Harbor Island West Marina Redevelopment Project

Volume 2 - Final Mitigated Negative Declaration Appendices

UPD #MND-2013-80, SCH# 2019129019

Prepared by:

San Diego Unified Port District P.O. Box 120488 San Diego, CA 92112-0488

November 2023

Construction

Schedule

Phase	Code	Start Date	End Date	Working Days	2019	2020
Waterside - Demo docks	HBIW_1	1/1/2019	12/31/2019	262	262	
Waterside - Install docks	HBIW_2	1/1/2019	12/31/2019	262	262	
Landside - Building Demo I	HBIW_3	9/2/2019	10/2/2019	23	23	
Landside - Parking Lot Demo I	HBIW_4	9/2/2019	12/31/2019	88	88	
Landside - Landscape Demo I	HBIW_5	12/2/2019	12/31/2019	23	23	
Landside - Building Construction I	HBIW_6	9/2/2019	10/2/2019	23	23	
Landside - Parking Lot Paving I	HBIW_7	10/2/2019	12/31/2019	66	66	
Landside - Parking Lot Demo II	HBIW_8	1/2/2020	2/1/2020	22		22
Landside - Building Demo II	HBIW_9	1/2/2020	3/2/2020	43		43
Landside - Landscape Demo II	HBIW_10	12/1/2020	12/31/2020	23		23
Landside - Building Construction II	HBIW_11	1/2/2020	3/2/2020	43		43
Landside - Landscape Install	HBIW_12	3/3/2020	1/31/2020	239		239
Landside - Parking Lot Paving II	HBIW_13	12/1/2020	12/31/2020	23		23

Offroad Equipment

Codo	Voor	Dave	Fauin	#/day	hrs/day	ЦП	15			g	g/hp-hr (CalEEMod)					Ро	unds p	er day			Me	tric to	ns per	day
Code	rear	Days	Equip	#/uay	nrs/day	۳r	LF	ROG	NOX	CO	PM10	PM2.5	SO2	CO2	CH4 N	20 RC	G N	OX	CO PI	M10	PM2.5	SO2	CO2	CH4	N2O	CO2e
HBIW_2	2019	262	Bore/Drill Rigs	1	8	221	0.503	0.1	1.9	1.1	0.1	0.0	0.0	475.8	0.2 0	.0 0	.3 3	.7	2.1	0.1	0.1	0.0	0.42	0.0	0.0	0.4
HBIW_2	2019	262	Cranes	1	8	231	0.288	0.4	5.1	1.9	0.2	0.2	0.0	483.5	0.2 0	.0 0	5 6	i.0 i	2.3	0.3	0.2	0.0	0.3	0.0	0.0	0.3
HBIW_3	2019	23	Excavators	1	8	158	0.382	0.2	2.5	3.1	0.1	0.1	0.0	482.7	0.2 0	.0 0	.3 2	.7	3.3	0.1	0.1	0.0	0.2	0.0	0.0	0.2
HBIW_3	2019	23	Graders	1	8	187	0.409	0.6	6.0	3.7	0.3	0.3	0.0	489.0	0.2 0	.0 0	8 8	8.1	4.9	0.5	0.4	0.0	0.3	0.0	0.0	0.3
HBIW_3	2019	23	Skid Steer Loaders	1	8	65	0.369	0.2	2.7	3.3	0.1	0.1	0.0	482.4	0.2 0	.0 0	1 1	1	1.4	0.1	0.0	0.0	0.1	0.0	0.0	0.1
HBIW_4	2019	88	Excavators	1	8	158	0.382	0.2	2.5	3.1	0.1	0.1	0.0	482.7	0.2 0	.0 0	.3 2	.7	3.3	0.1	0.1	0.0	0.2	0.0	0.0	0.2
HBIW_4	2019	88	Skid Steer Loaders	1	8	65	0.369	0.2	2.7	3.3	0.1	0.1	0.0	482.4	0.2 0	.0 0	1 1	1	1.4	0.1	0.0	0.0	0.1	0.0	0.0	0.1
HBIW_4	2019	88	Tractors/Loaders/Backhoes	1	7	97	0.369	0.4	3.7	3.6	0.2	0.2	0.0	485.9	0.2 0	.0 0	2 2	.0	2.0	0.1	0.1	0.0	0.1	0.0	0.0	0.1
HBIW_4	2019	88	Other Construction Equipment	1	8	172	0.415	0.4	4.4	3.3	0.2	0.2	0.0	480.5	0.2 0	.0 0	.5 5	.6	4.1	0.3	0.3	0.0	0.3	0.0	0.0	0.3
HBIW_4	2019	88	Tractors/Loaders/Backhoes	1	8	97	0.369	0.4	3.7	3.6	0.2	0.2	0.0	485.9	0.2 0	.0 0	2 2	.3	2.3	0.2	0.1	0.0	0.1	0.0	0.0	0.1
HBIW_6	2019	23	Air Compressors	2	6	78	0.48	0.5	3.7	3.7	0.3	0.3	0.0	568.3	0.0 0	.0 0	5 3	.7	3.7	0.3	0.3	0.0	0.3	0.0	0.0	0.3
HBIW_6	2019	23	Tractors/Loaders/Backhoes	1	8	97	0.369	0.4	3.7	3.6	0.2	0.2	0.0	485.9	0.2 0	.0 0	2 2	.3	2.3	0.2	0.1	0.0	0.1	0.0	0.0	0.1
HBIW_7	2019	66	Graders	1	8	187	0.409	0.6	6.0	3.7	0.3	0.3	0.0	489.0	0.2 0	.0 0	8 8	.1 4	4.9	0.5	0.4	0.0	0.3	0.0	0.0	0.3
HBIW_7	2019	66	Pavers	1	8	130	0.415	0.5	4.7	3.6	0.3	0.3	0.0	480.3	0.2 0	.0 0	5 4	.4	3.4	0.3	0.3	0.0	0.2	0.0	0.0	0.2
HBIW_7	2019	66	Paving Equipment	1	8	132	0.355	0.4	4.0	3.6	0.3	0.3	0.0	484.4	0.2 0	.0 0	4 3	.3	3.0	0.2	0.2	0.0	0.2	0.0	0.0	0.2
HBIW_7	2019	66	Plate Compactors	1	8	8	0.43	0.7	4.1	3.5	0.2	0.2	0.0	568.3	0.1 0	.0 0	0 0	.3 (0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HBIW_7	2019	66	Rollers	1	6	80	0.375	0.4	4.2	3.6	0.3	0.3	0.0	484.3	0.2 0	.0 0	2 1	7	1.4	0.1	0.1	0.0	0.1	0.0	0.0	0.1
HBIW_7	2019	66	Rubber Tired Loaders	2	8	203	0.362	0.3	3.7	1.3	0.1	0.1	0.0	480.1	0.2 0	.0 0	8 9	.7 3	3.4	0.3	0.3	0.0	0.6	0.0	0.0	0.6
HBIW_8	2020	22	Excavators	1	8	158	0.382	0.2	2.3	3.1	0.1	0.1	0.0	472.3	0.2 0	.0 0	2 2	.4	3.3	0.1	0.1	0.0	0.2	0.0	0.0	0.2
HBIW_8	2020	22	Skid Steer Loaders	2	8	65	0.369	0.2	2.5	3.3	0.1	0.1	0.0	471.9	0.2 0	.0 0	2 2	.1 :	2.8	0.1	0.1	0.0	0.2	0.0	0.0	0.2
HBIW_8	2020	22	Tractors/Loaders/Backhoes	1	8	97	0.369	0.3	3.3	3.6	0.2	0.2	0.0	475.2	0.2 0	.0 0	2 2	.1	2.3	0.1	0.1	0.0	0.1	0.0	0.0	0.1
HBIW_9	2020	43	Excavators	2	8	158	0.382	0.2	2.3	3.1	0.1	0.1	0.0	472.3	0.2 0	.0 0	5 4	.8	5.6	0.2	0.2	0.0	0.5	0.0	0.0	0.5
HBIW_9	2020	43	Graders	1	8	187	0.409	0.6	5.5	3.6	0.3	0.3	0.0	478.0	0.2 0	.0 0	8 7	.5 4	4.9	0.4	0.4	0.0	0.3	0.0	0.0	0.3
HBIW_9	2020	43	Skid Steer Loaders	2	8	65	0.369	0.2	2.5	3.3	0.1	0.1	0.0	471.9	0.2 0	.0 0	2 2	.1	2.8	0.1	0.1	0.0	0.2	0.0	0.0	0.2
HBIW_10	2020	23	Other Construction Equipment	1	8	172	0.415	0.4	4.1	3.2	0.2	0.2	0.0	470.0	0.2 0	.0 0	.5 5	.2	4.1	0.3	0.3	0.0	0.3	0.0	0.0	0.3
HBIW_10	2020	23	Tractors/Loaders/Backhoes	1	8	97	0.369	0.3	3.3	3.6	0.2	0.2	0.0	475.2	0.2 0	.0 0	2 2	.1 2	2.3	0.1	0.1	0.0	0.1	0.0	0.0	0.1
HBIW_11	2020	43	Aerial Lifts	2	8	63	0.308	0.2	3.0	3.1	0.0	0.0	0.0	525.1	0.2 0	.0 0	1 2	.0	2.1	0.0	0.0	0.0	0.2	0.0	0.0	0.2
HBIW_11	2020	43	Air Compressors	4	6	78	0.48	0.5	3.4	3.7	0.2	0.2	0.0	568.3	0.0 0	.0 1	0 6	.7	7.3	0.4	0.4	0.0	0.5	0.0	0.0	0.5
HBIW_11	2020	43	Cranes	1	8	231	0.288	0.4	4.6	1.8	0.2	0.2	0.0	472.9	0.2 0	.0 0	5 5	.4	2.1	0.2	0.2	0.0	0.3	0.0	0.0	0.3
HBIW_11	2020	43	Forklifts	2	8	89	0.201	0.5	4.1	3.8	0.3	0.3	0.0	471.5	0.2 0	.0 0	.3 2	.6	2.4	0.2	0.2	0.0	0.1	0.0	0.0	0.1
HBIW_12	2020	239	Cranes	0	0	231	0.288	0.4	4.6	1.8	0.2	0.2	0.0	472.9	0.2 0	.0 0	0 0	.0 (0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HBIW_13	2020	23	Graders	1	8	187	0.409	0.6	5.5	3.6	0.3	0.3	0.0	478.0	0.2 0	.0 0	8 7	.5	4.9	0.4	0.4	0.0	0.3	0.0	0.0	0.3
HBIW_13	2020	23	Pavers	2	8	130	0.415	0.5	4.4	3.6	0.3	0.3	0.0	469.9	0.2 0	.0 0	9 8	.4	5.9	0.6	0.6	0.0	0.4	0.0	0.0	0.4
HBIW_13	2020	23	Paving Equipment	1	6	132	0.355	0.4	3.8	3.6	0.3	0.2	0.0	473.3	0.2 0	.0 0	2 2	.3	2.2	0.2	0.1	0.0	0.1	0.0	0.0	0.1
HBIW_13	2020	23	Plate Compactors	1	8	8	0.43	0.7	4.1	3.5	0.2	0.2	0.0	568.3	0.1 0	.0 0	0 0	.3 (0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HBIW_13	2020	23	Rollers	2	6	80	0.375	0.4	3.9	3.5	0.2	0.2	0.0	473.9	0.2 0	.0 0	3 3	.1	2.8	0.2	0.2	0.0	0.2	0.0	0.0	0.2
HBIW_13	2020	23	Rubber Tired Loaders	2	8	203	0.362	0.3	3.4	1.3	0.1	0.1	0.0	469.5	0.2 0	.0 0	8 8	.9	3.3	0.3	0.3	0.0	0.6	0.0	0.0	0.6

