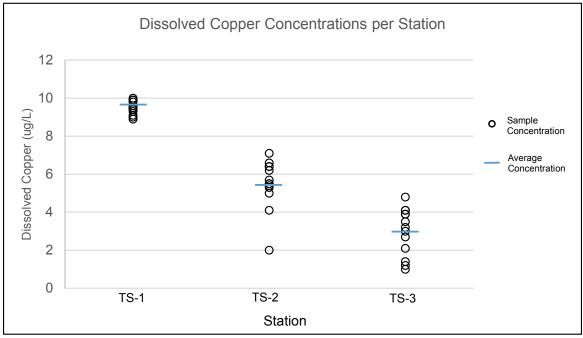


Figure 4-2. Dissolved Copper Concentrations at Each Sampling Station

March 2018

Tidal Influence and TMDL Methodologies

Dissolved copper concentrations were analyzed to evaluate variations between the portion of the tidal phase sampled during the annual TMDL compliance monitoring and the portion of the tidal phase that is not captured during annual TMDL compliance monitoring. A mixed semidiurnal tidal cycle experiences two high and two low phases of varying tidal height. During the approximately 25-hour sampling, 13 discrete samples (T0-T12) were collected simultaneously at TS-1, TS-2, and TS-3. Samples T0-T1, T5-T7, and T11-T12 captured the portions of the tide that are not sampled with the bracketing methodologies used for the annual TMDL compliance monitoring (during both the ebb and flow around slack low tide; see Figure 4-3). Samples T2-T4 and T8-T10 captured the portions of the tide that are sampled with the bracketing methodologies used for the annual TMDL compliance monitoring (during both the ebb and flow around slack high tide; see Figure 4-3).

Table 4-1 summarizes the dissolved copper averages by station for each bracketed tidal phase of the mixed semidiurnal tide captured during the Time Series Study (two similar bracketed highs tides, and two different bracketed low tides, in relation to TMDL compliance tidal bracketing methodologies). There was little variability in dissolved copper concentrations observed at TS-1 during each phase of the tidal cycle (see Table 4-1). At Stations TS-2 and TS-3, greater variability in dissolved copper averages by tidal phase was observed (see Table 4-1). This concurs with the overall finding that tides may influence dissolved copper concentrations to a greater extent at locations that are closer to the mouth of the basin. When comparing the Time Series Study results by tidal phase to the average concentrations observed at the nearest TMDL Station⁵, similar ranges of variability are observed during the TMDL sampling and the high tide phase of the Time Series Study (Figure 4-4). Less variability was associated with the low tide phase during the Time Series Study.

It is important to note that although there was observed variability by station and tidal phase for the Time Series Study, there were no significant differences between the high tide phase and low tide phase during the Time Series Study at TS-1 (t(11)=0.2332, p=0.8199), TS-2 (t(11)=1.562, p=0.1465) or TS-3 (t(11)=0.8722, p=0.4018; see Figure 4-4).

Amec Foster Wheeler Environment & Infrastructure, Inc.

⁵ The TMDL station concentration presented in Figure 4-4 provides the mean (±SEM) of the concentrations measured during the 2011 through 2017 annual TMDL compliance monitoring events.

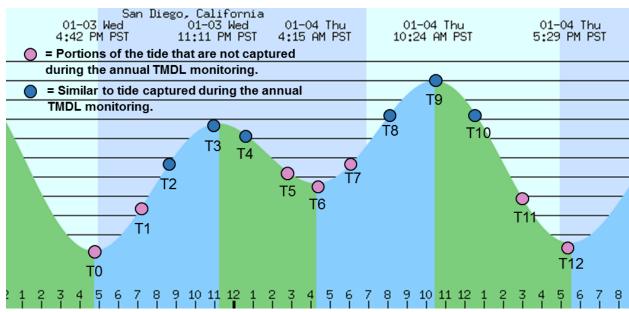


Figure 4-3. Similar and Dissimilar Tidal Swings of the Time Series Study throughout the Tidal Cycle

Table 4-1.

Comparison of Tidal Bracket Average Concentrations by Station and by Tidal Phase

Tidal Swing Captured	Tidal Swing Time Series Study		Average Dissolved Copper Concentration (µg/L) at Each Station		
Captureu	Sample Points	TS-1	TS-2	TS-3	
Tidal Swing Similar	T2, T3, T4	9.4	4.9	4.1	
to TMDL Compliance Monitoring (period around slack high)	T8, T9, T10	9.6	4.9	1.2	
Tidal Swing	T5, T6, T7	9.3	5.4	3.4	
Opposite to TMDL Compliance Monitoring (period around slack low)	T0, T1, T11, T12	9.7	6.4	3.2	

ug/L = micrograms per liter; TMDL = Total Maximum Daily Load; TS = Time Series

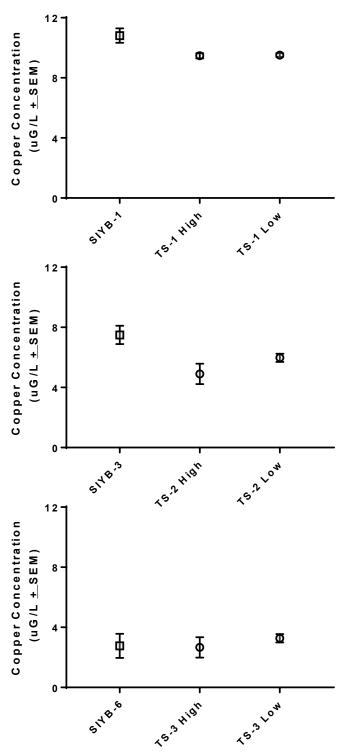


Figure 4-4. Time Series Station Comparisons by Tidal Phase as Compared to Closest TMDL Station

Note: The annual TMDL sampling event is conducted during peak summer months (August or September); the Time Series Study collection occurred in January 2018. The TMDL concentration presented in the mean of concentrations measured during the 2011 through 2017 annual TMDL compliance monitoring events.

Final Report 24-Hour Time Series Analysis of Dissolved Copper in Shelter Island Yacht Basin Amec Foster Wheeler Project No. 1715100

March 2018

Overall, the results of this study indicate that tidal variations may affect the dissolved copper concentrations at individual stations over the duration of one full mixed semidiurnal tide; however, less tidal influence appears to occur in the innermost portions of the basin. As such, the variability in concentrations is realized to a much lesser extent in the head of the basin (i.e., TS-1) at any phase of the tide.

Compared to TS-1, increased variability at TS-2 and TS-3 may be a result of stronger tidal influence occurring at the mouth and mid-basin compared to the head of the basin. This may be further supported by the greater variability observed during the high tide phase. As evidenced by salinity and dissolved copper data at TS-2 and TS-3, a noticeable pulse of water with lower salinity and lower dissolved copper concentrations was captured during sampling time T9 (see Table 3-1). Whether T9 data represents tidal influence or a potential freshwater pocket not related to tidal influence cannot be determined by this data set; however, this data highlights an example of variability that may be present over the course of one full mixed semidiurnal tide.

Tidal variations do seem to affect the dissolved copper concentrations in surface waters of SIYB, to extents dependent on location within the basin. This variability is (1) the least prominent at the head of the basin (i.e., TS-1), where variability between samples was relatively small; (2) more prominent at the locations closer to the mouth of the basin (i.e., TS-2 and TS-3), (3) more prominent between tidal phases closer to the mouth of the basin (i.e., TS-2 and TS-3), and (4) not significantly different at each station between the high and low tidal phases captured during the Time Series Study.

5.0 REFERENCES

- Amec Foster Wheeler. 2017a. 24-Hour Time Series Analysis of Dissolved Copper in Shelter Island Yacht Basin. Sampling and Analysis Plan and Quality Assurance Project Plan. December.
- Amec Foster Wheeler. 2017b. 2016 Shelter Island Yacht Basin Enhanced Water Quality Special Study Final Report. March.
- California Regional Water Quality Control Board, San Diego Region (Regional Board) (2005).

 Total Maximum Daily Load for Dissolved Copper in Shelter Island Yacht Basin, San Diego Bay. Resolution No. R9 2005 0019 Basin Plan Amendment and Technical Report.
- California State Water Resources Control Board (State Board) (2014). Collections of Water and Bed Sediment Samples with Associated Field Measurements and Physical Habitat in California. Version 1.1. Updated March 2014. http://www.waterboards.ca.gov/water_issues/programs/swamp/docs/collect_bed_sediment_update.pdf

Final Report 24-Hour Time Series Analysis of Dissolved Copper in Shelter Island Yacht Basin Amec Foster Wheeler Project No. 1715100611 March 2018 This page intentionally left blank

APPENDIX A 24-HOUR TIME SERIES ANALYSIS OF DISSOLVED COPPER IN SIYB SAMPLING AND ANALYSIS PLAN/ QUALITY ASSURANCE PROJECT PLAN

FINAL

24-HOUR TIME SERIES ANALYSIS OF DISSOLVED COPPER IN SHELTER ISLAND YACHT BASIN

SAMPLING AND ANALYSIS PLAN & QUALITY ASSURANCE PROJECT PLAN

Prepared for: San Diego Unified Port District

Prepared by:

Amec Foster Wheeler Environment & Infrastructure, Inc. 9210 Sky Park Court, Suite 200 San Diego, California 92123

December 2017

TABLE OF CONTENTS

			Page
		S AND ABBREVIATIONS	
UNIT	S OF M	IEASURE	IV
1.0	INTR	ODUCTION	1-1
2.0	PRO.	JECT MANAGEMENT	2-1
	2.1	SAP/QAPP Distribution	2-1
	2.2	Project Organization	2-1
	2.3	Quality Assurance Officers' Roles	2-5
3.0	BAC	KGROUND	
4.0	SAM	PLING AND ANALYSIS PLAN	4-1
	4.1	Sampling Design	4-1
		4.1.1 Sample Collection Stations	4-1
	4.2	Collection Schedule	4-5
	4.3	Collection Station Positioning	4-7
	4.4	Field Collection Procedures	
	4.5	Equipment Decontamination and Cleaning	4-8
	4.6	Sample Processing, Handling, and Custody	
	4.7	Field Sampling Preservation, Packaging, and Shipment	
	4.8	Chain-of-Custody Records	
	4.9	Analytical Methods	
	4.10	Data Analysis	
	4.11	Data Review	
	4.12	Data Management	
	4.13	Laboratory Quality Assurance and Quality Control	
	4.14	Health and Safety	
- 0	0114	4.14.1 Use of Boats and Working Over Water	
5.0		LITY ASSURANCE	
	5.1	Field and Analytical QA/QC Procedures	
	5.2	Assessments and Response Actions	
		5.2.1 Corrective Action Plans	
		5.2.2 Criteria Used for Determination of an Out-of-Control Event	
		5.2.3 Procedures for Stopping Analyses	
	5.3	5.2.4 Corrective Action	
	5.3 5.4	•	
	3.4	Verification and Validation Methods5.4.1 Database Generation	
		5.4.2 Error Checking and Verification	
	5.5	Reconciliation with User Requirements	5-6
	5.6	Quality Objectives for Criteria for Measurement of Data	
	5.7	Special Training Needs/Certifications	
	0.7	5.7.1 Training and Certification Documentation	5 0 5-8
		5.7.2 Field Sampling	5-8
		5.7.3 Analytical Laboratory	
		5.7.4 Training Personnel	
	5.8	Documents and Records	
6.0		ORT PREPARATION	
7.0	REFE	ERENCES	7-1

LIST OF TABLES

Table 2-1. SAP/QAPP Distribution List	2-1
Table 2-2. Project Personnel Roles and Contact Information	2-2
Table 4-1. Station Location and Coordinates	
Table 4-2. Annual TMDL Monitoring Station Coordinates	
Table 4-3. Sample Collection Timing Matrix	
Table 4-4. Sample Holding Times	
Table 4-5. Laboratory Analytical Methods and Detection Limits	
Table 5-1. Summary of Data Quality Objectives	
Table 5-2. Data Quality Objectives for Laboratory and Field Measurements	
LIST OF FIGURES	
Figure 2-1. Project Organization - Analytical Component	2-3
·	
Figure 2-2. Project Organization - Field Component	2-4
Figure 2-2. Project Organization - Field ComponentFigure 3-1. Collection Event versus Tidal Cycle during the SIYB TMDL Monitoring Even	2-4 t
Figure 2-2. Project Organization - Field Component	2-4 t 3-2
Figure 2-2. Project Organization - Field ComponentFigure 3-1. Collection Event versus Tidal Cycle during the SIYB TMDL Monitoring Even	2-4 t 3-2 4-3

LIST OF ATTACHMENTS

ATTACHMENT A FIELD LOG FORMS ATTACHMENT B CHAIN-OF-CUSTODY FORMS ATTACHMENT C QA CHECKLIST

ACRONYMS AND ABBREVIATIONS

COC chain-of-custody

CRM Certified Reference Material

Cu Copper DI de-ionized

DQO data quality objective

ELAP California Environmental Laboratory Accreditation Program

FD field duplicate ID identification

LCS laboratory control standard

LD laboratory duplicate

MS matrix spike

MSD matrix spike duplicate

NA not applicable

NIST National Institute of Standards and Technology

pH hydrogen ion concentration

PM Project Manager
Port Port of San Diego
ppt parts per thousand
QA quality assurance

QA/QC quality assurance and quality control

QAM Quality Assurance Manual QAPP Quality Assurance Project Plan

QC quality control

RPD relative percent difference
SAP Sampling and Analysis Plan
SIYB Shelter Island Yacht Basin

SM Standard Methods

SOP Standard Operating Procedure SRM Standard Reference Material

SWAMP Surface Water Ambient Monitoring Program
State Board State Water Resources Control Board

Time Series Study SIYB Time Series Analysis of Dissolved Copper

TMDL Total Maximum Daily Load USCG United States Coast Guard

USEPA United States Environmental Protection Agency

Weck Weck Laboratories, Inc.
WQO water quality objective
YSI YSI Incorporated

24-Hour Time Series Analysis of Dissolved Copper in Shelter Island Yacht Basin Sampling and Analysis Plan & Quality Assurance Project Plan December 2017

UNITS OF MEASURE

<	less than
±	plus or minus
%	percent
°C	degrees Celsius
μg	microgram(s)
μg/L	micrograms per liter
μm	micrometer(s)
mg/L	milligrams per liter
mL	milliliter(s)
ppt	parts per thousand

1.0 INTRODUCTION

This combined Sampling and Analysis Plan (SAP) and Quality Assurance Project Plan (QAPP) has been prepared for a 24-Hour Time Series Analysis of Dissolved Copper (Time Series Study) to be conducted in the Shelter Island Yacht Basin (SIYB). The Time Series Study is a water quality investigation designed to evaluate possible variations in dissolved copper concentrations resulting from tidal fluctuations. This plan was prepared by Amec Foster Wheeler Environment & Infrastructure, Inc. (Amec Foster Wheeler)¹ for the Port of San Diego (Port).

Surface water quality monitoring is completed on an annual basis to analyze primarily for dissolved copper concentrations as part of the SIYB dissolved copper Total Maximum Daily Load (TMDL) (further described in Section 3.0). The sampling is completed on similar tidal heights each year during the peak summer months (i.e., August or September), which consequently does not allow for any characterization of tidal influence on the surface concentrations of dissolved copper throughout the basin. In an effort to better understand the basin dynamics of SIYB and the effects that tidal flushing may have on the concentrations of dissolved copper in the surface waters of SIYB, a single-day Time Series Study will be conducted. The Time Series Study will assess dissolved copper concentrations in surface waters within SIYB during one full mixed semidiurnal tidal cycle (approximately 25 hours).

The objective of the Time Series Study is to answer the following question:

How do tidal variations affect the concentrations of dissolved copper in the surface waters of SIYB?

The scope of work for the Time Series Study is outlined in this SAP. The study will include:

- Collection of discrete surface water (1 meter deep) samples at three locations in SIYB
 (i.e., one station each in the mouth of the basin, mid-basin, and at the head of the basin)
 approximately every two hours over the course of a full day (two full tidal cycles).
- Collection of measurements for pH, temperature, and salinity at all stations using portable field meters after collection of each water sample.
- Analysis of all samples for concentrations of dissolved copper.

This SAP/QAPP provides detailed information on the design and implementation of the Time Series Study. It is organized as follows:

- Section 1, Introduction to Time Series Study including purpose and objectives.
- Section 2, **Project Management** overview of the project personnel, roles and responsibilities of the key team members, and lines of communication.
- Section 3, Project Background and Objectives for the goals and objectives of the Times Series Study.

¹ Amec Foster Wheeler's parent company is now owned by Wood plc.

24-Hour Time Series Analysis of Dissolved Copper in Shelter Island Yacht Basin Sampling and Analysis Plan & Quality Assurance Project Plan December 2017

- Section 4, Sampling and Analysis Plan with detailed information on the design of the Times Series Study, collection locations and timing, sample collection techniques, sample handling and chain of custody (COC), field measurements and analytical tests to be conducted, data analysis techniques, and project schedules.
- Section 5, Quality Assurance Project Plan outlining the procedures to ensure that
 collection and handling of water samples, collection of field data, and analytical analysis
 of water samples are conducted with a high degree of quality assurance and quality
 control (QA/QC).
- Section 6, **Report Preparation** to list information that will be compiled and submitted to the Port at the conclusion of the Times Series Study.
- Section 7, References for literature sources and reports cited in this document.

2.0 PROJECT MANAGEMENT

This section presents project personnel, team organization, roles and responsibilities of key team members, and lines of communication for field and laboratory activities.

2.1 SAP/QAPP Distribution

Table 2-1 identifies those individuals who will receive one copy of the approved SAP/QAPP.

Table 2-1.
SAP/QAPP Distribution List

Title	Name (Affiliation)	Signature/Date
Project Manager	Kelly Tait	
Froject Manager	(Port of San Diego)	
Project Manager and	Barry Snyder	
Field Quality Assurance (QA) Officer	(Amec Foster Wheeler)	
Field Project Manager	Corey Sheredy	
Field Froject Manager	(Amec Foster Wheeler)	
Analytical QA Officer	Rolf Schottle	
Analytical QA Officer	(Amec Foster Wheeler)	
Analytical Laboratory Project Manager	Chris Samatmanakit	
Analytical Laboratory Project Manager	(Weck Laboratory)	

2.2 Project Organization

Project Personnel and Roles

Amec Foster Wheeler will organize field sampling logistics and equipment, provide sample collection and oversight for laboratory analysis of samples, perform data analysis, and provide a report of the Time Series Study results as an appendix in the 2017 Shelter Island Yacht Basin Dissolved Copper TMDL Annual Report. Individual roles for project personnel are outlined in Table 2-2 and Figures 2-1 and 2-2.

Kelly Tait is the Project Manager (PM) for the Port. Ms. Tait will be responsible for project administration and will serve as the lead contact at the Port.

Barry Snyder is the PM and Field Quality Assurance (QA) Officer for Amec Foster Wheeler. Mr. Snyder will be responsible for overall project management, organization, contracts, and oversight. In addition, he will serve as the Field QA Officer and will oversee field-related QA/QC procedures.

Corey Sheredy is the Field PM for Amec Foster Wheeler. Ms. Sheredy will oversee coordination and execution of the field effort, including organization of field staff and scheduling of sampling days, and will be responsible for overseeing data analysis and finalizing the project report.

Rolf Schottle is the Analytical QA Officer for analytical chemistry for Amec Foster Wheeler. Mr. Schottle will be responsible for guaranteeing the validity of all QA/QC procedures and will ensure that analytical chemistry data reported by the laboratory and Amec Foster Wheeler has been generated in compliance with the appropriate protocols. Mr. Schottle will also be responsible for coordination with the analytical laboratory and will work with the Analytical Laboratory PM to ensure that proper QC procedures are followed.

Tyler Huff is the Field Health & Safety Officer and Field Support for Amec Foster Wheeler. Mr. Huff will ensure that all health and safety protocols are followed during field activities.

Chris Samatmanakit is the Analytical Laboratory PM for Weck Laboratories, Inc. (Weck). Mr. Samatmanakit will be responsible for providing analytical chemistry data in an approved and quality-controlled (QC) format.

Table 2-2.
Project Personnel Roles and Contact Information

Name (Affiliation)	Project Role(s)	Contact Information
Kelly Tait (Port of San Diego)	Port Project Manager	(619) 686-6372 (office) (619) 348-1690 (mobile) (619) 686-6467 (fax) ktait@portofsandiego.org
Barry Snyder (Amec Foster Wheeler)	Project Manager and Field QA Officer	(858) 300-4320 (office) (858) 354-8340 (mobile) (858) 300-4321 (fax) barry.snyder@amecfw.com
Corey Sheredy (Amec Foster Wheeler)	Field Project Manager	(858) 300-4316 (office) (831) 359-7761 (mobile) (858) 300-4321 (fax) corey.sheredy@amecfw.com
Rolf Schottle (Amec Foster Wheeler)	Analytical QA Officer	(858) 300-4323 (office) (619) 985-2405 (mobile) (858) 300-4321 (fax) rolf.schottle@amecfw.com
Tyler Huff (Amec Foster Wheeler)	Field Support and Field Health and Safety Officer	(858) 300-4322 (office) (858) 449-2334 (mobile) (858) 300-4321 (fax) tyler.huff@amecfw.com
Chris Samatmanakit (Weck Laboratories)	Analytical Laboratory Project Manager	(626) 336-2139 ext. 141 (office) (626) 336-2634 (fax) chris.samatmanakit@wecklabs.com

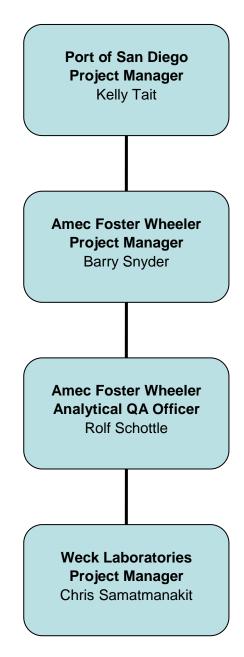


Figure 2-1. Project Organization - Analytical Component

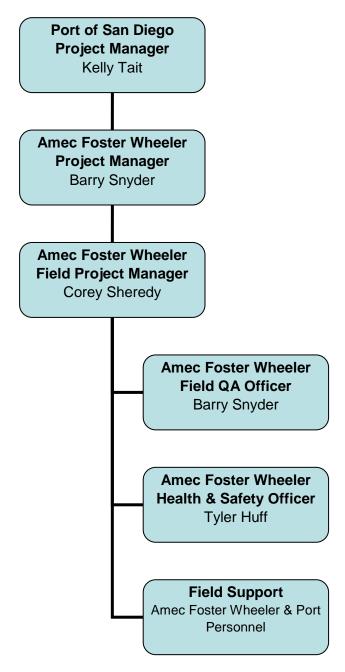


Figure 2-2. Project Organization - Field Component

2.3 Quality Assurance Officers' Roles

The QA Officers are responsible for guaranteeing the overall quality of the data produced and reported throughout the project. Specific duties of the QA Officers include:

- Conducting audits of ongoing tests, data packages, and completed reports;
- Conducting audits of the routine QC documentation of field and laboratory procedures;
- · Communicating potential QC problems to the staff; and
- Ensuring that all problems are resolved.

The QA Officers are also responsible for issuing QA reports to management, maintaining a current Quality Assurance Manual (QAM), and issuing QAPPs as required. The QA Officers also ensure that data reported have been generated in compliance with the QAM and the appropriate protocols. The QA Officers are knowledgeable in the quality system standard defined under the California Department of Health Services Environmental Laboratory Accreditation Program (ELAP).

Barry Snyder and Rolf Schottle are the project QA Officers. Mr. Snyder, in the role of Field QA Officer, will oversee sample collection activities to ensure that proper sampling procedures are employed. Mr. Snyder will provide QA checklists to each sampling team member that will be completed after each sample is collected. As Analytical QA Officer, Mr. Schottle will work directly with the Analytical Laboratory PM, Mr. Samatmanakit, to ensure that proper QC procedures are followed.

Mr. Snyder and Mr. Schottle will also review and assess procedures against plan requirements during the life of the project and will evaluate the need for any corrective actions. Mr. Snyder or Mr. Schottle may stop actions conducted by the team if there are significant deviations from required practices or if there is evidence of a systematic failure. Mr. Samatmanakit will also have the same authority for laboratory-related operations.

24-Hour Time Series Analysis of Dissolved Co Shelter Island Yacht Basin Sampling and Analysis Plan & Quality Assura December 2017	opper in ince Project Plan	
Т	his page intentionally left blank	
Amac Foster Wheeler Environment & Infrastri	uctura	2-6 Page

3.0 BACKGROUND

Since 2011, dissolved copper concentrations in the surface waters of SIYB have been evaluated each year at six specific locations within the basin as part of the SIYB Dissolved Copper TMDL monitoring program. The annual monitoring results are submitted to the San Diego Regional Water Quality Control Board as a component of the annual TMDL monitoring report.

Each year, the SIYB Dissolved Copper TMDL collection date is selected to target a high tide of approximately 5.5 to 6.5 feet, and a tidal range between consecutive high and low tides of 5 to 7 feet. Careful effort is made by field scientists to perform collection at each of the six TMDL monitoring stations from year to year at approximately the same time period relative to the tide. Furthermore, the stations are collected in the same sequence every year moving from the mouth of the basin to bracket the slack high tide. This effort allows for consistency between monitoring years. As an example, Figure 3-1 illustrates time of collection at each TMDL station compared to the tide during TMDL compliance monitoring during 2014, 2015 and 2016.

Daily tidal exchange circulates the water in the basin. These tidal fluctuations have the potential to affect the concentration of dissolved copper and particulates within the water column. As stated above, to ensure consistency over monitoring years and develop a comparable long-term data set, the SIYB annual water quality monitoring program design was not intended to capture tidal fluctuations. As such, this Time Series Study is being conducted to evaluate how tidal variations may influence the dissolved copper concentrations in the surface waters of SIYB over the course of one full mixed semidiurnal tidal cycle (approximately 25 hours).

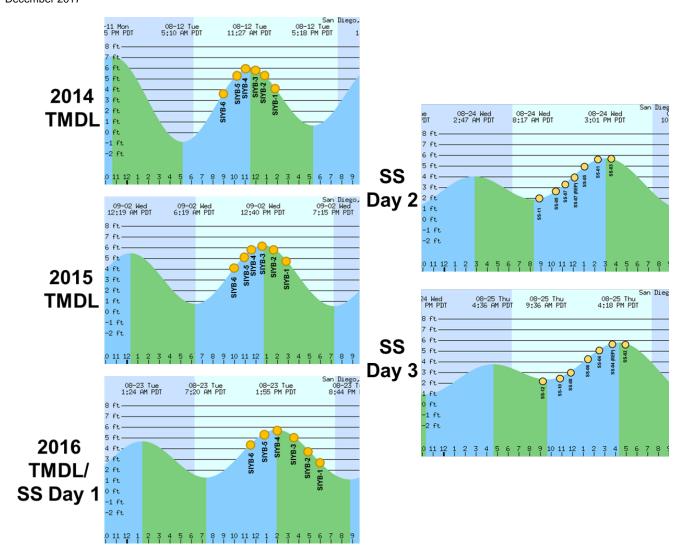


Figure 3-1. Collection Event versus Tidal Cycle during the SIYB TMDL Monitoring Event (2014-2016) and 2016 Enhanced Water Quality Special Study Event

Note: orange dot = time of collection; SS = Special Study

24-Hour Time Series Analysis of Dissolved Co Shelter Island Yacht Basin Sampling and Analysis Plan & Quality Assura December 2017	opper in ince Project Plan	
Т	This page intentionally left blank	
Amac Foster Wheeler Environment & Infrastri	uctura	Dage 3-3

4.0 SAMPLING AND ANALYSIS PLAN

Sampling methodology, sample collection and handling and analytical test methods to be employed by the field and laboratory teams are discussed in this section.

4.1 Sampling Design

Water quality samples will be collected from surface water (i.e., 1 meter below the surface) at three locations throughout the basin. Locations were chosen to characterize several different areas of the basin. Samples will be collected every two hours to characterize the effect of one mixed semidiurnal tidal cycle; sampling days will be selected to specifically correspond with the tidal ranges observed during the annual TMDL monitoring.

4.1.1 Sample Collection Stations

As discussed in Section 4.1, samples will be collected at three locations throughout SIYB to provide representation of locations throughout the basin that are reflective of distance from the mouth. Station TS-1 will be placed near the head of the basin, at the southwest end of Pearson's Fuel Dock. Discrete water samples at this station will be collected directly from the dock. Station TS-2 is located approximately mid-basin, and is only accessible using a vessel. A Port-operated vessel with either with no paint or coated with a non-biocide paint will be used for collection; vessel operation procedures are outlined in Section 4.4. Station TS-3 will be placed at the mouth of SIYB at the southwest end of the Transient Dock. As with TS-1, discrete water samples at TS-3 will be collected directly from the dock. Figure 4-1 shows the target sampling locations. Target coordinates for the stations are provided in Table 4-1.

Table 4-1.
Station Location and Coordinates

		Target Coordinate		
Station ID	Location	Latitude (dd.dddddº)	Longitude (ddd dddddo)	
TS-1	Southwest end of Pearson's Fuel Dock	32.71864	-117.22612	
TS-2	Mid-Basin	32.71550	-117.22989	
TS-3	Southwest end of the Transient Dock	32.71013	-117.23450	

Notes: ddd/dd.ddddd° = decimal degrees, TS = time series, SIYB = Shelter Island Yacht Basin

24-Hour Time Series Analysis of Dissolved Copper in Shelter Island Yacht Basin Sampling and Analysis Plan & Quality Assurance Project Plan December 2017		
-	This page intentionally left blank	

Figure 4-1. Shelter Island Yacht Basin Time Series Sampling Locations

24-Hour Time Series Analysis of Dissolved Copper in Shelter Island Yacht Basin Sampling and Analysis Plan & Quality Assurance Project Plan December 2017 This page intentionally left blank Amec Foster Wheeler Environment & Infrastructure Page 4-4

4.2 Collection Schedule

Collection at the three stations will be performed synchronously throughout two full tidal cycles. Table 4-2 provides the proposed primary sampling date, contingency dates, and tide times and heights. Dates were selected primarily based upon the tidal range (i.e., similar to tides selected during the TMDL sampling events), and practicality (i.e., a non-holiday or weekend day for reduced vessel traffic). Factors that could possibly delay the collection event to the proposed contingency dates may include an unusual climactic event (e.g., monsoonal rain, hurricane, tsunami, etc.) or other unforeseen but catastrophic occurrence.

Table 4-2.
Annual TMDL Monitoring Station Coordinates

Proposed Date	Low Tide	High Tide	Low Tide	High Tide	Low Tide		
Froposed Date			time/ height [ft]				
1/3/2018 (Primary)	16:42 (-1.9 ft)	23:11 (+7.0 ft)	04:15 (+1.6 ft)	10:24 (+7.0 ft)	17:29 (-1.4 ft)		
1/4/2018 (1st Contingency)	17:29 (-1.4 ft)	00:02 (+4.7 ft)	05:12 (+1.8 ft)	11:14 (+6.3 ft)	18:16 (-0.9 ft)		
1/31/2018 (2 nd Contingency)	15:40 (-2.0 ft)	22:01 (+5.0 ft)	03:19 (+1.0 ft)	09:28 (+7.2 ft)	16:20 (-1.7 ft)		
1/16/2018 (3 rd Contingency)	15:33 (-0.8 ft)	21:56 (+4.1 ft)	02:46 (+2.0 ft)	08:57 (+6.3 ft)	16:02 (-0.7 ft)		

Field collection will begin at slack low tide and samples will be collected every two hours for 25 hours, bracketing two high tides. Figure 4-2 provides an illustration of the sample collection schedule timing, and Table 4-3 provides a matrix of the collection times for the primary sampling date. Collection at the three stations will occur simultaneously by utilizing three trained field teams.

Figure 4-2. Sample Collection Relative to the Tidal Cycle (1/3/2018)

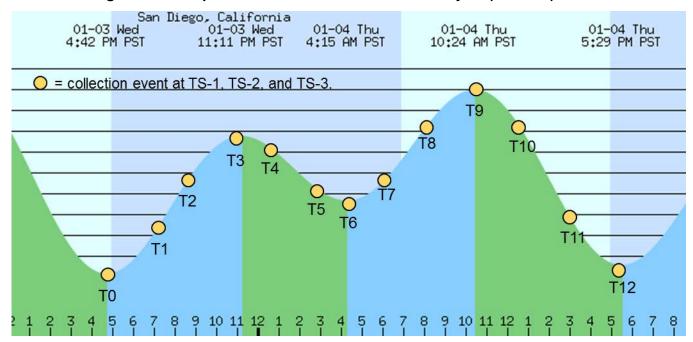


Table 4-3. Sample Collection Timing Matrix.

Note: Assuming the primary collection date (1/3/2018)

Sample ID	Time					
TS-[station]-ER	Prior to T0 collection					
TS-[station]-T0	16:42 (1/3/2018)					
TS-[station]-T1	18:50 (1/3/2018)					
TS-[station]-T2	21:00 (1/3/2018)					
TS-[station]-T3	23:11 (1/3/2018)					
TS-[station]-T4	01:00 (1/4/2018)					
TS-[station]-T5	03:00 (1/4/2018)					
TS-[station]-T6	04:15 (1/4/2018)					
TS-[station]-T7	06:20 (1/4/2018)					
TS-[station]-T8	08:20 (1/4/2018)					
TS-[station]-T9	10:24 (1/4/2018)					
TS-[station]-T10	13:00 (1/4/2018)					
TS-[station]-T11	15:15 (1/4/2018)					
TS-[station]-T12	17:29 (1/4/2018)					
TS-[station]-T12-REP	Immediately following T12 collection					
TS-[station]-FB	Following T12-REP collection					

ER = Equipment Rinsate; FB = Field Blank;

REP = Replicate; TS = Time Series.

4.3 Collection Station Positioning

Dockside stations will be accessed by land, and will be located using a Global Positioning System (GPS) device. The mid-basin station (TS-2) must be accessed by vessel, and will be located using a differential GPS. Following the TMDL Monitoring Plan (Amec Foster Wheeler, 2017), the collection location for TS-2 will be done within approximately ±3 meters of the target coordinate listed in Table 4-1.

4.4 Field Collection Procedures

To ensure consistency between each sampling location, each sampling team will be equipped with a pre-cleaned Niskin bottle, pre-labeled bottle kits and extra bottles, pre-cleaned vacuum filtration system units, a filtration pump, a plastic-lined 5-gallon bucket and DI water (for decontamination of the Niskin), coolers, and ice. For the mid-channel station (TS-2), the vessel will be anchored on station for the duration of the sampling event. Upon anchoring on station, the boat engine will be turned off and a period of at least 5 minutes will pass before collection activities can commence. Should the sampling vessel need to up anchor (i.e., for health or safety reasons) in between sample collections, the 5-minute waiting period will be repeated prior to the next sample collection. During all field efforts, each field team will scan the surrounding area for nearby ongoing vessel maintenance activities. The field crew will record notes and take photographs of these activities (and other factors of note near the collection site), if warranted.

All sampling steps will follow Surface Water Ambient Monitoring Program (SWAMP) defined "clean hands" techniques (State Water Resources Control Board [State Board], 2014). For each sample collection event at each station, discrete water samples will be collected using a Niskin bottle deployed from the sampling vessel or dock. Surface samples at each station will be collected at 1-meter depth. To ensure this exact depth is sampled, the line on the Niskin bottle will be pre-marked with the appropriate depth. Sample timing will follow the schedule matrix provided in Table 4-3 (approximately every two hours). As required by SWAMP protocols, the monitoring program will include the addition of a field replicate. The field replicate sample will consist of a second complete set of samples collected immediately following the collection of the last sample collected at each station (TS-[station]-12). In addition to the field replicate, each batch of samples (i.e., each station) will include an equipment rinse blank and field blank using laboratory-provided deionized water. The equipment rinse blank will be collected prior to collection of TS-[station]-0, The field blank will be collected immediately after the collection of the replicate sample (i.e., following collection of TS-[station]-12-REP) (Table 4-3).

Discrete water samples will be filtered in the field (in agreement with United States Environmental Protection Agency (USEPA) 1640 protocol. Two 500-milliliter (mL) aliquots of water from each Niskin bottle grab sample will each be filtered through a pre-cleaned 0.45-micrometer (µm) glass fiber filter using a Whatman brand Klari-flex bottle top vacuum filtration system. To ensure a clean sample is collected, the first 500 mL aliquot will be discarded. The second 500 mL aliquot will be directly transferred into a pre-labeled sample

² The entire filtration apparatus will be acid-washed and rinsed thoroughly with de-ionized (DI) water prior to sample collection.

bottle containing ultra-pure nitric acid for preservation. The field team will ensure that no airspace remains in the sample bottle once capped. Once confirmed, the sample bottle will be immediately transferred to a cooler containing ice. Cooler ice will be replenished during the 12-hour shift change, and following the conclusion of sampling.

Following the water sample collection, field measurements of pH, temperature, and salinity of the surface water at each station (i.e., within 1 meter of the surface) will be made using a YSI meter according to the manufacturer's specifications. Field measurements and any observations (if applicable) will be recorded in the field log for that collection event. An example of the field log is provided as Attachment A.

Once the entire suite of samples has been collected, water samples will be logged on a COC form (Attachment B), and the form will be placed in the cooler for transport to Weck. Samples will be stored at 4 degrees Celsius (°C) during the transportation process.

4.5 Equipment Decontamination and Cleaning

Prior to each sampling event, the Niskin bottle will be cleaned using soapy water followed by a thorough rinse with deionized water. Upon deployment, the Niskin bottle will also be rinsed thoroughly with site water and soaked at the sampling depth (1 meter below the water surface) for at least for one minute prior to sample collection. After collection, water samples will be transferred from the Niskin bottle to laboratory-certified, contaminant-free bottles that are the appropriate type and contain the correct preservative for the required analyses. In between sampling times, the Niskin bottle will be stored in a plastic-lined, 5-gallon bucket filled with deionized water.

4.6 Sample Processing, Handling, and Custody

Water samples will be uniquely identified by labeling laboratory-provided containers with sample labels in indelible ink. All labels will include the project title, appropriate identification number, date and time of sample collection, and preservation method. The field crew will inspect the sample collection bottles before and after they are filled to ensure that each sample bottle is correctly labeled with station location and analysis type. After each sample collection, the field crew will complete a QA form to verify bottle information and ensure labeling accuracy.

Samples will be kept on ice from the time of sample collection until delivery to the analytical laboratory. All samples will be transferred to the appropriate laboratory and analyses initiated within the method specified holding time (Table 4-4). Additionally, appropriate volumes of each sample will be archived at Weck in case any analyses need to be repeated for confirmation. All analyses will be conducted by Weck, a California ELAP accredited laboratory for all the specific tests required for this program.

Table 4-4. Sample Holding Times

Analyte Holding Time							
Field Measurements							
рН	Field Collected						
Salinity	Field Collected						
Temperature	Field Collected						
Water							
Dissolved Copper	180 days						

4.7 Field Sampling Preservation, Packaging, and Shipment

During each sampling event, samples will be preserved by placing the sample bottles in wet-iced coolers immediately after collection. Field samples will be shipped via courier with appropriate COC forms within 24 hours of completion of the sampling event.