Employee Vehicles

Code	Voar	Dave	Trips/	Mi/T				F	Running g	/mi (EMFA	C, AP 42)									Process	s g/trip (EN	/IFAC)								Pour	nds per o	day			Me	etric to	ns per	day
Coue	Tear	Days	Day	rip	ROG	NOX	CO	PM10	PM2.5	PM10 D	PM2.5 D	SO2	CO2	CH4	N20	ROG	NOX	СО	PM10	PM2.5	PM10 D	PM2.5 D	SO2	CO2	CH4	N2O	ROG	NOX	СО	PM10	PM2.5	PM10 D	PM2.5 D	SO2	CO2	CH4	N2O	CO2e
HBIW_1	2019	262	24	10.8	0.0	0.1	0.9	0.0	0.0	0.9	0.2	0.0	311	0.0	0.0	1.0	0.3	2.5	0.0	0.0	0.0	0.0	0.0	64	0.1	0.0	0.1	0.1	0.6	0.0	0.0	0.5	0.1	0.0	0	0.0	0.0	0
HBIW_2	2019	262	24	10.8	0.0	0.1	0.9	0.0	0.0	0.9	0.2	0.0	311	0.0	0.0	1.0	0.3	2.5	0.0	0.0	0.0	0.0	0.0	64	0.1	0.0	0.1	0.1	0.6	0.0	0.0	0.5	0.1	0.0	0	0.0	0.0	0
HBIW_3	2019	23	8	10.8	0.0	0.1	0.9	0.0	0.0	0.9	0.2	0.0	311	0.0	0.0	1.0	0.3	2.5	0.0	0.0	0.0	0.0	0.0	64	0.1	0.0	0.0	0.0	0.2	0.0	0.0	0.2	0.0	0.0	0	0.0	0.0	0
HBIW_4	2019	88	8	10.8	0.0	0.1	0.9	0.0	0.0	0.9	0.2	0.0	311	0.0	0.0	1.0	0.3	2.5	0.0	0.0	0.0	0.0	0.0	64	0.1	0.0	0.0	0.0	0.2	0.0	0.0	0.2	0.0	0.0	0	0.0	0.0	0
HBIW_5	2019	23	6	10.8	0.0	0.1	0.9	0.0	0.0	0.9	0.2	0.0	311	0.0	0.0	1.0	0.3	2.5	0.0	0.0	0.0	0.0	0.0	64	0.1	0.0	0.0	0.0	0.2	0.0	0.0	0.1	0.0	0.0	0	0.0	0.0	0
HBIW_6	2019	23	12	10.8	0.0	0.1	0.9	0.0	0.0	0.9	0.2	0.0	311	0.0	0.0	1.0	0.3	2.5	0.0	0.0	0.0	0.0	0.0	64	0.1	0.0	0.0	0.0	0.3	0.0	0.0	0.3	0.1	0.0	0	0.0	0.0	0
HBIW_7	2019	66	6	10.8	0.0	0.1	0.9	0.0	0.0	0.9	0.2	0.0	311	0.0	0.0	1.0	0.3	2.5	0.0	0.0	0.0	0.0	0.0	64	0.1	0.0	0.0	0.0	0.2	0.0	0.0	0.1	0.0	0.0	0	0.0	0.0	0
HBIW_8	2020	22	8	10.8	0.0	0.1	0.8	0.0	0.0	0.9	0.2	0.0	302	0.0	0.0	0.9	0.3	2.4	0.0	0.0	0.0	0.0	0.0	62	0.1	0.0	0.0	0.0	0.2	0.0	0.0	0.2	0.0	0.0	0	0.0	0.0	0
HBIW_9	2020	43	20	10.8	0.0	0.1	0.8	0.0	0.0	0.9	0.2	0.0	302	0.0	0.0	0.9	0.3	2.4	0.0	0.0	0.0	0.0	0.0	62	0.1	0.0	0.0	0.0	0.5	0.0	0.0	0.4	0.1	0.0	0	0.0	0.0	0
HBIW_10	2020	23	12	10.8	0.0	0.1	0.8	0.0	0.0	0.9	0.2	0.0	302	0.0	0.0	0.9	0.3	2.4	0.0	0.0	0.0	0.0	0.0	62	0.1	0.0	0.0	0.0	0.3	0.0	0.0	0.3	0.1	0.0	0	0.0	0.0	0
HBIW_11	2020	43	32	10.8	0.0	0.1	0.8	0.0	0.0	0.9	0.2	0.0	302	0.0	0.0	0.9	0.3	2.4	0.0	0.0	0.0	0.0	0.0	62	0.1	0.0	0.1	0.1	0.8	0.0	0.0	0.7	0.2	0.0	0	0.0	0.0	0
HBIW_12	2020	239	12	10.8	0.0	0.1	0.8	0.0	0.0	0.9	0.2	0.0	302	0.0	0.0	0.9	0.3	2.4	0.0	0.0	0.0	0.0	0.0	62	0.1	0.0	0.0	0.0	0.3	0.0	0.0	0.3	0.1	0.0	0	0.0	0.0	0
HBIW_13	2020	23	8	10.8	0.0	0.1	0.8	0.0	0.0	0.9	0.2	0.0	302	0.0	0.0	0.9	0.3	2.4	0.0	0.0	0.0	0.0	0.0	62	0.1	0.0	0.0	0.0	0.2	0.0	0.0	0.2	0.0	0.0	0	0.0	0.0	0

Т	'n	u	С	ks	5
	• •		-		

Code	Voor Vohiclo	Dave	Trip/	Mi/T				F	Running g	g/mi (EMF	AC, AP 42)								Proce	ss g/trip (I	EMFAC)								Pour	nds per da	ay			Me	tric to	ns per o	day
Coue	real venicle	Days	Day	rip	ROG	NOX	СО	PM10	PM2.5	PM10 D	PM2.5 D	SO2	CO2	CH4	N2O	ROG	NOX	CO	PM10	PM2.5	PM10 D	PM2.5 D	SO2	CO2	CH4	N2O	ROG	NOX	СО	PM10	PM2.5	PM10 D	PM2.5 D	SO2	CO2	CH4	N2O	CO2e
HBIW_1	2019 Vendor	262	0	7.3	0.3	4.2	0.7	0.1	0.1	1.0	0.3	0.0	1070	0.0	0.2	0.0	1.7	0.2	0.0	0.0	0.0	0.0	0.0	58	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0
HBIW_2	2019 Vendor	262	8	7.3	0.3	4.2	0.7	0.1	0.1	1.0	0.3	0.0	1070	0.0	0.2	0.0	1.7	0.2	0.0	0.0	0.0	0.0	0.0	58	0.0	0.0	0.0	0.6	0.1	0.0	0.0	0.1	0.0	0.0	0	0.0	0.0	0
HBIW_3	2019 Vendor	23	0	7.3	0.3	4.2	0.7	0.1	0.1	1.0	0.3	0.0	1070	0.0	0.2	0.0	1.7	0.2	0.0	0.0	0.0	0.0	0.0	58	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0
HBIW_4	2019 Vendor	88	0	7.3	0.3	4.2	0.7	0.1	0.1	1.0	0.3	0.0	1070	0.0	0.2	0.0	1.7	0.2	0.0	0.0	0.0	0.0	0.0	58.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0
HBIW_5	2019 Vendor	23	0	7.3	0.3	4.2	0.7	0.1	0.1	1.0	0.3	0.0	1070	0.0	0.2	0.0	1.7	0.2	0.0	0.0	0.0	0.0	0.0	58.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0
HBIW_6	2019 Vendor	23	1	7.3	0.3	4.2	0.7	0.1	0.1	1.0	0.3	0.0	1070	0.0	0.2	0.0	1.7	0.2	0.0	0.0	0.0	0.0	0.0	58.4	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0
HBIW_7	2019 Vendor	66	1	7.3	0.3	4.2	0.7	0.1	0.1	1.0	0.3	0.0	1070	0.0	0.2	0.0	1.7	0.2	0.0	0.0	0.0	0.0	0.0	58.4	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0
HBIW_1	2019 Haul	262	1	20	0.8	9.0	1.8	0.2	0.2	0.9	0.2	0.0	1910	0.0	0.3	0.4	7.9	3.6	0.0	0.0	0.0	0.0	0.0	713.2	0.0	0.1	0.0	0.5	0.1	0.0	0.0	0.1	0.0	0.0	0	0.0	0.0	0
HBIW_2	2019 Haul	262	0	20	0.8	9.0	1.8	0.2	0.2	0.9	0.2	0.0	1910	0.0	0.3	0.4	7.9	3.6	0.0	0.0	0.0	0.0	0.0	713.2	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0
HBIW_3	2019 Haul	23	0	20	0.8	9.0	1.8	0.2	0.2	0.9	0.2	0.0	1910	0.0	0.3	0.4	7.9	3.6	0.0	0.0	0.0	0.0	0.0	713.2	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0
HBIW_4	2019 Haul	88	1	20	0.8	9.0	1.8	0.2	0.2	0.9	0.2	0.0	1910	0.0	0.3	0.4	7.9	3.6	0.0	0.0	0.0	0.0	0.0	713.2	0.0	0.1	0.0	0.3	0.1	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0
HBIW_5	2019 Haul	23	0	20	0.8	9.0	1.8	0.2	0.2	0.9	0.2	0.0	1910	0.0	0.3	0.4	7.9	3.6	0.0	0.0	0.0	0.0	0.0	713.2	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0
HBIW_6	2019 Haul	23	0	20	0.8	9.0	1.8	0.2	0.2	0.9	0.2	0.0	1910	0.0	0.3	0.4	7.9	3.6	0.0	0.0	0.0	0.0	0.0	713.2	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0
HBIW_7	2019 Haul	66	0	20	0.8	9.0	1.8	0.2	0.2	0.9	0.2	0.0	1910	0.0	0.3	0.4	7.9	3.6	0.0	0.0	0.0	0.0	0.0	713.2	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0
HBIW_8	2020 Vendor	22	0	7.3	0.2	3.5	0.6	0.1	0.1	1.0	0.3	0.0	1050	0.0	0.2	0.0	1.8	0.2	0.0	0.0	0.0	0.0	0.0	57.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0
HBIW_9	2020 Vendor	43	0	7.3	0.2	3.5	0.6	0.1	0.1	1.0	0.3	0.0	1050	0.0	0.2	0.0	1.8	0.2	0.0	0.0	0.0	0.0	0.0	57.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0
HBIW_10	2020 Vendor	23	0	7.3	0.2	3.5	0.6	0.1	0.1	1.0	0.3	0.0	1050	0.0	0.2	0.0	1.8	0.2	0.0	0.0	0.0	0.0	0.0	57.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0
HBIW_11	2020 Vendor	43	1	7.3	0.2	3.5	0.6	0.1	0.1	1.0	0.3	0.0	1050	0.0	0.2	0.0	1.8	0.2	0.0	0.0	0.0	0.0	0.0	57.9	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0
HBIW_12	2020 Vendor	239	1	7.3	0.2	3.5	0.6	0.1	0.1	1.0	0.3	0.0	1050	0.0	0.2	0.0	1.8	0.2	0.0	0.0	0.0	0.0	0.0	57.9	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0
HBIW_13	2020 Vendor	23	1	7.3	0.2	3.5	0.6	0.1	0.1	1.0	0.3	0.0	1050	0.0	0.2	0.0	1.8	0.2	0.0	0.0	0.0	0.0	0.0	57.9	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0
HBIW_8	2020 Haul	22	4	20	0.5	7.5	1.3	0.1	0.1	0.9	0.2	0.0	1892	0.0	0.3	0.3	8.5	4.3	0.0	0.0	0.0	0.0	0.0	855.2	0.0	0.1	0.1	1.4	0.3	0.0	0.0	0.2	0.0	0.0	0	0.0	0.0	0
HBIW_9	2020 Haul	43	0	20	0.5	7.5	1.3	0.1	0.1	0.9	0.2	0.0	1892	0.0	0.3	0.3	8.5	4.3	0.0	0.0	0.0	0.0	0.0	855.2	0.0	0.1	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0
HBIW_10	2020 Haul	23	0	20	0.5	7.5	1.3	0.1	0.1	0.9	0.2	0.0	1892	0.0	0.3	0.3	8.5	4.3	0.0	0.0	0.0	0.0	0.0	855.2	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0
HBIW_11	2020 Haul	43	0	20	0.5	7.5	1.3	0.1	0.1	0.9	0.2	0.0	1892	0.0	0.3	0.3	8.5	4.3	0.0	0.0	0.0	0.0	0.0	855.2	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0
HBIW_12	2020 Haul	239	0	20	0.5	7.5	1.3	0.1	0.1	0.9	0.2	0.0	1892	0.0	0.3	0.3	8.5	4.3	0.0	0.0	0.0	0.0	0.0	855.2	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0
HBIW_13	2020 Haul	23	0	20	0.5	7.5	1.3	0.1	0.1	0.9	0.2	0.0	1892	0.0	0.3	0.3	8.5	4.3	0.0	0.0	0.0	0.0	0.0	855.2	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0

Workboat

Code Y	Voor	Dave	#/day		Engin	ie HP				Prop Eng	gine (g/k	w-hr)							Aux Eng	ine (g/k	w-hr)						Pound	s per day	/		Μ	etric ton	s per da	ay
Coue	Teal	Days	#/uay	ni/Day -	Prop	Aux	ROG	NOX	СО	PM10	PM2.5	SO2	CO2	CH4	N20	ROG	NOX	CO	PM10	PM2.5	SO2	CO2	CH4	N2O	ROG	NOX	со	PM10	PM2.5	SO2	CO2	CH4	N2O	CO2e
HBIW_2	2019	262	1	8	354	10	0.5	5.0	3.9	0.1	0.1	0.0	588	0.0	0.0	1.7	6.5	5.6	0.5	0.5	0.0	588	0.0	0.0	2.4	21.9	17.1	0.6	0.6	0.0	1	0.0	0.0	1

Earth Moving Calculations

			Grading	Cut/fill	Dozing			Emissio	n Factor			Pounds	per day
Code	Year	Days	(acres/day)	(cy/day)	(hour/day)	PM10 G	PM2.5 G	PM10 C/F	PM2.5 C/F	PM10 Doz	PM2.5 Doz	DM10 D	DM2 5 D
			(acres/uay)	(Cy/uay)	(IIOur/uay)	(lb/acre)	(lb/acre)	(lb/ton)	(lb/ton)	(lb/hr)	(lb/hr)	FIVILO D	FIVIZ.5 D
HBIW_5	2019	23	0.01	0	0	0.4	0.045	0.000	0.000	0.3	0.2	0.0	0.0
HBIW_10	2020	23	0.01	0	0	0.4	0.045	0.000	0.000	0.3	0.2	0.0	0.0
HBIW_12	2020	239	0.00	0	0	0.4	0.045	0.000	0.000	0.3	0.2	0.0	0.0

Demolition

				Emission	Factor	Pounds	per day
Code	Year	Days	Demo (sf/day)	PM10 (lb/ton)	PM2.5	PM10 D	PM2.5 D
					(lb/ton)		
HBIW_1	2019	262	557	0.014	0.002	0.4	0.1
HBIW_2	2019	262	0	0.014	0.002	0.0	0.0
HBIW_3	2019	23	43	0.014	0.002	0.0	0.0
HBIW_4	2019	88	581	0.014	0.002	0.4	0.1
HBIW_8	2020	22	3130	0.014	0.002	2.0	0.3
HBIW_9	2020	43	512	0.014	0.002	0.3	0.0

Coating

Codo	Voor	Dave	Costod (sf/day)	Emission Factor	Pounds
Coue	real	Days	Coaleu (si/uay)	ROG (lbs per sf)	ROG
HBIW_6	2019	23	0	0.0005	0.0
HBIW_11	2020	43	882	0.0005	0.4