4.8 Chain-of-Custody Records

Proper COC procedures will be used throughout the sample collection, transport, and analytical process. The principal documents used to identify samples and to document possession are COC records, field logbooks, checklists, and field tracking forms. The COC process is initiated during sample collection. A COC record will be provided with each sample or group of samples. Each employee who has custody of the samples will sign the form and will ensure that the samples are not left unattended and are properly secured.

Documentation of sample handling and COC includes the following:

- Client and project name,
- Sample identifier,
- Sample collection date and time,
- Any special notations on sample characteristics or analysis,
- Initials of the person collecting the sample,
- Date the sample was sent to the analytical laboratory, and
- Shipping company and waybill information or courier.

Completed COC forms will be placed into a plastic envelope and kept inside the cooler containing the samples. A courier will deliver the water samples from the Amec Foster Wheeler Office to the analytical laboratory following the day of collection. Upon delivery of the samples to the analytical laboratory, the COC form will be signed by the person receiving the samples. Copies of the COC records will be included in the final reports prepared by the analytical laboratory.

4.9 Analytical Methods

Water samples will be analyzed for dissolved copper; water will be measured in the field for salinity, temperature, and pH (Table 4-5). Dissolved copper analyses will follow USEPA methods. Analytical methods, detection, and reporting limits are presented in Table 4-5.

Table 4-5.
Laboratory Analytical Methods and Detection Limits

Water Quality Measurement	Method	Method Detection Limit	Reporting Limit
Dissolved Copper	USEPA 1640	0.0038 μg/L	0.010 μg/L
Salinity	YSI Pro Plus	NA	± 0.1 ppt
Temperature	YSI Pro Plus	NA	± 0.1 °C
рН	YSI Pro Plus	NA	± 0.1 pH unit

Notes:

4.10 Data Analysis

Summary data tables and figures will be created only after the raw data have passed through the QA/QC criteria, as described in Section 4.8. Finalized data will be summarized in an appendix in the 2017 SIYB Dissolved Copper TMDL Annual Monitoring Report in tables, and dissolved copper concentrations will be displayed graphically as a temporal distribution. These results will help to address the study objective described in Section 1.0.

4.11 Data Review

Following the field event, field data sheets and checklists will be checked for completeness and accuracy by the field crew and the Field QA Officer (Mr. Snyder). In addition, all sample COCs will be checked against sample labels prior to samples being transported to the laboratories. In the laboratory, technicians will document sample receipt and sample preparation activities in laboratory logbooks or on bench sheets.

In the laboratory, data validation will include use of dated and signed entries by technicians on the data sheets and logbooks used for samples, sample tracking and numbering systems to track the progress of samples through the laboratory, and QC criteria to reject or accept specific data. Data for laboratory analyses will be entered directly onto data sheets. Data sheets will be filled out in ink and signed by the technician, who is responsible for checking the sheet to ensure completeness and accuracy. The technician who generated the data will have the prime responsibility for the accuracy and completeness of the data.

Each technician will review the data to ensure the following:

- Sample description information is correct and complete,
- Analysis information is correct and complete,

[°]C = degrees Celsius; ± = plus or minus; µg/L = microgram(s) per liter; NA = not applicable; pH = hydrogen ion concentration; ppt = part(s) per thousand; USEPA = United States Environmental Protection Agency; YSI = YSI Incorporated.

- Results are correct and complete, and
- Documentation is complete.

All data will be reviewed and verified by the analytical laboratory to determine whether data quality objectives have been met and whether appropriate corrective actions have been taken, when necessary, as detailed in this SAP/QAPP.

4.12 Data Management

The analytical laboratory will supply analytical results in both hard copy and electronic formats and will be responsible for ensuring that both forms are accurate. After completion of the data review by the laboratory, hard copy results will be placed in the project files; results in electronic format will be imported into a database system. The database is discussed in further detail in Section 5.4.1.

4.13 Laboratory Quality Assurance and Quality Control

The analytical laboratory will provide a QA/QC narrative that describes the results of the standard QA/QC protocols that accompany analysis of field samples. All hard copies of results will be maintained in the project files. In addition, backup copies of results generated by the laboratory will be maintained at its facility. At a minimum, the laboratory reports will contain results of the laboratory analysis, QA/QC results, all protocols and any deviations from the project SAP/QAPP, and a case narrative of COC details. Laboratory QA/QC requirements are discussed in detail in Section 5.0.

4.14 Health and Safety

The sampling will be conducted over a 24-hour period. There will be a personnel shift after 12 hours to alleviate the hazard of sleep deprivation and/or physical exhaustion. The Harbor Police will be notified of sampling activities and team members will have contact information for the Harbor Police in case any threatening situation arises. Because sampling for one station will be conducted from a boat, dangerous situations can arise. Field personnel will be aware of safety hazards and take appropriate precautions. A health and safety tailgate meeting will be held prior to field activities for all three field teams, including after the 12-hour shift change. During this meeting, site-specific hazards will be discussed and addressed appropriately.

4.14.1 Use of Boats and Working Over Water

Work will be conducted from a boat within and on docks around SIYB; therefore, special considerations are required. All watercraft will be operated according to the applicable navigational rules and regulations. The boat will be operated by a certified captain with United States Coast Guard (USCG) small vessel training. Personnel working on the boat will be trained according to internal SOPs. The primary hazards associated with the operation and use of boats include drowning, heat stress, and injuries from falling. A USCG approved personal flotation device must be available for each person onboard. Wet conditions increase the chances of slipping; therefore, engineering controls such as guardrails will be installed on the vessel.

A float plan will be prepared for each trip and submitted to the safety officer or project manager. At a minimum, it will include the destination, expected time of return, personnel onboard, and a description of the vessel. The float plan will be used if the field crew does not return or notify the shore contact at a specified time, and a rescue is needed. A weather forecast will be reviewed prior to field sampling. High winds may pose potential hazardous conditions within the harbor.

5.0 QUALITY ASSURANCE

5.1 Field and Analytical QA/QC Procedures

Strict QA/QC procedures will be employed throughout the entire study, from mobilization through delivery of samples to the laboratories. Extra care will be taken to minimize the possibility of compromising sample integrity. The sample collection team will be trained in and follow field sampling standard operating procedures (SOPs), as described in this document. A QA/QC log will be completed following each sample collection event to review each step of the sample and data collection process. These checks will ensure that collection procedures are consistent between sampling events and among all three stations, and that all required field data are recorded correctly and completely. The QA/QC log is provided in Attachment C.

Field team members will take care to avoid contamination of samples at all times by employing the SWAMP clean-hands technique and will wear powder-free nitrile gloves during sample collection. In addition, the Field Manager will ensure that the sample collection boat is either un-painted or painted with a non-biocide hull paint containing no copper. All samples will be collected in laboratory-supplied, laboratory-certified, contaminant-free sample bottles containing the correct preservative (if applicable).

The sampling team will be familiar with this SAP/QAPP and field sampling SOPs to ensure that all sampling personnel are trained accordingly. Additionally, the field team members will be made aware of the significance of the project's method detection limits and the requirement to avoid contamination of samples at all times.

Field equipment will checked and calibrated for operation in accordance with the manufacturer's specifications (calibration records will be recorded and maintained), and will be inspected for damage prior to and when returned from use. Observations of activities surrounding the sampling area will be recorded on field data sheets at each station and during movement between stations (i.e., boat hull cleaning, boat washing, etc.). Photographs will also be taken if necessary.

As required by SWAMP protocols, the Time Series Study will include field replicates. The purpose of a field replicate is to assess variability in sampling procedures as well as ambient conditions. The field replicate sample will consist of a second complete set of samples collected during one sampling interval at each of the stations. The field replicate samples will be analyzed for the same suite of chemicals as the test samples. In addition to the field replicate samples, the study will also include one equipment rinse blank and one field blank, as specified by SWAMP protocols.

The Time Series Study will include the following QA/QC elements:

- ✓ Verification of laboratory certifications
- ✓ Field mobilization and equipment checklists
- ✓ Field sampling QA/QC checklists at each station
- ✓ Field equipment calibrations records at each station
- Observations for hull cleaning or other water-quality-impacting activities near sample collection stations

- Staff training on QAPP-required field procedures
- Field conditions and water quality data sheets

For this study, the analytical laboratory chosen to conduct the analyses is required to (1) be certified to conduct the analyses for the constituents of concern, (2) be certified for the specific analysis methods required for this program, and (3) hold a valid ELAP certificate at the time the Time Series Study is initiated and the samples are analyzed. The QA objectives for chemical analysis to be followed by the analytical laboratory are detailed in its laboratory QA manual and this QAPP. The objectives for accuracy and precision involve all aspects of the testing process, including the following:

- Methods and SOPs
- Calibration methods and frequency
- · Data analysis, validation, and reporting
- Internal QC
- Preventive maintenance
- Procedures to ensure data accuracy and completeness

Results of all laboratory QC analyses will be reported with the final data. Any QC samples that fail to meet the specified QC criteria in the methodology or QAPP will be identified and the corresponding data will be appropriately qualified in the final report. The final report will include a separate section that discusses any QA/QC issues encountered during the sampling activities, as well as the corrective actions taken to address any issues satisfactorily.

5.2 Assessments and Response Actions

The Analytical Laboratory PM at Weck, Chris Samatmanakit, will receive a copy of this SAP/QAPP prior to submission of samples and will be required to sign off that he has read and understands all of the expectations for Weck outlined in this SAP/QAPP. The Amec Foster Analytical QA Officer, Rolf Schottle, will be immediately notified by phone, with a follow-up in writing, of any incident that results in the need for corrective action as described in the following sections.

5.2.1 Corrective Action Plans

An out-of-control event is defined as any occurrence failing to meet pre-established criteria. A nonconformance is a deficiency in characteristic, documentation, or procedure sufficient to make the quality indeterminate or unacceptable. An out-of-control event is a subcategory of nonconformance. Any out-of-control events observed, whether in the field or in the laboratory, will be immediately communicated to the Amec Foster Wheeler PM and Analytical QA Officer to determine the appropriate course of action.

When either situation (out-of-control event or nonconformance) is identified, it will be categorized as follows:

- **Deficiency** Recognition that a specific requirement (e.g., program, process, or procedure) has been violated.
- **Observation** Recognition of an activity or action that might be improved, but is not in violation of a specific requirement. Left unaddressed, the activity or action might develop into a deficiency.

5.2.2 Criteria Used for Determination of an Out-of-Control Event

Factors that affect data quality (e.g., failure to meet calibration criteria, inadequate recordkeeping, improper storage, or preservation of samples) require investigation and corrective action.

When a nonconformance is recognized, each individual involved with the analysis in question has an interactive role and responsibility. This process is described in the following two paragraphs.

- Analytical Laboratory PM The Analytical Laboratory PM, Mr. Samatmanakit, must review all analytical and QC data for reasonableness, accuracy, and clerical errors. In an out-of-control event, Mr. Samatmanakit will notify the Analytical QA Officer, Mr. Schottle, immediately (within 24–48 hours) by telephone and email. Mr. Samatmanakit and Mr. Schottle will work together to solve the problem. In this case, Mr. Schottle will notify the Amec Foster Wheeler PM, Barry Snyder, of the issue and the proposed remedy. This process will prevent the reporting of suspect data by stopping work on the analysis in question and ensuring that all results that are suspect are repeated, if possible, after the source of the error is determined and remedied.
- Analytical QA Officer The Analytical QA Officer, Mr. Schottle, will report to the Amec Foster Wheeler PM, Mr. Snyder, on the status of the problem. Mr. Snyder will then notify the Port PM, Kelly Tait, immediately (24–48 hours) by phone with a follow-up notification in writing if the work is affected by an out-of-control event or the results of an internal audit. In the event that a QC measure is out of control and the data are to be reported, qualifiers will be reported together with sampling results. Mr. Schottle is responsible for reviewing nonconformance report forms, recommending or approving proposed corrective actions, and verifying that corrective actions have been completed.

5.2.3 Procedures for Stopping Analyses

Whenever the analytical system is out of control, investigation and correction efforts are initiated by all concerned personnel. Best professional judgment will be used by the person(s) notified to rectify the problem in accordance with the QAPP.

If the problem is instrumental or specific only to preparation of a sample batch, samples will be reprocessed after the instrument is repaired and recalibrated.

5.2.4 Corrective Action

The need for corrective action may arise from various possible sources: equipment malfunction, failure of internal QA/QC checks, failure of follow up on performance or system audit findings, or noncompliance with QA requirements.

When measurement equipment or analytical methods fail QA/QC requirements, the problem(s) will immediately be brought to the attention of the appropriate Analytical Laboratory PM, who will notify the appropriate QA Officer immediately. Corrective measures will depend entirely on the type of analysis, the extent of the error, and whether the error is determinant or not. The corrective action is determined by the Analytical Laboratory PM and the QA Officer. However, final approval is the responsibility of the Amec Foster Wheeler PM, Mr. Snyder.

The Amec Foster Wheeler PM, Mr. Snyder, is responsible for preparing and submitting all project reports. Draft and final reports will summarize the data collected for this project.

5.3 Data Validation and Usability

Data validation is the process whereby data are filtered and accepted or rejected on the basis of a set of criteria. It is a systematic procedure of reviewing a body of data against a set of criteria to provide assurance of its validity prior to its intended use. Data are checked for accuracy and completeness. The data validation process consists of data generation, reduction, and review (Section 5.3). Requirements of the ELAP Standard and Good Automated Laboratory Practices (Document 2185) (USEPA, 1995) are followed for computer processing, manipulation, reporting, storage, and retrieval of data.

Data reduction, validation, and reporting are ongoing processes that involve the Analytical Laboratory PM, QA Officers, and Amec Foster Wheeler PM.

5.4 Verification and Validation Methods

5.4.1 Database Generation

Upon completion of the survey, the field data sheets will be removed from the field logbooks, and the sheets will be checked for completeness and accuracy by the applicable QA Officer or Amec Foster Wheeler PM, Mr. Snyder. Appropriate field sheets must be present and filled out completely. If there are any questions, clarification from field personnel will be obtained as soon as possible. Field data sheets and the field logbooks will be placed into folders by data type,

labeled with the data type and survey name, and filed in the appropriate filing cabinet. Field sheets will also be scanned, and electronic copies stored in the project folder on Amec Foster Wheeler's San Diego server.

In the laboratory, technicians will document sample preparation activities in bound laboratory notebooks or on bench sheets. Data validation includes use of dated and signed entries by technicians on the data sheets and logbooks used for samples, sample tracking and numbering systems to track the progress of samples through the laboratory, and QC criteria to reject or accept specific data.

The data for laboratory analyses will be entered directly onto data sheets. Data sheets must be filled out in ink and signed by the technician, who is responsible for checking the sheet to ensure completeness and accuracy.

The technician who generates the data has the prime responsibility for the accuracy and completeness of the data. Each technician reviews the data to ensure the following:

- Sample description information is correct and complete.
- Analysis information is correct and complete.
- Results are correct and complete.
- Documentation is complete.

Data sheets are submitted to the Analytical Laboratory PM and Analytical QA Officer. A tracking sheet is initialed when the data are ready for transmittal to a data entry operator. Original data sheets are not allowed to leave laboratory facilities. If for any reason data entry is performed by an employee, but not at Amec Foster Wheeler's facilities, data sheets are copied, and the originals are kept with the Analytical Laboratory PM and Analytical QA Officer.

Data files are assigned a job number and are given a file name, which will be used when the file is put on compact disk.

5.4.2 Error Checking and Verification

The raw data file is printed and 100 percent of the raw data is checked against the original data by the applicable QA Officer or designee. Any errors found are corrected on the raw data printout and on the data entry sheets. If no errors are found, the station checked is marked "OK." The process is continued until no errors are found in the check. After the raw data are checked, each sheet is marked with the date the check was completed and the initials of the applicable QA Officer or designee. The raw data printout used for error checking is saved and filed with the data entry sheets. Any errors in the raw data file are corrected, and the establishment program is rerun.

After the database has been established, the data entry copies may be discarded, and the original data entry sheets and raw data printouts are filed.

Further data validation is performed by the Analytical Laboratory PM. Validation is accomplished by performing routine audits of the data collection and flow procedures and by monitoring QC sampling results.

Data validation includes use of dated and signed entries by the technicians and Analytical Laboratory PM on the bench sheets and notebooks used for samples, sample tracking and numbering systems to track the progress of samples through the laboratory, and QC criteria to reject or accept specific data.

In the data review process, the data are compared with information (e.g., sample history, sample preparation, and QC sample data) to evaluate the validity of the results. Corrective action is minimized by developing and implementing routine internal system controls. Analysts are provided specific criteria that must be met for each procedure, operation, or measurement system.

5.5 Reconciliation with User Requirements

The Amec Foster Wheeler QA Officers (Barry Snyder and Rolf Schottle) will review data after each survey to determine whether data quality objectives (DQOs) have been met. If data do not meet the project's specifications, the applicable QA Officer will review the errors, communicate verbally and in writing with laboratory QA Officers as appropriate, and determine whether the problem is a result of calibration/maintenance, sampling techniques, or other factors. They will suggest corrective action. It is expected that the problem would be corrected by retraining, revision of techniques, or replacement of supplies/equipment. If the problem is not corrected by these methods, then the DQOs will be reviewed for feasibility. If specific DQOs are not achievable, the applicable QA Officer will recommend appropriate modifications. Any revisions need approval by the Amec Foster Wheeler PM, Barry Snyder, and the Port PM, Kelly Tait.

5.6 Quality Objectives for Criteria for Measurement of Data

The laboratory will follow in-house QA/QC plans, and any deviations will be documented in the analytical reports. DQOs applicable to water samples collected for this project consist of accuracy, precision, recovery, and completeness for the following field testing and chemistry analyses types (Table 5-1):

Table 5-1.
Summary of Data Quality Objectives

Measurement or Analysis Type	Applicable Data Quality Objective
Field Testing	
Temperature	Accuracy, Precision, Completeness
Salinity	Accuracy, Fredision, Completeness
pH	
Analytical Chemistry Laboratory Analyses	
Dissolved Copper	Accuracy, Precision, Recovery, Completeness
Chemical Reporting Limits	Accuracy, Precision

Specific DQOs are presented in Table 5-2, along with acceptability criteria for each measurement.

Table 5-2. Data Quality Objectives for Laboratory and Field Measurements

Group	Parameter	Calibration	Accuracy ¹	Precision		Percent Complete		
	Temperature	NIST (temp)	± 0.1 °C					
Field Testing	рН	three point calibration (pH)	± 0.1 pH	FD	FD			
	Salinity	Salinity standard	± 0.1 ppt					
Laboratory	Metals	SRM/CRM or MS/MSD,	83-109% (Cu)	LD, FD, and	<25%	100		
Analyses	IVIELAIS	LCS ²	80-118% (Zn)	MS/MSD	<23%	100		

Notes:

Acceptance criteria will be based on the implementation of acceptable and recognized QA/QC procedures. Acceptable data require proper sample collection and handling methods, sample preparation and analytical procedures, holding times, and QA protocols.

Accuracy is defined as the difference between the measured value of an indicator and its true or expected value, which is an estimate of systematic error or net bias. Accuracy will be ensured for trace metals.

Recovery of laboratory control standard (LCS) and matrix spike (MS) recoveries using method specific performance-based control limits. Based upon previous results, the spike levels chosen for this project is 10 micrograms per liter (µg/L) for copper.

Precision is defined as the measure of agreement among repeated measurements of the same property under identical or substantially similar conditions, calculated either as a range or as a standard deviation. The precision of instrument-related field measurements will be assessed for field instruments by measuring three replicate readings for all three parameters at each station. At one selected location, the replicated field measurements will be reported as the mean, and the precision will be calculated as the standard deviation of the measurements. The precision of chemistry laboratory measurements will be assessed by comparison of the sample result to that for a duplicate sample in addition to comparisons between the laboratory MS and matrix spike duplicate (MSD). Precision will be measured by the degree of agreement between the sample and the laboratory duplicate (LD) or the MS and MSD results. Samples within a ±25% relative percent difference (RPD) between the sample result and duplicate result will be accepted as unqualified results.

Completeness is a measure of the proportion of the expected, valid data (i.e., data not associated with some criterion of potential unacceptability) that is actually collected during a measurement process. The objective for completeness is 100 percent for each measurement process.

¹ The objectives are applicable unless the method or manufacturer specifies more stringent requirements.

² Reported LCS limits for copper were statistically derived by Weck Laboratories, Sept. 2012.

[°]C = degrees Celsius; < = less than; µg/L = micrograms per liter; % = percent; ± = plus or minus; CRM = Certified Reference Material; Cu = copper; FD = field duplicate; LCS = laboratory control sample; MS = matrix spike; MSD = matrix spike duplicate; NA = not applicable; ppt = part(s) per thousand; NIST = National Institute of Standards and Technology; SRM = Standard Reference Material

The analytical reporting limits for copper are below the relevant regulatory criteria for assessment of aquatic health, meeting this DQO, as presented in Table 5-2. The method detection limits are below the SWAMP reporting limits and preliminary benchmarks in accordance with the DQOs.

5.7 Special Training Needs/Certifications

All field personnel will be trained and will have experience in proper field sampling and sample handling techniques, including COC procedures, prior to sampling. These techniques will be reviewed prior to each sampling event and all field personnel will provide a signature to document the training.

Weck is accredited by the California Department of Public Health ELAP (National ELAP Certificate #04229CA) for the analysis of metals using USEPA Method 1640.

5.7.1 Training and Certification Documentation

All personnel are responsible for complying with the QA/QC requirements that pertain to their organizational/technical function. Technical staff member musts have a combination of experience and education to adequately demonstrate a specific knowledge of their particular functions and a general knowledge of laboratory operations, test methods, QA/QC procedures, and records management. A training sign-in sheet will document that field personnel are trained and experienced in all handling techniques and procedures.

5.7.2 Field Sampling

Field personnel will be trained in proper sampling techniques, sample handling, sample preservation and storage, sample transport, COC, and standard operating procedures.

5.7.3 Analytical Laboratory

The training program for the analytical chemistry laboratory begins with reviewing the SOP for a new task. The Analytical Laboratory PM, Chris Samatmanakit, demonstrates the procedure to the trainee, shows the appropriate steps in the SOP, and explains the significance of each step. The trainee later performs the procedure under the supervision of Mr. Samatmanakit. At this time, questions are answered and parts of the procedure may be demonstrated again to the trainee. The trainee continues to work under the direct supervision until he/she can demonstrate the procedure with competence and full understanding. This process may be short or long, depending on the procedure. Once the trainee has demonstrated competence, Mr. Samatmanakit completes a training form. At this time, the employee can work without supervision. This documentation is kept in files organized by individual with a separate form for each task. On an annual basis, the analyst is requalified, and this requalification is documented on the training form as well.

5.7.4 Training Personnel

Amec Foster Wheeler's Field PM, Corey Sheredy, and/or Field QA Officer, Barry Snyder, will verify that training is provided for field personnel in proper field sampling techniques prior to work initiation to ensure that consistent and appropriate sampling, sample handling/storage, and COC procedures are followed.

5.8 Documents and Records

Amec Foster Wheeler will document and track aspects of the sample collection process, including generating field logs at each site and COC forms for all samples collected. COC forms will accompany water samples to the analytical laboratory. The analytical laboratory will document and track all aspects of sample receipt and storage, analyses, and reporting.

Amec Foster Wheeler will maintain a database of information collected throughout this project. After verification and final database establishment, the raw data files and databases will be copied onto CD for storage onsite. All original data sheets, statistical worksheets, and reports produced will be accumulated into project-specific files maintained in file cabinets at the Amec Foster Wheeler office after the report has been submitted. Final report text and tables are also stored on disk and provided to the Port. After data submissions, directories are archived for storage offsite. All records will be maintained for at least five years or transferred according to agreement between the company and the client, should the laboratory transfer ownership. All records and analyses pertaining to accreditation are kept for a minimum of five years. If there is a change in company ownership, accreditation records for at least the previous five years must be transferred to the new owner.

Analytical results gathered at Weck will be stored in a database system at their main office and will be provided to Amec Foster Wheeler's PM, Barry Snyder, and Analytical QA Officer, Rolf Schottle, electronically. Data received from outside contractors will be kept exactly as received (electronically); data are error checked and processed into Amec Foster Wheeler's database system.

Persons responsible for maintaining records for this project are as follows: Mr. Snyder, Amec Foster Wheeler's PM, will oversee the operations of the project, including field QA, and will arbitrate any issues relative to records retention and any decisions to discard records. The Analytical Laboratory PM, Mr. Samatmanakit, will maintain all chemistry records; and the Field PM, Ms. Sheredy, will maintain the data at Amec Foster Wheeler and will maintain all sample collection, sample transport, COC, and field analyses forms.

Copies of this QAPP will be distributed to the Port's PM, Kelly Tait. Updates to this QAPP will be distributed in like manner, and all previous versions will be discarded from the project file.

Copies of the final report, including laboratory results and field records, will be maintained for a minimum of five years after project completion.

6.0 REPORT PREPARATION

The Time Series Study is being conducted to supplement information collected during the annual SIYB TMDL monitoring program. As such, the report for the Time Series Study will be limited to addressing the study question identified in Section 1 (Introduction) and will be submitted to the San Diego Regional Water Quality Control Board as an appendix to the 2017 SIYB Dissolved Copper TMDL Annual Report.

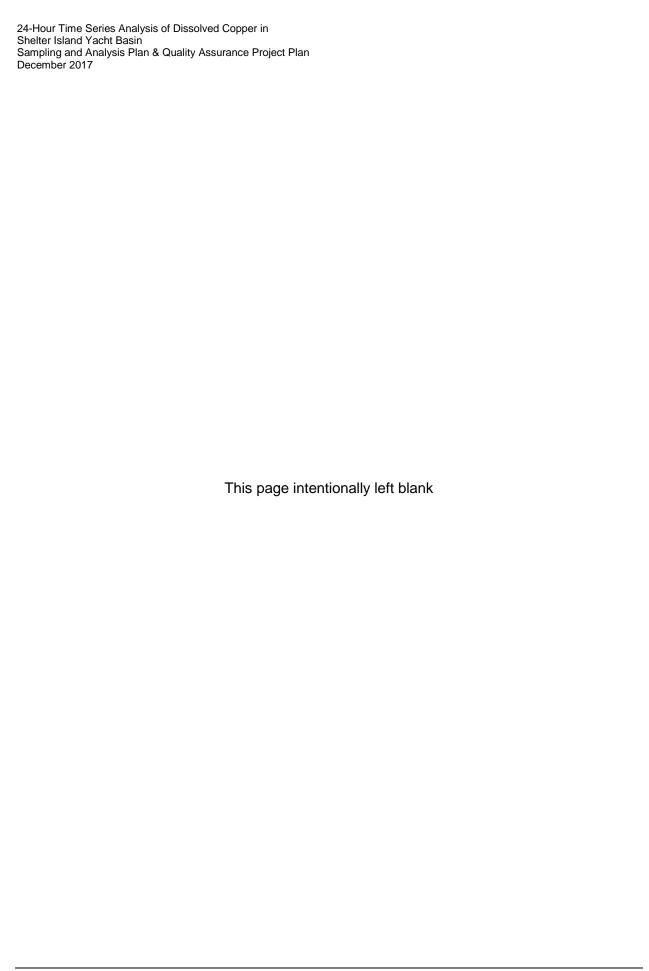
The Time Series Study technical write-up will provide a summary of water quality sampling results. In addition, the report will include a QA/QC assessment of field and analytical data.

At a minimum, the following information will be included in the Time Series Study technical write-up:

- 1. Introduction. A presentation of the study objectives.
- Sampling collection methods. This section will provide detailed information on collection locations, number of samples, and collection methods. Target and actual sampling locations will be depicted on a site map.
- 3. Sample analyses. Laboratory analytical methods, sample handling and transport, lab QA/QC results, and other pertinent information will be described.
- 4. Results. A presentation of the Time Series Study results in tabular and graphic form will be included in this section.
- 5. *Discussion.* This section will include a discussion of the Times Series Study results in relation to the study question.
- 6. *QA/QC Summary.* This section will discuss adherence to project-specific QAPP requirements, QA/QC issues to be addressed, and any necessary corrective actions.

The tables, figures, and write-up will be reviewed by at least two Amec Foster Wheeler staff, including, at a minimum, the PM and a QA Officer. The document will also be reviewed by a technical editor. The report will be returned to the office staff for any corrections, and the final draft will then be reviewed again by the Amec Foster Wheeler PM. The Amec Foster Wheeler PM will sign the letter of transmittal for delivery of the report to the Port PM.

24-Hour Time Series Analysis of Dissolved Copper in Shelter Island Yacht Basin Sampling and Analysis Plan & Quality Assurance Project Plan December 2017	
This page intentionally left blank	


7.0 REFERENCES

- Amec Foster Wheeler. 2017. Shelter Island Yacht Basin Dissolved Copper TMDL. Monitoring Plan (Revision 3). August.
- California State Water Resources Control Board (State Board) (2014). Collections of Water and Bed Sediment Samples with Associated Field Measurements and Physical Habitat in California. Version 1.1. Updated March 2014.

 http://www.waterboards.ca.gov/water_issues/programs/swamp/docs/collect_bed_sedime_nt_update.pdf
- United States Environmental Protection Agency (USEPA). 1995. *Good Automated Laboratory Practices*. EPA/200/B-95/006. USEPA Resources Management. Triangle Park, NC.

24-Hour Time Series Analysis of Dissolved Shelter Island Yacht Basin Sampling and Analysis Plan & Quality Asso December 2017	Copper in urance Project Plan	
	This page intentionally left blank	
	This page intentionally left blank	

ATTACHMENT A FIELD LOG FORMS

FIELD WATER QUALITY DATA SHEET

Station Identification:			-		
Date: (mm/dd/yyyy)			-		
Time Started: (hh:mm)			Ended: (hh:mm)		
GPS: (WGS84)	_Lat.		_ Long.		
Tide (ft):			:		
Weather conditions:					
Wind (mph):			_		
Sea State Conditions			_		
Physical Wate	r Quality Measurements				
Time of collecti		рН	Salinity (ppt)	Temperature (°C)	
	Measurement:				
*Water quality meas	ured at the same depth as sample colle	ection (i.e. within 1	meter from the s	urface).	

Notes:

ATTACHMENT B CHAIN-OF-CUSTODY FORMS

Weck Laboratories, Inc.

•

CHAIN OF CUSTODY RECORD

14859 East Clark Avenue: Industry: CA 91745

STANDARD

Tel 626-336-2139	♦ Fax 626	5-336-2634	♦ ww\	w.wecklabs.com													Page	<u>1</u>	Of	_2	
CLIENT NAME:				PROJECT:			ANALYSES REQUESTE										SPECIAL HANDLING				
Amec Foster Wheeler E&I, Inc.				Port of San Diego - Shelter Island Yacht Basin 24hr Water Quality Study		g/L	g/L											ay Rush 1 Rush 100			
ADDRESS:	ADDRESS:			PHONE: 858-300-431			μ. 10:0	0.20 μ										48-72 H	our Rush	75%	
9210 Sky Park Ct., S	Suite 200			FAX: 858-300-430				<u></u>									36	4 - 5 Day	y Rush 30	%	
San Diego, CA 9212	3				edy@amecfv @amecfw.cor		004 µg/L,	336 µg/L,											tractions 5		
PROJECT MANAGER				SAMPLER	Carricorwicor	<u></u>	er DL 0.0	DL 0.0									E3		Data Pack		
Corey Sheredy / Barry	Snyder			Corey Sheredy (CCS)			Copp 1640 M	inc 640 M									Charges will			ŭ	
ID#	DATE	TIME	SMPL			# OF	ved C	ved Z EPA 1									Method of S	,			
(For lab Use Only)	SAMPLED	SAMPLED	TYPE	SAMPLE IDENTIFICATION/S	SITE LOCATION	CONT.	Dissol Method	Dissolv Method E									COMMENTS				
			seawater	TS-[1,2,3]-T0		1	X	X													
			seawater	TS-[1,2,3]-T1		1	X	X													
			seawater	TS-[1,2,3]-T2		1	X	X													
			seawater	TS-[1,2,3]-T3		1	X	X													
			seawater	TS-[1,2,3]-T4		1	X	X													
			seawater	TS-[1,2,3]-T5		1	X	X													
			seawater	TS-[1,2,3]-T6		1	X	X													
			seawater	TS-[1,2,3]-T7		1	X	X													
			seawater	TS-[1,2,3]-T8		1	X	X													
			seawater	TS-[1,2,3]-T9		1	X	X													
			E / TIME		RECEIVED BY RECEIVED BY				SAMPLE CONDI Actual Temperature: Received On Ice Preserved			-	Y / N Y / N	AQ=Aqu NA= Nor SL = Slu DW = Dr	n Aqueous						
													Evidence Seals Pro Container Intact			esent	Y / N Y / N		ain Water round Water		
RELINQUISHED E	3Y		DATE	E / TIME	RECEIVE	BY								Preser	ved at	Lab		Y / N	OL = Oil	olid Waste	

SPECIAL REQUIREMENTS / BILLING INFORMATION

- 1) Samples are preseved and filtered in the field; 2) FB = Field Blank; 3) ER = Equipment Rinsate (Equipment Blank); 4) REP = Replicate
- 5) WECK will contact Amec FW PM within 24 hours if any sample anomalies are found; 6) SPIKE level at the following amounts = Copper = 10 ug/L; Zinc = 30 ug/L;
- 7) Select pages from Amec FW QAPP included for reference;

Weck Laboratories, Inc.

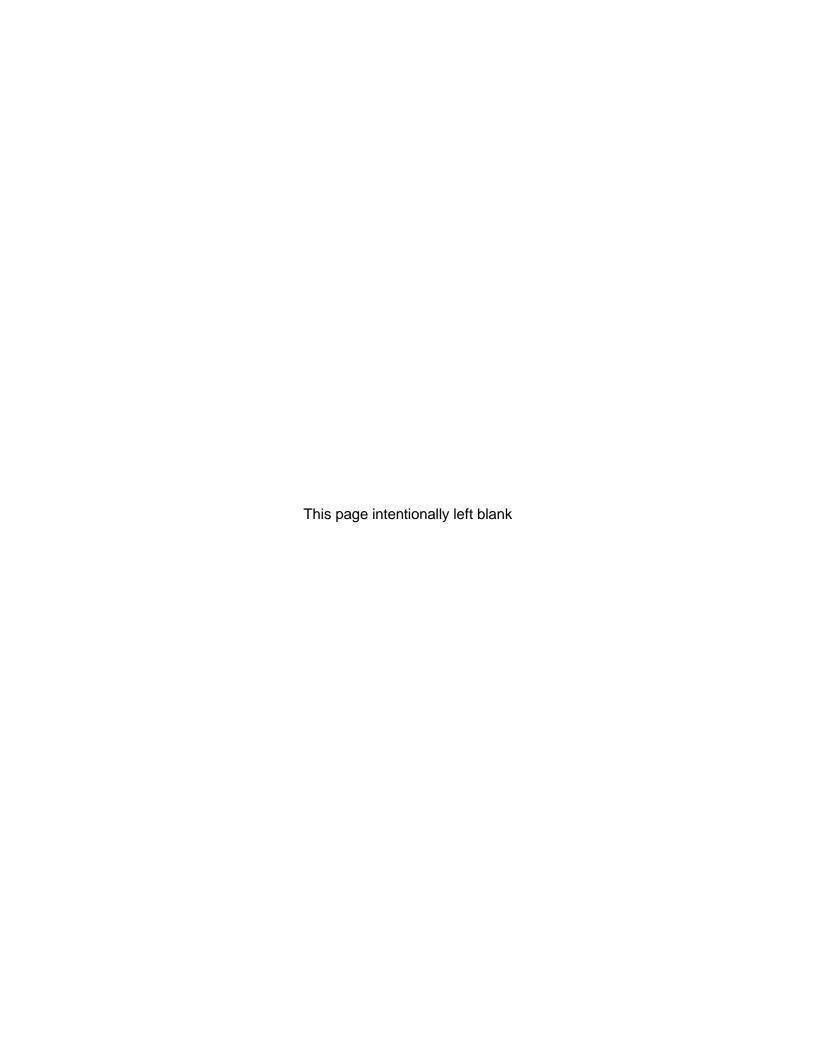
CHAIN OF CUSTODY RECORD

Analytical Laboratory Services - Since 1964

14859 East Clark Avenue: Industry: CA 91745

STANDARD

Tel 626-336-2139	♦ Fax 626	-330-2034	▼ WWV																_UI <u>_Z</u>
CLIENT NAME:				PROJECT:			ANALYSES REQUES						JEST	ED			SPECIA	IL HAN	IDLING
Amec Foster Wheeler E&I, Inc. ADDRESS: 9210 Sky Park Ct., Suite 200 San Diego, CA 92123 PROJECT MANAGER Corey Sheredy / Barry Snyder				Port of San Diego - Shelter Island Yacht Basin 24hr Water Quality Study PHONE: 858-300-4316 FAX: 858-300-4301 EMAIL: corey.sheredy@amecfw.com barry.snyder@amecfw.com SAMPLER Corey Sheredy (CCS)			Copper 1640 MDL 0.004 μg/L, RL= 0.01 μg/L	Zinc 1640 MDL 0.036 μg/L, RL= 0.20 μg/L										24 Hour 48-72 Ho 4 - 5 Day Rush Ex 10 Busii QA/QC I I apply for	ay Rush 150% Rush 100% our Rush 75% y Rush 30% tractions 50% ness Days Data Package r weekends/holidays
ID# (For lab Use Only)	DATE SAMPLED	TIME SAMPLED	SMPL	SAMPLE IDENTIFICATION/S	ITE LOCATION	# OF CONT.	ssolved thod EPA	issolved									Method of S		
			TYPE	TC [4 0 0] T40		4	Me Di	Δ ≥									COMMENTS	<u>, </u>	
				TS-[1,2,3]-T10		1	X	X											
			seawater	TS-[1,2,3]-T11		1	X	X											
			seawater	TS-[1,2,3]-T12		1	X	X											
			seawater	TS-[1,2,3]-T12-REP		1	X	Χ											
			seawater	TS-[1,2,3]-FB		1	X	X											
			seawater	TS-[1,2,3]-ER		1	X	X											
			I E / TIME	RECEIVED BY						S <i>i</i> Actual			ONDITION: re:		SAMPLE TYPE CODE AQ=Aqueous NA= Non Aqueous SL = Sludge				
				T/TIME	RECEIVED BY									Received On Ice Preserved Evidence Seals Prese Container Intact			esent	Y / N Y / N Y / N	DW = Drinking Water WW = Waste Water RW = Rain Water GW = Ground Water
RELINQUISHED BY DATE			E / TIME	RECEIVED BY									Preserved at Lab				Y / N	SO = Soil SW = Solid Waste OL = Oil OT = Other Matrix	


SPECIAL REQUIREMENTS / BILLING INFORMATION

¹⁾ Samples are preseved and filtered in the field; 2) FB = Field Blank; 3) ER = Equipment Rinsate (Equipment Blank); 4) REP = Replicate

⁵⁾ WECK will contact AMEC PM within 24 hours if any sample anomalies are found; 6) SPIKE level at the following amounts = Copper = 10 ug/L; Zinc = 30 ug/L;

⁷⁾ Select pages from AMEC QAPP included for reference;

ATTACHMENT C QA CHECKLIST

Station Location:	TS-	Date/Time:

Mark each box with Y, N, or NA

Field Procedures

1. Upon arriving at the sampling location, the following site observations are being recorded:

Vessel has been anchored (if at TS-2)	
Station GPS coordinates (approx. \pm 3 m) and station identification verified and recorded	
Tide recorded	
Weather conditions recorded	
Surface water conditions (incl. currents) recorded	
General site observations recorded	
Check for boat cleaning operations in the area, document if applicable	