Paving

Codo	Voar	Dave	Payod (sf/day)	Emission Factor	Pounds per day
Coue	real	Days	Paveu (si/uay)	ROG (lbs per acre)	ROG
HBIW_7	2019	66	1,303	2.6	0.1
HBIW_13	2020	23	1,303	2.6	0.1

Operation

Page 1 of 1

Harbor Island West Existing Conditions - San Diego County, Annual

Harbor Island West Existing Conditions San Diego County, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Health Club	22.00	1000sqft	0.51	22,000.00	0

1.2 Other Project Characteristics

Urbanization Climate Zone	Urban 13	Wind Speed (m/s)	2.6	Precipitation Freq (Days) Operational Year	40 2018
Utility Company	San Diego Gas & Electric	:			
CO2 Intensity	533.52	CH4 Intensity	0	N2O Intensity	0

1.3 User Entered Comments & Non-Default Data

Project Characteristics - CO2e emission factor from SDG&E Vehicle Trips - Trip rate based on memo from traffic engineers Energy Use - Consumption based on existing uitlity bills

Table Name	Column Name	Default Value	New Value
tblEnergyUse	LightingElect	2.83	16.20
tblEnergyUse	NT24E	4.27	24.44
tblEnergyUse	NT24NG	7.25	70.03
tblEnergyUse	T24E	1.21	6.93
tblEnergyUse	T24NG	4.31	41.63
tblProjectCharacteristics	CH4IntensityFactor	0.029	0
tblProjectCharacteristics	CO2IntensityFactor	720.49	533.52
tblProjectCharacteristics	N2OIntensityFactor	0.006	0
tblVehicleTrips	ST_TR	20.87	112.73
tblVehicleTrips	SU_TR	26.73	112.73
tblVehicleTrips	WD_TR	32.93	112.73

2.0 Emissions Summarv

2.2 Overall Operational

	ROG	NOx	CO	SO2	Fugitive	Exhaust	PM10	Fugitive	Exhaust	PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr									MT/yr						
Area	0.1114	0	2.00E-04	0		0	0		0	0	0	3.90E-04	3.90E-04	0	0	4.20E-04
Energy	0.0133	0.1204	0.1012	7.20E-04		9.15E-03	9.15E-03		9.15E-03	9.15E-03	0	384.3568	384.3568	2.51E-03	2.40E-03	385.1359
Mobile	0.8098	3.1528	8.2271	0.0213	1.6153	0.0259	1.6413	0.4327	0.0244	0.4571	0	1,954.03	1,954.03	0.125	0	1,957.15
Waste						0	0		0	0	25.4551	0	25.4551	1.5044	0	63.0639
Water						0	0		0	0	0.4128	6.2442	6.657	0.0424	1.00E-03	8.0152
Total	0.9345	3.2732	8.3285	0.022	1.6153	0.0351	1.6504	0.4327	0.0336	0.4663	25.8679	2,344.63	2,370.50	1.6743	3.40E-03	2,413.37

4.0 Operational Detail - Mobile

4.2 Trip Summary Information

	Avera	age Daily Trip F	Rate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Health Club	2,479.99	2,479.99	2479.99	4,284,603	4,284,603
Total	2,479.99	2,479.99	2,479.99	4,284,603	4,284,603

4.3 Trip Type Information

		Miles			Trip %		Trip Purpose %				
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by		
Health Club	9.50	7.30	7.30	16.90	64.10	19.00	52	39	9		

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Health Club	0.574135	0.045525	0.189369	0.116519	0.019283	0.005646	0.014833	0.022073	0.001871	0.002173	0.006385	0.000739	0.001452

5.0 Energy Detail

Historical Energy Use: N

5.2 Energy by Land Use - NaturalGas

	NaturalGa	ROG	NOx	CO	SO2	Fugitive	Exhaust	PM10	Fugitive	Exhaust	PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr		tons/yr										MT	/yr			
Health Club	2.4566e+0	0.0133	0.1204	0.1012	7.2000e-		9.1500e-	9.1500e-		9.1500e-	9.1500e-	0.0000	131.0935	131.0935	2.5100e-	2.4000e-	131.8726

Total 0.0133 0.1204 0.1012 7.2000e- 9.1500e- 9.1500e- 9.1500e- 9.1500e- 0.0000 131.0935 131.0935 2.5100e- 2.4000e-
--

5.3 Energy by Land Use - Electricity

	Electricity	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		M	Г/yr	
Health Club	1.04654e+	253.2633	0.0000	0.0000	253.2633
Total		253.2633	0.0000	0.0000	253.2633

6.0 Area Detail

	ROG	NOx	CO	SO2	Fugitive	Exhaust	PM10	Fugitive	Exhaust	PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory	tons/yr								MT/yr							
Architectural	0.0255					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer	0.0859					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	2.0000e-	0.0000	2.0000e-	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	3.9000e-	3.9000e-	0.0000	0.0000	4.2000e-
Total	0.1114	0.0000	2.0000e-	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	3.9000e-	3.9000e-	0.0000	0.0000	4.2000e-

7.0 Water Detail

	Indoor/Out	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		M	Г/yr	
Health Club	1.30115/	6.6570	0.0424	1.0000e-	8.0152
Total		6.6570	0.0424	1.0000e-	8.0152

8.0 Waste Detail

	Waste	Total CO2	CH4	N2O	CO2e
Land Use	tons		M	Г/yr	
Health Club	125.4	25.4551	1.5044	0.0000	63.0639
Total		25.4551	1.5044	0.0000	63.0639

Page 1 of 1

Harbor Island West Existing Conditions - San Diego County, Summer

Harbor Island West Existing Conditions San Diego County, Summer

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Health Club	22.00	1000sqft	0.51	22,000.00	0

1.2 Other Project Characteristics

Urbanization Climate Zone	Urban 13	Wind Speed (m/s)	2.6	Precipitation Freq (Days) Operational Year	40 2018						
Utility Company	San Diego Gas & Electric										
CO2 Intensity	533.52	CH4 Intensity	0	N2O Intensity	0						

1.3 User Entered Comments & Non-Default Data

Project Characteristics - CO2e emission factor from SDG&E Vehicle Trips - Trip rate based on memo from traffic engineers Energy Use - Consumption based on existing uitlity bills

Table Name	Column Name	Default Value	New Value
tblEnergyUse	LightingElect	2.83	16.20
tblEnergyUse	NT24E	4.27	24.44
tblEnergyUse	NT24NG	7.25	70.03
tblEnergyUse	T24E	1.21	6.93
tblEnergyUse	T24NG	4.31	41.63
tblProjectCharacteristics	CH4IntensityFactor	0.029	0
tblProjectCharacteristics	CO2IntensityFactor	720.49	533.52
tblProjectCharacteristics	N2OIntensityFactor	0.006	0
tblVehicleTrips	ST_TR	20.87	112.73
tblVehicleTrips	SU_TR	26.73	112.73
tblVehicleTrips	WD_TR	32.93	112.73

2.0 Emissions Summarv

2.2 Overall Operational

	ROG	NOx	CO	SO2	Fugitive	Exhaust	PM10	Fugitive	Exhaust	PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category		lb/day											lb/d	lay		
Area	0.6107	2.00E-05	2.28E-03	0		1.00E-05	1.00E-05		1.00E-05	1.00E-05		4.81E-03	4.81E-03	1.00E-05		5.15E-03
Energy	0.0726	0.6598	0.5543	3.96E-03		0.0502	0.0502		0.0502	0.0502		791.8131	791.8131	0.0152	0.0145	796.5184
Mobile	4.7036	16.8262	45.2392	0.1222	9.0887	0.1417	9.2304	2.4299	0.1335	2.5634		12,367.76	12,367.76	0.7555		12,386.65
Total	5.3869	17.4861	45.7957	0.1261	9.0887	0.1919	9.2806	2.4299	0.1837	2.6136		13,159.58	13,159.58	0.7707	0.0145	13,183.18

4.0 Operational Detail - Mobile

4.2 Trip Summary Information

	Avera	age Daily Trip R	late	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Health Club	2,479.99	2,479.99	2479.99	4,284,603	4,284,603
Total	2,479.99	2,479.99	2,479.99	4,284,603	4,284,603

4.3 Trip Type Information

		Miles			Trip %		Trip Purpose %				
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by		
Health Club	9.50	7.30	7.30	16.90	64.10	19.00	52	39	9		

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Health Club	0.574135	0.045525	0.189369	0.116519	0.019283	0.005646	0.014833	0.022073	0.001871	0.002173	0.006385	0.000739	0.001452

5.0 Energy Detail

Historical Energy Use: N

	NaturalGa	ROG	NOx	CO	SO2	Fugitive	Exhaust	PM10	Fugitive	Exhaust	PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr		lb/day									lb/day					
Health Club	6.73041	0.0726	0.6598	0.5543	3.9600e-		0.0502	0.0502		0.0502	0.0502		791.8131	791.8131	0.0152	0.0145	796.5184
Total		0.0726	0.6598	0.5543	3.9600e-		0.0502	0.0502		0.0502	0.0502		791.8131	791.8131	0.0152	0.0145	796.5184

6.0 Area Detail

	ROG	NOx	CO	SO2	Fugitive	Exhaust	PM10	Fugitive	Exhaust	PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/c	lay							lb/c	lay		
Architectural	0.1397					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer	0.4708					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	2.2000e-	2.0000e-	2.2800e-	0.0000		1.0000e-	1.0000e-		1.0000e-	1.0000e-		4.8100e-	4.8100e-	1.0000e-		5.1500e-
Total	0.6107	2.0000e-	2.2800e-	0.0000		1.0000e-	1.0000e-		1.0000e-	1.0000e-		4.8100e-	4.8100e-	1.0000e-		5.1500e-

Page 1 of 1

Harbor Island West With Project - San Diego County, Annual

Harbor Island West With Project San Diego County, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Parking Lot	380.00	Space	3.42	116,000.00	0
Health Club	15.68	1000sqft	0.36	15,682.00	0

1.2 Other Project Characteristics

Urbanization Climate Zone	Urban 13	Wind Speed (m/s)	2.6	Precipitation Freq (Days) Operational Year	40 2021
Utility Company	San Diego Gas & Electric				
CO2 Intensity	533.52	CH4 Intensity	0	N2O Intensity	0

1.3 User Entered Comments & Non-Default Data

Project Characteristics - CO2e emission factor from SDG&E Land Use - From PD Vehicle Trips - Trip rate based on memo from traffic engineers Energy Use - Consumption based on 48% improvement over existing

Table Name Default Value Column Name New Value tblEnergyUse LightingElect 2.83 8.31 tblEnergyUse LightingElect 0.35 0.00 tblEnergyUse NT24E 4.27 12.53 tblEnergyUse NT24NG 7.25 51.58 tblEnergyUse T24E 1.21 3.55 tblEnergyUse T24NG 4.31 30.66 tblLandUse LandUseSquareFeet 152,000.00 116,000.00 tblLandUse LandUseSquareFeet 15,680.00 15,682.00 tblProjectCharacteristics CH4IntensityFactor 0.029 0

tblProjectCharacteristics	CO2IntensityFactor	720.49	533.52
tblProjectCharacteristics	N2OIntensityFactor	0.006	0
tblVehicleTrips	ST_TR	20.87	153.81
tblVehicleTrips	SU_TR	26.73	153.81
tblVehicleTrips	WD_TR	32.93	153.81

2.0 Emissions Summarv

2.2 Overall Operational

	ROG	NOx	CO	SO2	Fugitive	Exhaust	PM10	Fugitive	Exhaust	PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e		
Category		tons/yr										MT/yr						
Area	0.0913	3.00E-05	3.65E-03	0		1.00E-05	1.00E-05		1.00E-05	1.00E-05	0	7.07E-03	7.07E-03	2.00E-05	0	7.54E-03		
Energy	6.95E-03	0.0632	0.0531	3.80E-04		4.80E-03	4.80E-03		4.80E-03	4.80E-03	0	161.3965	161.3965	1.32E-03	1.26E-03	161.8055		
Mobile	0.6115	2.5	6.2037	0.019	1.5702	0.0166	1.5869	0.4205	0.0156	0.4361	0	1,750.07	1,750.07	0.1011	0	1,752.59		
Waste						0	0		0	0	18.1433	0	18.1433	1.0722	0	44.9493		
Water						0	0		0	0	0.2942	4.4504	4.7446	0.0302	7.10E-04	5.7127		
Total	0.7097	2.5633	6.2604	0.0194	1.5702	0.0215	1.5917	0.4205	0.0204	0.4409	18.4375	1,915.92	1,934.36	1.2049	1.97E-03	1,965.07		

4.0 Operational Detail - Mobile

4.2 Trip Summary Information

	Avera	age Daily Trip F	Rate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Health Club	2,411.69	2,411.69	2411.69	4,166,600	4,166,600
Parking Lot	0.00	0.00	0.00		
Total	2,411.69	2,411.69	2,411.69	4,166,600	4,166,600

4.3 Trip Type Information

	Miles			Trip %			Trip Purpose %			
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by	
Health Club	9.50	7.30	7.30	16.90	64.10	19.00	52	39	9	
Parking Lot	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0	

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Health Club	0.593936	0.041843	0.182569	0.108325	0.016436	0.005513	0.015940	0.023523	0.001912	0.001972	0.006090	0.000748	0.001193
Parking Lot	0.593936	0.041843	0.182569	0.108325	0.016436	0.005513	0.015940	0.023523	0.001912	0.001972	0.006090	0.000748	0.001193

5.0 Energy Detail

Historical Energy Use: N

5.2 Energy by Land Use - NaturalGas

	NaturalGa	ROG	NOx	CO	SO2	Fugitive	Exhaust	PM10	Fugitive	Exhaust	PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr							MT	/yr		
Health Club	1.2897e+0	6.9500e-	0.0632	0.0531	3.8000e-		4.8000e-	4.8000e-		4.8000e-	4.8000e-	0.0000	68.8233	68.8233	1.3200e-	1.2600e-	69.2323
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total		6.9500e-	0.0632	0.0531	3.8000e-		4.8000e-	4.8000e-		4.8000e-	4.8000e-	0.0000	68.8233	68.8233	1.3200e-	1.2600e-	69.2323

5.3 Energy by Land Use - Electricity

	Electricity	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		M	Г/yr	
Health Club	382533	92.5732	0.0000	0.0000	92.5732
Parking Lot	0	0.0000	0.0000	0.0000	0.0000
Total		92.5732	0.0000	0.0000	92.5732

6.0 Area Detail

	ROG	NOx	CO	SO2	Fugitive	Exhaust	PM10	Fugitive	Exhaust	PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					tons	s/yr							MT	/yr		
Architectural	0.0222					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer	0.0687					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	3.4000e-	3.0000e-	3.6500e-	0.0000		1.0000e-	1.0000e-		1.0000e-	1.0000e-	0.0000	7.0700e-	7.0700e-	2.0000e-	0.0000	7.5400e-
Total	0.0913	3.0000e-	3.6500e-	0.0000		1.0000e-	1.0000e-		1.0000e-	1.0000e-	0.0000	7.0700e-	7.0700e-	2.0000e-	0.0000	7.5400e-

7.0 Water Detail

	Indoor/Out	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		M	Г/yr	
Health Club	0.927365 /	4.7446	0.0302	7.1000e-	5.7127
Parking Lot	0 / 0	0.0000	0.0000	0.0000	0.0000
Total		4.7446	0.0302	7.1000e-	5.7127

8.0 Waste Detail

	Waste	Total CO2	CH4	N2O	CO2e
Land Use	tons		M	Г/yr	
Health Club	89.38	18.1433	1.0722	0.0000	44.9493
Parking Lot	0	0.0000	0.0000	0.0000	0.0000

Total 18.1433 1.0722 0.0000 44.9493

Page 1 of 1

Harbor Island West With Project - San Diego County, Summer

Harbor Island West With Project San Diego County, Summer

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Parking Lot	380.00	Space	3.42	116,000.00	0
Health Club	15.68	1000sqft	0.36	15,682.00	0

1.2 Other Project Characteristics

Urbanization Climate Zone	Urban 13	Wind Speed (m/s)	2.6	Precipitation Freq (Days) Operational Year	40 2021
Utility Company	San Diego Gas & Electric				
CO2 Intensity	533.52	CH4 Intensity	0	N2O Intensity	0

1.3 User Entered Comments & Non-Default Data

Project Characteristics - CO2e emission factor from SDG&E Land Use - From PD Vehicle Trips - Trip rate based on memo from traffic engineers

Energy Use - Consumption based on 48% improvement over existing

Table Name	Column Name	Default Value	New Value
tblEnergyUse	LightingElect	2.83	8.31
tblEnergyUse	LightingElect	0.35	0.00
tblEnergyUse	NT24E	4.27	12.53
tblEnergyUse	NT24NG	7.25	51.58
tblEnergyUse	T24E	1.21	3.55
tblEnergyUse	T24NG	4.31	30.66
tblLandUse	LandUseSquareFeet	152,000.00	116,000.00
tblLandUse	LandUseSquareFeet	15,680.00	15,682.00
tblProjectCharacteristics	CH4IntensityFactor	0.029	0

tblProjectCharacteristics	CO2IntensityFactor	720.49	533.52
tblProjectCharacteristics	N2OIntensityFactor	0.006	0
tblVehicleTrips	ST_TR	20.87	153.81
tblVehicleTrips	SU_TR	26.73	153.81
tblVehicleTrips	WD_TR	32.93	153.81

2.0 Emissions Summarv

2.2 Overall Operational

	ROG	NOx	CO	SO2	Fugitive	Exhaust	PM10	Fugitive	Exhaust	PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/c	lay		
Area	0.5021	3.70E-04	0.0406	0		1.50E-04	1.50E-04		1.50E-04	1.50E-04		0.0866	0.0866	2.30E-04		0.0923
Energy	0.0381	0.3464	0.291	2.08E-03		0.0263	0.0263		0.0263	0.0263		415.697	415.697	7.97E-03	7.62E-03	418.1673
Mobile	3.5693	13.4078	34.2783	0.1089	8.835	0.0911	8.9262	2.3614	0.0852	2.4465		11,070.37	11,070.37	0.6108		11,085.64
Total	4.1095	13.7545	34.6098	0.111	8.835	0.1176	8.9527	2.3614	0.1116	2.473		11,486.16	11,486.16	0.619	7.62E-03	11,503.90

4.0 Operational Detail - Mobile

4.2 Trip Summary Information

	Avera	age Daily Trip F	Rate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Health Club	2,411.69	2,411.69	2411.69	4,166,600	4,166,600
Parking Lot	0.00	0.00	0.00		
Total	2,411.69	2,411.69	2,411.69	4,166,600	4,166,600

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Health Club	9.50	7.30	7.30	16.90	64.10	19.00	52	39	9
Parking Lot	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Health Club	0.593936	0.041843	0.182569	0.108325	0.016436	0.005513	0.015940	0.023523	0.001912	0.001972	0.006090	0.000748	0.001193
Parking Lot	0.593936	0.041843	0.182569	0.108325	0.016436	0.005513	0.015940	0.023523	0.001912	0.001972	0.006090	0.000748	0.001193

5.0 Energy Detail

Historical Energy Use: N

	NaturalGa	ROG	NOx	CO	SO2	Fugitive	Exhaust	PM10	Fugitive	Exhaust	PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/o	day							lb/c	lay		
Health Club	3.53342	0.0381	0.3464	0.2910	2.0800e-		0.0263	0.0263		0.0263	0.0263		415.6970	415.6970	7.9700e-	7.6200e-	418.1673
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0381	0.3464	0.2910	2.0800e-		0.0263	0.0263		0.0263	0.0263		415.6970	415.6970	7.9700e-	7.6200e-	418.1673

6.0 Area Detail

	ROG	NOx	CO	SO2	Fugitive	Exhaust	PM10	Fugitive	Exhaust	PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	ay							lb/c	lay		
Architectural	0.1217					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer	0.3767					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	3.7900e-	3.7000e-	0.0406	0.0000		1.5000e-	1.5000e-		1.5000e-	1.5000e-		0.0866	0.0866	2.3000e-		0.0923
Total	0.5021	3.7000e-	0.0406	0.0000		1.5000e-	1.5000e-		1.5000e-	1.5000e-		0.0866	0.0866	2.3000e-		0.0923

Page 1 of 1

Harbor Island West Existing Conditions Phase I Trips - San Diego County, Summer

Harbor Island West Existing Conditions Phase I Trips San Diego County, Summer

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Health Club	1.00	1000sqft	0.02	1,000.00	0

1.2 Other Project Characteristics

Urbanization Climate Zone	Urban 13	Wind Speed (m/s)	2.6	Precipitation Freq (Days) Operational Year	40 2018
Utility Company	San Diego Gas & Electric				
CO2 Intensity	533.52	CH4 Intensity	0	N2O Intensity	0

1.3 User Entered Comments & Non-Default Data

Vehicle Trips - Trip rate based on memo from traffic engineers.

Table Name	Column Name	Default Value	New Value
tblVehicleTrips	ST_TR	20.87	2,480.00
tblVehicleTrips	SU_TR	26.73	2,480.00
tblVehicleTrips	WD_TR	32.93	2,480.00

2.0 Emissions Summarv

2.2 Overall Operational

	ROG	NOx	CO	SO2	Fugitive	Exhaust	PM10	Fugitive	Exhaust	PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	ау							lb/d	ау		
Area	0	0	0	0		0	0		0	0		0	0	0	0	0
Energy	0	0	0	0		0	0		0	0		0	0	0	0	0
Mobile	4.7036	16.8263	45.2393	0.1222	9.0887	0.1417	9.2304	2.4299	0.1335	2.5634		12,367.79	12,367.794	0.7555		12,386.681

Total	4.7036	16.8263	45.2393	0.1222	9.0887	0.1417	9.2304	2.4299	0.1335	2.5634	12,367.79	12,367.794	0.7555	0	12,386.681

4.0 Operational Detail - Mobile

4.2 Trip Summary Information

	Avera	age Daily Trip R	Rate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Health Club	2,480.00	2,480.00	2480.00	4,284,613	4,284,613
Total	2,480.00	2,480.00	2,480.00	4,284,613	4,284,613

4.3 Trip Type Information

		Miles			Trip %		Trip Purpose %				
Land Use	H-W or C-W H-S or C-C H-O or C-NW			H-W or C-	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by		
Health Club	9.50	7.30	7.30	16.90	64.10	19.00	52	39	9		

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Health Club	0.574135	0.045525	0.189369	0.116519	0.019283	0.005646	0.014833	0.022073	0.001871	0.002173	0.006385	0.000739	0.001452

Page 1 of 1

Harbor Island West Phase I Trips - San Diego County, Summer

Harbor Island West Phase I Trips San Diego County, Summer

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Health Club	1.00	1000sqft	0.02	1,000.00	0

1.2 Other Project Characteristics

Urbanization Climate Zone	Urban 13	Wind Speed (m/s)	2.6	Precipitation Freq (Days) Operational Year	40 2020
Utility Company	San Diego Gas & Electric				
CO2 Intensity	533.52	CH4 Intensity	0	N2O Intensity	0

1.3 User Entered Comments & Non-Default Data

Vehicle Trips - Trip rate based on memo from traffic engineers

Table Name	Column Name	Default Value	New Value
tblVehicleTrips	ST_TR	20.87	2,412.00
tblVehicleTrips	SU_TR	26.73	2,412.00
tblVehicleTrips	WD_TR	32.93	2,412.00

2.0 Emissions Summarv

2.2 Overall Operational

	ROG	NOx	CO	SO2	Fugitive	Exhaust	PM10	Fugitive	Exhaust	PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day											lb/d	ау			
Area	0	0	0	0		0.0000	0.0000		0.0000	0.0000		0	0	0.0000		0
Energy	0	0	0	0		0	0		0	0		0	0	0	0	0
Mobile	3.8488	14.3987	36.7835	0.1123	8.8367	0.1101	8.9468	2.3620	0.1033	2.4652		11,393.91	11,393.910	0.6452		11,410.038

Total	3.8488	14.3987	36.7835	0.1123	8.8367	0.1101	8.9468	2.3620	0.1033	2.4652	11,393.91	11,393.910	0.6452	0	11,410.038

4.0 Operational Detail - Mobile

4.2 Trip Summary Information

	Avera	age Daily Trip R	Rate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Health Club	2,412.00	2,412.00	2412.00	4,167,132	4,167,132
Total	2,412.00	2,412.00	2,412.00	4,167,132	4,167,132

4.3 Trip Type Information

		Miles			Trip %		Trip Purpose %				
Land Use	H-W or C-W H-S or C-C H-O or C-NW			H-W or C-	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by		
Health Club	9.50	7.30	7.30	16.90	64.10	19.00	52	39	9		

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Health Club	0.588316	0.042913	0.184449	0.110793	0.017294	0.005558	0.015534	0.023021	0.001902	0.002024	0.006181	0.000745	0.001271

Recreational Boating, 2018

Poat				Pounds per B	oat per Day				
boat	ROG	NOX	CO	PM10	PM2.5	SOx	CO2	CH4	N2C
Outboards, 25hp	0.137	0.006	0.219	0.006	0.004	0.000	0.801	0.000	0.00
Outboards, 50hp	0.343	0.024	0.651	0.019	0.014	0.000	2.685	0.000	0.00
Inboard/sterndrive, 120hp	0.021	0.069	0.031	0.002	0.001	0.000	3.887	0.000	0.00

Slip Banga			Pounds per Day						Metric Tons Per Year			
Slip Kalige	Vessel	Counts	ROG	NOX	CO	PM10	PM2.5	SOx	CO2	CH4	N2O	CO2e
12 – 20 feet	Outboards, 25hp	0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.000	0.000	0
21 – 25 feet	Outboards, 25hp	96	13.1	0.6	21.0	0.5	0.4	0.0	13	0.001	0.000	13
26 – 30 feet	Outboards, 25hp	111	15.2	0.7	24.3	0.6	0.5	0.0	15	0.001	0.000	15
31 – 35 feet	Outboards, 25hp	231	31.5	1.5	50.5	1.3	1.0	0.0	31	0.002	0.001	31
36 – 40 feet	Outboards, 25hp	106	14.5	0.7	23.2	0.6	0.4	0.0	14	0.001	0.000	14
41 – 45 feet	Outboards, 25hp	9	1.2	0.1	2.0	0.0	0.0	0.0	1	0.000	0.000	1
46 – 50 feet	Outboards, 50hp	44	15.1	1.1	28.6	0.8	0.6	0.0	20	0.001	0.000	20
Greater than 51 feet	Inboard/sterndrive, 120hp	23	0.5	1.6	0.7	0.0	0.0	0.0	15	0.000	0.001	15

)	
0	
0	
0	

Recreational Boating, 2020/2021

Poat	Pounds per Boat per Day									
Boat	ROG	NOX	CO	PM10	PM2.5	SOx	CO2	CH4	N20	
Outboards, 25hp	0.132	0.006	0.221	0.005	0.004	0.000	0.811	0.000	0.00	
Outboards, 50hp	0.322	0.024	0.641	0.018	0.014	0.000	2.705	0.000	0.00	
Inboard/sterndrive, 120hp	0.021	0.069	0.031	0.002	0.001	0.000	3.888	0.000	0.00	