2. Sampling procedures:

TS-1-ER

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	
Field staff wearing fresh, powder free nitrile gloves	
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	
Sampling instrument given site water rinse prior to deployment for at least 1 minute	
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket filled with DI water	
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	
Samples bottles and containers are the correct type and preservation in accordance with SAP/QAPP	
Sample bottles correctly labeled and match the station identification	
Sample bottles correctly labeled with date and time	
Staff avoided contaminating samples at all times	
pH and salinity readings taken following sample collection	
PPE properly removed and disposed of upon completion	
Field notes have been recorded for this collection event	
Water samples placed in cooler with wet ice	

TS-1-T0

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	
Field staff wearing fresh, powder free nitrile gloves	
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	
Sampling instrument given site water rinse prior to deployment for at least 1 minute	
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket filled with DI water	
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	
Sample bottles correctly labeled and match the station identification	
Sample bottles correctly labeled with date and time	
Staff avoided contaminating samples at all times	
pH and salinity readings taken following sample collection	
PPE properly removed and disposed of upon completion	
Field notes have been recorded for this collection event	
Water samples placed in cooler with wet ice	

TS-1-T1

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	
Field staff wearing fresh, powder free nitrile gloves	
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	
Sampling instrument given site water rinse prior to deployment for at least 1 minute	
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket filled with DI water	
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	
Sample bottles correctly labeled and match the station identification	
Sample bottles correctly labeled with date and time	
Staff avoided contaminating samples at all times	
pH and salinity readings taken following sample collection	
PPE properly removed and disposed of upon completion	
Field notes have been recorded for this collection event	
Water samples placed in cooler with wet ice	

TS-1-T2

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	
Field staff wearing fresh, powder free nitrile gloves	
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	
Sampling instrument given site water rinse prior to deployment for at least 1 minute	
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket filled with DI water	
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	
Sample bottles correctly labeled and match the station identification	
Sample bottles correctly labeled with date and time	
Staff avoided contaminating samples at all times	
pH and salinity readings taken following sample collection	
PPE properly removed and disposed of upon completion	
Field notes have been recorded for this collection event	
Water samples placed in cooler with wet ice	

TS-1-T3

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	
Field staff wearing fresh, powder free nitrile gloves	
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	
Sampling instrument given site water rinse prior to deployment for at least 1 minute	
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket filled with DI water	
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	
Sample bottles correctly labeled and match the station identification	
Sample bottles correctly labeled with date and time	
Staff avoided contaminating samples at all times	
pH and salinity readings taken following sample collection	
PPE properly removed and disposed of upon completion	
Field notes have been recorded for this collection event	
Water samples placed in cooler with wet ice	

TS-1-T4

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	
Field staff wearing fresh, powder free nitrile gloves	
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	
Sampling instrument given site water rinse prior to deployment for at least 1 minute	
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket filled with DI water	
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	
Sample bottles correctly labeled and match the station identification	
Sample bottles correctly labeled with date and time	
Staff avoided contaminating samples at all times	,
pH and salinity readings taken following sample collection	
PPE properly removed and disposed of upon completion	
Field notes have been recorded for this collection event	
Water samples placed in cooler with wet ice	

TS-1-T5

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	
Field staff wearing fresh, powder free nitrile gloves	
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	
Sampling instrument given site water rinse prior to deployment for at least 1 minute	
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket filled with DI water	
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	
Sample bottles correctly labeled and match the station identification	
Sample bottles correctly labeled with date and time	
Staff avoided contaminating samples at all times	
pH and salinity readings taken following sample collection	
PPE properly removed and disposed of upon completion	
Field notes have been recorded for this collection event	
Water samples placed in cooler with wet ice	

TS-1-T6

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	
Field staff wearing fresh, powder free nitrile gloves	
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	
Sampling instrument given site water rinse prior to deployment for at least 1 minute	
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket filled with DI water	
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	
Sample bottles correctly labeled and match the station identification	
Sample bottles correctly labeled with date and time	
Staff avoided contaminating samples at all times	
pH and salinity readings taken following sample collection	
PPE properly removed and disposed of upon completion	
Field notes have been recorded for this collection event	
Water samples placed in cooler with wet ice	

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	
Field staff wearing fresh, powder free nitrile gloves	
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	
Sampling instrument given site water rinse prior to deployment for at least 1 minute	
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket filled with DI water	
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	
Sample bottles correctly labeled and match the station identification	
Sample bottles correctly labeled with date and time	
Staff avoided contaminating samples at all times	
pH and salinity readings taken following sample collection	
PPE properly removed and disposed of upon completion	
Field notes have been recorded for this collection event	
Water samples placed in cooler with wet ice	

TS-1-T8

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	
Field staff wearing fresh, powder free nitrile gloves	
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	
Sampling instrument given site water rinse prior to deployment for at least 1 minute	
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket filled with DI water	
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	
Sample bottles correctly labeled and match the station identification	
Sample bottles correctly labeled with date and time	
Staff avoided contaminating samples at all times	,
pH and salinity readings taken following sample collection	
PPE properly removed and disposed of upon completion	
Field notes have been recorded for this collection event	
Water samples placed in cooler with wet ice	

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	
Field staff wearing fresh, powder free nitrile gloves	
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	
Sampling instrument given site water rinse prior to deployment for at least 1 minute	
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket filled with DI water	
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	
Sample bottles correctly labeled and match the station identification	
Sample bottles correctly labeled with date and time	
Staff avoided contaminating samples at all times	
pH and salinity readings taken following sample collection	
PPE properly removed and disposed of upon completion	
Field notes have been recorded for this collection event	
Water samples placed in cooler with wet ice	

TS-1-T10

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	
Field staff wearing fresh, powder free nitrile gloves	
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	
Sampling instrument given site water rinse prior to deployment for at least 1 minute	
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket filled with DI water	
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	
Sample bottles correctly labeled and match the station identification	
Sample bottles correctly labeled with date and time	
Staff avoided contaminating samples at all times	
pH and salinity readings taken following sample collection	
PPE properly removed and disposed of upon completion	
Field notes have been recorded for this collection event	
Water samples placed in cooler with wet ice	

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	
Field staff wearing fresh, powder free nitrile gloves	
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	
Sampling instrument given site water rinse prior to deployment for at least 1 minute	
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket filled with DI water	
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	
Sample bottles correctly labeled and match the station identification	
Sample bottles correctly labeled with date and time	
Staff avoided contaminating samples at all times	
pH and salinity readings taken following sample collection	
PPE properly removed and disposed of upon completion	
Field notes have been recorded for this collection event	
Water samples placed in cooler with wet ice	

TS-1-T12

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	
Field staff wearing fresh, powder free nitrile gloves	
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	
Sampling instrument given site water rinse prior to deployment for at least 1 minute	
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket filled with DI water	
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	
Sample bottles correctly labeled and match the station identification	
Sample bottles correctly labeled with date and time	
Staff avoided contaminating samples at all times	
pH and salinity readings taken following sample collection	1
PPE properly removed and disposed of upon completion	
Field notes have been recorded for this collection event	
Water samples placed in cooler with wet ice	

TS-1-T12-REP

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	
Field staff wearing fresh, powder free nitrile gloves	
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	
Sampling instrument given site water rinse prior to deployment for at least 1 minute	
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket filled with DI water	
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	
Sample bottles correctly labeled and match the station identification	
Sample bottles correctly labeled with date and time	
Staff avoided contaminating samples at all times	
pH and salinity readings taken following sample collection	
PPE properly removed and disposed of upon completion	
Field notes have been recorded for this collection event	
Water samples placed in cooler with wet ice	

TS-1-FB

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	
Field staff wearing fresh, powder free nitrile gloves	
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	
Sampling instrument given site water rinse prior to deployment for at least 1 minute	
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket filled with DI water	
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	
Samples bottles and containers are the correct type and preservation in accordance with SAP/QAPP	
Sample bottles correctly labeled and match the station identification	
Sample bottles correctly labeled with date and time	
Staff avoided contaminating samples at all times	
pH and salinity readings taken following sample collection	
PPE properly removed and disposed of upon completion	
Field notes have been recorded for this collection event	
Water samples placed in cooler with wet ice	

4. Data Recording:

Water samples properly logged on COC form	
Proper persons have signed the COC	

5. Sample Storage:

Water samples properly stored on ice in a cooler	
Cooler and samples hand delivered to labs	
Completed COC included with courier to hand deliver to labs	

Additional Notes:

Signature of QA/QC Personnel:	Date/Time
Print Name/Company:	

APPENDIX B QA/QC FIELD CHECKLIST FORMS

Station Location:	TS-1
-------------------	------

Mark each box with Y, N, or NA

Field Procedures

1. Upon arriving at the sampling location, the following site observations are being recorded:

Vessel has been anchored (if at TS-2)	N/A
Station GPS coordinates (approx. \pm 3 m) and station identification verified and recorded or identified on a map	4
Tide recorded	<u> </u>
Weather conditions recorded	Y
Surface water conditions (incl. currents) recorded	У
General site observations recorded	<u> </u>
Check for boat cleaning operations in the area, document if applicable	<u> </u>

2. Sampling procedures:

TS-1-ER

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	NA
Field staff wearing fresh, powder free nitrile gloves	Υ
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	NA
Sampling instrument given site water rinse prior to deployment for at least 2-3 minutes	NA
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket	У
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	A
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	Ý
Sample bottles correctly labeled and match the station identification	<u> </u>
Sample bottles correctly labeled with date and time	<u> </u>
Staff avoided contaminating samples at all times	<u> </u>
Temperature, pH, and salinity readings taken following sample collection	NA
PPE properly removed and disposed of upon completion	Y
Field notes have been recorded for this collection event	Y
Water samples placed in cooler with wet ice	<u> </u>
Date & Time: 1318 16:22 Initials: CN	

TS-1-T0

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	NA
Field staff wearing fresh, powder free nitrile gloves	<u> </u>
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	1
Sampling instrument given site water rinse prior to deployment for at least 2-3 minutes	<u> </u>
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket	<u> Ÿ</u>
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	4
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	4
Sample bottles correctly labeled and match the station identification	<u> </u>
Sample bottles correctly labeled with date and time.	
Staff avoided contaminating samples at all times	У
Temperature, pH, and salinity readings taken following sample collection	Υ
PPE properly removed and disposed of upon completion	<u> </u>
Field notes have been recorded for this collection event	1
Water samples placed in cooler with wet ice	A
Date & Time: 1/9/14 17:07 Initials: (1)	

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	Y
Field staff wearing fresh, powder free nitrile gloves	
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	Y
Sampling instrument given site water rinse prior to deployment for at least 2-3 minutes	4_
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket	<u> </u>
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	1
Sample bottles correctly labeled and match the station identification	1
Sample bottles correctly labeled with date and time	4
Staff avoided contaminating samples at all times	1
Temperature, pH, and salinity readings taken following sample collection	4
PPE properly removed and disposed of upon completion	1
Field notes have been recorded for this collection event	
Water samples placed in cooler with wet ice	1
Date & Time: 1 9 14 19:15 Initials: (1)	

TS-1-T2

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	N/A
Field staff wearing fresh, powder free nitrile gloves	Ϋ́
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	Y
Sampling instrument given site water rinse prior to deployment for at least 2-3 minutes	<u> </u>
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket	Y
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	Ý
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	Y
Sample bottles correctly labeled and match the station identification	У
Sample bottles correctly labeled with date and time	7
Staff avoided contaminating samples at all times	<u> </u>
Temperature, pH, and salinity readings taken following sample collection	Y
PPE properly removed and disposed of upon completion	Ý
Field notes have been recorded for this collection event	У
Water samples placed in cooler with wet ice	A
Date & Time: 1/3/16 21:24 Initials: CN	

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	NA
Field staff wearing fresh, powder free nitrile gloves	Y
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	Y
Sampling instrument given site water rinse prior to deployment for at least 2-3 minutes	Y
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket	У
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	Y
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	Y
Sample bottles correctly labeled and match the station identification	У
Sample bottles correctly labeled with date and time	4_
Staff avoided contaminating samples at all times	7
Temperature, pH, and salinity readings taken following sample collection	14
PPE properly removed and disposed of upon completion	У
Field notes have been recorded for this collection event	Ý
Water samples placed in cooler with wet ice	V
Date & Time: 1 3 1/8 23/34 Initials: (1)	- 1

TS-1-T4

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	NA
Field staff wearing fresh, powder free nitrile gloves	λ
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	Ý
Sampling instrument given site water rinse prior to deployment for at least 2-3 minutes	Y
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket	Υ
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	Ϋ́
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	Ý
Sample bottles correctly labeled and match the station identification	7
Sample bottles correctly labeled with date and time	Ý
Staff avoided contaminating samples at all times	4
Temperature, pH, and salinity readings taken following sample collection	4
PPE properly removed and disposed of upon completion	Ą
Field notes have been recorded for this collection event	Ý
Water samples placed in cooler with wet ice	Y
Date & Time: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	NA
Field staff wearing fresh, powder free nitrile gloves	\(\frac{1}{2}\)
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	¥
Sampling instrument given site water rinse prior to deployment for at least 2-3 minutes	<u> </u>
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket	Y
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	4
Samples bottles and containers are the correct type and preservation in accordance with SAP/QAPP	Y
Sample bottles correctly labeled and match the station identification	7
Sample bottles correctly labeled with date and time	<u> </u>
Staff avoided contaminating samples at all times	Y
Temperature, pH, and salinity readings taken following sample collection	1
PPE properly removed and disposed of upon completion	1
Field notes have been recorded for this collection event	A
Water samples placed in cooler with wet ice	7
Date & Time: 1/4/14 04:20 Initials:	·

TS-1-T6

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	NY
Field staff wearing fresh, powder free nitrile gloves	Y
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	Y
Sampling instrument given site water rinse prior to deployment for at least 2-3 minutes	Υ
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket	Υ
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	Y
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	γ
Sample bottles correctly labeled and match the station identification	Y
Sample bottles correctly labeled with date and time	Υ
Staff avoided contaminating samples at all times	4
Temperature, pH, and salinity readings taken following sample collection	Υ
PPE properly removed and disposed of upon completion	Y
Field notes have been recorded for this collection event	Ч
Water samples placed in cooler with wet ice	Y
Date & Time: 1/4/17 0440 Initials: AR	

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	WA
Field staff wearing fresh, powder free nitrile gloves	7
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	HAY
Sampling instrument given site water rinse prior to deployment for at least 2-3 minutes	Y
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket	7
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	Y
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	4
Sample bottles correctly labeled and match the station identification	7
Sample bottles correctly labeled with date and time	Y
Staff avoided contaminating samples at all times	7
Temperature, pH, and salinity readings taken following sample collection	Y
PPE properly removed and disposed of upon completion	Υ.
Field notes have been recorded for this collection event	, , ,
Water samples placed in cooler with wet ice	۲
Date & Time: 1/11/8 Initials:	

TS-1-T8

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	WA
Field staff wearing fresh, powder free nitrile gloves	Υ
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	Y
Sampling instrument given site water rinse prior to deployment for at least 2-3 minutes	Y
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket	Y
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	_ Y
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	Y
Sample bottles correctly labeled and match the station identification	Y
Sample bottles correctly labeled with date and time	Y
Staff avoided contaminating samples at all times	Y
Temperature, pH, and salinity readings taken following sample collection	Υ
PPE properly removed and disposed of upon completion	Y
Field notes have been recorded for this collection event	Υ
Water samples placed in cooler with wet ice	7
Date & Time: 1/4/18 0830 Initials: &W	

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	MA
Field staff wearing fresh, powder free nitrile gloves	Y
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	Y_
Sampling instrument given site water rinse prior to deployment for at least 2-3 minutes	<u> </u>
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket	Y
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	<u> </u>
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	Y
Sample bottles correctly labeled and match the station identification	_ Y_
Sample bottles correctly labeled with date and time	Y
Staff avoided contaminating samples at all times	Υ
Temperature, pH, and salinity readings taken following sample collection	Y
PPE properly removed and disposed of upon completion	Y
Field notes have been recorded for this collection event	<u> </u>
Water samples placed in cooler with wet ice	TY.
Date & Time: 1/4/18 1030 Initials: EW	

TS-1-T10

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	NA
Field staff wearing fresh, powder free nitrile gloves	7
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	Y
Sampling instrument given site water rinse prior to deployment for at least 2-3 minutes	Y
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket	Y
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	Y
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	Y
Sample bottles correctly labeled and match the station identification	Y
Sample bottles correctly labeled with date and time	Y
Staff avoided contaminating samples at all times	Y
Temperature, pH, and salinity readings taken following sample collection	Y
PPE properly removed and disposed of upon completion	Y
Field notes have been recorded for this collection event	Y
Water samples placed in cooler with wet ice	Y
Date & Time: 1/4/18 1310 Initials: EW	

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	NA
Field staff wearing fresh, powder free nitrile gloves	Y
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	Y
Sampling instrument given site water rinse prior to deployment for at least 2-3 minutes	Y
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket	Y
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	Y
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	Y
Sample bottles correctly labeled and match the station identification	Y
Sample bottles correctly labeled with date and time	· Y
Staff avoided contaminating samples at all times	Y
Temperature, pH, and salinity readings taken following sample collection	Y
PPE properly removed and disposed of upon completion	, Y
Field notes have been recorded for this collection event	Y
Water samples placed in cooler with wet ice	7
Date & Time: 1/4/18 1525 Initials: EW	

TS-1-T12

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	NA
Field staff wearing fresh, powder free nitrile gloves	<u> </u>
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	Y
Sampling instrument given site water rinse prior to deployment for at least 2-3 minutes	Y
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket	
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	<u> </u>
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	Ÿ
Sample bottles correctly labeled and match the station identification	¥
Sample bottles correctly labeled with date and time	٧
Staff avoided contaminating samples at all times	4
Temperature, pH, and salinity readings taken following sample collection	1
PPE properly removed and disposed of upon completion	1
Field notes have been recorded for this collection event	*
Water samples placed in cooler with wet ice	4
Date & Time: 1/4/18 Initials: CCS	

TS-1-T12-REP

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	MŦ
Field staff wearing fresh, powder free nitrile gloves	7
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	1
Sampling instrument given site water rinse prior to deployment for at least 2-3 minutes	7
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket	7
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	4
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	To Company States
Sample bottles correctly labeled and match the station identification	
Sample bottles correctly labeled with date and time	- Anti-
Staff avoided contaminating samples at all times	- V
Temperature, pH, and salinity readings taken following sample collection	
PPE properly removed and disposed of upon completion	Ý
Field notes have been recorded for this collection event	N
Water samples placed in cooler with wet ice	V
Date & Time: 114118 Initials: CCA	

TS-1-FB

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	NA
Field staff wearing fresh, powder free nitrile gloves	γ
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	NA
Sampling instrument given site water rinse prior to deployment for at least 2-3 minutes	NA
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket	Y
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	Y
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	Ý
Sample bottles correctly labeled and match the station identification	4
Sample bottles correctly labeled with date and time	Ý
Staff avoided contaminating samples at all times	Ý
Temperature, pH, and salinity readings taken following sample collection	NA
PPE properly removed and disposed of upon completion	У
Field notes have been recorded for this collection event	Y
Water samples placed in cooler with wet ice	4
Date & Time: 1/4/18 Initials: CL3	

4. Data Recording:

Water samples properly logged on COC form	4 y	
Proper persons have signed the COC	Υ	

5. Sample Storage:

Water samples properly stored on ice in a cooler	4
Cooler and samples hand delivered to labs	4
Completed COC included with courier to hand deliver to labs	4

Additional Notes:

Signature of QA/QC Personnel:	Date/Time	1/5/2018
Print Name/Company: Cry & Swady		•

Mark each box with Y, N, or NA

Field Procedures

1. Upon arriving at the sampling location, the following site observations are being recorded:

Vessel has been anchored (if at TS-2)	Υ
Station GPS coordinates (approx. ± 3 m) and station identification verified and recorded or identified on a map	4
Tide recorded	<u> </u>
Weather conditions recorded	4
Surface water conditions (incl. currents) recorded	4
General site observations recorded	1
Check for boat cleaning operations in the area, document if applicable	

2. Sampling procedures:

TS-2-ER

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	NA
Field staff wearing fresh, powder free nitrile gloves	Υ
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	
Sampling instrument given site water rinse prior to deployment for at least 2-3 minutes	NA
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket	V
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	4
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	
Sample bottles correctly labeled and match the station identification	X
Sample bottles correctly labeled with date and time	V
Staff avoided contaminating samples at all times	7
Temperature, pH, and salinity readings taken following sample collection	NA
PPE properly removed and disposed of upon completion	A
Field notes have been recorded for this collection event	Y
Water samples placed in cooler with wet ice	Y
Date & Time: 1/2/18 1615 Initials: CCS	

TS-2-T0

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	Y
Field staff wearing fresh, powder free nitrile gloves	ý
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	MA
Sampling instrument given site water rinse prior to deployment for at least 2-3 minutes	4
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket	y.
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	Ÿ
Samples bottles and containers are the correct type and preservation in accordance with SAP/QAPP	Ÿ
Sample bottles correctly labeled and match the station identification	Y
Sample bottles correctly labeled with date and time	V
Staff avoided contaminating samples at all-times	4
Temperature, pH, and salinity readings taken following sample collection	Ů.
PPE properly removed and disposed of upon completion	Ÿ
Field notes have been recorded for this collection event	1
Water samples placed in cooler with wet ice	1
Date & Time: 12 18 1655 Initials:	<u> </u>

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	4
Field staff wearing fresh, powder free nitrile gloves	<u>'</u>
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	NA
Sampling instrument given site water rinse prior to deployment for at least 2-3 minutes	<u> </u>
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket	1
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	λ'
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	4
Sample bottles correctly labeled and match the station identification	7
Sample bottles correctly labeled with date and time	7
Staff avoided contaminating samples at all times	J -
Temperature, pH, and salinity readings taken following sample collection	
PPE properly removed and disposed of upon completion	7
Field notes have been recorded for this collection event	1
Water samples placed in cooler with wet ice	1
Date & Time: 11318 Initials:	

TS-2-T2

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	7
Field staff wearing fresh, powder free nitrile gloves	X
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	NA
Sampling instrument given site water rinse prior to deployment for at least 2-3 minutes	17
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket	4
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	×
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	7
Sample bottles correctly labeled and match the station identification	1
Sample bottles correctly labeled with date and time	<u> </u>
Staff avoided contaminating samples at all times	<u> </u>
Temperature, pH, and salinity readings taken following sample collection	<i>Y'</i>
PPE properly removed and disposed of upon completion	\ '
Field notes have been recorded for this collection event	<u> </u>
Water samples placed in cooler with wet ice	1
Date & Time: 13 8 2112 Initials:	

	r
Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	7
Field staff wearing fresh, powder free nitrile gloves	<u>'\</u>
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	NA
Sampling instrument given site water rinse prior to deployment for at least 2-3 minutes	7
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket	\\\'
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	M _
Samples-bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	1
Sample bottles correctly labeled and match the station identification	11
Sample bottles correctly labeled with date and time	V/
Staff avoided contaminating samples at all times	N_{\perp}
Temperature, pH, and salinity readings taken following sample collection	
PPE properly removed and disposed of upon completion	14
Field notes have been recorded for this collection event	VI
Water samples placed in cooler with wet ice	V
Date & Time: 13 18 23 22 Initials: V	

TS-2-T4

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	Y
Field staff wearing fresh, powder free nitrile gloves	4
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	NA
Sampling instrument given site water rinse prior to deployment for at least 2-3 minutes	7
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket	7
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	1
Sample bottles correctly labeled and match the station identification	7
Sample bottles correctly labeled with date and time	7
Staff avoided contaminating samples at all times	7
Temperature, pH, and salinity readings taken following sample collection	1
PPE properly removed and disposed of upon completion	7,
Field notes have been recorded for this collection event	1
Water samples placed in cooler with wet ice	7
Date & Time: 198 Initials: 4	

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	У
Field staff wearing fresh, powder free nitrile gloves	7
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	NA
Sampling instrument given site water rinse prior to deployment for at least 2-3 minutes	Y
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket	¥
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	<u> </u>
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	4
Sample bottles correctly labeled and match the station identification	4
Sample bottles correctly labeled with date and time	1
Staff avoided contaminating samples at all times	7
Temperature, pH, and salinity readings taken following sample collection	1
PPE properly removed and disposed of upon completion	7
Field notes have been recorded for this collection event	4
Water samples placed in cooler with wet ice	1
Date & Time: 1/4 3 3 12 Initials: 17	1

TS-2-T6

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	4
Field staff wearing fresh, powder free nitrile gloves	' \
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	√ A [']
Sampling instrument given site water rinse prior to deployment for at least 2-3 minutes	7
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket	<u>'</u> ' <u>'</u>
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	\ <u>\</u>
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	
Sample bottles correctly labeled and match the station identification	1
Sample bottles correctly labeled with date and time	1
Staff avoided contaminating samples at all times	4
Temperature, pH, and salinity readings taken following sample collection	4
PPE properly removed and disposed of upon completion	4
Field notes have been recorded for this collection event	4
Water samples placed in cooler with wet ice	\
Date & Time: 1/9/18 427 Initials: 1	

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	· · · · · · · · · · · · · · · · · · ·
Field staff wearing fresh, powder free nitrile gloves	· ·
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	H
Sampling instrument given site water rinse prior to deployment for at least 2-3 minutes	d ^{je} .
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket	die.
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	direct.
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	September 1
Sample bottles correctly labeled and match the station identification	S. S
Sample bottles correctly labeled with date and time	grapher.
Staff avoided contaminating samples at all times	the state of the s
Temperature, pH, and salinity readings taken following sample collection	15th 7.
PPE properly removed and disposed of upon completion	d.h.
Field notes have been recorded for this collection event	900-
Water samples placed in cooler with wet ice	
Date & Time: Initials:	

TS-2-T8

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	/
Field staff wearing fresh, powder free nitrile gloves	· · · · · · · · · · · · · · · · · · ·
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	NA
Sampling instrument given site water rinse prior to deployment for at least 2-3 minutes	<i></i>
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket	province .
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	SCHOOL STATE OF THE SCHOOL
Sample bottles correctly labeled and match the station identification	p.
Sample bottles correctly labeled with date and time	Ser.
Staff avoided contaminating samples at all times	
Temperature, pH, and salinity readings taken following sample collection	
PPE properly removed and disposed of upon completion	green
Field notes have been recorded for this collection event	
Water samples placed in cooler with wet ice	p
Date & Time: Initials:	

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	Paris
Field staff wearing fresh, powder free nitrile gloves	Service .
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	NA
Sampling instrument given site water rinse prior to deployment for at least 2-3 minutes	
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket	gran.
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	<i></i>
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	get de la companya della companya della companya de la companya della companya de
Sample bottles correctly labeled and match the station identification	Bern.
Sample bottles correctly labeled with date and time	
Staff avoided contaminating samples at all times	P
Temperature, pH, and salinity readings taken following sample collection	photo and a second
PPE properly removed and disposed of upon completion	apper .
Field notes have been recorded for this collection event	
Water samples placed in cooler with wet ice	AP.
Date & Time: Initials:	

TS-2-T10

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	(FEE
Field staff wearing fresh, powder free nitrile gloves	Karin.
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	NA
Sampling instrument given site water rinse prior to deployment for at least 2-3 minutes	grant.
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket	parties.
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	P. S.
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	e Artico
Sample bottles correctly labeled and match the station identification	Marie .
Sample bottles correctly labeled with date and time	ewen.
Staff avoided contaminating samples at all times	#Harrison
Temperature, pH, and salinity readings taken following sample collection	Experie.
PPE properly removed and disposed of upon completion	R.K.W
Field notes have been recorded for this collection event	Contract of the Contract of th
Water samples placed in cooler with wet ice	EN BEET
Date & Time: Initials:	

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	Farm.
Field staff wearing fresh, powder free nitrile gloves	Maria p
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	NA
Sampling instrument given site water rinse prior to deployment for at least 2-3 minutes	September 1
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket	E.m.
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	N. Cal. og.
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	Estate.
Sample bottles correctly labeled and match the station identification	WAL.
Sample bottles correctly labeled with date and time	821 J.
Staff avoided contaminating samples at all times	Gran
Temperature, pH, and salinity readings taken following sample collection	d ^e
PPE properly removed and disposed of upon completion	
Field notes have been recorded for this collection event	
Water samples placed in cooler with wet ice	
Date & Time: Initials:	

TS-2-T12

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	/
Field staff wearing fresh, powder free nitrile gloves	
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	NA
Sampling instrument given site water rinse prior to deployment for at least 2-3 minutes	
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket	
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	
Sample bottles correctly labeled and match the station identification	_
Sample bottles correctly labeled with date and time	
Staff avoided contaminating samples at all times	
Temperature, pH, and salinity readings taken following sample collection	(
PPE properly removed and disposed of upon completion	
Field notes have been recorded for this collection event	girm am
Water samples placed in cooler with wet ice	
Date & Time: Initials:	

TS-2-T12-REP

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	***
Field staff wearing fresh, powder free nitrile gloves	
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	NA
Sampling instrument given site water rinse prior to deployment for at least 2-3 minutes	
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket	
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	gamen.
Sample bottles correctly labeled and match the station identification	
Sample bottles correctly labeled with date and time	/
Staff avoided contaminating samples at all times	1
Temperature, pH, and salinity readings taken following sample collection	
PPE properly removed and disposed of upon completion	, m-/
Field notes have been recorded for this collection event	4
Water samples placed in cooler with wet ice	4
Date & Time: Initials:	

TS-2-FB

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	NA
Field staff wearing fresh, powder free nitrile gloves	-
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	NA
Sampling instrument given site water rinse prior to deployment for at least 2-3 minutes	NA
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket	garan.
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	pr
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	parasi
Sample bottles correctly labeled and match the station identification	
Sample bottles correctly labeled with date and time	Paris Const.
Staff avoided contaminating samples at all times	~
Temperature, pH, and salinity readings taken following sample collection	NA
PPE properly removed and disposed of upon completion	S.Frederick.
Field notes have been recorded for this collection event	gran.
Water samples placed in cooler with wet ice	AR MITT
Date & Time: Initials:	

4. Data Recording:

Water samples properly logged on COC form	
Proper persons have signed the COC	power

5. Sample Storage:

Water samples properly stored on ice in a cooler	/
Cooler and samples hand delivered to labs	
Completed COC included with courier to hand deliver to labs	-

Additional Notes:

Signature of QA/QC Personnel:	Date/Time 15/2018
Print Name/Company: Covey Stuvely	

Station	Location:	TS-3
---------	-----------	------

Mark each box with Y, N, or NA

Field Procedures

1. Upon arriving at the sampling location, the following site observations are being recorded:

Vessel has been anchored (if at TS-2)	AN
Station GPS coordinates (approx. ± 3 m) and station identification verified and recorded or identified on a map	1
Tide recorded	4
Weather conditions recorded	4
Surface water conditions (incl. currents) recorded	4
General site observations recorded	4
Check for boat cleaning operations in the area, document if applicable	4

2. Sampling procedures:

TS-3-ER

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	NA
Field staff wearing fresh, powder free nitrile gloves	
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	NA
Sampling instrument given site water rinse prior to deployment for at least 2-3 minutes	NA
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket	L-
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	-
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	L-
Sample bottles correctly labeled and match the station identification	W
Sample bottles correctly labeled with date and time	L
Staff avoided contaminating samples at all times	L
Temperature, pH, and salinity readings taken following sample collection	NA
PPE properly removed and disposed of upon completion	1
Field notes have been recorded for this collection event	-
Water samples placed in cooler with wet ice	<u>اس</u>
Date & Time: 1618 1/3/18 Initials: 17/	

TS-3-T0

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	
Field staff wearing fresh, powder free nitrile gloves	JAS.
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	
Sampling instrument given site water ripse prior to 1	-
SWAMP protocols utilized to avoid sample contamination of in plastic lined, 5-gallon bucket	
Samples bottles and containers are the correct type and preservation in accordance with SAP/	
Sample bottles correctly labeled and match the station identification	
sample bottles correctly labeled with date and time	Name .
Starr avoided contaminating samples at all times	
remperature, pH, and salinity readings taken following servel	
PPE properly removed and disposed of upon completion	
Field notes have been recorded for this collection event	V
Water samples placed in cooler with wet ice	~
Date & Time: 170%	V
Date & Time: 708 1317 Initials:	

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	الأدرال
——————————————————————————————————————	M
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	
Sampling instrument given site water rinse prior to deployment for at least 2-3 minutes If in between sampling stations, sampling instrument deployment for at least 2-3 minutes	
If in between sampling stations, sampling in the deployment for at least 2-3 minutes	1/
	01
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique) Samples bottles and containers are the correct type and preservation in accordance with SAP/	
Sample bottles correctly labeled and match the station identification	V
Sample bottles correctly labeled with date and time	1
Staff avoided contaminating samples at all times	1/
Temperature, pH, and salinity readings to 1.	1
Temperature, pH, and salinity readings taken following sample collection PPE properly removed and disposed of upon completion	1
Field notes have been records 1.5 at 1.	
Field notes have been recorded for this collection event Water samples placed in cooler with wet ice	7
Date & Time: 1905 1/3/17 Initials:	

TS-3-T2

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	NA
Field staff wearing fresh, powder free nitrile gloves	~
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	timesses in the second second
Sampling instrument given site water rinse prior to deployment for at least 2-3 minutes	Ber an
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket	l
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	Surproj.
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	
Sample bottles correctly labeled and match the station identification	-
Sample bottles correctly labeled with date and time	_
Staff avoided contaminating samples at all times	-
Temperature, pH, and salinity readings taken following sample collection	**************************************
PPE properly removed and disposed of upon completion	
Field notes have been recorded for this collection event	· Comm
Water samples placed in cooler with wet ice	-
Date & Time: 0115 1/3/18 Initials: 1/	

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	NA
Field staff wearing fresh, powder free nitrile gloves	V
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	
Sampling instrument given site water rinse prior to deployment for at least 2-3 minutes	-
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket	1
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	_
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	/
Sample bottles correctly labeled and match the station identification	/.
Sample bottles correctly labeled with date and time	
Staff avoided contaminating samples at all times	/
Temperature, pH, and salinity readings taken following sample collection	
PPE properly removed and disposed of upon completion	
Field notes have been recorded for this collection event	V
Water samples placed in cooler with wet ice	V
Date & Time: 4th 2325 1/3/18 Initials: 1/	

TS-3-T6

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	NA
Field staff wearing fresh, powder free nitrile gloves	~
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	<i>\</i>
Sampling instrument given site water rinse prior to deployment for at least 2-3 minutes	V
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket	V
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	~
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	2
Sample bottles correctly labeled and match the station identification	7
Sample bottles correctly labeled with date and time	V
Staff avoided contaminating samples at all times	V
Temperature, pH, and salinity readings taken following sample collection	v
PPE properly removed and disposed of upon completion	
Field notes have been recorded for this collection event	v
Water samples placed in cooler with wet ice	$\overline{}$
Date & Time: 0430 1/4/18 Initials: 17	

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	NA
Field staff wearing fresh, powder free nitrile gloves	sol of
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	
Sampling instrument given site water rinse prior to deployment for at least 2-3 minutes	<i>(</i> -
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket	-
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	sur.
Sample bottles correctly labeled and match the station identification	grave.
Sample bottles correctly labeled with date and time	g man
Staff avoided contaminating samples at all times	gran.
Temperature, pH, and salinity readings taken following sample collection	1
PPE properly removed and disposed of upon completion	-
Field notes have been recorded for this collection event	
Water samples placed in cooler with wet ice	- /
Date & Time: Initials:	

TS-3-T8

cs c - 2.5 minutes prior to sampling (TS-2 only)	N #
Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	
Field staff wearing fresh, powder free nitrile gloves	
Sampling depth delineated on sampling instrument with a clear marking (sampling must	
gite water rinse prior to deployment for at least 2-3 influtes	
Sampling instrument given site water time proves supply If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket	
If in between sampling stations, sampling material stations, sampling materials of the stations of the station	
Samples bottles and containers are the correct type and preservation in accordance	- (
QAPP	/
Sample bottles correctly labeled and match the station identification	-
Sample bottles correctly labeled with date and time	-
g, cc	7
Temperature, pH, and salinity readings taken following sample confection	
PPE properly removed and disposed of upon completion	
Field notes have been recorded for this collection event	
Water samples placed in cooler with wet ice	<u></u>
Date & Time: Initials:	

	NA
Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	,
Fig. 11 4 66 fresh nowder free nitrile gloves	
Sampling depth delineated on sampling instrument with a clear marking (sampling most	<i></i>
Samples bottles and containers are the correct type and preservation in	es established and the second
QAPP Sample bottles correctly labeled and match the station identification	
Sample bottles correctly labeled with date and time	ALCONOMIC STREET
Sample bottles correctly labeled with date and time	
Staff avoided contaminating samples at all times	- (
Temperature, pH, and salinity readings taken following sample collection	٠-
PPE properly removed and disposed of upon completion	₩ ^H i ^{man} ····
Field notes have been recorded for this collection event	
Water samples placed in cooler with wet ice	<u> </u>
Date & Time:	

TS-3-T10

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	NX
Field staff wearing fresh, powder free nitrile gloves	-
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	para
Sampling instrument given site water rinse prior to deployment for at least 2-3 minutes	6
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket	~
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	çar
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	ş
Sample bottles correctly labeled and match the station identification	ě
Sample bottles correctly labeled with date and time	
Staff avoided contaminating samples at all times	Par.
Temperature, pH, and salinity readings taken following sample collection	Reser.
PPE properly removed and disposed of upon completion	ge ^{nte}
Field notes have been recorded for this collection event	gar.
Water samples placed in cooler with wet ice	gapter
Date & Time: Initials:	

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	NA
Field staff wearing fresh, powder free nitrile gloves	(more)
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	ر معاوي
Sampling instrument given site water rinse prior to deployment for at least 2-3 minutes	e
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket	e _{dev} .
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	photo Tr.
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	pero.
Sample bottles correctly labeled and match the station identification	V. Apr.
Sample bottles correctly labeled with date and time	fo ^{m)-} -
Staff avoided contaminating samples at all times	p
Temperature, pH, and salinity readings taken following sample collection	peroxi
PPE properly removed and disposed of upon completion	par.
Field notes have been recorded for this collection event	gen'
Water samples placed in cooler with wet ice	
Date & Time: Initials:	

TS-3-T12

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	NA.
Field staff wearing fresh, powder free nitrile gloves	
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	/
Sampling instrument given site water rinse prior to deployment for at least 2-3 minutes	_/
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket	6_
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	
Sample bottles correctly labeled and match the station identification	
Sample bottles correctly labeled with date and time	
Staff avoided contaminating samples at all times	
Temperature, pH, and salinity readings taken following sample collection	,
PPE properly removed and disposed of upon completion	
Field notes have been recorded for this collection event	
Water samples placed in cooler with wet ice	
Date & Time: Initials: 37	

TS-3-T12-REP

Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	A N
Field staff wearing fresh, powder free nitrile gloves	1"
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	•
Sampling instrument given site water rinse prior to deployment for at least 2-3 minutes	
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket	***
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	#*** <u>-</u>
Sample bottles correctly labeled and match the station identification	ar-
Sample bottles correctly labeled with date and time	
Staff avoided contaminating samples at all times	- (
Temperature, pH, and salinity readings taken following sample collection	
PPE properly removed and disposed of upon completion	
Field notes have been recorded for this collection event	
Water samples placed in cooler with wet ice	
Date & Time: Initials:	

TS-3-FB

Date & Time: Initials:	
Water samples placed in cooler with wet ice	
Field notes have been recorded for this collection event	-
PPE properly removed and disposed of upon completion	
Temperature, pH, and salinity readings taken following sample collection	NA
Staff avoided contaminating samples at all times	
Sample bottles correctly labeled with date and time	
Sample bottles correctly labeled and match the station identification	
Samples bottles and containers are the correct type and preservation in accordance with SAP/ QAPP	
SWAMP protocols utilized to avoid sample contamination (i.e., clean hands/dirty hands technique)	
If in between sampling stations, sampling instrument stored in plastic lined, 5-gallon bucket	
Sampling instrument given site water rinse prior to deployment for at least 2-3 minutes	NA
Sampling depth delineated on sampling instrument with a clear marking (sampling must occur within 1 m of surface)	NA
Field staff wearing fresh, powder free nitrile gloves	
Vessel engine has been shut off for 3-5 minutes prior to sampling (TS-2 only)	NA

4. Data Recording:

Water samples properly logged on COC form	
Proper persons have signed the COC	Comm.