Slip Banga			Pounds per Day							Metric Tons Per Year			
Slip Kalige	Vessel	Counts	ROG	NOX	CO	PM10	PM2.5	SOx	CO2	CH4	N2O	CO2e	
12 – 20 feet	Outboards, 25hp	57	7.5	0.4	12.6	0.3	0.2	0.0	8	0.001	0.000	8	
21 – 25 feet	Outboards, 25hp	106	13.9	0.7	23.4	0.5	0.4	0.0	14	0.001	0.000	14	
26 – 30 feet	Outboards, 25hp	55	7.2	0.4	12.2	0.3	0.2	0.0	7	0.001	0.000	7	
31 – 35 feet	Outboards, 25hp	174	22.9	1.1	38.5	0.9	0.7	0.0	23	0.002	0.001	24	
36 – 40 feet	Outboards, 25hp	73	9.6	0.5	16.1	0.4	0.3	0.0	10	0.001	0.000	10	
41 – 45 feet	Outboards, 25hp	28	3.7	0.2	6.2	0.1	0.1	0.0	4	0.000	0.000	4	
46 – 50 feet	Outboards, 50hp	44	14.2	1.1	28.2	0.8	0.6	0.0	20	0.001	0.000	20	
Greater than 51 feet	Inboard/sterndrive, 120hp	66	1.4	4.5	2.0	0.1	0.1	0.0	42	0.000	0.002	43	

)	
0	
0	
0	

Harbor Island West Marina Updated Baseline Eelgrass Resources Report

Prepared for Charlie Richmond ICF International 525 B St. #1700 San Diego, CA 92101

Prepared by

Robert Mooney, Ph.D. Marine Taxonomic Services, Ltd. 920 Rancheros Drive, Suite F-1 San Marcos, CA 92069

April 2, 2018 (Revised December 10, 2018)

Contents

Introduction	1
Methods	1
Bathymetric Survey	1
SCUBA and Transect Surveys	3
Side-Scan Sonar Survey	3
Results	5
Bathymetric Survey	5
SCUBA and Transect Surveys	5
Side-Scan Sonar Surveys	5
Eelgrass Impact Analysis	7
Discussion	10
References	11

List of Figures

Figure 1	. Vicinity map showing location of the Harbor Island West Marina within San Diego Bay2
Figure 2	. Position of diver transects performed to validate sonar and assess eelgrass condition4
Figure 3.	. The above figure shows the distribution of eelgrass resources within the Harbor Island West eelgrass
	survey area6
Figure 4	. The above figure shows the existing and proposed dock footprint masks as used to support the impact
	analysis. The insets show where most of the 177 square meters of eelgrass will be covered due to dock
	reconfiguration
Table 1.	The below table provides the position of the SCUBA-based diver transects and the associated percent
	cover of eelgrass along each transect5
Table 2.	The below table provides the distribution of habitats and eelgrass by depth and whether or not they are covered by marina facilities. The three columns at right are calculated using the other fields. The percent cover of eelgrass habitat is the proportion of unshaded bottom within each depth classification that is vegetated by eelgrass. The potential loss/gain is the amount of unshaded potential eelgrass habitat that will be lost or gained when the existing docks are replaced by the current docks. The expected eelgrass loss/gain multiplies the percent eelgrass cover by the amount of potential eelgrass loss/gain within each depth classification to determine the expected loss or gain of eelgrass after the Project is implemented.
	All values represent areas in square meters

Harbor Island West Marina Updated Baseline Eelgrass Resources Report

April 2, 2018 (Revised December 10, 2018)

Introduction

Marine Taxonomic Services (MTS) was contracted by ICF International to provide an updated baseline eelgrass (*Zostera marina*) inventory at Harbor Island West Marina in San Diego, California. MTS has completed the survey of the eelgrass resources at Harbor Island West Marina and has prepared the following report on the findings. The survey was intended to support the environmental planning associated with proposed construction activities. As such the results of the inventory are discussed relative to potential impacts associated with planned construction activities at the marina.

Harbor Island West Marina is located in the northern portion of San Diego Bay along the northwestern shore of Harbor Island (Figure 1). The Harbor Island West Marina Renovation Project (Project) entails demolishing and replacing all existing buildings and structures as well as replacing landscaping, reconfiguring hardscape, modernizing utilities, modernizing lighting, renovating the parking lot, adding a public promenade, and improving view corridors. On the water, the docks will be replaced and slightly reconfigured. The replacement docks will follow the existing layout except that two extension dock/headwalks will be consolidated into a single dock/headwalk. This will reduce the current 11 dock/headwalks to 10 docks/headwalks and will reduce the over water coverage of the docks from 13,564 square meters (146,000 square feet) to 13,006 square meters (140,000 square feet). The number of slips will be reduced from 620 to 603 with adjustments made to the distribution of dock sizes within the marina.

Methods

A bathymetric survey was performed as part of the original baseline survey on November 29, 2014. Those data are still considered valid. The methods are reported below to maintain the completeness of this updated report. MTS staff Robert Mooney, Kees Schipper, and Angelica Lopez performed side-scan sonar and SCUBA-based surveys on March 26, 2018 to update the eelgrass distribution data. The side-scan sonar survey was performed to get a complete view of the seafloor for eelgrass mapping. The SCUBA survey was performed to visually verify the sonar record and provide independent transect-based coverage estimates.

Bathymetric Survey

The bathymetric survey was performed by using a survey-grade fathometer operating at 50 kHz. The fathometer data was integrated to the vessels differential GPS system via a laptop computer running Hypack hydrographic surveying software. Two transects were navigated

Figure 1. Vicinity map showing location of the Harbor Island West Marina within San Diego Bay.

along each fairway and a series of transects were performed around the perimeter of the marina. The data were post-processed in Hypack to produce a grid of interpolated data that were corrected for changing tidal elevations during the survey. The grid data were then processed and smoothed in ArcMap to produce depth contours.

SCUBA and Transect Surveys

The SCUBA surveys were implemented to visually verify the sonar data, provide an independent means of estimating eelgrass coverage, provide additional mapping support in areas where sonar data could not be adequately obtained, and provide eelgrass density data. The visual verification and coverage information were obtained by placing 100-meter transect lines on the seafloor running up the middle of every other fairway (refer to Figure 2). The diver swam each transect and noted where each transect intercepted eelgrass beds. In addition to the intercept data, the diver used the transects to randomly place a 1/16 square meter quadrat within eelgrass beds. The quadrat data were used to calculate eelgrass density by using the diver's counts of leaf shoots within each quadrat.

The diver transects were subsequently plotted in ArcMap. The transect data were used to calculate a percent cover of eelgrass for each transect. The data were also used to help refine the side-scan sonar digitizing. If eelgrass was found by a diver that was not digitized, the GIS Specialist would inspect the sonar record. If the sonar record showed a return in that region, the eelgrass boundary was refined and similar returns in that area were also be used to refine the eelgrass boundaries. If there was no sonar return that could be justified to represent eelgrass, no attempt was made to draw additional eelgrass patches. The two methods are sampling techniques and so variation with sampling error is considered a valid result.

Side-Scan Sonar Survey

To detect and map any eelgrass present, a side-scan sonar survey was performed by navigating a small vessel along a series of transects through the study site. The vessel was fitted with a pole-mounted side-scan sonar operating at 450 kHz. The sonar was set to scan 30 meters on both the port and starboard channels for a total scanning swath of 60 meters. Two survey transects were navigated down each of the marina fairways with the vessel biased to the left and right of center. This allowed for complete coverage of each fairway while providing for overlapping data to provide redundancy within the sonar record. Similarly transects were navigated around the perimeter of the marina with significant overlap to ensure the survey area was thoroughly covered. In areas where vessels could not be navigated, diver data were used to map eelgrass resources. The survey boundary is provided in Figure 2.

Following the field surveys, the collected side-scan sonar files were geographically registered using the vessel's navigation data collected during the survey. The side-scan files were then compiled to create a contiguous view of the seafloor across the entirety of the study site. The boundaries of the eelgrass present were then digitized from the compiled data set using ESRI ArcMap software and plotted on a geographically registered image of the project area.

Figure 2. Position of diver transects performed to validate sonar and assess eelgrass condition.

Results

Bathymetric Survey

The bathymetric survey results show that the survey area ranges from intertidal to -17-feet Mean Lower Low Water (MLLW). From simple observation of the contour lines, the toe of the shoreline rip-rap occurs at approximately -1-foot MLLW. Most of the slips occur over water in the -10 to -11-feet MLLW range.

SCUBA and Transect Surveys

The diver transect survey revealed that estimates of eelgrass cover within the marina ranged from a low of 13% at the eastern end of the marina to a high of 66% at the westernmost fairway that was sampled along transect number F2 (Table 1). The general trend was for increasing eelgrass cover moving from east to west.

Table 1. The below table provides the position of the SCUBA-based diver transects and the associated percent cover of eelgrass along each transect.

	Transect Sta	rt Coordinates	Transect End		
Transect	Latitude	Longitude	Latitude	Longitude	Cover
F1	32.725429	-117.213679	32.726270	-117.213857	49%
F2	32.726536	-117.212633	32.725640	-117.212441	66%
F3	32.726492	-117.211605	32.725595	-117.211429	30%
F4	32.726779	-117.210753	32.725903	-117.210544	30%
F5	32.726890	-117.209725	32.725996	-117.209664	35%
F6	32.726877	-117.208778	32.725967	-117.208661	13%

Eelgrass density within the marina was generally low across the survey area. Eelgrass beds in shallow water along shore typically had shorter blades than patches observed in deeper water. Eelgrass density within the marina was 59.5 ± 44.7 (mean ± 1 sd) leaf shoots per square meter. A total of 155 quadrats (n=155) were sampled to determine the leaf shoot density estimate. The relatively high variability given the number of sampled quadrats was due to high variability among quadrats sampled in shallow water along the shore. There were many areas near shore where eelgrass was short in stature and occurred in low density.

Side-Scan Sonar Surveys

The side-scan sonar mapping resulted in identification of 15,256 square meters of eelgrass within the survey area (Figure 3). Eelgrass is generally spread across the survey area as clusters of individual patches. All fairways within the marina had eelgrass; however, eelgrass occurrence as observed by SCUBA and sonar was lowest in the easternmost fairway and the area between Harbor Island West and the neighboring Marina Cortez to the east.

Figure 3. The above figure shows the distribution of eelgrass resources within the Harbor Island West eelgrass survey area.

Eelgrass Impact Analysis

The eelgrass map and bathymetric map data were analyzed to determine the potential for impacts to eelgrass resources within the survey area. For the purpose of the analysis, the existing and proposed dock layouts were used to create a mask. The dock masks were then used to clip the bathymetry and the eelgrass data. The eelgrass and bathymetry that remained outside the mask provided the unshaded eelgrass and bathymetric depth distribution. The proportion of eelgrass within each unshaded 1-foot depth category provides the percent cover of eelgrass habitat within each depth category. Only areas that were both surveyed for eelgrass and had associated depth data were included in the analysis. Some areas were mapped by SCUBA for eelgrass but could not be accessed by the survey vessel when the bathymetry survey was performed.

The potential habitat lost or gained is simply the difference between each of the depth categories before and after implementation of the dock plan. In cases where a greater amount of a depth category is shaded after construction, potential habitat is lost and a negative number results. If a depth category has less shading after construction, the value is positive. The expected eelgrass change is calculated by multiplying the potential habitat lost or gained by the percent eelgrass cover observed in each unshaded depth category. This assumes that where dock structures are removed, eelgrass will recruit to those unshaded areas in a manner similar to that observed for those depth categories prior to construction.

It is important to point out that the dock masks were created by using the perimeter of the current and proposed dock layouts with an assumption that areas within boat slips were covered. This is different from the area of the docks themselves as presented in other planning documents for the Project. This is basically assuming all slips are filled with vessels prior to and after construction regardless of the current vacancy status. The existing combined dock and slip area was calculated to be 41,244 square meters (443,947 square feet). The proposed dock and slip area measures 39,779 square meters (428,178 square feet). The existing dock and slip area where there was also bathymetry such that it could be included in the eelgrass impact model was 39,763 square meters (428,005 square feet). The proposed dock and slip area with bathymetry included in the analysis was 39,593 square meters (426,176 square feet).

The results of the eelgrass impact analysis show that the reconfiguration of the marina facilities will directly cover 177 square meters (1,905 square feet) of eelgrass (Figure 4 and Table 2). This represents all of the eelgrass mapped within the easternmost fairway as that fairway will be covered by the new dock arrangement. It also includes minor amounts of eelgrass at the westernmost dock/headwalk where some of the western boat slips are increasing in length (Figure 4).

Figure 4. The above figure shows the existing and proposed dock footprint masks as used to support the impact analysis. The insets show where most of the 177 square meters of eelgrass will be covered due to dock reconfiguration.

HARBOR ISLAND WEST BASELINE EELGRASS

Table 2. The below table provides the distribution of habitats and eelgrass by depth and whether or not they are covered by marina facilities. The three columns at right are calculated using the other fields. The percent cover of eelgrass habitat is the proportion of unshaded bottom within each depth classification that is vegetated by eelgrass. The potential loss/gain is the amount of unshaded potential eelgrass habitat that will be lost or gained when the existing docks are replaced by the current docks. The expected eelgrass loss/gain multiplies the percent eelgrass cover by the amount of potential eelgrass loss/gain within each depth classification to determine the expected loss or gain of eelgrass after the Project is implemented. All values represent areas in square meters.

					Existing	Proposed	Bathymetric		Habitat %		Expected
Depth Range	Bathymetric	Existing	Proposed	Eelgrass	Dock Over	Dock Over	Distribution	Eelgrass	Eelgrass	Potential	Eelgrass
(ft MLLW)	Distribution	Dock Cover	Dock Cover	Distribution	Eelgrass	Eelgrass	Unshaded	Unshaded	Cover	Loss/Gain	Loss/Gain
-17 to -16	478	0	0	0	0	0	478	0	0.0%	0	0.0
-16 to -15	1525	0	0	0	0	0	1525	0	0.0%	0	0.0
-15 to -14	2340	0	0	0	0	0	2340	0	0.0%	0	0.0
-14 to -13	3934	2	2	2	0	0	3932	2	0.1%	0	0.0
-13 to -12	6076	960	959	116	0	0	5116	116	2.3%	1	0.0
-12 to -11	38387	11136	11303	4205	4	12	27251	4201	15.4%	-167	-25.7
-11 to -10	52255	21143	20831	6528	18	167	31112	6510	20.9%	312	65.3
-10 to -9	5034	2385	2418	145	13	17	2649	132	5.0%	-33	-1.6
-9 to -8	2706	1323	1331	291	2	5	1383	289	20.9%	-8	-1.7
-8 to -7	2466	1087	1149	432	24	25	1379	408	29.6%	-62	-18.3
-7 to -6	2273	977	976	444	7	12	1296	437	33.7%	1	0.3
-6 to -5	1682	344	264	765	12	18	1338	753	56.3%	80	45.0
-5 to -4	1400	182	142	586	8	8	1218	578	47.5%	40	19.0
-4 to -3	1353	114	108	509	2	2	1239	507	40.9%	6	2.5
-3 to -2	4990	76	73	660	2	1	4914	658	13.4%	3	0.4
-2 to -1	3366	33	36	379	2	4	3333	377	11.3%	-3	-0.3
-1 to 0	592	1	1	76	0	0	591	76	12.9%	0	0.0
0 to 1	292	0	0	0	0	0	292	0	0.0%	0	0.0
1 to 2	297	0	0	0	0	0	297	0	0.0%	0	0.0
2 to 3	185	0	0	0	0	0	185	0	0.0%	0	0.0
3 to 4	13	0	0	0	0	0	13	0	0.0%	0	0.0
Totals	131644	39763	39593	15138	94	271	91881	15044	NA	170	84.8

Note: Existing and proposed dock cover includes slip space and is not the same as dock coverage only values provided in text and in other project documents.

The impact analysis also shows that the Project will provide for greater potential eelgrass habitat area after implementation due to a reduction of 557 square meters (6,000 square feet) of over water dock coverage (170 square meters [1,830 square feet] reduction of dock and slip coverage) (Table 2). Based on model predictions, the Project will result in a net increase of 85 square meters (915 square feet) of eelgrass above that currently mapped within the Project area. This increase is due to the reduction in shading over areas with depths suitable to support eelgrass.

Discussion

The results of this survey show that there are considerable eelgrass resources within and around the Harbor Island West Marina. The patterns of eelgrass occurrence observed are generally similar to two recent mapping efforts (M&A 2012, MTS 2015). However, both the current effort and MTS (2015) identified more eelgrass between the marina and shore relative to M&A (2012). The differences within these shallow, nearshore areas are likely due to a lower level of visual verification in the M&A (2012) study. Increases between MTS 2015 and the current study seem to be due to expansion of eelgrass beds as there are increases throughout the survey area. Eelgrass densities have been highly variable in all recent mapping efforts indicating that eelgrass vigor ranges throughout the survey area.

The results of the impact analysis show that 177 square meters of eelgrass will be directly impacted by the reconfiguration of the docks. These impacts occur in the easternmost fairway where the two docks/headwalks at the eastern end of the marina are being replaced by a single dock/headwalk and at slips of the westernmost dock/headwalk where there are slight increases to slip lengths. The amount of total eelgrass, the amount of eelgrass impacted, and the amount of predicted eelgrass recover is significantly higher than that noted during the MTS (2015) survey. It was pointed out in the MTS (2015) discussion of results that transect survey results predicted that there was slightly more eelgrass in the eastern fairway than mapped via sonar and that future surveys might detect more eelgrass under favorable conditions. Given the expansive eelgrass growth across the marina it appears conditions have been favorable for eelgrass growth since the prior survey.

While the new configuration covers 177 square meters of eelgrass, the results of the impact analysis indicate that the Project will provide a surplus of potential eelgrass habitat relative to the existing condition. As shown in the impact analysis, multiplication of the area made available by the proportion of eelgrass cover observed in each of the bathymetric depth categories indicates that a net increase of 85 square meters of eelgrass can be expected to grow within the areas where the decreased dock footprint results in reduced bottom shading.

The impact analysis shows that the Project is self-mitigating with regards to eelgrass cover. Although there will be 177 square meters of current eelgrass coverage lost, there will be a net increase over the current coverage of 85 square meters. This means the project will result in production of 262 square meters (2,820 square feet) of eelgrass in areas that will be made available by the Project. This equates to a ratio of 1.48:1 of created eelgrass for lost eelgrass.

This is in excess of the 1.2:1 eelgrass mitigation ratio specified in the California Eelgrass Mitigation Policy.

Given the Project provides a net increase in potential eelgrass habitat and therefore a longterm benefit to the resource, it is reasonable to expect favorable review of the Project by NOAA Fisheries. However, it is suggested that a small restoration effort be performed to ensure rapid eelgrass colonization in appropriate areas and to ensure that the Project does not result in a reduction of eelgrass resources. This would simply mean planting approximately 300 square meters worth of eelgrass in areas where shading is removed and depths are suitable for eelgrass growth.

In addition to the potential for direct impacts to eelgrass associated with reconfiguration of the dock layout, there is a potential for direct and indirect impacts associated with construction techniques. Construction elements that can cause direct impact include shading from support vessels (e.g. barges), bottom scour from propeller wash from construction vessels and bottom contact from the use of spuds. Indirect impacts can also occur from increases in turbidity. Turbidity decreases the light available to the eelgrass beds as more light is attenuated through the water column than would be otherwise. Additionally, as particulates settle from the turbid water column they can land of eelgrass blades and reduce the ability of the plant to photosynthesize. The extent of turbidity related impacts is dependent upon the extent and duration of the elevated turbidity.

The potential direct and indirect eelgrass impacts associated with bottom contact, scour, and turbidity mentioned above can be readily avoided through contractor training, provision of eelgrass maps, and use of silt curtains during pile jetting and driving. The map data can be used by construction personnel so that direct and indirect impacts associated with construction activities would be avoided. Silt curtains would minimize the spread of particulates through the water column and minimize the potential for indirect impacts.

References

- Marine Taxonomic Services, Ltd. [MTS]. 2015. Harbor Island West Marina Baseline Eelgrass Resource Report. Prepared for ICF International. January 7, 2015 (revised January 2, 2017).
- Merkel & Associates, Inc. [M&A]. Baseline eelgrass report for the Harbor Island West Marina Redevelopment Project, San Diego Bay, California. Letter Report. April 23, 2012.

<u>Appendix B1</u> <u>Harbor Island West Marina Updated Eelgrass Resources and Impact</u> <u>Report</u>

Harbor Island West Marina Updated Eelgrass Resources and Impact Report

January 28, 2022

Prepared for:

Charlie Richmond ICF International 525 B St. #1700 San Diego, CA 92101

Prepared By:

Marine Taxonomic Services, Ltd.

SOUTHERN CALIFORNIA OFFICE

920 RANCHEROS DRIVE, STE F-1 SAN MARCOS, CA 92069

OREGON OFFICE

2834 NW PINEVIEW DRIVE ALBANY, OR 97321

LAKE TAHOE OFFICE

1155 GOLDEN BEAR TRAIL SOUTH LAKE TAKOE, CA 96150

Marine Taxonomic Services Ltd. 2022. Harbor Island West Marina Updated Eelgrass Resources and Impact Report. Prepared for ICF International. January 28, 2022.

Robert Mooney, PhD Principal Scientist

Participating Marine Taxonomic Services Ltd. Team Members;

Project Manager – Robert Mooney, PhD Biologist and Report Draft – Grace Teller, MSc

Contents

1	Intro	oduction	1
2	Met	hods	3
	2-1	Bathymetric Survey	3
	2-2	SCUBA and Transect Surveys	3
	2-3	Side-Scan Sonar Survey	3
3	Resu	ults	6
	3-1	Bathymetric Survey	6
	3-2	SCUBA and Transect Surveys	6
	3-3	Side-Scan Sonar Surveys	6
	3-4	Eelgrass Impact Analysis	8
4	Disc	ussion	11
5	Refe	erences	12

List of Figures and Tables

Figure 1. Vicinity map showing location of the Harbor Island West Marina within San Diego Bay
Figure 2. Position of diver transects performed to validate sonar and assess eelgrass condition
Figure 3. The above figure shows the distribution of eelgrass resources mapped in 2018 within the
Harbor Island West eelgrass survey area7
Figure 4. The above figure shows the existing and proposed dock footprint masks as used to support the
impact analysis. The insets show where most of the 4,543 square meters of eelgrass will be
covered due to dock reconfiguration9
Table 1. The below table provides the position of the SCUBA-based diver transects performed in 2018
and the associated percent cover of eelgrass along each transect
Table 2. The below table provides the distribution of habitats and eelgrass by depth and whether or not
they are covered by marina facilities. The three columns at right are calculated using the other
fields. The percent cover of eelgrass habitat is the proportion of unshaded bottom within each
depth classification that is vegetated by eelgrass. The potential loss/gain is the amount of
unshaded potential eelgrass habitat that will be lost or gained when the existing docks are
replaced by the current docks. The expected eelgrass loss/gain multiplies the percent eelgrass
cover by the amount of potential eelgrass loss/gain within each depth classification to
determine the expected loss or gain of eelgrass after the Project is implemented. All values
represent areas in square meters10

Harbor Island West Eelgrass Resources Update

Format Page

Harbor Island West Marina Updated Eelgrass Resources and Impact Report

January 28, 2022

1 Introduction

Marine Taxonomic Services (MTS) was contracted by ICF International to provide an updated baseline eelgrass (*Zostera marina*) inventory at Harbor Island West Marina in San Diego, California. MTS completed the survey of the eelgrass resources at Harbor Island West Marina and had prepared a report of the findings in 2018 (MTS 2018). The following report includes the eelgrass resources from the 2018 survey but has been updated to reflect impacts related to the revised proposed dock layout. The survey was intended to support the environmental planning associated with proposed construction activities. As such the results of the inventory are discussed relative to potential impacts associated with planned construction activities at the marina.

Harbor Island West Marina is located in the northern portion of San Diego Bay along the northwestern shore of Harbor Island (Figure 1). The Harbor Island West Marina Renovation Project (Project) entails demolishing and replacing all existing buildings and structures as well as replacing landscaping, reconfiguring hardscape, modernizing utilities, modernizing lighting, renovating the parking lot, adding a public promenade, and improving view corridors. On the water, the docks will be replaced and reconfigured. The replacement and reconfiguration of the dock structure will reduce dock coverage from 13,564 square meters (146,000 square feet) to 12,934 square meters (139,218 square feet). The number of slips will be increased from 620 to 623 with adjustments made to the distribution of slip sizes within the marina.

Figure 1. Vicinity map showing location of the Harbor Island West Marina within San Diego Bay.

2 Methods

A bathymetric survey was performed as part of the original baseline survey on November 29, 2014. Those data are still considered valid. The methods are reported below to maintain the completeness of this updated report. MTS staff Robert Mooney, Kees Schipper, and Angelica Lopez performed side-scan sonar and SCUBA-based surveys on March 26, 2018, to update the eelgrass distribution data. The side-scan sonar survey was performed to get a complete view of the seafloor for eelgrass mapping. The SCUBA survey was performed to visually verify the sonar record and provide independent transect-based coverage estimates.

2-1 Bathymetric Survey

The bathymetric survey was performed by using a survey-grade fathometer operating at 50 kHz. The fathometer data was integrated to the vessels differential GPS system via a laptop computer running Hypack hydrographic surveying software. Two transects were navigated along each fairway and a series of transects were performed around the perimeter of the marina. The data were post-processed in Hypack to produce a grid of interpolated data that were corrected for changing tidal elevations during the survey. The grid data were then processed and smoothed in ArcMap to produce depth contours.

2-2 SCUBA and Transect Surveys

The SCUBA surveys were implemented to visually verify the sonar data, provide an independent means of estimating eelgrass coverage, provide additional mapping support in areas where sonar data could not be adequately obtained, and provide eelgrass density data. The visual verification and coverage information were obtained by placing 100-meter transect lines on the seafloor running up the middle of every other fairway (refer to Figure 2). The diver swam each transect and noted where each transect intercepted eelgrass beds. In addition to the intercept data, the diver used the transects to randomly place a 1/16 square meter quadrat within eelgrass beds. The quadrat data were used to calculate eelgrass density by using the diver's counts of leaf shoots within each quadrat.

The diver transects were subsequently plotted in ArcMap. The transect data were used to calculate a percent cover of eelgrass for each transect. The data were also used to help refine the side-scan sonar digitizing. If eelgrass was found by a diver that was not digitized, the GIS Specialist would inspect the sonar record. If the sonar record showed a return in that region, the eelgrass boundary was refined and similar returns in that area were also be used to refine the eelgrass boundaries. If there was no sonar return that could be justified to represent eelgrass, no attempt was made to draw additional eelgrass patches. The two methods are sampling techniques and so variation with sampling error is considered a valid result.