5. Sample Storage:

Water samples properly stored on ice in a cooler	· ·
Cooler and samples hand delivered to labs	
Completed COC included with courier to hand deliver to labs	and the same of th

Additional Notes:

Signature of QA/QC Personnel:	Date/Time 1/5/2018	_
Print Name/Company: Covey Shwedy	_	

APPENDIX C CHAIN-OF-CUSTODY FORMS

14859 East Clark A Tel 626-336-2139					1964		Ş	STA	NDA	RD				Page	1	Of_	6
CLIENT NAME:		<u>, 1835, 1833 (1931)</u>		PROJECT:		T		ANA	ALYSE	S RI	QUES	STED			CIAL HA		_ <u></u>
Amec Foster Wheele ADDRESS: 9210 Sky Park Ct., S San Diego, CA 92123	uite 200			SIYB Times Series Study PHONE: 831-359-7761 FAX: 858-300-4301 EMAIL: corey.sheredy@amecfv	v.com	0038 µg/L, RL= 0.01 µg/L								Security Sec	Same I 24 Hou 48-72 I 4 - 5 D Rush E	Day Rush Ir Rush 10 Hour Rush ay Rush 3 Extractions Siness Day	150% 0% 175% 0% 50%
PROJECT MANAGER				SAMPLER		per 12	i I							F.		Data Pac	
Barry Snyder / Corey St	neredy					Copi								Charges	will apply f	or weeke	nds/holiday
ID# (For lab Use Only)	DATE SAMPLED	TIME SAMPLED	SMPL TYPE	SAMPLE IDENTIFICATION/SITE LOCATION	# OF CONT.	Dissolved Method EPA								Method o	f Shipmen	t:	
TS-1-T0	01/03/18	1642	seawater	TS-1-T0	1	X		_	_		_			COMMIL			
TS-1-T1	01/03/18	1850	seawater	TS-1-T1	1	X		_		+			_				
TS-1-T2	01/03/18	2100	seawater	TS-1-T2	1	Х				一						•	
TS-1-T3	01/03/18	2311	seawater	TS-1-T3	1	X	\dashv					 					
TS-1-T4	01/04/18	100	seawater	TS-1-T4	1	Х	<u> </u>					 		1		<u>.</u>	
TS-1-T5	01/04/18	300	seawater	TS-1-T5	. 1	Х	_							-			
TS-1-T6	01/04/18	415	seawater	TS-1-T6	-1	X				\neg		<u> </u>		1			
TS-1-T7	01/04/18	620	seawater	TS-1-T7	1	Х		$\neg \uparrow$		$\neg \vdash$		1 1		1			
TS-1-T8	01/04/18	820	seawater	TS-1-T8	1	Х				一		<u> </u>					
TS-1-T9	01/04/18	1024	seawater	TS-1-T9	1	Х					\dashv						
TS-1-T10	01/04/18	1300	seawater	TS-1-T10	1	Х		_		_							
RELINQUISHED B RELINQUISHED B RELINQUISHED B	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	rch	DATE	TIME Q AS RECEIVED TIME 12 0 RECEIVED TIME RECEIVED	BY	1	Su 18		2h 2'.0			Receive Preserve Evidence Containe Preserve	emperati d On Ice ed e Seals F er Intact	Present	× × × × × × × ×	AQ=Aqi NA= No SL = Sid DW = D WW = V RW = R GW = G	on Aqueous udge vrinking Wate Waste Water ain Water Ground Water
																OL = Oi	
	d filtered using lowing amounts	0.45 um bottle s: Copper ≃ 10	etop filt.) ug/L, Z i	System. LAB ACTION: PRESERVE IMMED			nours if	any s	sample	e anon	nalies a	re found;					

W.III.	The state of the s	nament en	men radional reconstitutes	A		ratories, I	(STORY STATE OF THE STATE OF TH			_			_	F	CU	S	ГО	DY	RE	CO	RD	
14859 East Clark										ST	AND	ARI)					_	47			ı
Tel 626-336-213	9 ♦ Fax 620	5-336-2634	♦ WW	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1					* .									Page			Of1	<u></u>
CLIENT NAME: Amec Foster Whee	ler F&I. Inc.			PROJECT	: SIYB Times S	Series Study		g/L		AN	IALY	SES	REQU	JES	TED			SPE	S	ame Da	DLING y Rush 150 Rush 100%	
ADDRESS:	107 2001, 1110.			PHONE:	831-359-77			0.0°F		l								l**c*	4	3-72 Ho	ur Rush 75	%
9210 Sky Park Ct.,	Suite 200			FAX:	858-300-43			}-		ŀ								(*****			Rush 30%	
San Diego, CA 921				EMAIL:	corey.sher	redy@amecf\	w.com	2 0.0038 µg/t										₽ P			ractions 50° ess Days	%
PROJECT MANAGER	₹			SAMPLER	२			per ¹										f	Q	A/QC D	ata Packag	je
Barry Snyder / Corey	Sheredy							Copper ¹ 1640 MDL										Charges	s will ap	ply for	weekends	s/holiday:
ID#	DATE	TIME	SMPL	CAMBLE	IDENTIFICATION	CITE LOCATION	# OF	olved d EPA										Method	of Ship	ment:		
(For lab Use Only)	SAMPLED	SAMPLED	TYPE		IDENTIFICATION	7311E LOCATION	CONT.	Dissol Method	:									СОММЕ	NTS			
TS-1-T11	01/04/18	1515	seawate	r			1	Х														
TS-1-T12	01/04/18	1729	seawate	r			1	Х							ļ							
TS-1-T12-REP	01/04/18	1739	seawate	r		·····	1	Х							igsquare					•• • • • • • • • • • • • • • • • • • • •		
TS-1-ER	01/03/18	160245A2	DI				1	Х												<u> </u>		
TS-1-FB	01/04/18	1748	DI	ļ			1	Х				ļ					.,					·
	-	 							-		-	1	\vdash									
			ļ									 -										
							1	1			 				1							
RELINQUISHED	mh		۱-	=/TIME - 5	4745 18 AV	RECEIVE	رو دو			S	14.	ç l	<u></u>		Actual	Temp	eratur	e: 3.	(SAMPLE T AQ=Aqueo NA= Non A SL = Sludg	ous Aqueous Je
RELINQUISHED	Sang	h	1	E/TIME -5-l	12/10		N_	<u> </u>	5	18		2	٥).		Receiv Presei Evider Contai	rved nce Se Iner Int	eals Pr tact	resent	Y	/ N / N / N	DW = Drin! WW = Was RW = Rain GW = Gros	ste Water Water
RELINQUISHED			:	E/TIME		REÇEIVEI	D BA	, .		· · · · · · · · · · · · · · · · · · ·		***********			Presei	rved at	(Lap		Υ	. (5)	SO = Soil SW = Solid OL = Oil OT = Othe	
SPECIAL REQUIREM 1) Diss. metals were f 2) SPIKE level at the 4) Select pages from	ield filtered using following amoun	g 0.45 um bott ts: Copper = 1	letop filt. 0 ug/L, 2	ZIn c. = 30 u g					hours	if an	y sam	nple ai	nomali	es ar	re foun	d;						

W.III			***************************************	Weck Laboratories, I	SATURNAY TO						CU	IST	ODY	REC	ORD
14859 East Clark							Si	TAND	ARD)			Des	2	Of 1-
Tel 626-336-2139	9 ♦ Fax 626	-336-2634	♦ ww						0 70 5		OTED		Pag	le <u> 55</u> ECIAL HA	Of 6
CLIENT NAME:				PROJECT:			Α	NALY	SES	REQUE	STED		ارة إ		
Amec Foster Wheel ADDRESS: 9210 Sky Park Ct., S San Diego, CA 9212	Suite 200		<u></u>	SIYB Times Series Study PHONE: 831-359-7761 FAX: 858-300-4301 EMAIL: corey.sheredy@amecfv	v.com	538 µg/l., RL= 0.01 µg/L								24 Hou 48-72 I 4 - 5 D Rush E	Day Rush 150% Ir Rush 100% Hour Rush 75% ay Rush 30% Extractions 50% siness Days
PROJECT MANAGER				SAMPLER		2,12 21,00		1					7**	, , ,	: Data Package
Barry Snyder / Corey S				OF UTIL ELECT		Copp(Charge		or weekends/holiday
ID#	DATE	TIME	SMPL		# OF	ved C EPA 16								d of Shipmen	
(For lab Use Only)	SAMPLED	SAMPLED	TYPE	SAMPLE IDENTIFICATION/SITE LOCATION	CONT.	Dissolv Method E							СОММІ	ENTS	
TS-2-T0	01/03/18	1642	seawate	r TS-2-T0	1	Х									
TS-2-T1	01/03/18	1850	seawate	TS-2-T1	1	Х									
TS-2-T2	01/03/18	2100	seawate	r TS-2-T2	1	Х									
TS-2-T3	01/03/18	23 1 1	seawate	r TS-2-T3	1	Х								<u> </u>	
TS-2-T4	01/04/18	100	seawate	r TS-2-T4	1	X									
TS-2-T5	01/04/18	300	seawate	TS-2-T5	1	Х									
TS-2-T6	01/04/18	415	seawate	r TS-2-T6	1	X					_				
TS-2-T7	01/04/18	620	seawate	r TS-2-T7	1	X			\perp				<u> </u>		
TS-2-T8	01/04/18	820	seawate		1	Х									
TS-2-T9	01/04/18	1024	seawate		1	Х						 -			
TS-2-T10	01/04/18	1300	seawate	A STATE OF THE STA	1	Х		, , , , ,						,	LOAMBLE TYPE COD
RELINQUISHED RELINQUISHED RELINQUISHED	BY BY	ch	DATE	E/TIME Q & RECEIVED E/TIME 12/10 RECEIVED F/TIME RECEIVED			Sav [-5	(d) -18	h	12:1	Actual Recei Prese Evide Conta	l Temper ived On I	s Present ct	N: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	SAMPLE TYPE COD AQ=Aqueous NA= Non Aqueous SL = Sludge DW = Drinking Wate WW = Waste Water RW = Rain Water GW = Ground Wate SO = Soil SW = Solid Waste OL = Oil OT = Other Matrix
SPECIAL REQUIREM															
				System. LAB ACTION: PRESERVE IMME											
				Zing = 38 rg/h; 3) WECK will contact Amec	PM with	in 24 h	nours if a	any san	nple an	omalies	are four	nd;			
4) Select pages from	Amec FW QAPF	included for r	reference	э.											

14859 East Clark Avenue : Industry : CA	Weck Laboratories, Inc. Analytical Laboratory Services - Since 1964	CHAIN OF CUSTO	ODY RECORD
Tel 626-336-2139 ◆ Fax 626-336-2634			Page 4 Of 10
CLIENT NAME:	PROJECT:	ANALYSES REQUESTED	SPECIAL HANDLING
Amec Foster Wheeler E&I, Inc. ADDRESS: 9210 Sky Park Ct., Suite 200 San Diego, CA 92123 PROJECT MANAGER	SIYB Times Series Study PHONE: 831-359-7761 FAX: 858-300-4301 EMAIL: corey.sheredy@amecfw.com	ol. 0.0038 µg/l., RL= 0.01 µg/l.	Same Day Rush 150% 24 Hour Rush 100% 48-72 Hour Rush 75% 4 - 5 Day Rush 30% Rush Extractions 50% 10 Business Days QA/QC Data Package
Barry Snyder / Corey Sheredy		GC0pp	Charges will apply for weekends/holidays
ID# DATE TIME (For lab Use Only) SAMPLED SAMPLED	SMPL SAMPLE IDENTIFICATION/SITE LOCATION CONT.	Dissolved C	Method of Shipment: COMMENTS
TS-2-T11 01/04/18 1515	seawater 1	X	
TS-2-T12 01/04/18 1729	seawater 1	X	
TS-2-T12-REP 01/04/18 1739	seawater 1	X	
TS-2-ER 01/03/18 1530	DI 1	X	
TS-2-FB 01/04/18 1750	DI 1	X	
RELINQUISHED BY RELINQUISHED BY SPECIAL REQUIREMENTS / BILLING INFORMATIO 1) Diss. metals were field filtered using 0.45 um bottle	top filt. System. LAB ACTION: PRESERVE IMMEDIATELY ug/L, 	Actual Temperal Received On Ice Preserved Evidence Seals Container Intact Preserved at La	e

14859 East Clark	Avonus Lise	Anathur C	A 0474	Weck Laboratories, I	or water of the				HA ND/			Cl	JST	ГО	DY I	REC	OR	D
Tel 626-336-2139								317	414127	4KD					Page	at	7 Of	ماه
CLIENT NAME:	7 ♦ Fax 626	-330-2034	▼ WVVV	N.Wecklads.com				A N I	ALVO	E C E	EQUE	- Tries II		—т			ANDLI	VG.
CLIENT NAIVIE.				FROJECT.				AN	ALYS	ESK	EQUE	SIEN	T 1		OF E			
Amec Foster Wheel	er F&L Inc			SIYB Times Series Study		1,4									1		e Day Rus our Rush	
ADDRESS:	or L.o., 1110.			PHONE: 831-359-7761		2. A	1					İ			į		2 Hour Ru	
9210 Sky Park Ct., \$	Suite 200			FAX: 858-300-4301		RL= 0.01									· .		Day Rush	
San Diego, CA 9212				EMAIL: corey.sheredy@amecfv	v com	i. Pi	1							•	2		Extraction	
Sali blego, CA 9212	.5			Corp. Corp.	<u> </u>	853	1								b		Business E	
PROJECT MANAGER				SAMPLER		2, 1,2 0,0,0]								ř		QC Data P	•
Barry Snyder / Corey S				o, will bell		obb(l							ŀ	Charges			cends/holida
ID#	DATE	TIME	SMPL		# OF	Ved C	l								Method			Corradirional
(For lab Use Only)	SAMPLED	SAMPLED	TYPE	SAMPLE IDENTIFICATION/SITE LOCATION	CONT.	Dissolv Method E								ı	COMME	· ·		
TS-3-T0	01/03/18	1642	seawater	TS-3-T0	1	Х												
TS-3-T1	01/03/18	1850	seawater	TS-3-T1	1	Х												
TS-3-T2	01/03/18	2100	seawater	TS-3-T2	1	X												
TS-3-T3	01/03/18	2311	seawater	TS-3-T3	1	Х												
TS-3-T4	01/04/18	100	seawater	TS-3-T4	1	Х												
TS-3-T5	01/04/18	300	seawater	TS-3-T5	1	Х												
TS-3-T6	01/04/18	415	seawater	TS-3-T6	1	Х												
TS-3-T7	01/04/18	620	seawater	TS-3-T7	11	X	<u> </u>	<u> </u>										
TS-3-T8	01/04/18	820	seawater	TS-3-T8	1	Х	ļ			_			<u> </u>					
TS-3-T9	01/04/18	1024	seawater	TS-3-T9	1	Х		<u> </u>				_						
TS-3-T10	01/04/18	1300	seawater	TS-3-T10	1	Х	<u> </u>											
RELINQUISHED	m		1-7	STIME CO AT RECEIVED	1	<u></u>	ساماد	La	<u> </u>	~		Actu	al Temp	erature	NDITION · 多	`_	AQ∺ NA= SL =	PLE TYPE CO Aqueous Non Aqueous Sludge
RELINQUISHED	Sana	h	1-	TIME (2) LO RECEIVED	W		1-6	~(۲.	(2	£16	Pres Evide Cont	eived Or erved ence Se ainer Int erved at	als Pre	esent	Y // Y // Y //	N WW RW N GW	= Drinking Wa = Waste Wate = Rain Water = Ground Wat - Soil
RELINQUISHED	σY		DATE	TIME REGEIVED	νΒΥ							ries	or vou al	. Lav		Y /(SW: OL=	Solid Waste

SPECIAL REQUIREMENTS / BILLING INFORMATION

- 2) SPIKE level at the following amounts: Copper = 10 ug/L, Zine = 30 ug/L, 2) WECK will contact Amec PM within 24 hours if any sample anomalies are found;
- 4) Select pages from Amec FW QAPP included for reference.

¹⁾ Diss. metals were field filtered using 0.45 um bottletop filt, System. LAB ACTION: PRESERVE IMMEDIATELY.

		Ą	/	Щ.	
1	405	0 =	aat (^lor	بدا ما

Weck Laboratories, Inc.

CHAIN OF CUSTODY RECORD

14859 East Clark	Avenue: Ind			5	alytical Laboratory	Services - Since .	1964			STA	AND	ARE)					Page_	À	>	Ωf	L	
Tel 626-336-2139 CLIENT NAME:	♦ Fax 626	-336-2634	♦ ww	W.Wecklar PROJECT:						ΑN	IALYS	SESI	REQU	EST	ED			SPEC	CIAL	HAN	IDLII		<u></u>
Amec Foster Wheels ADDRESS: 9210 Sky Park Ct., S San Diego, CA 9212	Suite 200			PHONE: FAX; EMAIL:	SIYB Times Se 831-359-776 858-300-430 corey.shere	i	v.com	38 µg/L, RL=0.01 µg/L										general and a second a second and a second and a second and a second and a second a	2- 4- 4	4 Hour 8-72 H - 5 Da	Rush ' our Rus y Rush	sh 75%	
PROJECT MANAGER Barry Snyder / Corey S	heredy			SAMPLER				1 Copper ¹² 1 1540 MDL 0.003										Charges	Q will ap	A/QC ply fo	r weel	ackage	
ID# (For lab Use Only)	DATE SAMPLED	TIME SAMPLED	SMPL	SAMPLE II	DENTIFICATION/S	TE LOCATION	# OF CONT.	Dissolved									ŀ	Method o	•	ment		.	
TS-3-T11	01/04/18	1515	seawater	TS-3-T11		·	1	Х							-								
TS-3-T12	01/04/18	1729	seawater	TS-3-T12			1	Х															
TS-3-T12-REP	01/04/18	1745	seawater	TS-3-T12	-REP		1	X															
TS-3-ER	01/03/18	1600	DI	TS-3-ER			1	Х			l												
TS-3-FB	01/04/18	1800	DI	TS-3-FB			1	X					<u> </u>	_						-			
					••••		<u> </u>	┢		 		_											
, , , , , , , , , , , , , , , , , , ,			<u> </u>		-																		
								1				İ											
			<u> </u>					Π	-		i –												
			1																				
RELINQUISHED E			1-	TIME TIME	a 13 8 12,10	RECEIVEL		0		V 1	5	u	ى	+	Actual Receiv Presen	Temp red Or ved	erature n Ice	ondition: e: 3イ	())/ N / N \	AQ=/ NA= SL = DW =	Aqueou Non Aq Sludge = Drinkli	jueous ng Water e Water
Lited) 9v	ch		5-18	3	140		7	[-(-10	<u> </u>	12,	7.7	Eviden Contair			G9CHI		/ N / N			rvater nd Water
RELINQUISHED	BY		DATE	TIME		RECHIVE	BY								Preser	ved a	t Lab		. Y	/ (N)	OL =	Solid V	
SPECIAL REQUIREME	NTS / BILLING	INFORMATION	ИC																				

- 1) Diss, metals were field filtered using 0.45 um bottletop filt, System. LAB ACTION: PRESERVE IMMEDIATELY.
- 2) SPIKE level at the following amounts: Copper = 10 ug/L, Zinc = 30 ug/L, 3) WECK will contact Amec PM within 24 hours if any sample anomalies are found;
- 4) Select pages from Amec FW QAPP included for reference.

APPENDIX D ANALYTICAL REPORTS

FINAL REPORT

Work Orders: 8A05040 **Report Date:** 1/19/2018

Received Date: 1/5/2018

Turnaround Time: Normal

Phones: (858) 300-4320

Fax: (858) 300-4301

P.O. #:

Billing Code:

Attn: Barry Snyder

Client: Amec Foster Wheeler - San Diego 2

9210 Sky Park Court, Suite 200

San Diego, CA 92123

Project: SIYB Times Series Study

DoD-ELAP #L2457 • ELAP-CA #1132 • EPA-UCMR #CA00211 • Guam-EPA #17-008R • HW-DOH # • ISO 17025 #L2457.01 • LACSD #10143 • NELAP-OR #4047 • NJ-DEP #CA015

This is a complete final report. The information in this report applies to the samples analyzed in accordance with the chain-of-custody document. Weck Laboratories certifies that the test results meet all requirements of TNI unless noted by qualifiers or written in the Case Narrative. This analytical report must be reproduced in its entirety.

Dear Barry Snyder,

Enclosed are the results of analyses for samples received 1/05/18 with the Chain-of-Custody document. The samples were received in good condition, at 3.1 °C and on ice. All analyses met the method criteria except as noted in the case narrative or in the report with data qualifiers.

Reviewed by:

Chris Samatmanakit Project Manager

1: State

FINAL REPORT

Amec Foster Wheeler - San Diego 2 9210 Sky Park Court, Suite 200 San Diego, CA 92123

Project Number: SIYB Times Series Study

Project Manager: Barry Snyder

Reported:

01/19/2018 10:47

Sample Summary

Sample Name	Sampled By	Lab ID	Matrix	Sampled	Qualifier
TS-1-T0	Client	8A05040-01	Water	01/03/18 16:42	
TS-1-T1	Client	8A05040-02	Water	01/03/18 18:50	
TS-1-T2	Client	8A05040-03	Water	01/03/18 21:00	
TS-1-T3	Client	8A05040-04	Water	01/03/18 23:11	
TS-1-T4	Client	8A05040-05	Water	01/04/18 01:00	
TS-1-T5	Client	8A05040-06	Water	01/04/18 03:00	
TS-1-T6	Client	8A05040-07	Water	01/04/18 04:15	
TS-1-T7	Client	8A05040-08	Water	01/04/18 06:20	
TS-1-T8	Client	8A05040-09	Water	01/04/18 08:20	
TS-1-T9	Client	8A05040-10	Water	01/04/18 10:24	
TS-1-T10	Client	8A05040-11	Water	01/04/18 13:00	
TS-1-T11	Client	8A05040-12	Water	01/04/18 15:15	
TS-1-T12	Client	8A05040-13	Water	01/04/18 17:29	
TS-1-T12-REP	Client	8A05040-14	Water	01/04/18 17:39	
TS-1-ER	Client	8A05040-15	Water	01/03/18 16:05	
TS-1-FB	Client	8A05040-16	Water	01/04/18 17:45	
TS-2-T0	Client	8A05040-17	Water	01/03/18 16:42	
TS-2-T1	Client	8A05040-18	Water	01/03/18 18:50	
TS-2-T2	Client	8A05040-19	Water	01/03/18 21:00	
TS-2-T3	Client	8A05040-20	Water	01/03/18 23:11	
TS-2-T4	Client	8A05040-21	Water	01/04/18 01:00	
TS-2-T5	Client	8A05040-22	Water	01/04/18 03:00	
TS-2-T6	Client	8A05040-23	Water	01/04/18 04:15	
TS-2-T7	Client	8A05040-24	Water	01/04/18 06:20	
TS-2-T8	Client	8A05040-25	Water	01/04/18 08:20	
TS-2-T9	Client	8A05040-26	Water	01/04/18 10:24	
TS-2-T10	Client	8A05040-27	Water	01/04/18 13:00	
TS-2-T11	Client	8A05040-28	Water	01/04/18 15:15	
TS-2-T12	Client	8A05040-29	Water	01/04/18 17:29	
TS-2-T12-REP	Client	8A05040-30	Water	01/04/18 17:39	
TS-2-ER	Client	8A05040-31	Water	01/03/18 15:30	
TS-2-FB	Client	8A05040-32	Water	01/04/18 17:50	
TS-3-T0	Client	8A05040-33	Water	01/03/18 16:42	
TS-3-T1	Client	8A05040-34	Water	01/03/18 18:50	
TS-3-T2	Client	8A05040-35	Water	01/03/18 21:00	
TS-3-T3	Client	8A05040-36	Water	01/03/18 23:11	
TS-3-T4	Client	8A05040-37	Water	01/04/18 01:00	
TS-3-T5	Client	8A05040-38	Water	01/04/18 03:00	
TS-3-T6	Client	8A05040-39	Water	01/04/18 04:15	
TS-3-T7	Client	8A05040-40	Water	01/04/18 06:20	
TS-3-T8	Client	8A05040-41	Water	01/04/18 08:20	
TS-3-T9	Client	8A05040-42	Water	01/04/18 10:24	
TS-3-T10	Client	8A05040-43	Water	01/04/18 13:00	
TS-3-T11	Client	8A05040-44	Water	01/04/18 15:15	
TS-3-T12	Client	8A05040-45	Water	01/04/18 17:29	
TS-3-T12-REP	Client	8A05040-46	Water	01/04/18 17:45	

FINAL REPORT

Amec Foster Wheeler - San Diego 2 9210 Sky Park Court, Suite 200 San Diego, CA 92123 Project Number: SIYB Times Series Study

Reported:

01/19/2018 10:47

Project Manager: Barry Snyder

Sample Name	Sampled By	Lab ID	Matrix	Sampled	Qualifiers
TS-3-ER	Client	8A05040-47	Water	01/03/18 16:00	
TS-3-FB	Client	8A05040-48	Water	01/04/18 18:00	

FINAL REPORT

Amec Foster Wheeler - San Diego 2 9210 Sky Park Court, Suite 200 San Diego, CA 92123 Project Number: SIYB Times Series Study

Project Manager: Barry Snyder

Reported:

01/19/2018 10:47

Sample Results

	ampio i tocarto						
Sample:	TS-1-T0				9	Sampled: 01/03/18 1	6:42 by Client
	8A05040-01 (Water)						
Analyte		Result	MRL	Units	Dil	Analyzed	Qualifie
Metals - Low	Level by 1600 Series Methods						
Method: EPA Copper, D		Batch ID: W8A0398 9.5	Prepared: 01/09 0.010	9/18 11:00 ug/l	1	01/10/18 23:42	Analyst: gza
Sample:	TS-1-T1				S	Sampled: 01/03/18 1	8:50 by Client
	8A05040-02 (Water)						
Analyte		Result	MRL	Units	Dil	Analyzed	Qualifie
Metals - Low	Level by 1600 Series Methods						
Method: EPA Copper, D		Batch ID: W8A0398 9.5	Prepared: 01/09 0.010	9/18 11:00 ug/l	1	01/10/18 23:56	Analyst: gza
Sample:	TS-1-T2				9	Sampled: 01/03/18 2	1:00 by Client
	8A05040-03 (Water)						
Analyte		Result	MRL	Units	Dil	Analyzed	Qualifier
Metals - Low	Level by 1600 Series Methods						
Method: EPA	A 1640	Batch ID: W8A0398	Prepared: 01/09	9/18 11:00			Analyst: gza
Copper, D	Dissolved	9.1	0.010	ug/l	1	01/11/18 00:10	
Sample:	TS-1-T3				S	Sampled: 01/03/18 2	?3:11 by Client
	8A05040-04 (Water)						
Analyte		Result	MRL	Units	Dil	Analyzed	Qualifier
Metals - Low	Level by 1600 Series Methods						
Method: EP/	A 1640	Batch ID: W8A0398	Prepared: 01/09	9/18 11:00			Analyst: gza
Copper, D	Dissolved	9.4	0.010	ug/l	1	01/11/18 00:23	
Sample:	TS-1-T4					Sampled: 01/04/18	1:00 by Client
	8A05040-05 (Water)						
Analyte		Result	MRL	Units	Dil	Analyzed	Qualifier
	Level by 1600 Series Methods						
Method: EP/ Copper, D		Batch ID: W8A0398 9.6	Prepared: 01/09 0.010	9/18 11:00 ug/l	1	01/11/18 00:37	Analyst: gza
Sample:	TS-1-T5					Sampled: 01/04/18	3:00 by Client
	8A05040-06 (Water)						
Analyte		Result	MRL	Units	Dil	Analyzed	Qualifier
Metals - Low	Level by 1600 Series Methods						
Method: EP/	A 1640	Batch ID: W8A0398	Prepared: 01/09	9/18 11:00			Analyst: gza

FINAL REPORT

Amec Foster Wheeler - San Diego 2

Project Number: SIYB Times Series Study

Project Manager: Barry Snyder

Reported:

01/19/2018 10:47

9210 Sky Park Court, Suite 200	
San Diego, CA 92123	

Sa	ample Results						(Continued)
Sample:	TS-1-T6					Sampled: 01/04/18	4:15 by Client
	8A05040-07 (Water)						
Analyte		Result	MRL	Units	Dil	Analyzed	Qualifier
Metals - Low L	Level by 1600 Series Methods						
Method: EPA	A 1640	Batch ID: W8A0398	Prepared: 01/0	09/18 11:00			Analyst: gza
Copper, D	issolved	9.5	0.010	ug/l	1	01/11/18 01:05	
Sample:	TS-1-T7					Sampled: 01/04/18	6:20 by Client
	8A05040-08 (Water)						
Analyte		Result	MRL	Units	Dil	Analyzed	Qualifier
Metals - Low I	Level by 1600 Series Methods						
Method: EPA	A 1640	Batch ID: W8A0398	Prepared: 01/0	09/18 11:00			Analyst: gza
Copper, D	issolved	9.0	0.010	ug/l	1	01/11/18 02:00	
Sample:	TS-1-T8					Sampled: 01/04/18	8:20 by Client
	8A05040-09 (Water)						
Analyte		Result	MRL	Units	Dil	Analyzed	Qualifier
Metals - Low L	Level by 1600 Series Methods						
Method: EPA	A 1640	Batch ID: W8A0398	Prepared: 01/0	9/18 11:00			Analyst: gza
Copper, D	issolved	8.9	0.010	ug/l	1	01/11/18 02:13	
Sample:	TS-1-T9				Ç	Sampled: 01/04/18	10:24 by Client
	8A05040-10 (Water)						
Analyte		Result	MRL	Units	Dil	Analyzed	Qualifier
Metals - Low L	Level by 1600 Series Methods						
Method: EPA	A 1640	Batch ID: W8A0398	Prepared: 01/0	09/18 11:00			Analyst: gza
Copper, D	issolved	10	0.010	ug/l	1	01/11/18 02:27	
Sample:	TS-1-T10				Ç	Sampled: 01/04/18	13:00 by Client
	8A05040-11 (Water)						
Analyte	,	Result	MRL	Units	Dil	Analyzed	Qualifier
_	Level by 1600 Series Methods						
Method: EPA	A 1640	Batch ID: W8A0398	Prepared: 01/0	09/18 11:00			Analyst: gza
Copper, D	issolved	9.8	0.010	ug/l	1	01/11/18 02:41	
Sample:	TS-1-T11				Ç	Sampled: 01/04/18	15:15 by Client
·	8A05040-12 (Water)					·	•
Analyte	()	Result	MRL	Units	Dil	Analyzed	Qualifier
Metals - Low I	Level by 1600 Series Methods						
Metals - Low L	•	Batch ID: W8A0398	Prepared: 01/0	09/18 11:00			Analyst: gza

FINAL REPORT

Amec Foster Wheeler - San Diego 2 9210 Sky Park Court, Suite 200 Project Number: SIYB Times Series Study

Project Manager: Barry Snyder

Reported:

01/19/2018 10:47

San Diego, CA 92123

Sample Results

Sa	mple Results						(Continued)
Sample:	TS-1-T12 8A05040-13 (Water)				S	Sampled: 01/04/18	17:29 by Clien
Analyte	ONOSONO IS (Water)	Result	MRL	Units	Dil	Analyzed	Qualifie
-	evel by 1600 Series Methods						-
Method: EPA		Batch ID: W8A0398	Prepared: 01/0				Analyst: gz
Copper, Di	ssolved	9.9	0.010	ug/l	1	01/11/18 03:09	
Sample:	TS-1-T12-REP				S	Sampled: 01/04/18	17:39 by Clien
	8A05040-14 (Water)						
Analyte		Result	MRL	Units	Dil	Analyzed	Qualifie
Metals - Low L	evel by 1600 Series Methods						
Method: EPA		Batch ID: W8A0398	Prepared: 01/0				Analyst: gza
Copper, Di	ssolved		0.010	ug/l	1	01/11/18 03:22	
Sample:	TS-1-ER				S	Sampled: 01/03/18	6:05 by Clien
	8A05040-15 (Water)						
Analyte		Result	MRL	Units	Dil	Analyzed	Qualifie
Metals - Low L	evel by 1600 Series Methods						
Method: EPA	1640	Batch ID: W8A0398	Prepared: 01/0	9/18 11:00			Analyst: gza
Copper, Di	ssolved	0.059	0.010	ug/l	1	01/11/18 03:36	
Sample:	TS-1-FB				S	Sampled: 01/04/18	7:45 by Clien
	8A05040-16 (Water)						
Analyte		Result	MRL	Units	Dil	Analyzed	Qualifie
Metals - Low L	evel by 1600 Series Methods						
Method: EPA	1640	Batch ID: W8A0398	Prepared: 01/0	9/18 11:00			Analyst: gza
Copper, Di	ssolved	ND	0.010	ug/l	1	01/11/18 03:50	
Sample:	TS-2-T0				S	Sampled: 01/03/18	6:42 by Clien
·	8A05040-17 (Water)					·	•
Analyte	onto so the tracery	Result	MRL	Units	Dil	Analyzed	Qualifie
-	evel by 1600 Series Methods					,	
Method: EPA	1640	Batch ID: W8A0398	Prepared: 01/0	9/18 11:00			Analyst: gza
Copper, Di		5.5	0.010	ug/l	1	01/11/18 04:04	
Sample:	TS-2-T1				S	Sampled: 01/03/18	8:50 by Clien
'	8A05040-18 (Water)					, , , ,	,
Analyte	Onoboro 10 (Water)	Result	MRL	Units	Dil	Analyzed	Qualifie
-	evel by 1600 Series Methods	Result	WINE	Vints	Dii	Allaryzeu	Quantite
	,						
Method: EPA	1640	Batch ID: W8A0399	Prepared: 01/0	0/12 11⋅03			Analyst: gza

FINAL REPORT

Amec Foster Wheeler - San Diego 2 9210 Sky Park Court, Suite 200 San Diego, CA 92123 Project Number: SIYB Times Series Study

Reported:

01/19/2018 10:47

San Diego, CA 92123 Project Manager: Barry Snyder

Sa	ample Results						(Continued)
Sample:	TS-2-T2				:	Sampled: 01/03/18 2	21:00 by Client
	8A05040-19 (Water)						
Analyte		Result	MRL	Units	Dil	Analyzed	Qualifier
Metals - Low L	Level by 1600 Series Methods						
Method: EPA		Batch ID: W8A0399	Prepared: 01/09				Analyst: gza
Copper, D	issolved	4.1	0.010	ug/l	1	01/11/18 20:49	
Sample:	TS-2-T3				:	Sampled: 01/03/18 2	23:11 by Client
	8A05040-20 (Water)						
Analyte		Result	MRL	Units	Dil	Analyzed	Qualifier
Metals - Low L	Level by 1600 Series Methods						
Method: EPA		Batch ID: W8A0399	Prepared: 01/09			0444440 04 00	Analyst: gza
Copper, D	issolved	5.0	0.010	ug/l	1	01/11/18 21:03	
Sample:	TS-2-T4					Sampled: 01/04/18	1:00 by Client
	8A05040-21 (Water)						
Analyte		Result	MRL	Units	Dil	Analyzed	Qualifier
Metals - Low I	Level by 1600 Series Methods						
Method: EPA		Batch ID: W8A0399	Prepared: 01/09	9/18 11:03			Analyst: gza
Copper, D	issolved	5.7	0.010	ug/l	1	01/11/18 21:16	
Sample:	TS-2-T5					Sampled: 01/04/18	3:00 by Client
	8A05040-22 (Water)						
Analyte		Result	MRL	Units	Dil	Analyzed	Qualifier
Metals - Low I	Level by 1600 Series Methods						
Method: EPA		Batch ID: W8A0399	Prepared: 01/09				Analyst: gza
Copper, D	issolved	5.3	0.010	ug/l	1	01/11/18 21:30	
Sample:	TS-2-T6					Sampled: 01/04/18	4:15 by Client
	8A05040-23 (Water)						
Analyte		Result	MRL	Units	Dil	Analyzed	Qualifier
Metals - Low L	Level by 1600 Series Methods						
Method: EPA	A 1640	Batch ID: W8A0399	Prepared: 01/09	9/18 11:03			Analyst: gza
Copper, D	issolved	5.4	0.010	ug/l	1	01/11/18 21:44	
Sample:	TS-2-T7					Sampled: 01/04/18	6:20 by Client
	8A05040-24 (Water)						
Analyte		Result	MRL	Units	Dil	Analyzed	Qualifier
Metals - Low L	Level by 1600 Series Methods						
Method: EPA	A 1640	Batch ID: W8A0399	Prepared: 01/09	9/18 11:03			Analyst: gza
Copper, D	issolved	5.5	0.010	ug/l	1	01/11/18 21:58	

FINAL REPORT

Amec Foster Wheeler - San Diego 2 9210 Sky Park Court, Suite 200 San Diego, CA 92123 Project Number: SIYB Times Series Study

Project Manager: Barry Snyder

Reported:

01/19/2018 10:47

Sample Results

7 58	imple Results						(Continued)
Sample:	TS-2-T8 8A05040-25 (Water)				:	Sampled: 01/04/18	8:20 by Clien
Analyte	8AU5U4U-25 (Water)	Result	MRL	Units	Dil	Analyzed	Qualifie
-	Level by 1600 Series Methods					7 ,200	Q
Method: EPA	A 1640	Batch ID: W8A0399	Prepared: 01/0	9/18 11:03			Analyst: gz
Copper, D	issolved	6.4	0.010	ug/l	1	01/11/18 22:12	
Sample:	TS-2-T9				S	Sampled: 01/04/18 1	0:24 by Clien
	8A05040-26 (Water)						
Analyte		Result	MRL	Units	Dil	Analyzed	Qualifie
√letals - Low L	Level by 1600 Series Methods						
Method: EPA	A 1640	Batch ID: W8A0399	Prepared: 01/0	9/18 11:03			Analyst: gz
Copper, D	issolved	2.0	0.010	ug/l	1	01/11/18 22:25	
Sample:	TS-2-T10				S	Sampled: 01/04/18 1	3:00 by Clier
	8A05040-27 (Water)						
Analyte		Result	MRL	Units	Dil	Analyzed	Qualifie
/letals - Low L	Level by 1600 Series Methods						
Method: EPA	A 1640	Batch ID: W8A0399	Prepared: 01/0	9/18 11:03			Analyst: gz
Copper, D	issolved	6.2	0.010	ug/l	1	01/11/18 22:39	
Sample:	TS-2-T11				S	Sampled: 01/04/18 1	5:15 by Clien
	8A05040-28 (Water)						
Analyte		Result	MRL	Units	Dil	Analyzed	Qualifie
Metals - Low L	Level by 1600 Series Methods						
Method: EPA	A 1640	Batch ID: W8A0399	Prepared: 01/0	9/18 11:03			Analyst: gz
Copper, D	issolved	6.6	0.010	ug/l	1	01/11/18 23:34	
Sample:	TS-2-T12				S	Sampled: 01/04/18 1	7:29 by Clien
	8A05040-29 (Water)						
Analyte		Result	MRL	Units	Dil	Analyzed	Qualifie
Metals - Low L	Level by 1600 Series Methods						
Method: EPA	A 1640	Batch ID: W8A0399	Prepared: 01/0	9/18 11:03			Analyst: gz
Copper, D	issolved	7.1	0.010	ug/l	1	01/11/18 23:48	
Sample:	TS-2-T12-REP				S	Sampled: 01/04/18 1	7:39 by Clien
	8A05040-30 (Water)						
Analyte		Result	MRL	Units	Dil	Analyzed	Qualifie
Metals - Low L	Level by 1600 Series Methods						
Method: EPA	A 1640	Batch ID: W8A0399	Prepared: 01/0	9/18 11:03			Analyst: gz
	issolved	7.0	0.010	ug/l	1	01/12/18 00:02	

FINAL REPORT

Amec Foster Wheeler - San Diego 2 9210 Sky Park Court, Suite 200 San Diego, CA 92123 Project Number: SIYB Times Series Study

Project Manager: Barry Snyder

Reported:

01/19/2018 10:47

Sample Results

30	ample Results					ı	(Continued)
Sample:	TS-2-ER 8A05040-31 (Water)				S	Sampled: 01/03/18 1	5:30 by Clien
Analyte	UNUSUTU ST (Water)	Result	MRL	Units	Dil	Analyzed	Qualifie
-	Level by 1600 Series Methods						
Method: EP/ Copper, D		Batch ID: W8A0399 0.025	Prepared: 01/09 0.010	9/18 11:03 ug/l	1	01/12/18 00:15	Analyst: gz
Sample:	TS-2-FB 8A05040-32 (Water)				S	Sampled: 01/04/18 1	7:50 by Clien
Analyte	, ,	Result	MRL	Units	Dil	Analyzed	Qualifie
/letals - Low	Level by 1600 Series Methods						
Method: EP/ Copper, D		Batch ID: W8A0399 0.023	Prepared: 01/09 0.010	9/18 11:03 ug/l	1	01/12/18 00:29	Analyst: gz
Sample:	TS-3-T0				9	Sampled: 01/03/18 1	6:42 by Clier
Analyte	8A05040-33 (Water)	Result	MRL	Units	Dil	Analyzed	Qualifie
-	Level by 1600 Series Methods	Result	WIKE	Onits	Dii	Allalyzeu	Qualifie
Method: EP/	A 1640	Batch ID: W8A0399 2.7	Prepared: 01/09 0.010	9/18 11:03 ug/l	1	01/12/18 00:43	Analyst: gz
Sample:	TS-3-T1				9	Sampled: 01/03/18 1	8:50 by Clier
·	8A05040-34 (Water)					·	·
Analyte	,	Result	MRL	Units	Dil	Analyzed	Qualifie
/letals - Low	Level by 1600 Series Methods						
Method: EP/ Copper, D		Batch ID: W8A0399 3.2	Prepared: 01/09 0.010	9/18 11:03 ug/l	1	01/12/18 00:57	Analyst: gz
Sample:	TS-3-T2				9	Sampled: 01/03/18 2	1:00 by Clier
	8A05040-35 (Water)						
Analyte		Result	MRL	Units	Dil	Analyzed	Qualifie
/letals - Low	Level by 1600 Series Methods						
Method: EP/ Copper, D		Batch ID: W8A0399 4.1	Prepared: 01/09 0.010	9/18 11:03 ug/l	1	01/12/18 01:10	Analyst: gz
Sample:	TS-3-T3				9	Sampled: 01/03/18 2	:3:11 by Clien
	8A05040-36 (Water)						
Analyte		Result	MRL	Units	Dil	Analyzed	Qualifie
Metals - Low	Level by 1600 Series Methods						
Method: EP/		Batch ID: W8A0399	Prepared: 01/09				Analyst: gz
Copper, D	Dissolved	4.8	0.010	ug/l	1	01/12/18 01:24	

FINAL REPORT

Amec Foster Wheeler - San Diego 2 9210 Sky Park Court, Suite 200 San Diego, CA 92123 Project Number: SIYB Times Series Study

Project Manager: Barry Snyder

Reported:

01/19/2018 10:47

Diego, CA 92123

Sample Results

	impic results						(Continued)
Sample:	TS-3-T4					Sampled: 01/04/18	1:00 by Clien
	8A05040-37 (Water)						
Analyte		Result	MRL	Units	Dil	Analyzed	Qualifie
Metals - Low L	evel by 1600 Series Methods						
Method: EPA	x 1640	Batch ID: W8A0399	Prepared: 01/09	9/18 11:03			Analyst: gza
Copper, D	issolved	3.5	0.010	ug/l	1	01/12/18 01:38	
Sample:	TS-3-T5					Sampled: 01/04/18	3:00 by Clien
	8A05040-38 (Water)						
Analyte		Result	MRL	Units	Dil	Analyzed	Qualifie
Metals - Low L	evel by 1600 Series Methods						
Method: EPA	x 1640	Batch ID: W8A0400	Prepared: 01/09	9/18 11:04			Analyst: gza
Copper, D	issolved	4.1	0.010	ug/l	1	01/11/18 06:21	
Sample:	TS-3-T6					Sampled: 01/04/18	4:15 by Clien
	8A05040-39 (Water)						
Analyte	,	Result	MRL	Units	Dil	Analyzed	Qualifie
Metals - Low L	evel by 1600 Series Methods						
Method: EPA	x 1640	Batch ID: W8A0400	Prepared: 01/0	9/18 11:04			Analyst: gza
Copper, D	issolved	3.9	0.010	ug/l	1	01/11/18 06:35	
Sample:	TS-3-T7					Sampled: 01/04/18	6:20 by Client
	8A05040-40 (Water)						
Analyte		Result	MRL	Units	Dil	Analyzed	Qualifie
Metals - Low L	evel by 1600 Series Methods						
Method: EPA	x 1640	Batch ID: W8A0400	Prepared: 01/09	9/18 11:04			Analyst: gza
Copper, D	issolved	2.1	0.010	ug/l	1	01/11/18 06:49	
Sample:	TS-3-T8					Sampled: 01/04/18	8:20 by Client
	8A05040-41 (Water)						
Analyte	,	Result	MRL	Units	Dil	Analyzed	Qualifier
Metals - Low L	evel by 1600 Series Methods						
Method: EPA	x 1640	Batch ID: W8A0400	Prepared: 01/0	9/18 11:04			Analyst: gza
Copper, D	issolved	1.2	0.010	ug/l	1	01/11/18 07:03	
Sample:	TS-3-T9				Ç	Sampled: 01/04/18 1	0:24 by Clien
	8A05040-42 (Water)						•
Analyte	(212.)	Result	MRL	Units	Dil	Analyzed	Qualifie
	evel by 1600 Series Methods					•	
Method: EPA	x 1640	Batch ID: W8A0400	Prepared: 01/0	9/18 11:04			Analyst: gza

FINAL REPORT

Amec Foster Wheeler - San Diego 2 9210 Sky Park Court, Suite 200

Sample Results

Project Number: SIYB Times Series Study

Reported:

01/19/2018 10:47

San Diego, CA 92123

Project Manager: Barry Snyder

	<u> </u>						` ,
Sample:	TS-3-T10				9	Sampled: 01/04/18 1	3:00 by Clien
	8A05040-43 (Water)						
Analyte		Result	MRL	Units	Dil	Analyzed	Qualifie
/letals - Low	Level by 1600 Series Methods						
Method: EPA		Batch ID: W8A0400	Prepared: 01/09/1	8 11:04			Analyst: gz
Copper, D	issolved	1.4	0.010	ug/l	1	01/11/18 08:12	
Sample:	TS-3-T11				9	Sampled: 01/04/18 1	5:15 by Clien
	8A05040-44 (Water)						
Analyte		Result	MRL	Units	Dil	Analyzed	Qualifie
Vietals - Low	Level by 1600 Series Methods						
Method: EPA	A 1640	Batch ID: W8A0400	Prepared: 01/09/1	8 11:04			Analyst: gza
Copper, D	issolved	3.0	0.010	ug/l	1	01/11/18 08:25	
Sample:	TS-3-T12				9	Sampled: 01/04/18 1	7:29 by Clien
	8A05040-45 (Water)						
Analyte	, , , , , , , , , , , , , , , , , , , ,	Result	MRL	Units	Dil	Analyzed	Qualifie
-	Level by 1600 Series Methods					-	
Method: EPA	A 1640	Batch ID: W8A0400	Prepared: 01/09/1	8 11:04			Analyst: gz
Copper, D	issolved	3.9	0.010	ug/l	1	01/11/18 08:39	• 3
Sample:	TS-3-T12-REP				9	Sampled: 01/04/18 1	7:45 by Clien
	8A05040-46 (Water)						
Analyte		Result	MRL	Units	Dil	Analyzed	Qualifie
/letals - Low	Level by 1600 Series Methods						
Method: EPA	A 1640	Batch ID: W8A0400	Prepared: 01/09/1	8 11:04			Analyst: gz
Copper, D	issolved	3.9	0.010	ug/l	1	01/11/18 08:53	
Sample:	TS-3-ER				9	Sampled: 01/03/18 1	6:00 by Clien
	8A05040-47 (Water)						
Analyte		Result	MRL	Units	Dil	Analyzed	Qualifie
Metals - Low	Level by 1600 Series Methods						
Method: EPA	A 1640	Batch ID: W8A0400	Prepared: 01/09/1	8 11:04			Analyst: gza
Copper, D	issolved	0.044	0.010	ug/l	1	01/11/18 09:07	• •
Sample:	TS-3-FB				9	Sampled: 01/04/18 1	8:00 by Clien
	8A05040-48 (Water)						
Analyte		Result	MRL	Units	Dil	Analyzed	Qualifie
-	Level by 1600 Series Methods					•	
Method: EPA	•	Batch ID: W8A0400	Prepared: 01/09/1	8 11:04			Analyst: gza
Copper, D		0.028	0.010	ug/l	1	01/11/18 09:20	, , 92.

FINAL REPORT

Amec Foster Wheeler - San Diego 2 9210 Sky Park Court, Suite 200 San Diego, CA 92123

Project Number: SIYB Times Series Study

Project Manager: Barry Snyder

Reported:

01/19/2018 10:47

Copper, Dissolved	Spike Level ed: 01/09/18 10.0 ed: 01/09/18 10.0 ed: 01/09/18 10.0 ed: 01/09/18 10.0 ed: 01/09/18 and one of the series of t	Analyzed: 0 9.52 Analyzed: 0 9.45 Analyzed: 0 9.52 Analyzed: 0 9.52 Analyzed: 0 9.45	1/10/18 101 1/10/18 100 1/10/18 95 1/10/18 102 1/10/18 95	%REC Limits 70-130 70-130 70-130 70-130	1 0.3	RPD Limit	Qualifier
Blank (W8A0398-BLK1)	Level ed: 01/09/18 10.0 ed: 01/09/18 10.0 ed: 01/09/18 10.0 ed: 01/09/18 10.0 ed: 01/09/18 10.0 ed: 01/09/18	Result Analyzed: 0 Analyzed: 0 9.52 Analyzed: 0 9.45 Analyzed: 0 9.45 Analyzed: 0 9.45 Analyzed: 0	1/10/18 1/10/18 101 1/10/18 100 1/10/18 95 1/10/18 102 1/10/18	70-130 70-130 70-130 70-130	1	Limit 30	Qualifier
Blank (W8A0398-BLK1)	ed: 01/09/18 10.0 ed: 01/09/18 10.0 ed: 01/09/18 10.0 ed: 01/09/18 10.0 ed: 01/09/18 10.0 ed: 01/09/18	Analyzed: 0 Analyzed: 0 9.52 Analyzed: 0 9.45 Analyzed: 0 9.45 Analyzed: 0 9.45 Analyzed: 0	1/10/18 1/10/18 101 1/10/18 100 1/10/18 95 1/10/18 102 1/10/18	70-130 70-130 70-130 70-130	1	30	Qualifie
Blank (W8A0398-BLK1)	ed: 01/09/18 10.0 ed: 01/09/18 10.0 ed: 01/09/18 10.0 ed: 01/09/18 10.0 ed: 01/09/18	Analyzed: 0 9.52 Analyzed: 0 9.45 Analyzed: 0 9.52 Analyzed: 0 9.45 Analyzed: 0	1/10/18 101 1/10/18 100 1/10/18 95 1/10/18 102 1/10/18 95	70-130 70-130 70-130			
Copper, Dissolved	ed: 01/09/18 10.0 ed: 01/09/18 10.0 ed: 01/09/18 10.0 ed: 01/09/18 10.0 ed: 01/09/18	Analyzed: 0 9.52 Analyzed: 0 9.45 Analyzed: 0 9.52 Analyzed: 0 9.45 Analyzed: 0	1/10/18 101 1/10/18 100 1/10/18 95 1/10/18 102 1/10/18 95	70-130 70-130 70-130			
LCS (W8A0398-BS1)	10.0 ed: 01/09/18 10.0 ed: 01/09/18 10.0 ed: 01/09/18 10.0 ed: 01/09/18 10.0	Analyzed: 0 9.52 Analyzed: 0 9.45 Analyzed: 0 9.52 Analyzed: 0	101 1/10/18 100 1/10/18 95 1/10/18 102 1/10/18 95	70-130 70-130 70-130			
Copper, Dissolved	10.0 ed: 01/09/18 10.0 ed: 01/09/18 10.0 ed: 01/09/18 10.0 ed: 01/09/18 10.0	Analyzed: 0 9.52 Analyzed: 0 9.45 Analyzed: 0 9.52 Analyzed: 0	101 1/10/18 100 1/10/18 95 1/10/18 102 1/10/18 95	70-130 70-130 70-130			
Matrix Spike (W8A0398-MS2) Source: 8A05040-01 Prepar Copper, Dissolved 19.5 0.010 ug/l	10.0 ed: 01/09/18 10.0 ed: 01/09/18 10.0 ed: 01/09/18 10.0 ed: 01/09/18 10.0	Analyzed: 0 9.52 Analyzed: 0 9.45 Analyzed: 0 9.52 Analyzed: 0	101 1/10/18 100 1/10/18 95 1/10/18 102 1/10/18 95	70-130 70-130 70-130			
Matrix Spike (W8A0398-MS2) Source: 8A05040-02 Prepar Copper, Dissolved 18.9 0.010 ug/l	10.0 ed: 01/09/18 10.0 ed: 01/09/18 10.0 ed: 01/09/18 10.0 ed: 01/09/18	9.52 Analyzed: 0 9.45 Analyzed: 0 9.52 Analyzed: 0 9.45 Analyzed: 0	100 1/10/18 95 1/10/18 102 1/10/18 95	70-130 70-130			
Matrix Spike (W8A0398-MS2) Source: 8A05040-02 Prepar Copper, Dissolved 18.9 0.010 ug/l	10.0 ed: 01/09/18 10.0 ed: 01/09/18 10.0 ed: 01/09/18 10.0 ed: 01/09/18	9.52 Analyzed: 0 9.45 Analyzed: 0 9.52 Analyzed: 0 9.45 Analyzed: 0	100 1/10/18 95 1/10/18 102 1/10/18 95	70-130 70-130			
Matrix Spike (W8A0398-MS2) Copper, Dissolved Matrix Spike Dup (W8A0398-MSD1) Copper, Dissolved Matrix Spike Dup (W8A0398-MSD1) Copper, Dissolved Matrix Spike Dup (W8A0398-MSD2) Copper, Dissolved Matrix Spike Dup (W8A0398-MSD2) Copper, Dissolved Matrix Spike Dup (W8A0398-MSD2) Source: 8A05040-02 Prepar Copper, Dissolved MD MD MD MO Matrix Spike (W8A0399-BLK1) Copper, Dissolved MO Matrix Spike (W8A0399-BS1) Copper, Dissolved Matrix Spike (W8A0399-MS1) Copper, Dissolved Matrix Spike (W8A0399-MS1) Copper, Dissolved Matrix Spike (W8A0399-MS2) Copper, Dissolved Matrix Spike (W8A0399-MSD1) Copper, Dissolved Matrix Spike (W8A0399-MSD1) Copper, Dissolved Matrix Spike Dup (W8A0399-MSD1) Copper, Dissolved Matrix Spike Dup (W8A0399-MSD1) Copper, Dissolved Matrix Spike Dup (W8A0399-MSD1) Copper, Dissolved Matrix Spike Dup (W8A0399-MSD2) Copper, Dissolv	ed: 01/09/18 10.0 ed: 01/09/18 10.0 ed: 01/09/18 10.0	Analyzed: 0 9.45 Analyzed: 0 9.52 Analyzed: 0 9.45	1/10/18 95 1/10/18 102 1/10/18 95	70-130			
Copper Dissolved 18.9 0.010 ug/l	10.0 ed: 01/09/18 10.0 ed: 01/09/18 10.0 ed: 01/09/18	9.45 Analyzed: 0 9.52 Analyzed: 0 9.45 Analyzed: 0	95 1/10/18 102 1/10/18 95	70-130			
Matrix Spike Dup (W8A0398-MSD1) Source: 8A05040-01 Prepar Copper, Dissolved 19.7 0.010 ug/l Matrix Spike Dup (W8A0398-MSD2) Source: 8A05040-02 Prepar Copper, Dissolved 19.0 0.010 ug/l atch: W8A0399 - EPA 1640 Blank (W8A0399-BLK1) Prepar Copper, Dissolved ND 0.010 ug/l LCS (W8A0399-BS1) Prepar Copper, Dissolved 9.89 0.010 ug/l Matrix Spike (W8A0399-MS1) Source: 8A05040-18 Prepar Copper, Dissolved 15.6 0.010 ug/l Matrix Spike (W8A0399-MSD1) Source: 8A05040-19 Prepar Copper, Dissolved 16.1 0.010 ug/l Matrix Spike Dup (W8A0399-MSD2) Source: 8A05040-19 Prepar Copper, Dissolved 14.1 0.010 ug/l Match: W8A0400 - EPA 1640 Blank (W8A0400-BLK1) Prepar	ed: 01/09/18 10.0 ed: 01/09/18 10.0 ed: 01/09/18	Analyzed: 0 9.52 Analyzed: 0 9.45 Analyzed: 0	1/10/18 102 1/10/18 95	70-130			
Matrix Spike Dup (W8A0398-MSD2) Source: 8A05040-02 Prepar Copper, Dissolved 19.0 0.010 ug/l	10.0 ed: 01/09/18 10.0 ed: 01/09/18	9.52 Analyzed: 0 9.45 Analyzed: 0	102 1/10/18 95				
Matrix Spike Dup (W8A0398-MSD2) Source: 8A05040-02 Prepar Copper, Dissolved 19.0 0.010 ug/l atch: W8A0399 - EPA 1640 Blank (W8A0399-BLK1) Prepar Copper, Dissolved ND 0.010 ug/l LCS (W8A0399-BS1) Prepar Copper, Dissolved 9.89 0.010 ug/l Matrix Spike (W8A0399-MS1) Source: 8A05040-18 Prepar Copper, Dissolved 13.8 0.010 ug/l Matrix Spike (W8A0399-MSD1) Source: 8A05040-18 Prepar Copper, Dissolved 16.1 0.010 ug/l Matrix Spike Dup (W8A0399-MSD1) Source: 8A05040-18 Prepar Copper, Dissolved 16.1 0.010 ug/l Matrix Spike Dup (W8A0399-MSD2) Source: 8A05040-19 Prepar Copper, Dissolved 14.1 0.010 ug/l Blank (W8A0400- EPA 1640 Prepar Prepar Prepar	ed: 01/09/18 10.0 ed: 01/09/18	Analyzed: 0 9.45 Analyzed: 0	1/10/18 95				
Copper, Dissolved 19.0 0.010 ug/l atch: W8A0399 - EPA 1640 Prepar Blank (W8A0399-BLK1) Prepar Copper, Dissolved ND 0.010 ug/l LCS (W8A0399-BS1) Prepar Copper, Dissolved 9.89 0.010 ug/l Matrix Spike (W8A0399-MS1) Source: 8A05040-18 Prepar Copper, Dissolved 13.8 0.010 ug/l Matrix Spike (W8A0399-MS2) Source: 8A05040-18 Prepar Copper, Dissolved 16.1 0.010 ug/l Matrix Spike Dup (W8A0399-MSD1) Source: 8A05040-18 Prepar Copper, Dissolved 16.1 0.010 ug/l Matrix Spike Dup (W8A0399-MSD2) Source: 8A05040-19 Prepar Copper, Dissolved 14.1 0.010 ug/l Atch: W8A0400 - EPA 1640 Prepar Blank (W8A0400-BLK1) Prepar	10.0 ed: 01/09/18	9.45 Analyzed: 0	95	70-130	0.3	30	
Copper, Dissolved	10.0 ed: 01/09/18	9.45 Analyzed: 0	95	70-130	0.3	30	
Prepar		•	1/11/18				
Prepar		•	1/11/18				
Copper, Dissolved ND 0.010 ug/l LCS (W8A0399-BS1) Prepar Copper, Dissolved 9.89 0.010 ug/l Matrix Spike (W8A0399-MS1) Source: 8A05040-18 Prepar Copper, Dissolved 15.6 0.010 ug/l Matrix Spike (W8A0399-MS2) Source: 8A05040-19 Prepar Copper, Dissolved 13.8 0.010 ug/l Matrix Spike Dup (W8A0399-MSD1) Source: 8A05040-18 Prepar Copper, Dissolved 16.1 0.010 ug/l Matrix Spike Dup (W8A0399-MSD2) Source: 8A05040-19 Prepar Copper, Dissolved 14.1 0.010 ug/l atch: W8A0400 - EPA 1640 Blank (W8A0400-BLK1) Prepar		•	1/11/18				
Copper, Dissolved 9.89 0.010 ug/l	-d- 01/00/19	Analyzed: 0					
Copper, Dissolved 9.89 0.010 ug/l Matrix Spike (W8A0399-MS1) Source: 8A05040-18 Prepar Copper, Dissolved 15.6 0.010 ug/l Matrix Spike (W8A0399-MS2) Source: 8A05040-19 Prepar Copper, Dissolved 13.8 0.010 ug/l Matrix Spike Dup (W8A0399-MSD1) Source: 8A05040-18 Prepar Copper, Dissolved 16.1 0.010 ug/l Matrix Spike Dup (W8A0399-MSD2) Source: 8A05040-19 Prepar Copper, Dissolved 14.1 0.010 ug/l atch: W8A0400 - EPA 1640 Prepar	ad. 01/00/10	Analyzed: 0					
Matrix Spike (W8A0399-MS1) Source: 8A05040-18 Prepar Copper, Dissolved 15.6 0.010 ug/l Matrix Spike (W8A0399-MS2) Source: 8A05040-19 Prepar Copper, Dissolved 13.8 0.010 ug/l Matrix Spike Dup (W8A0399-MSD1) Source: 8A05040-18 Prepar Copper, Dissolved 16.1 0.010 ug/l Matrix Spike Dup (W8A0399-MSD2) Source: 8A05040-19 Prepar Copper, Dissolved 14.1 0.010 ug/l atch: W8A0400 - EPA 1640 Prepar		raidiyzed. 0					
Copper, Dissolved 15.6 0.010 ug/l Matrix Spike (W8A0399-MS2) Source: 8A05040-19 Prepar Copper, Dissolved 13.8 0.010 ug/l Matrix Spike Dup (W8A0399-MSD1) Source: 8A05040-18 Prepar Copper, Dissolved 16.1 0.010 ug/l Matrix Spike Dup (W8A0399-MSD2) Source: 8A05040-19 Prepar Copper, Dissolved 14.1 0.010 ug/l atch: W8A0400 - EPA 1640 Prepar	10.0		99	70-130			
Matrix Spike (W8A0399-MS2) Source: 8A05040-19 Prepar Copper, Dissolved 13.8 0.010 ug/l Matrix Spike Dup (W8A0399-MSD1) Source: 8A05040-18 Prepar Copper, Dissolved 16.1 0.010 ug/l Matrix Spike Dup (W8A0399-MSD2) Source: 8A05040-19 Prepar Copper, Dissolved 14.1 0.010 ug/l atch: W8A0400 - EPA 1640 Prepar Blank (W8A0400-BLK1) Prepar	ed: 01/09/18	Analyzed: 0	1/11/18				
Copper, Dissolved 13.8 0.010 ug/l Matrix Spike Dup (W8A0399-MSD1) Source: 8A05040-18 Prepar Copper, Dissolved 16.1 0.010 ug/l Matrix Spike Dup (W8A0399-MSD2) Source: 8A05040-19 Prepar Copper, Dissolved 14.1 0.010 ug/l atch: W8A0400 - EPA 1640 Prepar Blank (W8A0400-BLK1) Prepar	10.0	6.37	92	70-130			
Copper, Dissolved 13.8 0.010 ug/l Matrix Spike Dup (W8A0399-MSD1) Source: 8A05040-18 Prepar Copper, Dissolved 16.1 0.010 ug/l Matrix Spike Dup (W8A0399-MSD2) Source: 8A05040-19 Prepar Copper, Dissolved 14.1 0.010 ug/l atch: W8A0400 - EPA 1640 Prepar Blank (W8A0400-BLK1) Prepar	ed: 01/09/18	Analyzed: 0	1/11/18				
Copper, Dissolved 16.1 0.010 ug/l Matrix Spike Dup (W8A0399-MSD2) Source: 8A05040-19 Prepar Copper, Dissolved 14.1 0.010 ug/l atch: W8A0400 - EPA 1640 Prepar Blank (W8A0400-BLK1) Prepar	10.0	4.11		70-130			
Copper, Dissolved 16.1 0.010 ug/l Matrix Spike Dup (W8A0399-MSD2) Source: 8A05040-19 Prepar Copper, Dissolved 14.1 0.010 ug/l atch: W8A0400 - EPA 1640 Prepar Blank (W8A0400-BLK1) Prepar							
Matrix Spike Dup (W8A0399-MSD2) Source: 8A05040-19 Prepar Copper, Dissolved 14.1 0.010 ug/l atch: W8A0400 - EPA 1640 Blank (W8A0400-BLK1) Prepar	ed: 01/09/18 10.0	6.37		70-130	4	30	
Copper, Dissolved 14.1 0.010 ug/l atch: W8A0400 - EPA 1640 Blank (W8A0400-BLK1) Prepar		0.0.			•		
atch: W8A0400 - EPA 1640 Blank (W8A0400-BLK1) Prepar	ed: 01/09/18	•		70.400	0	00	
Blank (W8A0400-BLK1) Prepar	10.0	4.11	100	70-130	2	30	
•							
•	ed: 01/09/18	Analyzed: 0	1/11/18				
Copper, Dissolved 0.010 ug/l		•					
LCS (W8A0400-BS1) Prepar	ed: 01/09/18	Analyzod: 0	1/11/10				
Copper, Dissolved 10.9 0.010 ug/l	10.0	Allalyzeu. U		70-130			
• • • • • • • • • • • • • • • • • • • •		-		70 120			
Copper, Dissolved 14.8 0.010 ug/l	ed: 01/09/18	4.14	107	70-130			
• • • • • • • • • • • • • • • • • • • •	ed: 01/09/18 10.0	-					
Copper, Dissolved 14.1 0.010 ug/l	10.0 ed: 01/09/18	3.92	102	70-130			
Matrix Spike Dup (W8A0400-MSD1) Source: 8A05040-38 Prepar	10.0						
Copper, Dissolved 15.0 0.010 ug/l	10.0 ed: 01/09/18 10.0		1/11/18			30	
Matrix Spike Dup (W8A0400-MSD2) Source: 8A05040-39 Prepar	10.0 ed: 01/09/18			70-130	1		

FINAL REPORT

Amec Foster Wheeler - San Diego 2 9210 Sky Park Court, Suite 200 San Diego, CA 92123 Project Number: SIYB Times Series Study

Reported:

01/19/2018 10:47

Quality Control Results

(Continued)

									`	,
Metals - Low Level by 1600 Series Methods (Continued)	1									
				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
Batch: W8A0400 - EPA 1640 (Continued)										
Matrix Spike Dup (W8A0400-MSD2)	Source: 8A05040-3	9	Prepare	ed: 01/09/18	Analyzed: 0	1/11/18				
Copper, Dissolved	14.8	0.010	ug/l	10.0	3.92	109	70-130	5	30	

Project Manager: Barry Snyder

FINAL REPORT

Amec Foster Wheeler - San Diego 2 9210 Sky Park Court, Suite 200 San Diego, CA 92123 Project Number: SIYB Times Series Study

Project Manager: Barry Snyder

Reported:

01/19/2018 10:47

Item ND

Notes and Definitions

	above the MDL.
Dil	Dilution
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
% R	ec Percent Recovery
Sour	rce Sample that was matrix spiked or duplicated.
MDL	Method Detection Limit
MRL	The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence. The MRL is also known as Limit of Quantitation (LOQ) and Detection Limit for Reporting (DLR)
MDA	A Minimum Detectable Activity
NR	Not Reportable
TIC	Tentatively Identified Compound (TIC) using mass spectrometry. The reported concentration is relative concentration based on the nearest internal

NOT DETECTED at or above the Method Reporting Limit (MRL). If Method Detection Limit (MDL) is reported, then ND means not detected at or

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

An Absence of Total Coliform meets the drinking water standards as established by the California State Water Resources Control Board (SWRCB)

All results are expressed on wet weight basis unless otherwise specified.

standard. If the library search produces no matches at, or above 85%, the compound is reported as unknown.

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS 002.

APPENDIX E FIELD DATA FORMS

NA

FIELD WATER QUALITY DATA SHEET

Station Identification:	TS-1-E	R	•		
Date: (mm/dd/yyyy)	01/03/2018	3	_		,
Time Started: (hh:mm)	16:45 16	05	Ended: (hh:mm)	16:20	
GPS: (WGS84)	Lat. NA		Long.	NA	
	inet				
Tide (ft):	-1.4ft	-			
Weather conditions:	overcast, a	Cool			
Wind (none, light, moderate, heavy):	Light	······································	<u>.</u>		
Sea State Conditions (calm, ripples, small waves)	calm				
Physical Water Qual	ity Measurements				
Time of collection:	12:09	На	Salinity	Temperature	

NA

Measurement: *Water quality measured at the same depth as sample collection (i.e. within 1 meter from the surface).

Notes:

PORT OF SAN DIEGO SIYB 24-Hour Water Quality Time Series Study January 2018

FIELD WATER QUALITY DATA SHEET

Station Identification:	TS-1-T Ø				
Date: .(mm/dd/yyyy)	01/03/2014				,
Time Started: (hh:mm)	16:40	<u></u>	Ended: _ (hh:mm)	17:05	
GPS: (WGS84)	Lat. 32 718	66	_ Long.	-117.226	FFO
		e e e e e e e e e e e e e e e e e e e			
Tide (ft):	-1.9 ft	- -			
Weather conditions:	overcust.	cool		<u> </u>	
Wind (none, light, moderate, heavy):	none				
Sea State Conditions (calm, ripples, small waves)	emm	į			
Physical Water Qual					
Time of collection:		рН	Salinity (ppt)	Temperature (°C)	CONDUCTIVITY
	Measurement:	8.05	34.00	16.32	ECO STATE ON
*Water quality measured at th	ne same depth as sample col	lection (i.e. within	1 meter from the s	urface).	MAINJONAN SUCCE
Notes:					100
Vesser ~(n un 2009	u tur	Med 191	engine	1 1210 Rs
Armined we	sher. Fum		· · Of Cray		1 8 -1
vessel 1:	204 awas	A			

Station Identification:	TS - 1 - T				
Station Identification.	1011	<u> </u>			•
Date: (mm/dd/yyyy)	01/03/2018				
Time Started: (hh:mm)	18:47		Ended: (hh:mm)	19:13	·
GPS: (WGS84)	Lat. 32. 718	66	Long.	-117. 22	6079
	· · ·				v *
Tide (ft):	-0.1				
Weather conditions:	overcast, co	70			
Wind (none, light, moderate, heavy):	none		-		
Sea State Conditions (calm, ripples, small waves)	Calm				
Physical Water Qual	ity Measurements			* i	
	18:50	рН	Salinity (ppt)	Temperature (°C)	COND mg/cm
	Measurement:	8.26	34,95	16.2	WHQ33
*Water quality measured at th	e same depth as sample colle	ection (i.e. within 1	_	surface).	•
Notes:			33.69		_
108801 ~ 20t	CA MANANA	16:40)		

Station Identification:	TS-1-T2				
Date: (mm/dd/yyyy)	01/03/2018				
Time Started: (hh:mm)	20:58	-	Ended: (hh:mm)	21:22	
GPS: (WGS84)	Lat. 32, 7186	6	Long.	-117.226	077
	, Jak				
Tide (ft):	3.4 A	<u> </u>	· ·		
Weather conditions:	overcast, a	081			
Wind (none, light, moderate, heavy):	none.	:			
Sea State Conditions (calm, ripples, small waves)	calm				
Physical Water Qual	ity Measurements	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	1
Time of collection:	1:00	рН	Salinity (ppt)	Temperature (°C)	CONP
	Measurement:	8.56	35,02	16.13	981212
*Water quality measured at the	e same depth as sample coll	ection (i.e. within 1	meter from the s	urface).	
Notes:					
Vessel ~21	If amain	·			

water on sampling flowing area, slight film by trash

scattered whole radius around area

Station Identification:	ts-1-T3	_	*
Date: (mm/dd/yyyy)	01/03/2018		
Time Started: (hh:mm)	23:09	Ended: _ (hh:mm) _	23:32
GPS: (WGS84)	Lat. 32.71866	Long.	-117.226077
	The state of the s		
Tide (ft):	47 +		
Weather conditions:	partially overcast,	COOL	
Wind (none, light, moderate, heavy):	none	9 - 3	·
Sea State Conditions (calm, ripples, small waves)	calm		

Physical Water Quality Measurements

Time of collection:	-23: (\	рН	Salinity (ppt)	Temperature (°C)	COND
	Measurement:	8.29	35.02	16.07	43997

*Water quality measured at the same depth as sample collection (i.e. within 1 meter from the surface).

Notes:

33.61

water clear again, no noticule films, etc on

surface.

Station Identification:	TS-1-T4				
Date: (mm/dd/yyyy)	01/04/201	8			
Time Started: (hh:mm)	00:58		Ended: (hh:mm)	0[:24	<i>f</i>
GPS: (WGS84)	Lat. 32.710	26	Long.	-117,234	49
	المير	e e e e e e e e e e e e e e e e e e e			
Tide (ft):	+3.6 ↓	-	:		
Weather conditions:	clear, cool				
Wind (none, light, moderate, heavy):	none		· ·		
Sea State Conditions (calm, ripples, small waves)	alm			•	
Physical Water Qual	itv Measurements			*	
	1:00	рН	Salinity (ppt)	Temperature (°C)	COND
	Measurement:	8.34	84.99	16.03	93921
*Water quality measured at the	e same depth as sample coll	ection (i.e. within 1		urface).	,
Notes:			33.65		

water colon, no particulates seen on top of water small film/sheen on surface @, sumple site.

boot 220st bilge storted during sampling

Station Identification	75-1-75	Hans .			
Date: (mm/dd/yyyy)	01/04/201	8			
Time Started: (hh:mm)	02:58		Ended: (hh:mm)	02:18	
GPS: (WGS84)	Lat. 327102	26	Long.	-117.234	49
	· · ·				
Tide (ft):	1.9ft J		:		
Weather conditions:	Clear, COD				
Wind (none, light, moderate, heavy):	none		-		
Sea State Conditions (calm, ripples, small waves)	calm		-	-	
Physical Water Qua			Salinity	Temperature	1051
Time of collection:	301	pH	(ppt)	(°C)	CON
*Water quality measured at th	Measurement.	8.35	meter from the s	16.0B	13010
Notes:	ie same depui as sample con	COLOT (I.C. WILIIII	33.63		
, 10100,			1 41 0 1	.1	
come partic	Mater (Am.	maven	etanio 1	Mons I DIA	
Some partic	Mortes Ctm	m q veg	etanve d	lbns) oh	

Station Identification:	TS-1-T6				
Date: (mm/dd/yyyy)	1/4/2018				
Time Started: (hh:mm)	04-13		Ended: (hh:mm)	0,1,1,40	٠.
GPS: (WGS84)	Lat. 32.7186	e (e	Long.	-117.2261	9月
	· · ·	on t			
Tide (ft):	1.6ft.		<.: •:		
Weather conditions:	clear, cool		r ·		
Wind (none, light, moderate, heavy):	nonl		-		·
Sea State Conditions (calm, ripples, small waves)	calm		-		
Physical Water Qual	ity Measurements		-		
Time of collection:		рН	Salinity (ppt)	Temperature (°C)	GOND
	Measurement:	8.34	35.00	15.99	Krand
*Water quality measured at th	e same depth as sample coll	ection (i.e. within 1		surface).	
Notos			33.67		

Few particles (troop & regetative debris) on surface.