2-3 Side-Scan Sonar Survey

To detect and map any eelgrass present, a side-scan sonar survey was performed by navigating a small vessel along a series of transects through the study site. The vessel was fitted with a pole-mounted sidescan sonar operating at 450 kHz. The sonar was set to scan 30 meters on both the port and starboard channels for a total scanning swath of 60 meters. Two survey transects were navigated down each of the marina fairways with the vessel biased to the left and right of center. This allowed for complete coverage of each fairway while providing for overlapping data to provide redundancy within the sonar record. Similarly transects were navigated around the perimeter of the marina with significant overlap to ensure the survey area was thoroughly covered. In areas where vessels could not be navigated, diver data were used to map eelgrass resources. The survey boundary is provided in Figure 2.

Following the field surveys, the collected side-scan sonar files were geographically registered using the vessel's navigation data collected during the survey. The side-scan files were then compiled to create a contiguous view of the seafloor across the entirety of the study site. The boundaries of the eelgrass present were then digitized from the compiled data set using ESRI ArcMap software and plotted on a geographically registered image of the project area.

Figure 2. Position of diver transects performed to validate sonar and assess eelgrass condition.

3 Results

3-1 Bathymetric Survey

The bathymetric survey results show that the survey area ranges from intertidal to -17-feet Mean Lower Low Water (MLLW). From simple observation of the contour lines, the toe of the shoreline riprap occurs at approximately -1-foot MLLW. Most of the slips occur over water in the -10 to -11-feet MLLW range.

3-2 SCUBA and Transect Surveys

The diver transect survey revealed that estimates of eelgrass cover within the marina ranged from a low of 13% at the eastern end of the marina to a high of 66% at the westernmost fairway that was sampled along transect number F2 (Table 1). The general trend was for increasing eelgrass cover moving from east to west.

	Transect Sta	rt Coordinates	Transect End		
Transect	Latitude	Longitude	Latitude	Longitude	Cover
F1	32.725429	-117.213679	32.726270	-117.213857	49%
F2	32.726536	-117.212633	32.725640	-117.212441	66%
F3	32.726492	-117.211605	32.725595	-117.211429	30%
F4	32.726779	-117.210753	32.725903	-117.210544	30%
F5	32.726890	-117.209725	32.725996	-117.209664	35%
F6	32.726877	-117.208778	32.725967	-117.208661	13%

Table 1. The below table provides the position of the SCUBA-based diver transects performed in 2018 and the associated percent cover of eelgrass along each transect.

Eelgrass density within the marina was generally low across the survey area. Eelgrass beds in shallow water along shore typically had shorter blades than patches observed in deeper water. Eelgrass density within the marina was 59.5 ± 44.7 (mean ± 1 sd) leaf shoots per square meter. A total of 155 quadrats (n=155) were sampled to determine the leaf shoot density estimate. The relatively high variability given the number of sampled quadrats was due to high variability among quadrats sampled in shallow water along the shore. There were many areas near shore where eelgrass was short in stature and occurred in low density.

3-3 Side-Scan Sonar Surveys

The side-scan sonar mapping resulted in identification of 15,256 square meters of eelgrass within the survey area (Figure 3). Eelgrass is generally spread across the survey area as clusters of individual patches. All fairways within the marina had eelgrass; however, eelgrass occurrence as observed by SCUBA and sonar was lowest in the easternmost fairway and the area between Harbor Island West and the neighboring Marina Cortez to the east.

Figure 3. The above figure shows the distribution of eelgrass resources mapped in 2018 within the Harbor Island West eelgrass survey area.

3-4 Eelgrass Impact Analysis

The eelgrass map and bathymetric map data were analyzed to determine the potential for impacts to eelgrass resources within the survey area. For the purpose of the analysis, the existing and proposed dock layouts were used to create a mask. The dock masks were then used to clip the bathymetry and the eelgrass data. The eelgrass and bathymetry that remained outside the mask provided the unshaded eelgrass and bathymetric depth distribution. The proportion of eelgrass within each unshaded 1-foot depth category provides the percent cover of eelgrass habitat within each depth category. Only areas that were both surveyed for eelgrass and had associated depth data were included in the analysis. Some areas were mapped by SCUBA for eelgrass but could not be accessed by the survey vessel when the bathymetry survey was performed.

The potential habitat lost or gained is simply the difference between each of the depth categories before and after implementation of the dock plan. In cases where a greater amount of a depth category is shaded after construction, potential habitat is lost and a negative number results. If a depth category has less shading after construction, the value is positive. The expected eelgrass change is calculated by multiplying the potential habitat lost or gained by the percent eelgrass cover observed in each unshaded depth category. This assumes that where dock structures are removed, eelgrass will recruit to those unshaded areas in a manner similar to that observed for those depth categories prior to construction.

It is important to point out that the dock masks were created by using the perimeter of the current and proposed dock layouts with an assumption that areas within boat slips were covered. This is different from the area of the docks themselves as presented in other planning documents for the Project. This is basically assuming all slips are filled with vessels prior to and after construction regardless of the current vacancy status. The existing combined dock and slip area was calculated to be 41,244 square meters (443,947 square feet). The proposed dock and slip area measures 47,366 square meters (509,843 square feet). The existing dock and slip area where there was also bathymetry such that it could be included in the eelgrass impact model was 39,763 square meters (428,005 square feet). The proposed dock and slip area with bathymetry included in the analysis was 47,361 square meters (509,790 square feet).

The results of the eelgrass impact analysis show that the reconfiguration of the marina facilities will directly cover 4,543 square meters (48,900 square feet) of eelgrass (Figure 4 and Table 2). Eelgrass impacts represent eelgrass covered throughout the mapped area due to the shift in placement of main dock walkways and fingers over areas that are currently fairways supporting eelgrass in the current dock layout (Figure 4).

The impact analysis also shows that the Project will reduce the potential eelgrass habitat after implementation due to an increase of 7,598 square meters (81,784 square feet) of over water dock coverage and slip coverage. Based on model predictions, the Project will result in a net decrease of 1,267 square meters (13,638 square feet) of eelgrass beyond what is currently mapped within the Project area. This decrease is due to the increase in shading over areas with depths suitable to support eelgrass (Table 2).

Figure 4. The above figure shows the existing and proposed dock footprint masks as used to support the impact analysis. The insets show where most of the 4,543 square meters of eelgrass will be covered due to dock reconfiguration.

Table 2. The below table provides the distribution of habitats and eelgrass by depth and whether or not they are covered by marina facilities. The three columns at right are calculated using the other fields. The percent cover of eelgrass habitat is the proportion of unshaded bottom within each depth classification that is vegetated by eelgrass. The potential loss/gain is the amount of unshaded potential eelgrass habitat that will be lost or gained when the existing docks are replaced by the current docks. The expected eelgrass loss/gain multiplies the percent eelgrass cover by the amount of potential eelgrass loss/gain within each depth classification to determine the expected loss or gain of eelgrass after the Project is implemented. All values represent areas in square meters.

		Existing	Proposed		Existing	Proposed	Bathymetric		Habitat %		Expected
Depth Range	Bathymetric	Dock	Dock	Eelgrass	Dock Over	Dock Over	Distribution	Eelgrass	Eelgrass	Potential	Eelgrass
(ft MLLW)	Distribution	Cover	Cover	Distribution	Eelgrass	Eelgrass	Unshaded	Unshaded	Cover	Loss/Gain	Loss/Gain
-17 to -16	478						478	0	0.0%	0	0.0
-16 to -15	1525						1525	0	0.0%	0	0.0
-15 to -14	2340						2340	0	0.0%	0	0.0
-14 to -13	3934	2	161	2			3932	2	0.1%	-159	-0.1
-13 to -12	6076	960	1963	116		99	5116	116	2.3%	-1003	-22.7
-12 to -11	38387	11136	15220	4205	4	1010	27251	4201	15.4%	-4084	-629.5
-11 to -10	52255	21143	22450	6528	18	2077	31112	6510	20.9%	-1307	-273.5
-10 to -9	5034	2385	2601	145	13	87	2649	132	5.0%	-216	-10.7
-9 to -8	2706	1323	1331	291	2	149	1383	289	20.9%	-8	-1.6
-8 to -7	2466	1087	1177	432	24	201	1379	408	29.6%	-90	-26.6
-7 to -6	2273	977	1110	444	7	198	1296	437	33.7%	-133	-44.7
-6 to -5	1682	344	686	765	12	310	1338	753	56.3%	-342	-192.7
-5 to -4	1400	182	313	586	8	148	1218	578	47.5%	-131	-62.1
-4 to -3	1353	114	69	509	2	52	1239	507	40.9%	45	18.5
-3 to -2	4990	76	140	660	2	87	4914	658	13.4%	-64	-8.6
-2 to -1	3366	33	134	379	2	115	3333	377	11.3%	-101	-11.4
-1 to 0	592	1	8	76		8	591	76	12.9%	-7	-0.9
0 to 1	292						292	0	0.0%	0	0.0
1 to 2	297						297	0	0.0%	0	0.0
2 to 3	185						185	0	0.0%	0	0.0
3 to 4	13						13	0	0.0%	0	0.0
Totals	131644	39763	47361	15138	94	4543	91881	15044	NA	-7598	-1267

Note: Existing and proposed dock cover includes slip space and is not the same as dock coverage only values provided in text and in other project documents.

4 Discussion

The results of this survey show that there are considerable eelgrass resources within and around the Harbor Island West Marina. The patterns of eelgrass occurrence observed are generally similar to two recent mapping efforts (M&A 2012, MTS 2015). However, both the MTS 2018 and MTS 2015 efforts identified more eelgrass between the marina and shore relative to M&A (2012). The differences within these shallow, nearshore areas are likely due to a lower level of visual verification in the M&A (2012) study. Increases between MTS 2015 and the MTS 2018 survey seem to be due to expansion of eelgrass beds as there are increases throughout the survey area. Eelgrass densities were highly variable in all recent mapping efforts indicating that eelgrass vigor ranges throughout the survey area.

The results of the impact analysis show that 4,543 square meters of eelgrass will be directly impacted by the reconfiguration of the docks. These impacts occur throughout the Project area where docks/headwalks are replacing fairways currently supporting eelgrass. The amount of total eelgrass, the amount of eelgrass impacted, and the amount of predicted eelgrass recover is significantly higher than that noted during the MTS (2015) survey. It was pointed out in the MTS (2015) discussion of results that transect survey results predicted that there was slightly more eelgrass in the eastern fairway than mapped via sonar and that future surveys might detect more eelgrass under favorable conditions. Given the expansive eelgrass growth across the marina it appears conditions were favorable for eelgrass growth between the MTS (2015) and MTS (2018) surveys.

While the new configuration covers 4,543 square meters of eelgrass, the results of the impact analysis indicate that the Project will result in a net decrease of potential eelgrass habitat relative to the existing condition. As shown in the impact analysis, multiplication of the area made available by the proportion of eelgrass cover observed in each of the bathymetric depth categories indicates that a net decrease of 1,267 square meters of eelgrass from increased bottom shading.

The impact analysis shows that the Project would result in a net decrease of eelgrass cover. While there will be 4,543 square meters of current eelgrass coverage lost, the positioning of the proposed dock structure is estimated to provide 3,276 square meters of unvegetated seafloor for eelgrass establishment. Overall, there will be a net decrease of eelgrass compared to current coverage of 1,267 square meters. This means that the Project would likely need to mitigate for the loss of 4,543 square meters of eelgrass. The California Eelgrass Mitigation Policy requires an eelgrass mitigation ratio of 1.2:1 which would result in establishment of 5,452 square meters of eelgrass. Given the estimated 3,276 square meters of eelgrass would need to be transplanting eelgrass within the Project area a total of 2,176 square meters of eelgrass would need to be transplanted outside the Project area to comply with the mitigation requirement. Alternately, site modifications could be made within the Project area to increase the potential for successful eelgrass establishment within the leasehold.

Ultimately, the actual amount of impact will have to be determined through a series of eelgrass surveys performed before and after construction. However, mitigation will need to begin as soon as possible within the construction schedule to avoid penalties associated with the delay of eelgrass restoration as defined in the CEMP. This means the Project needs to plan conservatively for eelgrass restoration and identify suitable sites for restoration or alter the marina plans in ways that allow for a higher probability of successfully establishing the eelgrass required to mitigate for impacts.

In addition to the potential for direct impacts to eelgrass associated with reconfiguration of the dock layout, there is a potential for direct and indirect impacts associated with construction techniques. Construction elements that can cause direct impact include shading from support vessels (e.g. barges), bottom scour from propeller wash from construction vessels and bottom contact from the use of spuds. Indirect impacts can also occur from increases in turbidity. Turbidity decreases the light available to the eelgrass beds as more light is attenuated through the water column than would be otherwise. Additionally, as particulates settle from the turbid water column, they can land of eelgrass blades and reduce the ability of the plant to photosynthesize. The extent of turbidity related impacts is dependent upon the extent and duration of the elevated turbidity.

The potential direct and indirect eelgrass impacts associated with bottom contact, scour, and turbidity mentioned above can be readily avoided through contractor training, provision of eelgrass maps, and use of silt curtains during pile jetting and driving. The map data can be used by construction personnel so that direct and indirect impacts associated with construction activities would be avoided. Silt curtains would minimize the spread of particulates through the water column and minimize the potential for indirect impacts.

5 References

- Marine Taxonomic Services, Ltd. [MTS]. 2015. Harbor Island West Marina Baseline Eelgrass Resource Report. Prepared for ICF International. January 7, 2015 (revised January 2, 2017).
- Marine Taxonomic Services, Ltd. [MTS]. 2018. Harbor Island West Marina Updated Baseline Eelgrass Resources Report. Prepared for ICF International. April 2, 2018 (revised December 10, 2018).
- Merkel & Associates, Inc. [M&A]. Baseline eelgrass report for the Harbor Island West Marina Redevelopment Project, San Diego Bay, California. Letter Report. April 23, 2012.