Notes:

Station Identification:	15-1	The state of the s	;		;	
Date: (mm/dd/yyyy)	1/4/201	8				
Time Started: (hh:mm)	06:20			Ended: (hh:mm)	6:30	
GPS: (WGS84)	Lat. 32	71866	<u> </u>	Long.	-117.226	0677
		September 1	·			
Tide (ft):	+2.7	-	· · · · · · · · · · · · · · · · · · ·	. :		
Weather conditions:	<u>Slightly</u>	hazy, de	lar ow	rnead		
Wind (none, light, moderate, heavy):	none					
Sea State Conditions (calm, ripples, small waves)	calm					
Physical Water Qual	ity Measurer	nents				
Ti				Salinity	Temperature	1 mila

pН

8.4 Measurement: *Water quality measured at the same depth as sample collection (i.e. within 1 meter from the surface).

Notes:

Time of collection:

33.72

(ppt)

Few particles (trash + reg e tati ve debris) on surtace.
Sail boat moved near site on south side of dock

•						
Station Identification:	TS-1-T8					
Date: (mm/dd/yyyy)	01/04/2012)			٠,	
Time Started: (hh:mm)	0820		Ended: (hh:mm)	0829		
GPS: (WGS84)	Lat. 32. 7181	06	Long.	-117-2261	777	
		~~				
Tide (ft):	5.2 A	-				
Weather conditions:	Sunny, S!	ightly 1	W24	calm		
Wind (none, light, moderate, heavy):	none		•	,		
Sea State Conditions (calm, ripples, small waves)	CalM				· · · · · · · · · · · · · · · · · · ·	
Physical Water Qual	ity Measurements					
Time of collection:	0820	рН	Salinity (ppt)	Temperature (°C)	COMB	
	Measurement:	8.49	36	15.92	127,0P	
*Water quality measured at the same depth as sample collection (i.e. within 1 meter from the surface). Notes:						
Some paint s	specks inwate	x near n	neter.			
•				tor can al	0 m +	
SO-ft yacut of	Und.	wer 1	0120, a	o sampo	~O :	
minimal del	aris in filter	~ .	·	•		

moored overnight on South side of dock

same boats

Station Identification:	TS-1-T9				
Date: (mm/dd/yyyy)	01/04/20	18			
Time Started: (hh:mm)	1024		Ended: (hh:mm)	1036	
GPS: (WGS84)	Lat. 32,7186	6	Long.	-117.224	,077
		w 1			
Tide (ft):	64H	-	:		
Weather conditions:	sunny,	slightly	MAZ	<u> </u>	
Wind (none, light, moderate, heavy):	none				
Sea State Conditions (calm, ripples, small waves)	calm				
Physical Water Qual	ity Measurements			. :	
Time of collection:		рН	Salinity (ppt)	Temperature (°C)	COND
	Measurement:	8.17	35	16.0018	44455
*Water quality measured at th	e same depth as sample coll	ection (i.e. within 1 r		surface).	, , - >
Notes:			33.69		
Boat leaving	dock @ 1020)			

Same boats moored overnight on south side of dock minor vegetative debris on water surface

Station Identification:	TS-1-T11		
Date: (mm/dd/yyyy)	01/04/18		
Time Started: (hh:mm)	1515	Ended: (hh:mm)	1525
GPS: (WGS84)	Lat. 32.71866	Long.	717.226077
	graft.		
Tide (ft):	0.5 A. V	:	
Weather conditions:	sunny, mostly clea	W	
Wind (none, light, moderate, heavy):	moderate wind		
Sea State Conditions (calm, ripples, small waves)	ripples		

Physical Water Quality Measurements

Time of collection: \5	25	рН	Salinity (ppt)	Temperature (°C)	conn
	Measurement:	8.45	35	16.39	44,419

*Water quality measured at the same depth as sample collection (i.e. within 1 meter from the surface).

Notes:

33.+1

same boats moored on south side.

one small boat leaving dock@1310

one boat came in for full @ 1315

Station Identification:	て(-1-11つ)				
Station Identification:	1.5 1 114		•		
Date: (mm/dd/yyyy)	01/04/2	810.	·		
Time Started: (hh:mm)	1729	· .	Ended: (hh:mm)	1734	
GPS: (WGS84)	Lat. 37. 118	6 6	Long.	-117.22	.604
	 	·			
Tide (ft):	-1.3	ft	·		
Weather conditions:	clear	dark			
Wind (none, light, moderate, heavy):	light				
Sea State Conditions (calm, ripples, small waves)	calm	·			
Physical Water Qual	ity Measurements				•
Time of collection:		рН	Salinity (ppt)	Temperature (°C)	ORND
	Measurement:	8.52	3403	16.34	44,310
*Water quality measured at the	e same depth as sample coll	ection (i.e. within 1		_	
Notes:			33.5	1	
same wat moored@ south side					
or large boat	on Niside	of right	FLORE	freung	

Station Identification:	TS-1-T12	REP	!		
Date: (mm/dd/yyyy)	01/04/20	18			
Time Started: (hh:mm)	1739		Ended: (hh:mm)		
GPS: (WGS84)	Lat. 32.7186	. 6	Long.	-117.22	26077
	: ::::APT		·		
Tide (ft):	-1.3	ft	<u>:</u> :		
Weather conditions:	<u>dear, done</u>		· · · · · · · · · · · · · · · · · · ·		
Wind (none, light, moderate, heavy):	light			·	
Sea State Conditions (calm, ripples, small waves)	calm				u
Physical Water Qual	ity Measurements			y	
Time of collection:		рН	Salinity (ppt)	Temperature (°C)	COND
	Measurement:	44.8	35.08	16.31	44,296
*Water quality measured at the	e same depth as sample coll	ection (i.e. within 1		•	Assembly Committee
Notes:			33.63	<u> </u>	-
same boot moored @ south side					
large bo	at on N. sic	le of r	igut	Frakefor	freling

Station Identification:	TS-1-FB	·.			
Date: (mm/dd/yyyy)	01/04/2018	· 			
Time Started: (hh:mm)	1729	745	Ended: (hh:mm)		
GPS: (WGS84)	Lat. NA		Long.	NA_	
	, men				
Tide (ft):	1-1.3 FT	-	•		
Weather conditions:	clearide	ark			
Wind (none, light, moderate, heavy):	light				
Sea State Conditions (calm, ripples, small waves)	alm			·	
Physical Water Qual	ity Measurements		0.11.16.		1
Time of collection:		рН	Salinity (ppt)	Temperature (°C)	\$.V
	Measurement:	NA	NA	NA	
*Water quality measured at the same depth as sample collection (i.e. within 1 meter from the surface).					

Station Identification:	TS-1-T10	
Date: (mm/dd/yyyy)	01/04/18	
Time Started: (hh:mm)	1300	Ended: (hh:mm) [3]0
GPS: (WGS84)	Lat. 32.71866	'Long117.226077
Tide (ft):	5 H.	!
Weather conditions:	Sun my, mostly clear	
Wind (none, light, moderate, heavy):	light breeze	
Sea State Conditions (calm, ripples, small waves)	ripples	

Physical Water Quality Measurements

Time of collection: \3\0	рН	Salinity (ppt)	Temperature (°C)			
Meas	surement: 8-28	35	16.24			
*Water quality measured at the same depth as sample collection (i.e. within 1 meter from the surface).						

Notes:

33.70

Same boats moored on south side hull cleaning approx. 50 yds west. oil slicks seen in water ~ 1200 large yacout in for fueling ~ 1305

Station Identification: Date: (mm/dd/yyyy)	TS-2-E	<u>B</u>			
Time Started: (hh:mm)	15		Ended: (hh:mm)	16 10	· · · · · · · · · · · · · · · · · · ·
GPS: (WGS84)	Lat. 32.715	75.	Long.	-117.229	77
Tide (ft):	over cast,	for vall	ing w	<u> </u>	
Weather conditions: Wind (none, light, moderate, heavy):	moderate t)	J		
Sea State Conditions (calm, ripples, small waves)	small vi	pples			
Physical Water Qual	ity Measurements			·	
Time of collection:		рН	Salinity (ppt)	Temperature (°C)	
MALL STATE OF THE	Measurement:	NA	NA	NA	

*Water quality measured at the same depth as sample collection (i.e. within 1 meter from the surface).

Notes:

Heavy fig layer rolling in. Ted aff at Buoy "A" at La Playa anchorage.

		. /		
Station Identification:	T5-2-T1	<i>D</i>	<u>.</u>	
Date: (mm/dd/yyyy)	1/3/18		-	
Time Started: (hh:mm)	1642		Ended: (hh:mm)	1651
GPS: (WGS84)	Lat. 3), 715	75	Long.	117, 22977
	. September 1	•		
Tide (ft):		-	· 	
Weather conditions:	Wercast	four	ollingi	<u> </u>
Wind (none, light, moderate, heavy):	light			
Sea State Conditions (calm, ripples, small waves)	<u>calm</u>	· ·		Justin & Market
Physical Water Qual	ity Magauramanta		ص ر	THE STATE OF THE S
Time of collection:	ity inicasarements	рН	Salinity (ppt)	Temperature (°C)
	Measurement:	8,02	3629	Not 1607
*Water quality measured at th	e same depth as sample coll	ection (i.e. within 1	meter from the	surface).
Notoc			22.67	

Station Identification:	T3-2-T				
Date: (mm/dd/yyyy)	1/3/18				
Time Started: (hh:mm)	1850		Ended: (hh:mm)	1900	
GPS: (WGS84)	Lat. 32,715	7 S	Long.	117, 229	77
	900				
Tide (ft):		-			
Weather conditions:	clouds, trav	+ breez	le		
Wind (none, light, moderate, heavy):	light				
Sea State Conditions (calm, ripples, small waves)	calm				
Physical Water Qual	ity Measurements			,	
Time of collection:		рН	Salinity (ppt)	Temperature (°C)	SOND
	Measurement:	8.21	36.95	15.93	46009
*Water quality measured at the	e same depth as sample coll	ection (i.e. within 1	meter from the s	urfacė).	

·		~			
Station Identification:	12-7-I	<u>d</u>			
Date: (mm/dd/yyyy)	1/3/18		-		
Time Started: (hh:mm)	2100		Ended: (hh:mm)	2111	
GPS: (WGS84)	Lat. 32,31	578	Long.	117	22977
	Year.	we of			
Tide (ft):		-	· · ·		
Weather conditions:	Olercast	-, (old	,		
Wind (none, light, moderate, heavy):	none		-	·	
Sea State Conditions (calm, ripples, small waves)	<u>cal</u> n	1	(ordustry	+>
Physical Water Quali	ity Measurements			45	
Time of collection:		рН	Salinity (ppt)	Temperature (°C)	
	Measurement:	8.112	76-39	15,82	
*Water quality measured at the	e same depth as sample coll	ection (i.e. within 1	meter from the s	surface).	•
Notes:		-	33.63		

Station Identification:	TS-2-	13			
Date: (mm/dd/yyyy)	1/3/18	>			
Time Started: (hh:mm)	2311		Ended. (hh:mm)	1 / 1 6 1	
GPS: (WGS84)	Lat. 32,71	S75	Long.		- - b
Tide (ft):	٢٩٠٤م.		:		
Weather conditions:	Overca	sty Colo	l		
Wind (none, light, moderate, heavy):	nove				
Sea State Conditions (calm, ripples, small waves)	calm			1 . a truster	
Physical Water Qualit	y Measurements		\mathcal{C}	0545889	
Time of collection:		рН	Salinity (ppt)	Temperature (°C)	
*Water quality measured at the s	Measurement:	8,27	3702	15.74	
Notes:		(33.65	инас о) ,	

Station Identification:	TS-2-	4		
Date: (mm/dd/yyyy)	1/4/18			
Time Started: (hh:mm)	100		Ended: (hh:mm)	1:09
GPS: (WGS84)	Lat. 3 d. 71	575	Long.	17. 22977
	Propri	· ·		
Tide (ft):			1	
Weather conditions:	· clear, c	ald		
Wind (none, light, moderate, heavy):	light			
Sea State Conditions (calm, ripples, small waves)	caln	^	C	ordativity
Physical Water Qual	ity Measurements			45948
Time of collection:		рН	Salinity (ppt)	Temperature (°C)
	Measurement:	8123	37.09	15.32
*Water quality measured at the	e same depth as sample coll	ection (i.e. within 1	meter from the s	surface).
Notes:			33.64)

	7(-2-	,		,			
Station Identification:	13 0) .	. "				
Date: (mm/dd/yyyy)	1/4/18	7	· ·	***			
Time Started: (hh:mm)	390		Ended: (hh:mm)	309			
GPS: (WGS84)	Lat. 32.5	71575	Long.	117,20	7977		
	Secret.						
Tide (ft):			;				
Weather conditions:	clear, c	ol d					
Wind (none, light, moderate, heavy):	none		-				
Sea State Conditions (calm, ripples, small waves)	calm		₹. -	(Sheetivi	1 3)		
Physical Water Qual	Physical Water Quality Measurements						
Time of collection:		рН	Salinity (ppt)	Temperature (°C)			
	Measurement:	8,25	37.06	15,69	•		
*Water quality measured at the same depth as sample collection (i.e. within 1 meter from the surface).							
Notes:	*		33.70				

PORT OF SAN DIEGO SIYB 24-Hour Water Quality Time Series Study January 2018

FIELD WATER QUALITY DATA SHEET

Station Identification:	15-2-6			
Date: (mm/dd/yyyy)	1/4/18			
Time Started: (hh:mm)	0415		Ended: (hh:mm)	425
GPS: (WGS84)	Lat. 32.715	575	Long.	-Nt. 22977
	and the second s			,
Tide (ft):				
Weather conditions:	. Cd1, cha			
Wind (none, light, moderate, heavy):	light			, ary
Sea State Conditions (calm, ripples, small waves)	calm			Conduction (
Physical Water Qua	lity Measurements			
Time of collection:		рН	Salinity (ppt)	Temperature (°C)
	Measurement:	8.30	37.04	5.67
*Water quality measured at t	he same depth as sample coll	ection (i.e. within 1	meter from the s	surface).
Notos:		•	33.69	

			at .		* *
Station Identification:	TS-2-T=		<u>.</u>		
Date: (mm/dd/yyyy)	1/4/18		. · ·		
Time Started: (hh:mm)	0620		Ended: (hh:mm)	06/24	
GPS: (WGS84)	Lat. 32.7157	· ·	Long.	-117.229=	17
	Person	e species			
Tide (ft):	well fill	trus	in later	r ::	
Weather conditions:	Calm, dea	5			
Wind (none, light, modérate, heavy):	none				
Sea State Conditions (calm, ripples, small waves)	Caly				
Discrete Notes Ovel					
Physical Water Qual Time of collection:	ity weasurements	рН	Salinity (ppt)	Temperature (°C)	conduct.
	Measurement:	8.26	37.05	15.63	474884
*Water quality measured at th	ne same depth as sample coll	lection (i.e. with	in 1 meter from the s る3.すゞ	surface).	

Station Identification	: <u>TS-2-T</u>	8	_ _		
(mm/dd/yyyy)	1/4/18				,
Time Started: (hh:mm)	0820		Ended: (hh:mm)	8:33	
GPS: (WGS84)	Lat. 32 716	42	_ Long.	-117.229	770
	1	· constant			
Tide (ft):	+ 5.2 m		:		
Weather conditions:	Sunny, Clea	()	3 4		
Wind (none, light, moderate, heavy):	ησιε		_	.*	
Sea State Conditions (calm, ripples, small waves)	Colm		_		·
Physical Water Qual	itv Measurements				
Time of collection:	0820	рН	Salinity (ppt)	Temperature (°C)	Conduct
	Measurement:	8,36	76.92	15.74	45783
*Water quality measured at the Notes:	e same depth as sample coll	ection (i.e. within 1	meter from the sui	rface).	15/5/
NUCES.			• •	•	•

Station Identification:	TS-2-	T9			
Date: (mm/dd/yyyy)	1/4/18				
Time Started: (hh:mm)	10:27		Ended: (hh:mm)	10:36	
GPS: (WGS84)	Lat. 32, 713	分の	Long.	-117.2	29770
	العرب				
Tide (ft):	+ 6.4	* 1		-	
Weather conditions:	Sunny, clea	U			
Wind (none, light, moderate, heavy):	none		·		
Sea State Conditions (calm, ripples, small waves)	calm		_		
Physical Water Qual	ity Measurements		,		
Time of collection: /0	30	рН	Salinity (ppt)	Temperature (°C)	Sondud
	Measurement:	8.32	36,26	16.14	46204
*Water quality measured at the Notes:	e same depth as sample col	lection (i.e. within	33.41	urface).	
30 min prior	to sampling.	Alick P	one tops	ide boot was	h
came for	, no obvious s	slick durin	's samplie	75	

Station Identification:	75-2-7	10			
Date: (mm/dd/yyyy)	1/4/18				
Time Started: (hh:mm)	1300		Ended: (hh:mm)	13/2	·
GPS: (WGS84)	Lat. 32 715	14	Long.	-117 201	770
Tide (ft):	5.01				
Weather conditions:	sunny clear				
Wind (none, light, moderate, heavy):	moderate Num	id			
Sea State Conditions (calm, ripples, small waves)	small reples				
Physical Water Qual	ity Measurements				
Time of collection:		рН	Salinity (ppt)	Temperature (°C)	anduct
	Measurement:	6.17	56.92	16.15	4620
*Water quality measured at the	e same depth as sample col	lection (i.e. within 1	meter from the s 33.78	urface).	,
Notes:			0.7/10		

Station Identification:	TS-2-	TIL			
Date: (mm/dd/yyyy)	1/4/18				· · · · · · · · · · · · · · · · · · ·
Time Started: (hh:mm)	15:15		Ended: (hh:mm)	1523	
GPS: (WGS84)	Lat. 32. 715		Long.	-117.229	770
		um ?		v	,
Tide (ft):	-0.5 4		:		
Weather conditions:	sunny clear	· .			
Wind (none, light, moderate, heavy):	light/mod N	wind	_		
Sea State Conditions (calm, ripples, small waves)	small cipples	·			
Physical Water Qual	ity Measurements			÷	
Time of collection:		рН	Salinity (ppt)	Temperature (°C)	agnduct
	Measurement:	8.15	हेर-वा	16.07	46/27
*Water quality measured at th	e same depth as sample coll	lection (i.e. within	_	surface).	
Notes:	•		3354		•

Station Identification:	75-2-TI	2			
Date: (mm/dd/yyyy)	1/4/18	·			-
Time Started: (hh:mm)	1729	12.	Ended: (hh:mm)	. 1738	
GPS: (WGS84)	Lat. 32. 715	7.6	Long.	-11722 67	υ
	.,			•	·
Tide (ft):	-1.4 4+				
Weather conditions:	twilight.				
Wind (none, light, moderate, heavy):	none				,
Sea State Conditions (calm, ripples, small waves)	calm				
Physical Water Qual	ity Measurements				
Time of collection:		рН	Salinity (ppt)	Temperature	conduct
	Measurement:				Sample Control of State Control
*Water quality measured at th	e same depth as sample coll	ection (i.e. within 1	meter from the s	surface).	· ·
Notes:					

Station Identification:	TS-2-	T12-R	EP		
Date: (mm/dd/yyyy)	14/18			`	
Time Started: (hh:mm)	1739		Ended: (hh:mm)	1749	
GPS: (WGS84)	Lat. 32. 7155		Long.	-117. 229	70

Tide (ft):	-1.3 ++		:		
Weather conditions:	_ twilight	<u> </u>			
Wind (none, light, moderate, heavy):	NONE				
Sea State Conditions (calm, ripples, small waves)	calm		-		
Physical Water Qua	lity Measurements			· · · · · · · · · · · · · · · · · · ·] , ,
Time of collection:		рН	Salinity (ppt)	Temperature (°C)	monderect
	Measurement:	8.10	36.88	15,99	46041
*Water quality measured at	the same depth as sample col	ection (i.e. Within	33.43		

Station Identification:	TS-2-F	В	-		
Date: (mm/dd/yyyy)	1/4/18		_		•
Time Started: (hh:mm)	1750		Ended: (hh:mm)	1755	
GPS: (WGS84)	Lat. VA		Long.	NA	
	Secretary		•		-
Tide (ft):		<u></u>	<u>:</u>		
Weather conditions:	,				
Wind (none, light, moderate, heavy):			-		
Sea State Conditions (calm, ripples, small waves)			-		
Physical Water Qual	ity Measurements			,	
Time of collection:		рН	Salinity (ppt)	Temperature (°C)	
	Measurement:	NA	NA.	A.U.	

				•
Station Identification:	TS-3-ER			. *
Date: (mm/dd/yyyy)	01/03/2018			
Time Started: (hh:mm)	1600	Ended: (hh:mm) _	1618	
GPS: (WGS84)	Lat. NA	Long.	NA	
			*	
Tide (ft):	-1.69 Falling	· .		
Weather conditions:	overost with	Smpl	· .	
Wind (none, light, moderate, heavy):	moderate to light			±
Sea State Conditions (calm, ripples, small waves)	Ripples (wind)			
Physical Water Qual	ity Measurements	Salinity	Tomporaturo	1

Time of collection:		рН	Salinity (ppt)	Temperature (°C)
:	Measurement:	NA	NA	NA

CONDUCTIVITY (mgl m)

*Water quality measured at the same depth as sample collection (i.e. within 1 meter from the surface).

Station Identification:	+S-3-T	Ø			* .	
Date: (mm/dd/yyyy)	01/03/18					•
Time Started: (hh:mm)	1642		Ended: (hh:mm) _	1708	<u>.</u>	
GPS: (WGS84)	Lat. 32. 2002	Ø	Long	-117.23Y	Y1 -	
	-1.9 feet	Toute	L			
Tide (ft):	1.1 70.	Low	<u>:</u>			
Weather conditions:	overust					
Wind (none, light, moderate, heavy):	Nove					(
Sea State Conditions (calm, ripples, small waves)	alm	/				
	lit. Messurements		33.54		-21	
Physical Water Qua	inty Measurements	рН	Salinity (ppt)	Temperature (°C)	CONDUCT.	4 a T
	Measurement:	8.08	34.24	15.99	19,757	m
*Water quality measured at	the same donth as sample col	llection (i.e. within 1	meter from the	surface).	5H2.	
Notes: P.'lo+	Bout left	SLIP PE	52 e~	1635		
enjme	Buat deft e smell dissipa	string / No	influence	Et time		
of	Sampling	G				
		Λ .				
mixim	al localized l	form bubbl	es,	(
Presso	ve westy not	boot on		seconda!)	
73	al localized l	pors per	Thise - 1	بسب کی	•	
A	10-1730. 30 polut Box					
ا اسا	$0 > 0.4 \le 0$	or 10em	`			

	•					
Station Identification:	TS-3-t	1	. :			
Date: (mm/dd/yyyy)	1/3/18		-			
Time Started: (hh:mm)	1850		Ended: (hh:mm)	1905	· · · · · · · · · · · · · · · · · · ·	
GPS: (WGS84)	Lat. 32.7102	6	Long.	-117.23	449	
Λ	oga#t*	gr à			:	-1. -
Tide (ft):	to.03 Ris	nhy				·
Weather conditions:	overest	cloudy				
Wind (none, light, moderate, heavy):	none		-			
Sea State Conditions (calm, ripples, small waves)	CRIM					
D						
Physical Water Quali	ity weasurements		Calimia	Tananananan	1	
Time of collection:		рН	Salinity (ppt)	Temperature (°C)	CONDUC	T.
as an	Measurement:	8.12	35.28	15.13	44150	
*Water quality measured at the	same depth as sample coll	ection (i.e. within 1		urface).		
Motoo			33.62			

Station Identification:	TS-3-T2		_		
Date: (mm/dd/yyyy)	1/3/18		_		·
Time Started: (hh:mm)	9-100		Ended: _ (hh:mm)	9115	
GPS: (WGS84)	Lat 32, 7102	V	Long.	-117 23,4	r44
	· · ·	ar.			,
Tide (ft):	+3,1 R	3,24		, 	
Weather conditions:	chear/ Se	m; bree	rst		····
Wind (none, light, moderate, heavy):	pore	· · · · · · · · · · · · · · · · · · ·			$\frac{\eta^2}{4}$
Sea State Conditions (calm, ripples, small waves)	calm		_		
Physical Water Quali	ty Massuraments			e de la companya de l	· Al
Time of collection:	ty measurements	рН	Salinity (ppt)	Temperature (°C)	CONDUCT
	Measurement:		3529	15.92	-44,144 Holem
*Water quality measured at the		ollection (i.e. within	_	surface).	
Notes: No Per	-by reduty.		33.67		-

Station Identification:	T5-3-T	3	-		
Date: (mm/dd/yyyy)	1/3/18		-		
Time Started: (hh:mm)	2311		Ended: (hh:mm)	2325	
GPS: (WGS84)	Lat. 32 7102	26	Long.	-117.234	49
		w ·			
Tide (ft):	+4.7 Nigh Cheer / Sie	nle			
Weather conditions:	Cheer / SR	mi over	Teist		
Wind (none, light, moderate, heavy):	North				
Sea State Conditions (calm, ripples, small waves)	Cer (m		-		
Physical Water Quali	ty Measurements		33.70	*	
Time of collection:		рH	Salinity (ppt)	Temperature (°C)	compact
	Measurement:	-8,11	94,28	15,92	44432
*Water quality measured at the	same depth as sample coll		meter from the s	urface).	
Notes: No	rearly	activity) ·		

Station Identification:	TS-3-T4				
Date: (mm/dd/yyyy)	01/04/18				
Time Started: (hh:mm)	0100		Ended: (hh:mm)	0111	
GPS: (WGS84)	Lat. 32 . 7102	v	Long.	-117 2344	9
	L2.64	// .			
Tide (ft):	+3,54 Clear	Falling			
Weather conditions:	Clear				
Wind (none, light, moderate, heavy):	None				
Sea State Conditions (calm, ripples, small waves)	Cal m				
Physical Water Qual	itv Measurements		33.68		
Time of collection:		рН	Salinity (ppt)	Temperature (°C)	CONTIMET
	Measurement:	8,12	35.29	15.88	Soft Standard Some South
*Water quality measured at th	e same depth as sample coll	ection (i.e. within 1	meter from the s	surface).	,
Notes:	alo M	edby	4 Amy		
			,		

Station Identification:	TS-3-T	5			
Date: (mm/dd/yyyy)	01/04/18		٠.		
Time Started: (hh:mm)	0300		Ended: (hh:mm)	03/0	
GPS: (WGS84)	Lat. 32, 71026	•	Long.	-117 234	49
Tide (ft):	+1.96	Falling	:		
Weather conditions:	Clear				
vveatner conditions.	Cher				
Wind (none, light, moderate, heavy):	home				•
Sea State Conditions (calm, ripples, small waves)	aln				
Physical Water Qual	lity Measurements		33.68	•	e.
Time of collection:	inty modernment	рН	Salinity (ppt)	Temperature (°C)	COMPUT
	Measurement:	8.13	35,80	15.85	44083
*Water quality measured at th	ne same depth as sample colle	ection (i.e. withIn 1	meter from the	surface).	,
Notes: № o	acturby_	Nearby			-

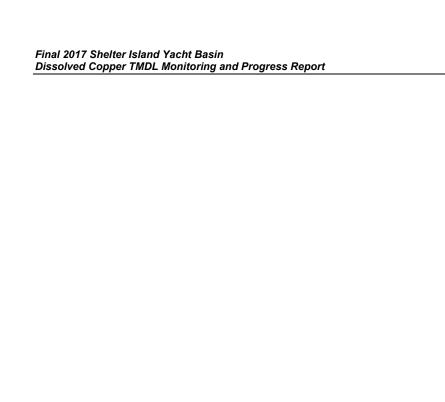
Station Identification:	TS - 3 - T	0	_		
Date: (mm/dd/yyyy)	01/64/18		_		
Time Started: (hh:mm)	0415	·	Ended: (hh:mm)	/ - 1 1 -	
GPS: (WGS84)	Lat. 32. 7102	6	_ Long.	-117 234×10	1
6.5				-	
Tide (ft):	+1.6	Lu Kle	:		
Weather conditions:	Chear	-			
Wind (none, light, moderate, heavy):	Nove				
Sea State Conditions (calm, ripples, small waves)	calm		•		
Physical Water Quali	ty Measurements		33,6	7	
Time of collection:		рН	Salinity (ppt)	Temperature (°C)	CONDUCT
	Measurement:	8.13	85.28	15.84	111 min ()
*Water quality measured at the Notes:	same depth as sample colle		meter from the s	urface).	1, 7
	Some	Scum/	shean (ample.	
	80 th	m 57/	~· 5	ample,	

Station Identification:	13-3-T7			•	
Date: (mm/dd/yyyy)	1/4/18				
Time Started: (hh:mm)	0620		Ended: (hh:mm)	0640	
GPS: (WGS84)	Lat. 32, 7102L	2	Long.	-117.2344	19
	No.	* * ·			
Tide (ft):	+2,7	-	:		
Weather conditions:	Clew,				
Wind (none, light, moderate, heavy):	Light		•		
Sea State Conditions (calm, ripples, small waves)	Cala				
Physical Water Qual	ity Measurements		83.57		
Time of collection:		рН	Salinity (ppt)	Temperature (°C)	CONDUCT
	Measurement:	8.15	35.23	15.83	73963
*Water quality measured at th	e same depth as sample colle	ection (l.e. within 1	meter from the s	urface).	
NT 1					

Station Identification:	TS-3-T8				
Date: (mm/dd/yyyy)	1/4/18		-	ı	
Time Started: (hh:mm)	0870		Ended: (hh:mm) _	0835	
GPS: (WGS84)	Lat. 32, 7102	φ	Long.	117. 2344	7
		* *			•.
Tide (ft):	+5,2				
Weather conditions:	Oew				
Wind (none, light, moderate, heavy):	Light			·	
Sea State Conditions (calm, ripples, small waves)	Cam		_		·
Physical Water Oual	lity Moseurements		34.59	*	
Physical Water Qual	nty weasurements	рН	Salinity	Temperature (°C)	CON DUCT
	Measurement:	8.16	(ppt)	15,81	multiple flaguely,
*Water quality measured at th			1 meter from the s	surface).	•
Notes:					- ,

Station Identification:	TS-3-TG			·	
Date: (mm/dd/yyyy)	1/4/18				
Time Started: (hh:mm)	1024	· · · · · · · · · · · · · · · · · · ·	Ended: (hh:mm)	1036	
GPS: (WGS84)	Lat. 32. 7/02	4	Long.	-117 2344	9
٠ .	· · · · · · · · · · · · · · · · · · ·				
Tide (ft):	+6,4	-			
Weather conditions:	Oew		:		
Wind (none, light, moderate, heavy):	None				
Sea State Conditions (calm, ripples, small waves)	CJM		-		+4
Physical Water Qual	itv Measurements		33.56		
Time of collection:		рН	Salinity (ppt)	Temperature (°C)	conpuct
	Measurement:	8.04	27:50	15.89	79007
*Water quality measured at th	e same depth as sample colle	ection (i.e. within 1	meter from the s	urface).	•
Notes:					

Station Identification:	TS-3-T10				•
Date: (mm/dd/yyyy)	01/04/201	8			,
Time Started: (hh:mm)	12:55		Ended: (hh:mm)	13:11	
GPS: (WGS84)	Lat. 32 7102	(0	Long.	-117 2344	09
		**			*
Tide (ft):	+ S.O.V	-		,	**
Weather conditions:	Clear				,,
Wind (none, light, moderate, heavy):	Moderate u	Jest		(
Sea State Conditions (calm, ripples, small waves)	Ripples		-		3
Physical Water Qua	lity Measurements		33.58	·	. 4
Time of collection:	1310	рН	Salinity (ppt)	Temperature (°C)	CONDUCT
	Measurement:	8-16	35-19	16.12	7973b
*Water quality measured at t	he same depth as sample coil	ection (i.e. within 1	I meter from the s	surface).	
Notes:					


Station Identification:	75-3-TI	- 4			
Date: (mm/dd/yyyy)	01/04/20	18			
Time Started: (hh:mm)	15:13		Ended: (hh:mm)	15:24	
GPS: (WGS84)	Lat. 32,71026	,	Long.	-117 23449	<u> </u>
	- Andrews				
Tide (ft):	-0.54		: :		
Weather conditions:	Clear				1
Wind (none, light, moderate, heavy):	Moderate	NW	:		
Sea State Conditions (calm, ripples, small waves)	Ripples				
Physical Water Qual	ity Measurements		33.60	1	
Time of collection:	1524	рН	Salinity (ppt)	Temperature (°C)	CONDUCT
	Measurement:	8.16	35,22	16.16	44307
*Water quality measured at the	e same depth as sample coll	ection (i.e. within 1	meter from the s	urface).	
Notes:	١				

	•				
Station Identification:	TS-3-T12				.÷
Date: (mm/dd/yyyy)	01/04/2018				
Time Started: (hh:mm)	1725		Ended: (hh:mm)	1740)
GPS: (WGS84)	Lat. 32 . 71017	26	Long.	-117,234	19
Tide (ft):	-1.4	~ -	:		
Weather conditions:	Clear				· .
Wind (none, light, moderate, heavy):	light		. *		
Sea State Conditions (calm, ripples, small waves)	Calm				
				•	
Physical Water Qual	ity Measurements		30.63	5	
	726	рН	Salinity (ppt)	Temperature (°C)	CONDUCT
	Measurement:	8.10	35,23	1618	44328
*Water quality measured at th	e same depth as sample colle	ection (i.e. within 1	meter from the s	urface).	ι *
Notes:					

Station Identification:	TS-3-T	12-REF)		
Date: (mm/dd/yyyy)	1/4/18				,
Time Started: (hh:mm)	1745		Ended: (hh:mm)	1755	
GPS: (WGS84)	Lat. 32,71012	20	Long.	-117.2344	9
	· · ·	. .			
Tide (ft):	n. 1 . 5	1			
Weather conditions:	Oen-				
Wind (none, light, moderate, heavy):	None				
Sea State Conditions (calm, ripples, small waves)	C.In				
Physical Water Qual	itv Measurements		33.6	7	A.
Time of collection:		рН	Salinity (ppt)	Temperature (°C)	CONDUCT
,	Measurement:	8.14	33788	14,14	74222
*Water quality measured at the	e same depth as sample coll	ection (i.e. within 1	meter from the s	urface).	
Notes:					

Station Identification:	T5-3-FB				
Date: (mm/dd/yyyy)	1/4/18		·		
Time Started: (hh:mm)	1800	· · · · · · · · · · · · · · · · · · ·	Ended: (hh:mm) _	1810	
GPS: (WGS84)	Lat. NA		Long	NA	
Tide (ft):	NA		<u>:</u>		
Weather conditions:	Oes				
Wind (none, light, moderate, heavy):	Nine			•	
Sea State Conditions (calm, ripples, small waves)	Cdm			4	
Physical Water Qua	lity Measurements				
Time of collection:		рН	Salinity (ppt)	Temperature (°C)	CONDUCT
	Measurement:	NA	NA	NA	
*Water quality measured at t	he same depth as sample colle	ection (i.e. within 1	meter from the s	surface).	

APPENDIX F CORRESPONDENCE AND AGENCY MEMORANDA

This page intentionally left blank

March 2018

CORRESPONDENCES

PORT COMMENTS ON 3 CCR SECTION 6190 COPPER-BASED ANTIFOULING PAINTS AND COATINGS

January 31, 2017

Ms. Linda Irokawa-Otani Regulations Coordinator Department of Pesticide Regulation 1001 I Street, P.O. Box 4015 Sacramento, CA 95812-4015

Subject:

San Diego Unified Port District Comments on 3 CCR Section 6190

Copper-Based Antifouling Paints and Coatings

Dear Ms. Irokawa-Otani,

The San Diego Unified Port District (District) appreciates your staff's efforts to update the regulations relating to copper-based antifouling paint and coating products (AFP), proposed as 3 CCR Section 6190 Copper-Based Antifouling Paints and Coatings, and is providing the following comment letter in response.

For over a decade, the District has been encouraging statewide efforts to control copper-based AFPs to ensure their compatibility with the aquatic environment. The District has taken a leadership role in addressing this issue by developing model programs for hull paint research and policy-based copper reduction initiatives. We have worked closely with your agency during this time, and have been successful in establishing positive relations with the boating community locally and statewide.

More recently, the District sponsored Assembly Bill 425 (AB425). This bill, signed by Governor Brown in October 2013 directed your agency by February 1, 2014, "to set a leach rate for copper-based antifouling paints used on recreational vessels and to make recommendations for appropriate mitigation measures that may be implemented to protect aquatic environments from the effects of exposure to that paint if it is registered as a pesticide".

In a letter dated February 24, 2015 (Attachment A) and co-signed by the District and the San Diego Regional Water Quality Control Board Executive Officer, it was further requested that the DPR expedite their implementation strategy to ensure that paints are reformulated and readily available to the public. Specifically it was requested that DPR (1) require paint manufacturers to reformulate their paints, (2) streamline the approval process to make these paints commercially available, and (3) move forward on other mitigation measures, especially those pertaining to in-water hull cleaning. Consistent with those comments, the District is respectfully submitting the following comments and we ask that you consider these comments on the recent draft rule.

1. The District Supports the Leach Rate Effective Date.

The District greatly appreciates DPR's efforts to address this state-wide issue with a state-wide leach rate rule. The proposed rule sets the date of July 1, 2018, for the 9.5 µg/cm²/day leach rate to take effect. This leach rate was first identified in your January 30, 2014 Memorandum¹ (2014 Memo) in response to AB425. As such, registrants have had over four years to bring their products into compliance ahead of this deadline. Moreover, the proposed rule does not go into effect immediately, instead it identifies a delayed start date providing additional time after adoption for registrants to bring products into compliance.

The District supports this deadline. An expeditious timeline for eliminating high leach paints is critical for those marina basins faced with existing TMDL timelines.

2. <u>Use of a Conversion Factor is Discouraged.</u>

DPR is required to ensure the products they regulate are used in a manner that is protective of the environment. During the development of the maximum leach rate (2014 Memo), DPR acknowledged that calculating leach rates using the International Organization for Standardization (ISO) Method 10890:2010 was an appropriate tool for modeling copper in marinas. However, DPR also acknowledged that the ISO Method may overestimate the real world release of copper.

The leach rate modeling effort considered several leach rate scenarios ranging from 1.12 to 24.60 $\mu g/cm^2/day$. Several model inputs were adjusted to achieve the wide range of leach rates. One such input included the use of a conversion factor to normalize the real world copper release rates. However, when initially setting the maximum allowable leach rate at 9.5 $\mu g/cm^2/day$, DPR acknowledged that this leach rate would bring most but not all marinas within water quality standards.

Given that some of the larger marina basins may not achieve water quality standards with the 9.5 μ g/cm²/day leach rate, the use of a conversion factor that allows for an increase in copper loading beyond what the ISO Method derives is not appropriate.

3. <u>Use of Other Mitigation Measures Should Be Included in the Rule.</u>

The DPR's 2014 Memo identified a list of mitigation measures to be used in conjunction with the AFPs, in addition to setting a maximum leach rate. In that

¹ DPR Memorandum: Determination of Maximum Allowable Leach Rate and Mitigation Recommendations for Copper Antifouling Paints per AB425, January 30, 2014

Ms. Linda Irokawa-Otani Page 3 January 31, 2017

Memo, DPR concluded that "if product reformulation is to play a key part in the mitigation of copper in marinas, other critical activities need to also be implemented to ensure the overall success of this endeavor".

As stated above, the modeling identified many scenarios and leach rates ranging from 1.12 to 24.60 μ g/cm²/day. Many of the leach rate scenarios factored in the use of mitigation measures such as limiting in-water hull cleaning frequencies and using specific cleaning tools. As such, for the 9.5 μ g/cm²/day leach rate to be effective, the mitigation measures themselves must also become part of the regulation.

It is presumptuous to assume that the boating community (boaters, hull cleaners, marina operators, etc.) is fully aware of the associated mitigation measures that should be used in conjunction with the copper-based AFPs. For one, the paint application process generally occurs at a boatyard, so labeling requirements for paint maintenance and cleaning likely do not reach the boat owner or hull cleaning companies. As such, that may lead to the misuse of copper-based AFPs and negatively impact the reductions in copper loading that were assumed when setting the maximum leach rate. Moreover, compliance with those mitigation measures, if not included in the state regulation, would be left with other entities or not enforced.

For any leach rate rule to be effective an implementation strategy must be in place to ensure that, when copper-based AFPs are reformulated and readily available to the public, they are properly used by boatyards and boaters. The District recommends that DPR adopt specific mitigation measures with the existing leach rate as part of this rule OR lower the allowable leach rate to ensure that legally available copper-based AFPs do not impair aquatic environments.

4. The New Leach Rates should apply to Commercial Vessels.

While many of the dissolved copper TMDLs identify recreational vessels as a primary source of the copper impairment in marina basins, it is likely that some commercial vessels are berthed in those same basins. Additionally, many commercial vessels are painted in the same boatyards as recreational vessels making the potential for misuse likely, especially given the general resistance by some boatyards to alternative paints.

During the District's numerous efforts to encourage the use of alternate or low copper paints, it has become clear that efforts to use other paints are clearly at an economic disadvantage and their use is not wholly supported by those in the boating community with opposing financial interests.

Ms. Linda Irokawa-Otani Page 4 January 31, 2017

are not misused. This could occur through a requirement that paint applicators (or boatyards) submit certified reports on paint usage, however, the enforcement process alone would be labor intensive.

The District strongly recommends that the new leach rate standards apply to both recreational and commercial vessels. Fully regulating at the product level by completely removing AFPs that have been shown to exceed the maximum leach rate is the most effective and efficient option to ensure copper AFPs are not impacting marina waters.

On behalf of the District, I want to thank you for moving ahead with the intent of the AB425 legislation and proposing this rule formalizing the maximum leach set forth. As you state in your supporting documentation for this rule², we are pleased that you will continue monitoring for copper contamination and evaluate compliance with water quality standards and that you have positioned your agency to move ahead on additional measures if the proposed rule is not fully effective in protecting aquatic environments.

Thank you for considering these comments. We ask that your agency work closely with the District and other stakeholders to encourage a smooth and swift transition to the new regulation and will make our staff available to assist in any way possible. If you have questions or would like further information, please contact me at (619) 725-6073 or via email at kholman@portofsandiego.org.

Sincerely,

Karen Holman.

Principal, Planning & Green Port

Attachments:

Attachment A – February 24, 2015 Letter to DPR: Implementation of AB425 Measures and List of Hull Paints Meeting the AB425 Leach Rate Criteria

Cc via email

T. Scott Edwards, Jason H. Giffen, John Carter

Jeremy Haas, SDRWQCB

Deborah Pennell, John Adriany, Shelter Island Master Leaseholders Group

Sharon Cloward, SDPTA

²DPR: Initial Statement of Reasons and Public Report, Nov 2016, Page 5

Attachment A

February 24, 2015

Mr. Brian R. Leahy Director Department of Pesticide Regulation 1001 I Street P.O. Box 4015 Sacramento, CA 95812-4015

Subject:

Implementation of AB 425 Measures and List of Hull Paints Meeting the

AB425 Leach Rate Criteria

Dear Mr. Leahy,

As you are aware, the San Diego Unified Port District (District) sponsored Assembly Bill 425 (AB425), authored by Assembly Speaker Toni Atkins. This bill, signed by Governor Brown in October 2013 directed the Department of Pesticide Regulation (DPR) by February 1, 2014, "to set a leach rate for copper-based antifouling paints used on recreational vessels and to make recommendations for appropriate mitigation measures that may be implemented to protect aquatic environments from the effects of exposure to that paint if it is registered as a pesticide". We appreciate your staff's diligence to complete the task by the February 1, 2014, deadline and have reviewed the Memorandum dated January 30, 2014, (Report) that you completed in response to AB425.

However, completion of the Report cannot, by itself, affect the needed behavior change and wholesale conversion to new paints. An implementation strategy must be in place to ensure that paints are reformulated and readily available to the public. Given that there is an inherent amount of time that must occur to have a wholesale conversion of boats to new paints, we strongly encourage your agency to expedite efforts to (1) require paint manufacturers to reformulate their paints, (2) streamline the approval process to make low-copper paints commercially available, (3) move forward on the other mitigation measures identified in your Report, and (4) work with us to effectively communicate how best to achieve water quality goals.

Mr. Brian R. Leahy Page 2 February 24, 2015

Moreover, it is our understanding that some currently-available copper antifouling paints already meet the new leach rates. As such, we respectfully request DPR's assistance to publicize a list of paints that meet the new leach rates as soon as feasibly possible. Earlier product availability will enable more boats to convert in advance of the existing regulatory timelines, thereby improving the ability to achieve our regulatory targets; it is essential that this be expedited. Furthermore, we appreciate that DPR is working collaboratively with the State Water Board on a statewide strategy to address management of in-water hull cleaning activities. We recognize the benefits of that statewide approach, and our staffs are available for consultation as necessary from a local perspective.

The Shelter Island Yacht Basin Dissolved Copper Total Maximum Daily Load (TMDL)¹ is one of the leading regulatory drivers to reduce copper loading from boat hull paints. The TMDL has been in place since 2005 and stakeholders are making substantial efforts to identify copper reduction approaches to comply with this regulation. This TMDL mandates a 76-percent reduction in copper by 2022, a target that is exceedingly difficult while products containing large amounts of copper remain legally available.

For several years, the San Diego Water Board (Water Board) and the District have been at the forefront of this copper issue and have made significant progress in working to develop a core understanding of the concerns and the challenges of complying with water quality regulations that stem from the use of a legally available product, such as copper antifouling paint.

Both the Water Board and the District strongly support the use of sound science and advancements in scientific technologies. Water quality regulations are most effective when they rely on the latest, pertinent science. To that end, DPR's Report advances our collective ability to address copper impairments, and we agree the combination of less-toxic hull paints, practical management measures, and education is the right approach for guiding water quality regulations.

As indicated in the Report, the new leach rates set forth should help to decrease copper loading in our marinas. Coupled with the other mitigation measures identified in your Report, namely the product labeling and use of alternative (e.g., non-copper and non-toxic) paints, we believe that implementing the Report's findings will lead to long-term control of vessel-related copper pollution in San Diego Bay.

¹ SIYB TMDL: http://www.waterboards.ca.gov/sandiego/water_issues/programs/watershed/souwatershed.shtml#siybtmdl

Mr. Brian R. Leahy Page 3 February 24, 2015

Additionally, as your Report suggests, in some marina basins, conversion to the new leach rates may reduce copper to acceptable levels. However, in others, such as Shelter Island, it does not appear that the recommended leach rates coupled with the best management cleaning practices will achieve existing water quality objectives for dissolved copper. To that end, we echo the concerns that the Los Angeles and Santa Water Boards outlined in their August 15, 2014, letter to you.

Clearly, your Report is an important milestone toward protecting the marine environment from toxic effects of copper leached from recreational vessels. We are now requesting DPR expedite follow-up efforts because implementing the recommendations becomes even more crucial as our TMDL timeline progresses and other TMDLs are adopted across the state. We look forward to hearing about DPR's implementation plan and working with you to achieve our shared water quality goals.

On behalf of the Water Board and the District, we thank you for your involvement in AB425. We firmly believe that these efforts will set the pace for addressing copper in waters. Our staff is available to assist in any way possible; please contact Karen Holman, Department Manager, at the District at (619) 725-6073, or Jeremy Haas, Environmental Program Manager, at the Water Board at (619) 521-3009.

Sincerely,

John Bolduc

Acting President/CEO

San Diego Unified Port District

David Gibson

Executive Officer

San Diego Regional Water Quality Control

W. 1/3

Board

cc: San Diego Unified Port District Board of Port Commissioners,
Charles M. Andrews, Associate Director, Pesticide Programs Division, DPR
David Duncan, Environmental Program Manager II, DPR
Nan Singhasemanon, Sr Environmental Scientist, DPR
Vicky Whitney, Deputy Director, Division of Water Quality, SWRCB
Phillip Crader, Assistant Deputy Director, Division of Water Quality, SWRCB
Jeremy Haas, SDRWQCB
Jason H. Giffen, SDUPD
Ellen Gross, SDUPD
Karen Holman, SDUPD
Sharon Cloward, SDPTA
Shelter Island Master Leaseholders Group

CORRESPONDENCES

COMMENT- REGISTRATION REVIEW PROPOSED INTERIM DECISIONS BEING ISSUED FOR COPPER COMPOUNDS, CASE NUMBERS 0636, 0649, 4025, 4026 (EPA-HQ-QPP-2010-0212)

VIA EMAIL

November 16, 2017

U.S. Environmental Protection Agency C/O OPP Docket Environmental Protection Agency Docket Center (EPA/DC) 1200 Pennsylvania Ave. NW Washington, DC 20460-0001 Attn: Jordan Page and Kimberly Wilson

Subject: Comment- Registration Review Proposed Interim Decisions Being

Issued for Copper Compounds, Case Numbers 0636, 0649, 4025, 4026

(EPA-HQ-QPP-2010-0212)

Dear Ms. Page and Ms. Wilson:

Thank you for the opportunity to provide comments on the registration review proposed interim decisions being issued for copper compounds (Case Numbers 0636, 0649, 4025, 4026; EPA-HQ-QPP-2010-0212). As one of the key stakeholders in Shelter Island Yacht Basin (SIYB; San Diego Bay, San Diego, CA), the San Diego Unified Port District (District) is currently faced with dissolved copper water quality impairments that have resulted in the assignment of a Total Maximum Daily Load (TMDL).

For several years, the District has been at the forefront of copper reduction efforts and has made significant progress in working to develop a core understanding of the concerns and challenges of complying with water quality regulations that stem from the use of a legally available product, such as copper antifouling paint. The District has taken a leadership role by developing model programs for hull paint research, as well as implementing policy-based efforts to address the impacts from in-water hull cleaning.

The SIYB Dissolved Copper TMDL¹ is one of the leading regulatory drivers to reduce copper loading from boat hull paints. The TMDL has been in place since 2005 and stakeholders are making substantial efforts to identify copper reduction approaches to comply with this regulation. This TMDL mandates a 76-percent reduction in copper by 2022. This target reduction is exceedingly difficult to achieve while products, such as anti-fouling coatings (AFCs), containing large amounts of copper remain legally available.

¹ SIYB TMDL: http://www.waterboards.ca.gov/sandiego/water_issues/programs/watershed/souwatershed.shtml#siybtmd

November 16, 2017

U.S. Environmental Protection Agency C/O OPP Docket Environmental Protection Agency Docket Center (EPA/DC) Attn: Jordan Page and Kimberly Wilson

Subject:

Comment- Registration Review Proposed Interim Decisions Being Issued for Copper Compounds, Case Numbers 0636, 0649, 4025, 4026 (EPA-HQ-QPP-2010-0212)

In that regard, the District respectfully provides the following comments on the proposed interim decisions, specifically in reference to Section 4. Ecological-Antimicrobial Uses-Anti-foulant Paints and Coatings:

- 1. The District strongly supports the use of sound science and advancements in scientific technologies. New information that has been scientifically validated should be taken into account and used when considering the registration of products that have the potential to adversely impact the environment. As the EPA moves forward on the registration review for copper compounds, the District encourages your agency to consider the scientific findings and water quality impacts, especially in regions with known impairments, to ensure that legally available products do not continue to contribute to those regions' impairments. This would include carefully reviewing leach rates (or product discharge rates) and ensuring the acceptable leach rates will not adversely impact water quality.
- 2. The EPA is proposing to issue a Data Call-In Notice (DCI) requiring the submittal of leach rate data for all end-use inorganic copper AFCs to determine the lowest possible efficacious copper release rates. The District strongly encourages the EPA to require the registrants to submit, as part of the DCI data package, the specific hull cleaning and maintenance expectations for each potential product under consideration.

Copper AFCs have an approximate three-year life cycle, which includes routine paint application and ongoing associated hull maintenance. In-water hull cleaning is a standard hull maintenance practice in warmer regions of the United States where year-round boating occurs. In-water hull cleaning has been shown to increase the release of copper during the cleaning event and over an extended duration after a cleaning event, due to an increased copper release rate from accelerated surface refreshment (SIYB TMDL 2005; Earley 2013). As such, setting appropriate leach rate for copper AFCs must consider the additional contribution or accelerated release of copper associated with cleaning. If the cleaning information is not considered when setting leach rates, it is likely that practical use of such products would result in higher than expected real-time copper releases, thereby creating adverse environmental impacts. As such, it is critical that in-water hull cleaning contributions be considered when setting product leach rates.

November 16, 2017

U.S. Environmental Protection Agency C/O OPP Docket Environmental Protection Agency Docket Center (EPA/DC) Attn: Jordan Page and Kimberly Wilson

Subject:

Comment- Registration Review Proposed Interim Decisions Being Issued for Copper Compounds, Case Numbers 0636, 0649, 4025, 4026 (EPA-HQ-QPP-2010-0212)

The District will continue to implement practices that will further reduce copper loading in SIYB. Coordinating with regulatory agencies on strategic source control efforts such as product registration and improving in-water hull cleaning practices is paramount to achieving healthy waters. We appreciate the opportunity to comment on this critical regulatory issue. Please contact Kelly Tait at (619) 686-6372, or via email at ktait@portofsandiego.org if you have any questions or require clarification on these comments

Respectfully,

Karen Holman

Director

Environmental Protection Planning & Green Port

KH:te

cc:

Jason Giffen, Assistant Vice President John Carter, Deputy General Counsel

CORRESPONDENCES REQUEST FOR CERTIFICATION LETTERS

VIA US MAIL AND ELECTRONIC MAIL

December 20, 2017

Bay Club Hotel & Marina
Attn: Mike Ardelt, General Manager
mike@bayclubhotel.com
2131 Shelter Island Drive
San Diego, CA 92106

Subject: New SIYB Vessel Tracking Submittal Requirements effective January 2018

Dear Mr. Ardelt,

As you are aware, the Shelter Island Yacht Basin (SIYB) is under a Total Maximum Daily Load (TMDL) regulatory directive related to elevated levels of dissolved copper in the basin. The TMDL requires a 76% reduction of dissolved copper loading by the year 2022. To date, the Shelter Island Master Leaseholder Group (SIMLG) has been instrumental in gathering data on vessel hull paint, educating boaters on alternative paint options and coordinating with the Port on in-water hull cleaning permit oversight. The Port appreciates your assistance with these efforts.

2017 marks an important compliance milestone for the SIYB TMDL because there is an interim loading reduction requirement of 40% that must be achieved by the end of this year. The reporting of paint usage within each marina leasehold is essential in calculating this interim reduction. As such, providing accurate and timely information is critical to determining compliance with the 2017 interim copper reduction target.

Investigative Order No. R9-2011-0036 directs the Port to monitor and regularly report to the San Diego Water Quality Control Board on the progress being made in implementing the SIYB TMDL and achieving the required dissolved copper load reductions. Each year, as part of the annual reporting requirement, the Port compiles the data that was provided by the SIMLG. In addition to other requirements, the Investigative Order requires the Port to retain all reported information for a period of five (5) years and certify the accuracy of the data contained in the annual report.

Attached to this letter is an assessment of last year's vessel paint tracking data comparing your marina with the average for all marinas in SIYB for the 2016 calendar year (Attachment 1). Thank you for your efforts to this point in providing the paint usage and vessel occupancy data for your marina. However, while a good amount of data exists, there remains a large basin-wide fraction (23%) of vessels with unknown or incomplete paint records. For 2016, the Bay Club Marina reported 26% of records that were unknown or incomplete. This is higher than the basin average percent of incomplete records. Accurate and complete data is

needed from every marina to improve basin wide reporting. Please make every effort to improve your reporting percentage moving forward.

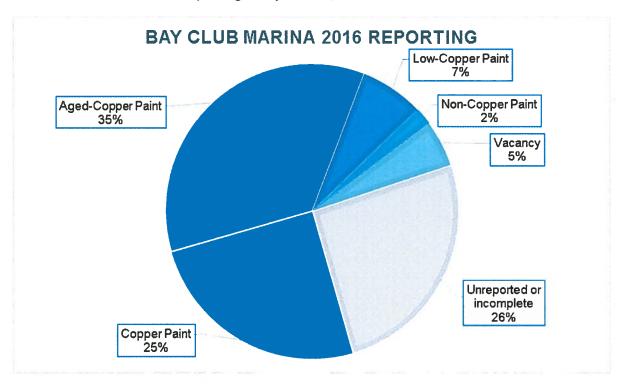
Upon review of the data to date and the requirements set forth in the Regional Board Investigative Order, the Port is requesting the following changes take place to improve data collection and reporting:

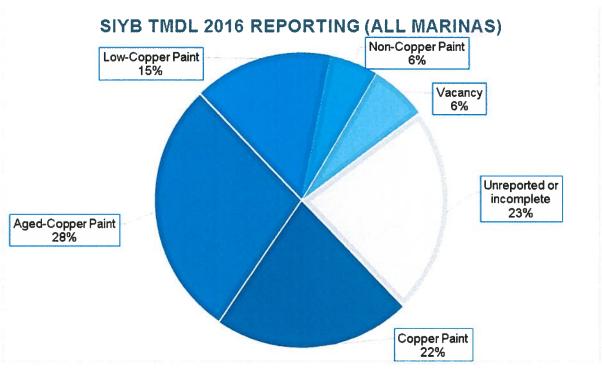
- Signed Marina Self-Certification Form Effective with this upcoming report (for the 2017 year), the Port will be requiring that all vessel data submittals be accompanied by a signed confirmation statement from each marina (Attachment 2), indicating that they have reviewed the data and verified the content to the best of their knowledge. These statements will be included in the submittal package provided in the TMDL Annual Report.
- 2. Records Retention The Investigative Order requires that records be retained for a period of five years following report submittal. As such, the Port is requesting that marinas keep and maintain the vessel tracking files, spreadsheets, and boater tracking forms from each reporting period for the same period of five years. This will ensure that marinas can properly respond to inquiries from the Port or Regional Board related to such data. This requirement is to become effective with the 2017 vessel data submittal.

Thank you for your continued efforts to reduce copper loading into SIYB. We hope that these administrative changes will continue to improve the data reporting. If you have any questions, please do not hesitate to contact Kelly Tait, Senior Environmental Specialist at 619-686-6372 or ktait@portofsandiego.org.

Sincerely.

Karen Holman


Director, Environmental Protection San Diego Unified Port District


Attachments:

Attachment 1: 2016 Vessel Tracking Statistics for SIYB and Marinas

Attachment 2: Marina Self-Certification Form

2016 Reporting Comparisons; Marina vs Basin-Wide

Marina Self-Certification Form
[Add Date]

I certify that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete.

NAME
POSITION/TITLE
COMPANY NAME

VIA US MAIL AND ELECTRONIC MAIL

December 20, 2017

Best Western Island Palms Hotel (Shelter Island Marina)
Attn: Richard Bartell, President and CEO
rbartell@bartellhotels.com
4875 N. Harbor Drive
San Diego, CA 92106

Subject: New SIYB Vessel Tracking Submittal Requirements effective January 2018

Dear Mr. Bartell,

As you are aware, the Shelter Island Yacht Basin (SIYB) is under a Total Maximum Daily Load (TMDL) regulatory directive related to elevated levels of dissolved copper in the basin. The TMDL requires a 76% reduction of dissolved copper loading by the year 2022. To date, the Shelter Island Master Leaseholder Group (SIMLG) has been instrumental in gathering data on vessel hull paint, educating boaters on alternative paint options and coordinating with the Port on in-water hull cleaning permit oversight. The Port appreciates your assistance with these efforts.

2017 marks an important compliance milestone for the SIYB TMDL because there is an interim loading reduction requirement of 40% that must be achieved by the end of this year. The reporting of paint usage within each marina leasehold is essential in calculating this interim reduction. As such, providing accurate and timely information is critical to determining compliance with the 2017 interim copper reduction target.

Investigative Order No. R9-2011-0036 directs the Port to monitor and regularly report to the San Diego Water Quality Control Board on the progress being made in implementing the SIYB TMDL and achieving the required dissolved copper load reductions. Each year, as part of the annual reporting requirement, the Port compiles the data that was provided by the SIMLG. In addition to other requirements, the Investigative Order requires the Port to retain all reported information for a period of five (5) years and certify the accuracy of the data contained in the annual report.

Attached to this letter is an assessment of last year's vessel paint tracking data comparing your marina with the average for all marinas in SIYB for the 2016 calendar year (Attachment 1). Thank you for your efforts to this point in providing the paint usage and vessel occupancy data for your marina. However, while a good amount of data exists, there remains a large basin-wide fraction (23%) of vessels with unknown or incomplete paint records. For 2016, the Shelter Island Marina reported 18% of records that were unknown or incomplete. Thank

you for your efforts, to date in collecting accurate vessel data. Please continue your efforts to obtain a high quality data set for the basin.

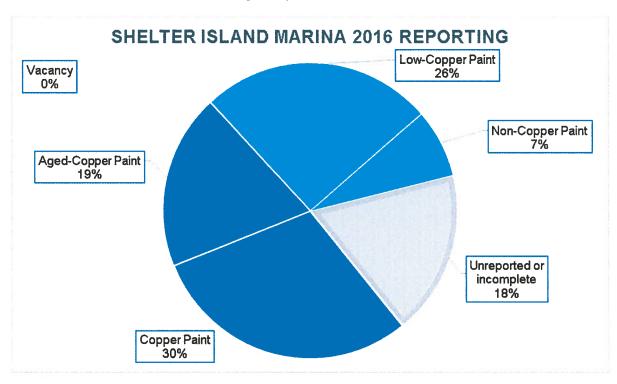
Upon review of the data to date and the requirements set forth in the Regional Board Investigative Order, the Port is requesting the following changes take place to improve data collection and reporting:

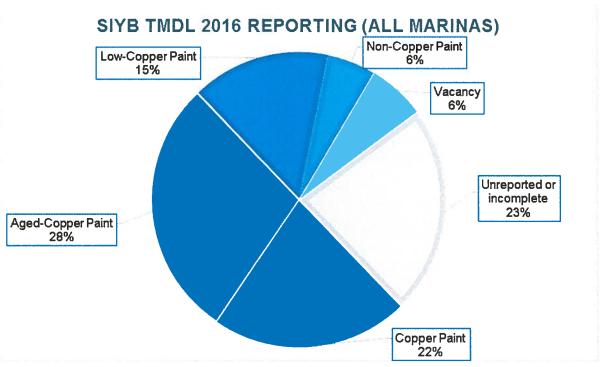
- Signed Marina Self-Certification Form Effective with this upcoming report (for the 2017 year), the Port will be requiring that all vessel data submittals be accompanied by a signed confirmation statement from each marina (Attachment 2), indicating that they have reviewed the data and verified the content to the best of their knowledge. These statements will be included in the submittal package provided in the TMDL Annual Report.
- 2. Records Retention The Investigative Order requires that records be retained for a period of five years following report submittal. As such, the Port is requesting that marinas keep and maintain the vessel tracking files, spreadsheets, and boater tracking forms from each reporting period for the same period of five years. This will ensure that marinas can properly respond to inquiries from the Port or Regional Board related to such data. This requirement is to become effective with the 2017 vessel data submittal.

Thank you for your continued efforts to reduce copper loading into SIYB. We hope that these administrative changes will continue to improve the data reporting. If you have any questions, please do not hesitate to contact Kelly Tait, Senior Environmental Specialist at 619-686-6372 or ktait@portofsandiego.org.

Sincerely,

Karen Holman


Director, Environmental Protection San Diego Unified Port District


Attachments:

Attachment 1: 2016 Vessel Tracking Statistics for SIYB and Marinas

Attachment 2: Marina Self-Certification Form

2016 Reporting Comparisons; Marina vs Basin-Wide

Marina Self-Certification Form [Add Date]

I certify that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete.

[NAME [TITLE / POSITION] [COMPANY NAME]

VIA US MAIL AND ELECTRONIC MAIL

December 20, 2017

Crow's Nest Yacht Sales and Ship Brokerage Attn: Cathy Guino, General Manager sandiego@crowsnestyachts.com 2515 Shelter Island Drive San Diego, CA 92106

Subject: New SIYB Vessel Tracking Submittal Requirements effective January 2018

Dear Ms. Guino,

As you are aware, the Shelter Island Yacht Basin (SIYB) is under a Total Maximum Daily Load (TMDL) regulatory directive related to elevated levels of dissolved copper in the basin. The TMDL requires a 76% reduction of dissolved copper loading by the year 2022. To date, the Shelter Island Master Leaseholder Group (SIMLG) has been instrumental in gathering data on vessel hull paint, educating boaters on alternative paint options and coordinating with the Port on in-water hull cleaning permit oversight. The Port appreciates your assistance with these efforts.

2017 marks an important compliance milestone for the SIYB TMDL because there is an interim loading reduction requirement of 40% that must be achieved by the end of this year. The reporting of paint usage within each marina leasehold is essential in calculating this interim reduction. As such, providing accurate and timely information is critical to determining compliance with the 2017 interim copper reduction target.

Investigative Order No. R9-2011-0036 directs the Port to monitor and regularly report to the San Diego Water Quality Control Board on the progress being made in implementing the SIYB TMDL and achieving the required dissolved copper load reductions. Each year, as part of the annual reporting requirement, the Port compiles the data that was provided by the SIMLG. In addition to other requirements, the Investigative Order requires the Port to retain all reported information for a period of five (5) years and certify the accuracy of the data contained in the annual report.

Attached to this letter is an assessment of last year's vessel paint tracking data comparing your marina with the average for all marinas in SIYB for the 2016 calendar year (Attachment 1). Thank you for your efforts to this point in providing the paint usage and vessel occupancy data for your marina. However, while a good amount of data exists, there remains a large basin-wide fraction (23%) of vessels with unknown or incomplete paint records. For 2016, your marina reported 40% of records that were unknown or incomplete. This is higher than

the basin average percent of incomplete records. Accurate and complete data is needed from every marina to improve basin wide reporting. Please make every effort to improve your reporting percentage moving forward.

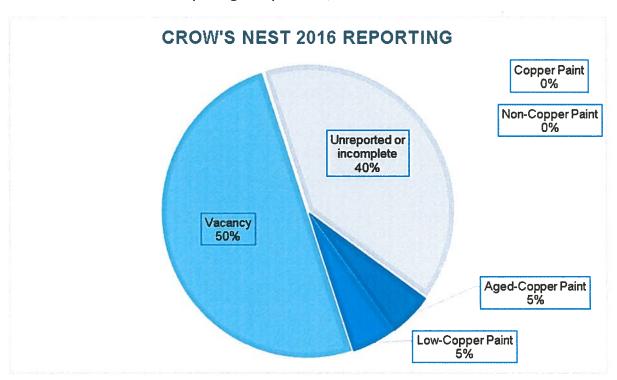
Upon review of the data to date and the requirements set forth in the Regional Board Investigative Order, the Port is requesting the following changes take place to improve data collection and reporting:

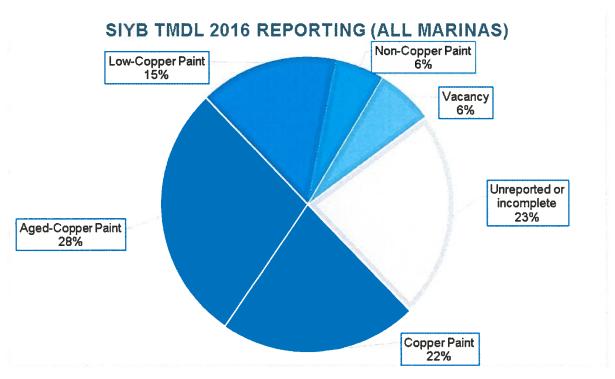
- Signed Marina Self-Certification Form Effective with this upcoming report (for the 2017 year), the Port will be requiring that all vessel data submittals be accompanied by a signed confirmation statement from each marina (Attachment 2), indicating that they have reviewed the data and verified the content to the best of their knowledge. These statements will be included in the submittal package provided in the TMDL Annual Report.
- 2. Records Retention The Investigative Order requires that records be retained for a period of five years following report submittal. As such, the Port is requesting that marinas keep and maintain the vessel tracking files, spreadsheets, and boater tracking forms from each reporting period for the same period of five years. This will ensure that marinas can properly respond to inquiries from the Port or Regional Board related to such data. This requirement is to become effective with the 2017 vessel data submittal.

Thank you for your continued efforts to reduce copper loading into SIYB. We hope that these administrative changes will continue to improve the data reporting. If you have any questions, please do not hesitate to contact Kelly Tait, Senior Environmental Specialist at 619-686-6372 or ktait@portofsandiego.org.

Sincerely,

Karen Holman


Director, Environmental Protection San Diego Unified Port District


Attachments:

Attachment 1: 2016 Vessel Tracking Statistics for SIYB and Marinas

Attachment 2: Marina Self-Certification Form

2016 Reporting Comparisons; Marina vs Basin-Wide

Marina Self-Certification Form
[Add Date]

I certify that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete.

[NAME [TITLE / POSITION] [COMPANY NAME]

VIA US MAIL AND ELECTRONIC MAIL

December 20, 2017

Gold Coast Anchoring Marina
Attn: Tom Nielsen, General Manager
tom@nielsenbeaumont.com
2353 Shelter Island Drive
San Diego, CA 92106

Subject: New SIYB Vessel Tracking Submittal Requirements effective January 2018

Dear Mr. Nielsen,

As you are aware, the Shelter Island Yacht Basin (SIYB) is under a Total Maximum Daily Load (TMDL) regulatory directive related to elevated levels of dissolved copper in the basin. The TMDL requires a 76% reduction of dissolved copper loading by the year 2022. To date, the Shelter Island Master Leaseholder Group (SIMLG) has been instrumental in gathering data on vessel hull paint, educating boaters on alternative paint options and coordinating with the Port on in-water hull cleaning permit oversight. The Port appreciates your assistance with these efforts.

2017 marks an important compliance milestone for the SIYB TMDL because there is an interim loading reduction requirement of 40% that must be achieved by the end of this year. The reporting of paint usage within each marina leasehold is essential in calculating this interim reduction. As such, providing accurate and timely information is critical to determining compliance with the 2017 interim copper reduction target.

Investigative Order No. R9-2011-0036 directs the Port to monitor and regularly report to the San Diego Water Quality Control Board on the progress being made in implementing the SIYB TMDL and achieving the required dissolved copper load reductions. Each year, as part of the annual reporting requirement, the Port compiles the data that was provided by the SIMLG. In addition to other requirements, the Investigative Order requires the Port to retain all reported information for a period of five (5) years and certify the accuracy of the data contained in the annual report.

Attached to this letter is an assessment of last year's vessel paint tracking data comparing your marina with the average for all marinas in SIYB for the 2016 calendar year (Attachment 1). Thank you for your efforts to this point in providing the paint usage and vessel occupancy data for your marina. However, while a good amount of data exists, there remains a large basin-wide fraction (23%) of vessels with unknown or incomplete paint records. For 2016, the Gold Coast Anchorage reported 11% of records that were unknown or incomplete. Thank

you for your efforts, to date in collecting accurate vessel data. Please continue your efforts to obtain a high quality data set for the basin.

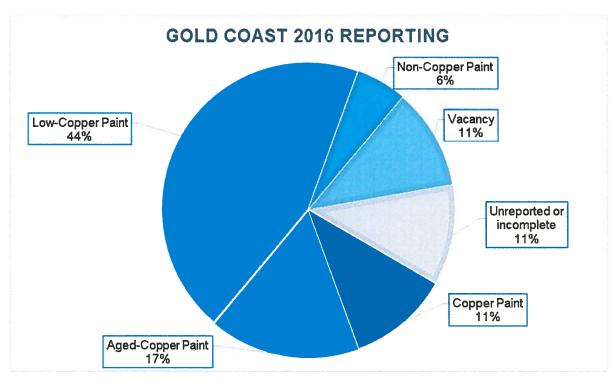
Upon review of the data to date and the requirements set forth in the Regional Board Investigative Order, the Port is requesting the following changes take place to improve data collection and reporting:

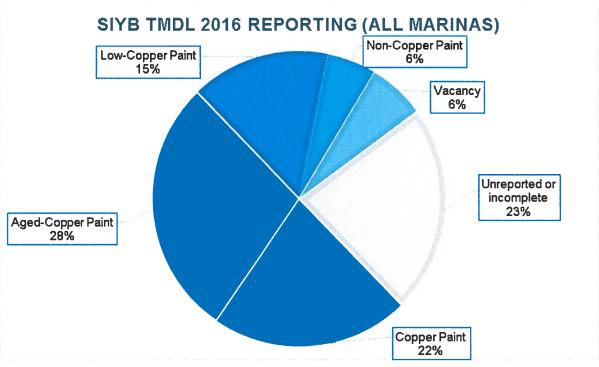
- Signed Marina Self-Certification Form Effective with this upcoming report (for the 2017 year), the Port will be requiring that all vessel data submittals be accompanied by a signed confirmation statement from each marina (Attachment 2), indicating that they have reviewed the data and verified the content to the best of their knowledge. These statements will be included in the submittal package provided in the TMDL Annual Report.
- 2. Records Retention The Investigative Order requires that records be retained for a period of five years following report submittal. As such, the Port is requesting that marinas keep and maintain the vessel tracking files, spreadsheets, and boater tracking forms from each reporting period for the same period of five years. This will ensure that marinas can properly respond to inquiries from the Port or Regional Board related to such data. This requirement is to become effective with the 2017 vessel data submittal.

Thank you for your continued efforts to reduce copper loading into SIYB. We hope that these administrative changes will continue to improve the data reporting. If you have any questions, please do not hesitate to contact Kelly Tait, Senior Environmental Specialist at 619-686-6372 or ktait@portofsandiego.org.

Sincerely,

Karen Holman


Director, Environmental Protection San Diego Unified Port District


Attachments:

Attachment 1: 2016 Vessel Tracking Statistics for SIYB and Marinas

Attachment 2: Marina Self-Certification Form

2016 Reporting Comparisons; Marina vs Basin-Wide

Marina Self-Certification Form
[Add Date]

I certify that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete.

NAME
TITLE/POSITION
COMPANY NAME

VIA US MAIL AND ELECTRONIC MAIL

December 20, 2017

Humphrey's Half Moon Inn and Suites Attn: Richard Bartell, President and CEO rbartell@bartellhotels.com 2303 Shelter Island Dr. San Diego, CA 92106

Subject: New SIYB Vessel Tracking Submittal Requirements effective January 2018

Dear Mr. Bartell,

As you are aware, the Shelter Island Yacht Basin (SIYB) is under a Total Maximum Daily Load (TMDL) regulatory directive related to elevated levels of dissolved copper in the basin. The TMDL requires a 76% reduction of dissolved copper loading by the year 2022. To date, the Shelter Island Master Leaseholder Group (SIMLG) has been instrumental in gathering data on vessel hull paint, educating boaters on alternative paint options and coordinating with the Port on in-water hull cleaning permit oversight. The Port appreciates your assistance with these efforts.

2017 marks an important compliance milestone for the SIYB TMDL because there is an interim loading reduction requirement of 40% that must be achieved by the end of this year. The reporting of paint usage within each marina leasehold is essential in calculating this interim reduction. As such, providing accurate and timely information is critical to determining compliance with the 2017 interim copper reduction target.

Investigative Order No. R9-2011-0036 directs the Port to monitor and regularly report to the San Diego Water Quality Control Board on the progress being made in implementing the SIYB TMDL and achieving the required dissolved copper load reductions. Each year, as part of the annual reporting requirement, the Port compiles the data that was provided by the SIMLG. In addition to other requirements, the Investigative Order requires the Port to retain all reported information for a period of five (5) years and certify the accuracy of the data contained in the annual report.

Attached to this letter is an assessment of last year's vessel paint tracking data comparing your marina with the average for all marinas in SIYB for the 2016 calendar year (Attachment 1). Thank you for your efforts to this point in providing the paint usage and vessel occupancy data for your marina. However, while a good amount of data exists, there remains a large basin-wide fraction (23%) of vessels with unknown or incomplete paint records. For 2016, the Half Moon Marina reported 41% of records that were unknown or incomplete. This is higher than the basin average percent of incomplete records. Accurate and complete data is

needed from every marina to improve basin wide reporting. Please make every effort to improve your reporting percentage moving forward.

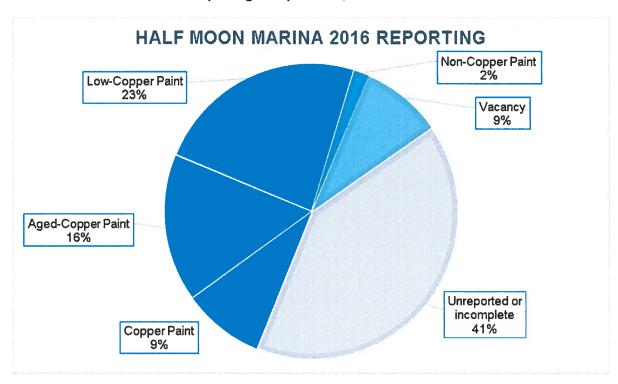
Upon review of the data to date and the requirements set forth in the Regional Board Investigative Order, the Port is requesting the following changes take place to improve data collection and reporting:

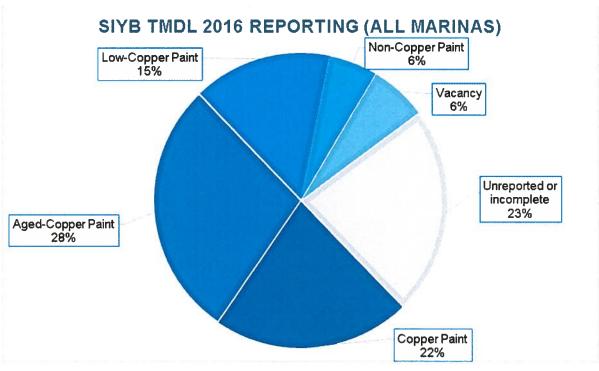
- Signed Marina Self-Certification Form Effective with this upcoming report (for the 2017 year), the Port will be requiring that all vessel data submittals be accompanied by a signed confirmation statement from each marina (Attachment 2), indicating that they have reviewed the data and verified the content to the best of their knowledge. These statements will be included in the submittal package provided in the TMDL Annual Report.
- 2. Records Retention The Investigative Order requires that records be retained for a period of five years following report submittal. As such, the Port is requesting that marinas keep and maintain the vessel tracking files, spreadsheets, and boater tracking forms from each reporting period for the same period of five years. This will ensure that marinas can properly respond to inquiries from the Port or Regional Board related to such data. This requirement is to become effective with the 2017 vessel data submittal.

Thank you for your continued efforts to reduce copper loading into SIYB. We hope that these administrative changes will continue to improve the data reporting. If you have any questions, please do not hesitate to contact Kelly Tait, Senior Environmental Specialist at 619-686-6372 or ktait@portofsandiego.org.

Sincerely,

Karen Holman


Director, Environmental Protection San Diego Unified Port District


Attachments:

Attachment 1: 2016 Vessel Tracking Statistics for SIYB and Marinas

Attachment 2: Marina Self-Certification Form

2016 Reporting Comparisons; Marina vs Basin-Wide

Marina Self-Certification Form
[Add Date]

I certify that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete.

NAME
TITLE/POSITION
COMPANY NAME

VIA US MAIL AND ELECTRONIC MAIL

December 20, 2017

Kona Kai Marina Attn: Hugh Hedin, General Manager hhedin@sdkonakai.com 1551 Shelter Island Drive San Diego, CA 92106

Subject: New SIYB Vessel Tracking Submittal Requirements effective January 2018

Dear Mr. Hedin,

As you are aware, the Shelter Island Yacht Basin (SIYB) is under a Total Maximum Daily Load (TMDL) regulatory directive related to elevated levels of dissolved copper in the basin. The TMDL requires a 76% reduction of dissolved copper loading by the year 2022. To date, the Shelter Island Master Leaseholder Group (SIMLG) has been instrumental in gathering data on vessel hull paint, educating boaters on alternative paint options and coordinating with the Port on in-water hull cleaning permit oversight. The Port appreciates your assistance with these efforts.

2017 marks an important compliance milestone for the SIYB TMDL because there is an interim loading reduction requirement of 40% that must be achieved by the end of this year. The reporting of paint usage within each marina leasehold is essential in calculating this interim reduction. As such, providing accurate and timely information is critical to determining compliance with the 2017 interim copper reduction target.

Investigative Order No. R9-2011-0036 directs the Port to monitor and regularly report to the San Diego Water Quality Control Board on the progress being made in implementing the SIYB TMDL and achieving the required dissolved copper load reductions. Each year, as part of the annual reporting requirement, the Port compiles the data that was provided by the SIMLG. In addition to other requirements, the Investigative Order requires the Port to retain all reported information for a period of five (5) years and certify the accuracy of the data contained in the annual report.

Attached to this letter is an assessment of last year's vessel paint tracking data comparing your marina with the average for all marinas in SIYB for the 2016 calendar year (Attachment 1). Thank you for your efforts to this point in providing the paint usage and vessel occupancy data for your marina. However, while a good amount of data exists, there remains a large basin-wide fraction (23%) of vessels with unknown or incomplete paint records. For 2016, the Kona Kai Marina reported 47% of records that were unknown or incomplete. This is higher than the basin average percent of incomplete records. Accurate and complete data is

needed from every marina to improve basin wide reporting. Please make every effort to improve your reporting percentage moving forward.

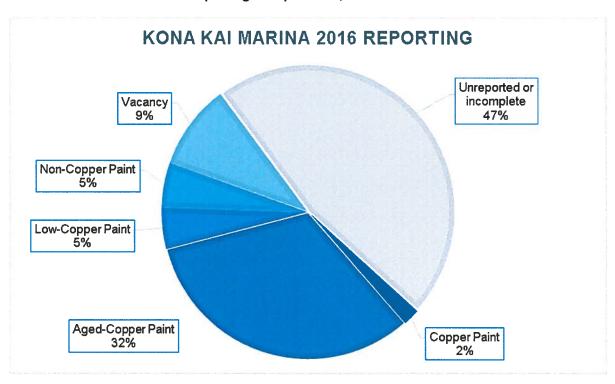
Upon review of the data to date and the requirements set forth in the Regional Board Investigative Order, the Port is requesting the following changes take place to improve data collection and reporting:

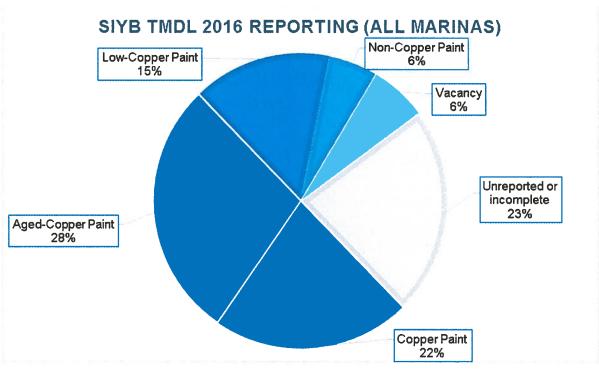
- Signed Marina Self-Certification Form Effective with this upcoming report (for the 2017 year), the Port will be requiring that all vessel data submittals be accompanied by a signed confirmation statement from each marina (Attachment 2), indicating that they have reviewed the data and verified the content to the best of their knowledge. These statements will be included in the submittal package provided in the TMDL Annual Report.
- 2. Records Retention The Investigative Order requires that records be retained for a period of five years following report submittal. As such, the Port is requesting that marinas keep and maintain the vessel tracking files, spreadsheets, and boater tracking forms from each reporting period for the same period of five years. This will ensure that marinas can properly respond to inquiries from the Port or Regional Board related to such data. This requirement is to become effective with the 2017 vessel data submittal.

Thank you for your continued efforts to reduce copper loading into SIYB. We hope that these administrative changes will continue to improve the data reporting. If you have any questions, please do not hesitate to contact Kelly Tait, Senior Environmental Specialist at 619-686-6372 or ktait@portofsandiego.org.

Sincerely

Karen Holman


Director, Environmental Protection San Diego Unified Port District


Attachments:

Attachment 1: 2016 Vessel Tracking Statistics for SIYB and Marinas

Attachment 2: Marina Self-Certification Form

2016 Reporting Comparisons; Marina vs Basin-Wide

Marina Self-Certification Form
[Add Date]

I certify that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete.

NAME TITLE/POSITION COMPANY NAME

VIA US MAIL AND ELECTRONIC MAIL

December 20, 2017

La Playa Yacht Club Attn: Frank Taliaferro, Commodore elon@cox.net P.O. Box 6691 San Diego, CA 92166

Subject: New SIYB Vessel Tracking Submittal Requirements effective January 2018

Dear Mr. Taliaferro,

As you are aware, the Shelter Island Yacht Basin (SIYB) is under a Total Maximum Daily Load (TMDL) regulatory directive related to elevated levels of dissolved copper in the basin. The TMDL requires a 76% reduction of dissolved copper loading by the year 2022. To date, the Shelter Island Master Leaseholder Group (SIMLG) has been instrumental in gathering data on vessel hull paint, educating boaters on alternative paint options and coordinating with the Port on in-water hull cleaning permit oversight. The Port appreciates your assistance with these efforts.

2017 marks an important compliance milestone for the SIYB TMDL because there is an interim loading reduction requirement of 40% that must be achieved by the end of this year. The reporting of paint usage within each marina leasehold is essential in calculating this interim reduction. As such, providing accurate and timely information is critical to determining compliance with the 2017 interim copper reduction target.

Investigative Order No. R9-2011-0036 directs the Port to monitor and regularly report to the San Diego Water Quality Control Board on the progress being made in implementing the SIYB TMDL and achieving the required dissolved copper load reductions. Each year, as part of the annual reporting requirement, the Port compiles the data that was provided by the SIMLG. In addition to other requirements, the Investigative Order requires the Port to retain all reported information for a period of five (5) years and certify the accuracy of the data contained in the annual report.

Attached to this letter is an assessment of last year's vessel paint tracking data comparing your marina with the average for all marinas in SIYB for the 2016 calendar year (Attachment 1). Thank you for your efforts to this point in providing the paint usage and vessel occupancy data for your marina. However, while a good amount of data exists, there remains a large basin-wide fraction (23%) of vessels with unknown or incomplete paint records. For 2016, the La Playa Yacht Club reported 0% of records that were unknown or incomplete. Thank

you for your efforts, to date in collecting accurate vessel data. Please continue your efforts to obtain a high quality data set for the basin.

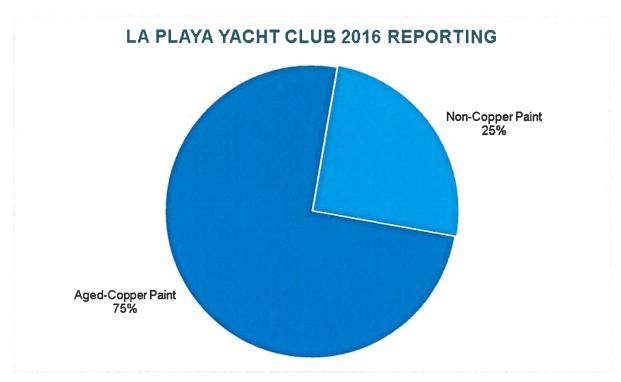
Upon review of the data to date and the requirements set forth in the Regional Board Investigative Order, the Port is requesting the following changes take place to improve data collection and reporting:

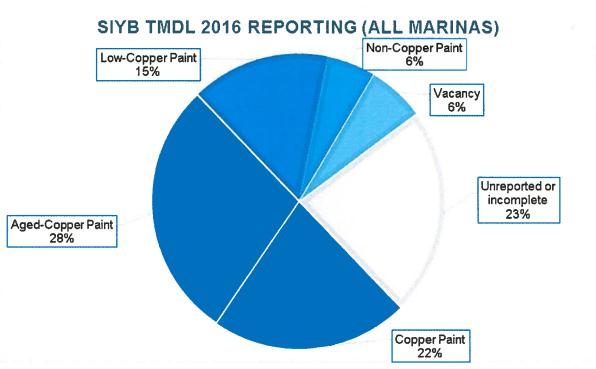
- Signed Marina Self-Certification Form Effective with this upcoming report (for the 2017 year), the Port will be requiring that all vessel data submittals be accompanied by a signed confirmation statement from each marina (Attachment 2), indicating that they have reviewed the data and verified the content to the best of their knowledge. These statements will be included in the submittal package provided in the TMDL Annual Report.
- 2. <u>Records Retention</u> The Investigative Order requires that records be retained for a period of five years following report submittal. As such, the Port is requesting that marinas keep and maintain the vessel tracking files, spreadsheets, and boater tracking forms from each reporting period for the same period of five years. This will ensure that marinas can properly respond to inquiries from the Port or Regional Board related to such data. This requirement is to become effective with the 2017 vessel data submittal.

Thank you for your continued efforts to reduce copper loading into SIYB. We hope that these administrative changes will continue to improve the data reporting. If you have any questions, please do not hesitate to contact Kelly Tait, Senior Environmental Specialist at 619-686-6372 or ktait@portofsandiego.org.

Sincerely,

Karen Holman


Director, Environmental Protection San Diego Unified Port District


Attachments:

Attachment 1: 2016 Vessel Tracking Statistics for SIYB and Marinas

Attachment 2: Marina Self-Certification Form

2016 Reporting Comparisons; Marina vs Basin-Wide

Marina Self-Certification Form
[Add Date]

I certify that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete.

[NAME [TITLE / POSITION] COMPANY NAME

VIA US MAIL AND ELECTRONIC MAIL

December 20, 2017

San Diego Yacht Club Attn: Terry Anglin, General Manager terry@sdyc.org 1011 Anchorage Lane San Diego, CA 92106

Subject: New SIYB Vessel Tracking Submittal Requirements effective January 2018

Dear Mr. Anglin,

As you are aware, the Shelter Island Yacht Basin (SIYB) is under a Total Maximum Daily Load (TMDL) regulatory directive related to elevated levels of dissolved copper in the basin. The TMDL requires a 76% reduction of dissolved copper loading by the year 2022. To date, the Shelter Island Master Leaseholder Group (SIMLG) has been instrumental in gathering data on vessel hull paint, educating boaters on alternative paint options and coordinating with the Port on in-water hull cleaning permit oversight. The Port appreciates your assistance with these efforts.

2017 marks an important compliance milestone for the SIYB TMDL because there is an interim loading reduction requirement of 40% that must be achieved by the end of this year. The reporting of paint usage within each marina leasehold is essential in calculating this interim reduction. As such, providing accurate and timely information is critical to determining compliance with the 2017 interim copper reduction target.

Investigative Order No. R9-2011-0036 directs the Port to monitor and regularly report to the San Diego Water Quality Control Board on the progress being made in implementing the SIYB TMDL and achieving the required dissolved copper load reductions. Each year, as part of the annual reporting requirement, the Port compiles the data that was provided by the SIMLG. In addition to other requirements, the Investigative Order requires the Port to retain all reported information for a period of five (5) years and certify the accuracy of the data contained in the annual report.

Attached to this letter is an assessment of last year's vessel paint tracking data comparing your marina with the average for all marinas in SIYB for the 2016 calendar year (Attachment 1). Thank you for your efforts to this point in providing the paint usage and vessel occupancy data for your marina. However, while a good amount of data exists, there remains a large basin-wide fraction (23%) of vessels with unknown or incomplete paint records. For 2016, the San Diego Yacht Club reported 8% of records that were unknown or incomplete. Thank

you for your efforts, to date in collecting accurate vessel data. Please continue your efforts to obtain a high quality data set for the basin.

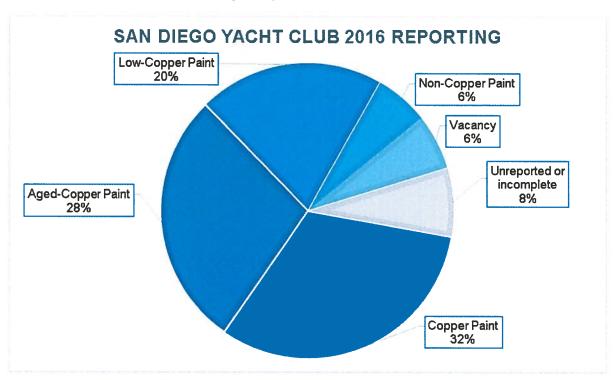
Upon review of the data to date and the requirements set forth in the Regional Board Investigative Order, the Port is requesting the following changes take place to improve data collection and reporting:

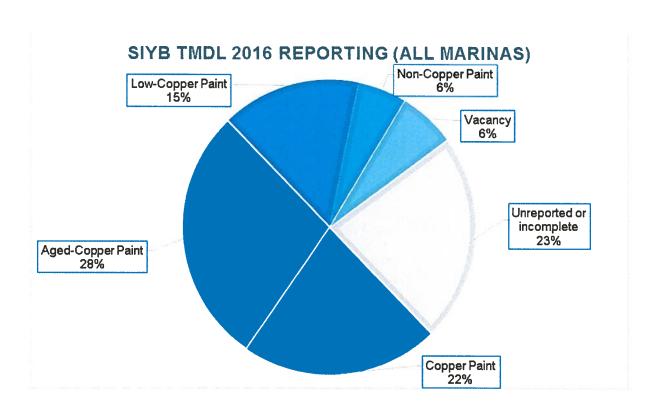
- Signed Marina Self-Certification Form Effective with this upcoming report (for the 2017 year), the Port will be requiring that all vessel data submittals be accompanied by a signed confirmation statement from each marina (Attachment 2), indicating that they have reviewed the data and verified the content to the best of their knowledge. These statements will be included in the submittal package provided in the TMDL Annual Report.
- 2. Records Retention The Investigative Order requires that records be retained for a period of five years following report submittal. As such, the Port is requesting that marinas keep and maintain the vessel tracking files, spreadsheets, and boater tracking forms from each reporting period for the same period of five years. This will ensure that marinas can properly respond to inquiries from the Port or Regional Board related to such data. This requirement is to become effective with the 2017 vessel data submittal.

Thank you for your continued efforts to reduce copper loading into SIYB. We hope that these administrative changes will continue to improve the data reporting. If you have any questions, please do not hesitate to contact Kelly Tait, Senior Environmental Specialist at 619-686-6372 or ktait@portofsandiego.org.

Sincerely

Karen Holman


Director, Environmental Protection San Diego Unified Port District


Attachments:

Attachment 1: 2016 Vessel Tracking Statistics for SIYB and Marinas

Attachment 2: Marina Self-Certification Form

2016 Reporting Comparisons; Marina vs Basin-Wide

Marina Self-Certification Form [Add Date]

I certify that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete.

NAME
TITLE/POSITION
COMPANY NAME

VIA US MAIL AND ELECTRONIC MAIL

December 20, 2017

Silver Gate Yacht Club Attn: Terry Van Winkle, Commodore commodore@sgyc.org 2091 Shelter Island Drive San Diego, CA 92106

Subject: New SIYB Vessel Tracking Submittal Requirements effective January 2018

Dear Mr. Van Winkle,

As you are aware, the Shelter Island Yacht Basin (SIYB) is under a Total Maximum Daily Load (TMDL) regulatory directive related to elevated levels of dissolved copper in the basin. The TMDL requires a 76% reduction of dissolved copper loading by the year 2022. To date, the Shelter Island Master Leaseholder Group (SIMLG) has been instrumental in gathering data on vessel hull paint, educating boaters on alternative paint options and coordinating with the Port on in-water hull cleaning permit oversight. The Port appreciates your assistance with these efforts.

2017 marks an important compliance milestone for the SIYB TMDL because there is an interim loading reduction requirement of 40% that must be achieved by the end of this year. The reporting of paint usage within each marina leasehold is essential in calculating this interim reduction. As such, providing accurate and timely information is critical to determining compliance with the 2017 interim copper reduction target.

Investigative Order No. R9-2011-0036 directs the Port to monitor and regularly report to the San Diego Water Quality Control Board on the progress being made in implementing the SIYB TMDL and achieving the required dissolved copper load reductions. Each year, as part of the annual reporting requirement, the Port compiles the data that was provided by the SIMLG. In addition to other requirements, the Investigative Order requires the Port to retain all reported information for a period of five (5) years and certify the accuracy of the data contained in the annual report.

Attached to this letter is an assessment of last year's vessel paint tracking data comparing your marina with the average for all marinas in SIYB for the 2016 calendar year (Attachment 1). Thank you for your efforts to this point in providing the paint usage and vessel occupancy data for your marina. However, while a good amount of data exists, there remains a large basin-wide fraction (23%) of vessels with unknown or incomplete paint records. For 2016, the Silver Gate Yacht Club reported 11% of records that were unknown or incomplete. Thank

you for your efforts, to date in collecting accurate vessel data. Please continue your efforts to obtain a high quality data set for the basin.

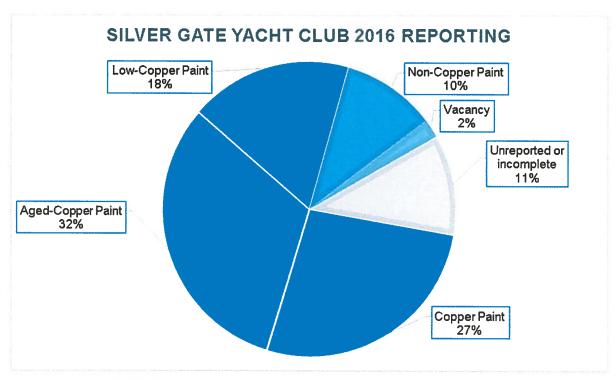
Upon review of the data to date and the requirements set forth in the Regional Board Investigative Order, the Port is requesting the following changes take place to improve data collection and reporting:

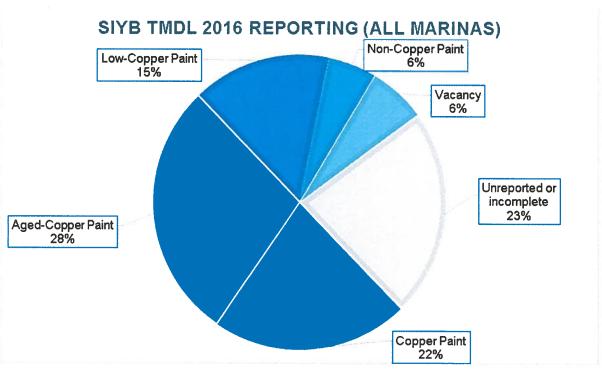
- Signed Marina Self-Certification Form Effective with this upcoming report (for the 2017 year), the Port will be requiring that all vessel data submittals be accompanied by a signed confirmation statement from each marina (Attachment 2), indicating that they have reviewed the data and verified the content to the best of their knowledge. These statements will be included in the submittal package provided in the TMDL Annual Report.
- 2. Records Retention The Investigative Order requires that records be retained for a period of five years following report submittal. As such, the Port is requesting that marinas keep and maintain the vessel tracking files, spreadsheets, and boater tracking forms from each reporting period for the same period of five years. This will ensure that marinas can properly respond to inquiries from the Port or Regional Board related to such data. This requirement is to become effective with the 2017 vessel data submittal.

Thank you for your continued efforts to reduce copper loading into SIYB. We hope that these administrative changes will continue to improve the data reporting. If you have any questions, please do not hesitate to contact Kelly Tait, Senior Environmental Specialist at 619-686-6372 or ktait@portofsandiego.org.

Sincerely.

Karen Holman


Director, Environmental Protection San Diego Unified Port District


Attachments:

Attachment 1: 2016 Vessel Tracking Statistics for SIYB and Marinas

Attachment 2: Marina Self-Certification Form

2016 Reporting Comparisons; Marina vs Basin-Wide

Marina Self-Certification Form [Add Date]

I certify that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete.

NAME
TITLE/POSITION
COMPANY NAME

VIA US MAIL AND ELECTRONIC MAIL

December 20, 2017

Southwestern Yacht Club Attn: Craig Wong, General Manager craig@southwesternyc.org 2702 Qualtrough Street San Diego, CA 92106

Subject: New SIYB Vessel Tracking Submittal Requirements effective January 2018

Dear Mr. Wong,

As you are aware, the Shelter Island Yacht Basin (SIYB) is under a Total Maximum Daily Load (TMDL) regulatory directive related to elevated levels of dissolved copper in the basin. The TMDL requires a 76% reduction of dissolved copper loading by the year 2022. To date, the Shelter Island Master Leaseholder Group (SIMLG) has been instrumental in gathering data on vessel hull paint, educating boaters on alternative paint options and coordinating with the Port on in-water hull cleaning permit oversight. The Port appreciates your assistance with these efforts.

2017 marks an important compliance milestone for the SIYB TMDL because there is an interim loading reduction requirement of 40% that must be achieved by the end of this year. The reporting of paint usage within each marina leasehold is essential in calculating this interim reduction. As such, providing accurate and timely information is critical to determining compliance with the 2017 interim copper reduction target.

Investigative Order No. R9-2011-0036 directs the Port to monitor and regularly report to the San Diego Water Quality Control Board on the progress being made in implementing the SIYB TMDL and achieving the required dissolved copper load reductions. Each year, as part of the annual reporting requirement, the Port compiles the data that was provided by the SIMLG. In addition to other requirements, the Investigative Order requires the Port to retain all reported information for a period of five (5) years and certify the accuracy of the data contained in the annual report.

Attached to this letter is an assessment of last year's vessel paint tracking data comparing your marina with the average for all marinas in SIYB for the 2016 calendar year (Attachment 1). Thank you for your efforts to this point in providing the paint usage and vessel occupancy data for your marina. However, while a good amount of data exists, there remains a large basin-wide fraction (23%) of vessels with unknown or incomplete paint records. For 2016, the Southwestern Yacht Club reported 9% of records that were unknown or incomplete.

Thank you for your efforts, to date in collecting accurate vessel data. Please continue your efforts to obtain a high quality data set for the basin.

Upon review of the data to date and the requirements set forth in the Regional Board Investigative Order, the Port is requesting the following changes take place to improve data collection and reporting:

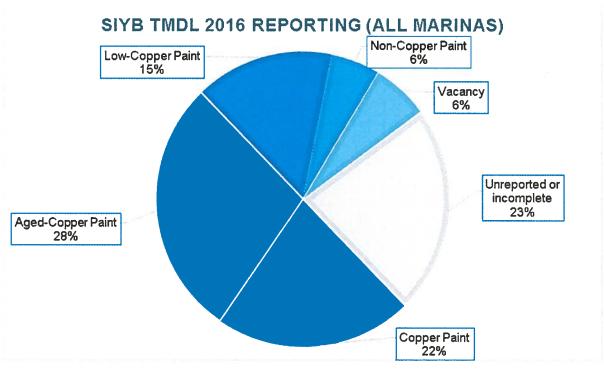
- Signed Marina Self-Certification Form Effective with this upcoming report (for the 2017 year), the Port will be requiring that all vessel data submittals be accompanied by a signed confirmation statement from each marina (Attachment 2), indicating that they have reviewed the data and verified the content to the best of their knowledge. These statements will be included in the submittal package provided in the TMDL Annual Report.
- 2. Records Retention The Investigative Order requires that records be retained for a period of five years following report submittal. As such, the Port is requesting that marinas keep and maintain the vessel tracking files, spreadsheets, and boater tracking forms from each reporting period for the same period of five years. This will ensure that marinas can properly respond to inquiries from the Port or Regional Board related to such data. This requirement is to become effective with the 2017 vessel data submittal.

Thank you for your continued efforts to reduce copper loading into SIYB. We hope that these administrative changes will continue to improve the data reporting. If you have any questions, please do not hesitate to contact Kelly Tait, Senior Environmental Specialist at 619-686-6372 or ktait@portofsandiego.org.

Sincerely,

Karen Holman

Director, Environmental Protection San Diego Unified Port District


Attachments:

Attachment 1: 2016 Vessel Tracking Statistics for SIYB and Marinas

Attachment 2: Marina Self-Certification Form

2016 Reporting Comparisons; Marina vs Basin-Wide

Marina Self-Certification Form [Add Date]

I certify that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete.

NAME
TITLE/POSITION
COMPANY NAME

VIA US MAIL AND ELECTRONIC MAIL

December 20, 2017

Tonga Landing
Attn: Tom Nielsen, General Manager
tom@nielsenbeaumont.com
2420 Shelter Island Drive
San Diego, CA 92106

Subject: New SIYB Vessel Tracking Submittal Requirements effective January 2018

Dear Mr. Nielsen,

As you are aware, the Shelter Island Yacht Basin (SIYB) is under a Total Maximum Daily Load (TMDL) regulatory directive related to elevated levels of dissolved copper in the basin. The TMDL requires a 76% reduction of dissolved copper loading by the year 2022. To date, the Shelter Island Master Leaseholder Group (SIMLG) has been instrumental in gathering data on vessel hull paint, educating boaters on alternative paint options and coordinating with the Port on in-water hull cleaning permit oversight. The Port appreciates your assistance with these efforts.

2017 marks an important compliance milestone for the SIYB TMDL because there is an interim loading reduction requirement of 40% that must be achieved by the end of this year. The reporting of paint usage within each marina leasehold is essential in calculating this interim reduction. As such, providing accurate and timely information is critical to determining compliance with the 2017 interim copper reduction target.

Investigative Order No. R9-2011-0036 directs the Port to monitor and regularly report to the San Diego Water Quality Control Board on the progress being made in implementing the SIYB TMDL and achieving the required dissolved copper load reductions. Each year, as part of the annual reporting requirement, the Port compiles the data that was provided by the SIMLG. In addition to other requirements, the Investigative Order requires the Port to retain all reported information for a period of five (5) years and certify the accuracy of the data contained in the annual report.

Attached to this letter is an assessment of last year's vessel paint tracking data comparing your marina with the average for all marinas in SIYB for the 2016 calendar year (Attachment 1). Thank you for your efforts to this point in providing the paint usage and vessel occupancy data for your marina. However, while a good amount of data exists, there remains a large basin-wide fraction (23%) of vessels with unknown or incomplete paint records. For 2016, the Tonga Landing Marina reported 67% of records that were unknown or incomplete. This is higher than the basin average percent of incomplete records. Accurate and complete data is

needed from every marina to improve basin wide reporting. Please make every effort to improve your reporting percentage moving forward.

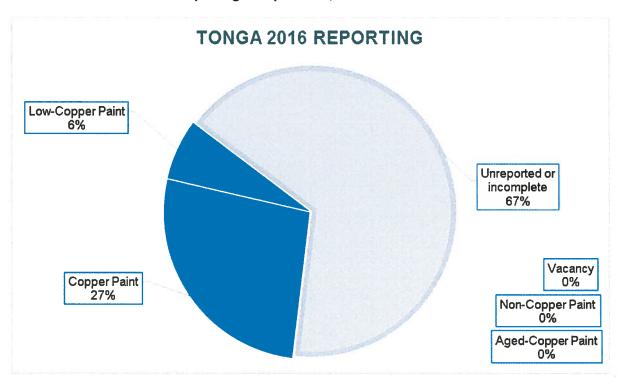
Upon review of the data to date and the requirements set forth in the Regional Board Investigative Order, the Port is requesting the following changes take place to improve data collection and reporting:

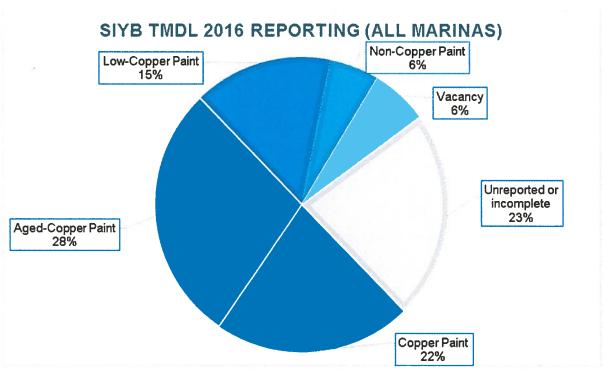
- Signed Marina Self-Certification Form Effective with this upcoming report (for the 2017 year), the Port will be requiring that all vessel data submittals be accompanied by a signed confirmation statement from each marina (Attachment 2), indicating that they have reviewed the data and verified the content to the best of their knowledge. These statements will be included in the submittal package provided in the TMDL Annual Report.
- 2. <u>Records Retention</u> The Investigative Order requires that records be retained for a period of five years following report submittal. As such, the Port is requesting that marinas keep and maintain the vessel tracking files, spreadsheets, and boater tracking forms from each reporting period for the same period of five years. This will ensure that marinas can properly respond to inquiries from the Port or Regional Board related to such data. This requirement is to become effective with the 2017 vessel data submittal.

Thank you for your continued efforts to reduce copper loading into SIYB. We hope that these administrative changes will continue to improve the data reporting. If you have any questions, please do not hesitate to contact Kelly Tait, Senior Environmental Specialist at 619-686-6372 or ktait@portofsandiego.org.

Sincerely,

Karen Holman


Director, Environmental Protection San Diego Unified Port District


Attachments:

Attachment 1: 2016 Vessel Tracking Statistics for SIYB and Marinas

Attachment 2: Marina Self-Certification Form

2016 Reporting Comparisons; Marina vs Basin-Wide

Marina Self-Certification Form [Add Date]

I certify that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete.

NAME
TITLE/POSITION
COMPANY NAME

CORRESPONDENCES SIYB MARINAS AND YACHT CLUBS SIGNED CERTIFICATION LETTERS

Marina Self-Certification Form 12/28/2017

I certify that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete.

Shelley Griffin

Director of Marina and Food & Beverage Operations

Bay Club Hotel & Marina

- Crows nest yackts

Attachment A SIYB Dissolved Copper TMDL Vessel Tracking Template Form

Facility (Marina or Yacht Club)	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type (Copper, Low, or Non, No Paint)	Paint Product Name	Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	DPR Category Registration Number
Crows Nest	1	10	Power	82	19	Interlux	Ulta Coat	3639U	Date		2015	Low	
Crows Nest	2	0					W-0000				2015	LOW	
Crows Nest	3	10	Power	58	18	Prolene	01 Blue	1088			2014	1	-
Crows Nest	4	10	Power	35	12	Interlux	Ulta Coat	3696U			2014	Low	
Crows Nest	5	0					Una Coar	00000			2016	Low	
Crows Nest	6	50	Sail	42	12	Low			Koehler	November	2017	1	
Crows Nest	7	10	Power	50	14	Copper	Zspar	ÇERO 112-4115-4111-411	Seattle	December		Low	
Crows Nest	8	0				осрре.	Lopui		Seattle	December	2012	None	
Crows Nest	9	10	Power	54	15	Interlux					0045		
Crows Nest	10	50	Power	35	12	Micron Non				September	2015		
Crows Nest	11	0				Wild Control				September	2017	None	
Crows Nest	12	10	Power	32	12	Interlux		3449					
Crows Nest	13	90	Sail	42	10	Low	Bilox Gr	5490	Walsh	1.1	2013	Low	
Crows Nest	14	10	Power	48	15	LOW	DIOX GI	5480	vvaisn	July	2012	Low	2693-181-AA
Crows Nest	15	0			10								
Crows Nest	16	10	Power	36	13	Prolene	01 Blue	1088					
Crows Nest	17	0			10	riolette	01 Blue	1088			2014	Low	
Crows Nest						 							
n Electrical States													

Marina Self-Certification Form [Add Date]

I certify that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete.

[NAME

thy Durino - office manager Crows rest yachts [TITLE / POSITION] [COMPANY NAME]

Marina Self-Certification Form December 22, 2017

I certify that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete.

KATHERINE LEISEY MARINA MANAGER

GOLD COAST ANCHORAGE

January 9, 2018

Re: Marina Self-Certification Form

To Whom It May Concern,

I certify that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is to the best of my knowledge and belief, true, accurate, and complete.

Brad Oliver Marina Manager Half Moon Marina

Marina Self-Certification Form [Add Date]

I certify that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete.

[NAME Adam Veves [TITLE/POSITION] Dochmaster COMPANYNAME Kona Kai Marina

Marina Self-C	ertificatio	n For	m	
[Add Date]	1-	5	-/	/

I certify that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete.

NAME

TITLE/POSITION

COMPANY NAME

INVIAIR

Terry Anslin cool 6 m San Diego Yocht Club

.

Marina Self-Certification Form January 17, 2018

I certify that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete.

Joe Ravitch Dockmaster

Shelter Island Marina

VIA US MAIL AND ELECTRONIC MAIL

December 20, 2017

Silver Gate Yacht Club Attn: Terry Van Winkle, Commodore commodore@sgyc.org 2091 Shelter Island Drive San Diego, CA 92106

Subject: New SIYB Vessel Tracking Submittal Requirements effective January 2018

Dear Mr. Van Winkle,

As you are aware, the Shelter Island Yacht Basin (SIYB) is under a Total Maximum Daily Load (TMDL) regulatory directive related to elevated levels of dissolved copper in the basin. The TMDL requires a 76% reduction of dissolved copper loading by the year 2022. To date, the Shelter Island Master Leaseholder Group (SIMLG) has been instrumental in gathering data on vessel hull paint, educating boaters on alternative paint options and coordinating with the Port on in-water hull cleaning permit oversight. The Port appreciates your assistance with these efforts.

2017 marks an important compliance milestone for the SIYB TMDL because there is an interim loading reduction requirement of 40% that must be achieved by the end of this year. The reporting of paint usage within each marina leasehold is essential in calculating this interim reduction. As such, providing accurate and timely information is critical to determining compliance with the 2017 interim copper reduction target.

Investigative Order No. R9-2011-0036 directs the Port to monitor and regularly report to the San Diego Water Quality Control Board on the progress being made in implementing the SIYB TMDL and achieving the required dissolved copper load reductions. Each year, as part of the annual reporting requirement, the Port compiles the data that was provided by the SIMLG. In addition to other requirements, the Investigative Order requires the Port to retain all reported information for a period of five (5) years and certify the accuracy of the data contained in the annual report.

Attached to this letter is an assessment of last year's vessel paint tracking data comparing your marina with the average for all marinas in SIYB for the 2016 calendar year (Attachment 1). Thank you for your efforts to this point in providing the paint usage and vessel occupancy data for your marina. However, while a good amount of data exists, there remains a large basin-wide fraction (23%) of vessels with unknown or incomplete paint records. For 2016, the Silver Gate Yacht Club reported 11% of records that were unknown or incomplete. Thank

you for your efforts, to date in collecting accurate vessel data. Please continue your efforts to obtain a high quality data set for the basin.

Upon review of the data to date and the requirements set forth in the Regional Board Investigative Order, the Port is requesting the following changes take place to improve data collection and reporting:

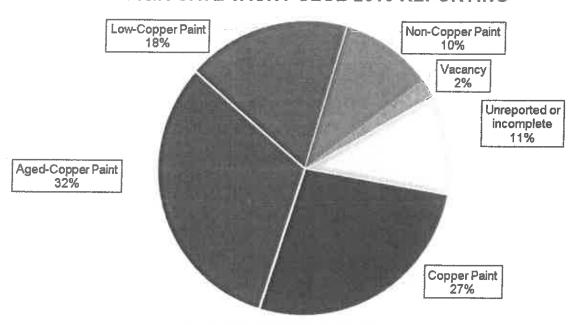
- Signed Marina Self-Certification Form Effective with this upcoming report (for the 2017 year), the Port will be requiring that all vessel data submittals be accompanied by a signed confirmation statement from each marina (Attachment 2), indicating that they have reviewed the data and verified the content to the best of their knowledge. These statements will be included in the submittal package provided in the TMDL Annual Report.
- 2. Records Retention The Investigative Order requires that records be retained for a period of five years following report submittal. As such, the Port is requesting that marinas keep and maintain the vessel tracking files, spreadsheets, and boater tracking forms from each reporting period for the same period of five years. This will ensure that marinas can properly respond to inquiries from the Port or Regional Board related to such data. This requirement is to become effective with the 2017 vessel data submittal.

Thank you for your continued efforts to reduce copper loading into SIYB. We hope that these administrative changes will continue to improve the data reporting. If you have any questions, please do not hesitate to contact Kelly Tait, Senior Environmental Specialist at 619-686-6372 or ktait@portofsandiego.org.

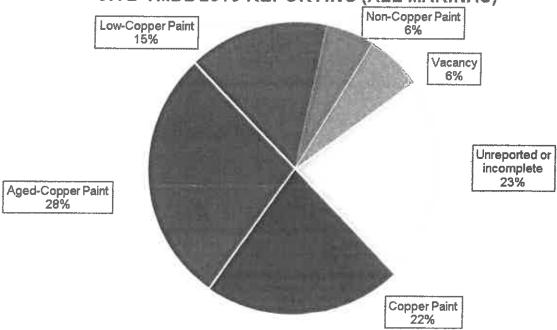
Sincerely,

Karen Holman

Director, Environmental Protection San Diego Unified Port District


Attachments:

Attachment 1: 2016 Vessel Tracking Statistics for SIYB and Marinas


Attachment 2: Marina Self-Certification Form

2016 Reporting Comparisons; Marina vs Basin-Wide

SILVER GATE YACHT CLUB 2016 REPORTING

SIYB TMDL 2016 REPORTING (ALL MARINAS)

Marina Self-Certification, Form [Add Date]

I certify that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief. true, accurate, and complete.

FIGN SILVER GATE YACHT CLUB TITLE/POSITION

COMPANY NAME

Marina Self-Certification Form January 18, 2018

I certify that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete.

Craig Wong

General Manager

Southwestern Yacht Club

Marina Self-0	Certification Form	Touga	(and y
	Dec- 22-		

I certify that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete.

NAME Costland Berlin

POSITION/TITLE wanager

COMPANY NAME Silver Seas yould

Attachment I SIYB Dissolved Copper TMDL Hull Tracking Template Form

	STATE OF THE PARTY			-			Trull Tracking Telli	piace i Oim					
Facility	Slip/Mooring Reference Number	Percent of Time Occupied	Vessel Type (Power or Sail)	Vessel Length	Vessel Beam	Paint Type Copper, Low or Non	Paint Product Name	Product Number	Boatyard Name or Purchase Date	Painting Date Month (mm)	Painting Date Year (yyyy)	% Copper	Name of Owner
Tonga	Crusiers	100	Power	41		Copper	Cukote Black GL	Seahawk 3445GL				47	NEW SSY inventory
Tonga	Cruisers	100	Power	39		Copper	Cukote Black GL	Seahawk 3445GL				47	NEW SSY inventory
Tonga	Tiara	100	Power	44	15	Low Copper	micron	YBC583				35	New / Haynes
Tonga	Chaparral	100	Power	33			unknown						Used SSY Inventory
Tonga	Hatteras	100	Power	68			unknown						Putman
Tonga	Sea Ray	100	Power	42			unknown						Winnett
Tonga	Cruisers	100	Power	33			unknown						MacFarlane
Tonga	Marquis	100	Power	65			unknown						Owens
Tonga	Formula	100	Power	40			unknown						Steding
Tonga	Sea Ray	100	Power	34			unknown						Bemis
Tonga	Tiara	100	Power	29			unknown						Engle
Tonga	Fourwinns	100	Power	32			unknown						Bahour
Tonga	Sea Ray	100	Power	47			unknown						Murray
Tonga													
Tonga													

All hulls with paint greater than 40% copper are counted as high-copper

All hulls equal to zero are counted as non-copper

All hulls between 1 and 39.9% copper are counted as low-copper

Non and low-copper paint types are considered "confirmed" if the paint brand and product number is listed and can be cross checked with the SIML TMDL Group and/or Port paint list Hulls with aged-copper paint are considered low-copper