Appendix B2 Eelgrass Mitigation Plan

Harbor Island West Marina Redevelopment Project Eelgrass Mitigation Plan

December 7, 2022

Prepared for:

Adam Gale Anchor QEA 9700 Research Drive Irvine, CA 92618

Prepared By:

Marine Taxonomic Services, Ltd.

SOUTHERN CALIFORNIA OFFICE

920 RANCHEROS DRIVE STE F-1 SAN MARCOS, CA 92069 OREGON OFFICE 2834 NW PINEVIEW DRIVE ALBANY, OR 97321

LAKE TAHOE OFFICE

1155 GOLDEN BEAR TRAIL SOUTH LAKE TAKOE, CA 96150 Marine Taxonomic Services Ltd. 2022. Harbor Island West Marina Redevelopment Project Eelgrass Mitigation Plan. Prepared for Adam Gale, Anchor QEA, LLC. December 7, 2022.

form

Robert Mooney, PhD Principal Scientist

Participating Marine Taxonomic Services Ltd. Team Members;

Biologist and Report Draft – Robert Mooney, PhD Biologist, Field Data Collection, and Report Draft Review – Grace Teller, MSc

Contents

1	Intr	oduction1
	1-1	Location1
	1-2	Description of Project Site and Proposed Actions1
2	Eelg	rass Occurrence and Projected Impacts3
	2-1	Results of Preliminary Eelgrass Survey3
	2-2	Description of Projected Eelgrass Impacts
3	Miti	gation6
	3-1	Mitigation Site7
	3-2	Donor Site7
4	Pro	posed Mitigation Methods10
	4-1	Eelgrass Donor Harvest Methods10
	4-2	Eelgrass Transplant Methods10
5	Sche	edule11
	5-1	Construction Schedule
	5-2	Mitigation Timing11
6	Miti	gation Monitoring and Performance11
	6-1	Pre-Impact and Post-Impact Assessment Surveys11
	6-2	Eelgrass Mitigation Monitoring Surveys12
	6-3	Mitigation Performance Milestones12
	6-4	Mitigation Contingency/Adaptive Management13
7	Miti	gation Coordination and Schedule13
	7-1	Letter of Permission and Notifications13
	7-2	Monitoring Reports13
	7-3	Notification of Completion13
8	Refe	erences
A	ppendix	A-1 A-1

List of Figures and Tables

Figure 1. Vicinity map showing location of Harbor Island West Marina in northern San Diego Bay, San
Diego, California2
Figure 2. Results of eelgrass mapping performed in March 2018. Adapted from MTS (2018)
Figure 3. The above figure shows the existing and proposed dock footprint masks as used to support the
impact analysis performed by MTS (2022). The potential eelgrass impact (red) shows where the 4,543
square meters of eelgrass will be covered due to dock reconfiguration.
Figure 4. Eelgrass transplant mitigation site as composed of the seafloor in the 11 proposed fairways
within the HIWMRP. The available seafloor within each fairway is the anticipated un-vegetated portion
of each proposed fairway
Figure 5. The above figure shows the areas where eelgrass will be impacted and will be available to
support salvage efforts as well as the proposed harvest area where additional eelgrass may be harvested
as necessary to support the mitigation effort. Harvest area eelgrass data from NAVFACSW (2020)9

Harbor Island West Marina Redevelopment Project Eelgrass Mitigation Plan

December 7, 2022

1 Introduction

Marine Taxonomic Services, Ltd. (MTS) was contracted by Anchor QEA to perform an analysis of eelgrass impacts and develop an eelgrass mitigation plan in support of the Harbor Island West Marina Redevelopment Project (HIWMRP). This document provides an eelgrass mitigation plan to meet that need. The mitigation plan is developed within the appropriate regulatory framework to provide a plan that incorporates MTS' current understanding of the HIWRP relative to eelgrass resources. This plan is provided in good faith that it meets the intent and criteria associated with the California Eelgrass Mitigation Policy (CEMP) (National Marine Fisheries Service [NMFS] 2014) while being sensitive to the HIWMRP needs and limitations imposed by the surrounding environment.

This document provides a mitigation plan to account for impacts to eelgrass due to construction of the new HIWMRP dock layout. It includes details on the location, methods, and timing for creating new eelgrass habitat as part of the proposed mitigation. Additionally, the plan includes a five-year monitoring plan to assess the establishment of the eelgrass habitat that is created to ensure that the minimum coverage and density obligations are met per the CEMP. The acceptance of this plan as appropriate mitigation for the HIWMRP is ultimately at the discretion of the NMFS and the California Department of Fish and Wildlife though the consultation process during project permitting. The provision of this document to the HIWMRP proponents does not guarantee that regulatory agencies will accept the proposed mitigation plan.

1-1 Location

Harbor Island West Marina is located in the northern portion of San Diego Bay along the northwestern shore of Harbor Island (Figure 1).

1-2 Description of Project Site and Proposed Actions

Harbor Island West Marina is a marina used to berth privately owned vessels within San Diego Unified Port District (District) jurisdiction. The current vessel docks are beyond their useful life such that replacement is necessary. The HIWMRP entails demolishing and replacing all existing buildings and structures as well as replacing landscaping, reconfiguring hardscape, modernizing utilities, modernizing lighting, renovating the parking lot, adding a public promenade, and improving view corridors. On the water, the docks will be replaced and reconfigured. The replacement and reconfiguration of the dock structures will reduce dock coverage from 13,564 square meters (146,000 square feet) to 12,934 square meters (139,218 square feet). The number of slips will be increased from 620 to 623 with adjustments made to

Figure 1. Vicinity map showing location of Harbor Island West Marina in northern San Diego Bay, San Diego, California.

the distribution of slip sizes within the marina. The HIWMRP plans as developed by Bellingham Marine Industries, Inc. are included as Appendix A.

2 Eelgrass Occurrence and Projected Impacts

2-1 Results of Preliminary Eelgrass Survey

A baseline eelgrass inventory was performed by MTS on March 26, 2018. The eelgrass survey identified eelgrass beds growing within and adjacent to the existing docks (MTS 2018). The sidescan sonar mapping resulted in identification of 15,256 square meters of eelgrass within the survey area (Figure 2). Eelgrass was generally spread across the survey area as clusters of individual patches. All fairways within the marina had eelgrass; however, eelgrass occurrence as observed by SCUBA and sonar was lowest in the easternmost fairway and the area between Harbor Island West and the neighboring Marina Cortez to the east. The methods and detailed results of the baseline eelgrass survey can be found in MTS (2018).

2-2 Description of Projected Eelgrass Impacts

An impact analysis was performed by MTS (2022). The primary anticipated impact to eelgrass resources will result from the direct shading of eelgrass vegetated areas by the docks (Figure 3). The results of the eelgrass impact analysis show that the reconfiguration of the marina facilities will directly cover 4,543 square meters (48,900 square feet) of the eelgrass as mapped in MTS (2018). Eelgrass impacts represent eelgrass covered throughout the mapped area due to the shift in placement of main dock walkways and fingers over areas that are currently fairways supporting eelgrass (Figure 3). It should be noted that the impact analysis looked at coverage by docks with an assumed 100% occupancy by vessels. This means the analysis considered the impacts of the docks as well as the operational impacts of the docks being occupied by vessels.

Figure 2. Results of eelgrass mapping performed in March 2018. Adapted from MTS (2018).

Figure 3. The above figure shows the existing and proposed dock footprint masks as used to support the impact analysis performed by MTS (2022). The potential eelgrass impact (red) shows where the 4,543 square meters of eelgrass will be covered due to dock reconfiguration.

3 Mitigation

Under the proposed Project, impacts to eelgrass habitat from the marina reconfiguration with 100% occupancy by vessels are currently estimated at 4,543 square meters. Most of the pile driving will occur in areas where the docks are moved such that pile driving is not likely to have additional impacts to eelgrass. If there are unforeseen additional impacts to eelgrass, the proposed mitigation takes a conservative approach to restoration and provides significant eelgrass planting above the requirements. To address the potential for unforeseen construction related impacts to eelgrass, measures will be taken during construction to avoid and minimize impacts to eelgrass habitat to the maximum extent practical. The construction contractor will be educated on the eelgrass presence prior to construction, silt curtains will be placed to minimize spread of turbidity during pile driving, and the contractor will be instructed to not direct propeller wash toward eelgrass vegetated areas and to not stage barges or docks over eelgrass vegetated areas. These measures are required by the HIWMRP's mitigation, monitoring and reporting program and Coastal Development Permit.

Any direct loss or significant indirect impacts to eelgrass habitat (as determined by surveys described in Section 6-1) would be mitigated in-kind in accordance with the provisions of the CEMP (NMFS 2014). The CEMP requires that mitigation be provided for losses to eelgrass beds directly or indirectly damaged by Project construction. For each square meter of eelgrass adversely impacted, 1.2 square meters of new eelgrass habitat must be created. This mitigation plan takes a conservative approach such that enough restoration area exists on site to mitigate the known impacts while also having additional space to mitigate unforeseen impacts.

Based on the currently known potential for direct impacts of 4,543 square meters, the CEMP requires the successful establishment of 5,452 square meters of eelgrass at the 1.2:1 mitigation ratio to mitigate for the permanent impacts to eelgrass associated with the new HIWMRP dock layout. The CEMP recommends a conservative planning approach with a minimum transplant ratio of 1.38:1 to account for the fact that not all planting area will successfully support eelgrass. The recommended eelgrass transplant starting area at the 1.38:1 ratio is 6,269 square meters (Table 1).

	METRIC	EXISTING EELGRASS	IMPACTED EELGRASS	REQUIRED MITIGATION	RECOMMENDED TRANSPLANT STARTING AREA	TOTAL MITIGATION AREA
Direct + Indirect Operational Impacts	SQUARE METERS	15,256	4,543	5,452	6,269	30,410

Table 1. Summary table of the existing eelgrass, eelgrass impacts, and mitigation planning elements for the eelgrass mitigation requirements associated with impacts to eelgrass at the HIWMRP site.

3-1 Mitigation Site

Eelgrass mitigation space has been identified within the HIWMRP water lease area. The proposed mitigation site is comprised of all of the fairways that will exist as part of the new marina layout (Figure 4). These areas currently support eelgrass where they are part of existing fairways. The conditions under the current docks where docks will be removed are similar and therefore the new fairways are expected to support eelgrass. The mitigation approach will be to plant eelgrass throughout the proposed mitigation site to bolster eelgrass presence. The mitigation site provides 30,410 square meters of eelgrass planting area. The mitigation site proposed is more than enough to accommodate the mitigation need based on the current estimate of impacts from construction and operation of the marina. Any eelgrass existing within the boundary of the mitigation site at the beginning of the transplant will be excluded from mitigation site planting area such that it is not included in the determination of success per the milestones noted within the CEMP.

The mitigation site was chosen to capitalize on areas that are currently shaded but where removal of dock structures will allow sunlight to reach the bottom. By transplanting eelgrass within the proposed mitigation site, the HIWMRP may meet project related mitigation requirements. In the event the site fails to support enough eelgrass cover to meet the mitigation requirements, supplemental planting and additional adaptive management strategies may be employed in conformance with the CEMP and as outlined in Section 6 below.

3-2 Donor Site

The donor eelgrass material to support this effort will come from eelgrass beds salvaged from within the project footprint and from eelgrass beds located north of the HIWMRP area. (Figure 5). It is anticipated that the marina construction will occur in phases. Once a set of docks are demolished and a future fairway is opened, divers will harvest eelgrass from an area within the HIWMRP area where eelgrass will be impacted by future dock cover. In the event that there is not enough material within the HIWMRP or phasing makes it difficult to obtain an appropriate amount of eelgrass at the time of transplant, the donor beds to the north of the HIWMRP will be utilized.

The project will require 133,360 eelgrass turions. This estimate is based on the need for 16,670 bare root eelgrass bundles of 8 turions each. Fairways 1-3 would be planted with one bare root bundle per square meter of available planting area. This will require 12,091 bare root bundles composed of up to 96,728 turions. The remaining fairways will be planted at a ratio of one bare root bundle per four square meters of available planting area. This will require an additional 4,579 bare root bundles and 36,632 turions.

It is anticipated that most of the 4,543 square meters of eelgrass to be impacted can be salvaged. Given the estimate from the baseline eelgrass survey (MTS 2018) of 51 turions per square meter, it is possible that up to 231,693 turions could be salvaged. This is more than enough to meet the requirements of the transplant but assumes a high rate of recovery of suitable material and that

Figure 4. Eelgrass transplant mitigation site as composed of the seafloor in the 11 proposed fairways within the HIWMRP. The available seafloor within each fairway is the anticipated un-vegetated portion of each proposed fairway.

Figure 5. The above figure shows the areas where eelgrass will be impacted and will be available to support salvage efforts as well as the proposed harvest area where additional eelgrass may be harvested as necessary to support the mitigation effort. Harvest area eelgrass data from NAVFACSW (2020).

all of the impacted eelgrass can be harvested. It's likely that some of the impacted eelgrass will not be available for salvage due to timing and other logistical reasons.

If eelgrass is harvested from the harvest area eelgrass beds, it will be harvested in an evenly spaced manner and will be thinned without leaving any noticeable bare patches (refer to Section 4-1). Eelgrass will only be harvested from available salvage areas and the designated donor site (Figure 5). The donor site was selected based on the following factors:

- 1. Proximity to the mitigation site allows for logistical suitability, including similar oceanographic conditions for the transplant material, similar environmental conditions between donor and mitigation site, ease of access and diver safety.
- 2. Appropriate size and eelgrass density of the donor bed to provide transplant material while minimizing impacts to the donor bed.
- 3. Appropriate genetic profile for eelgrass growing in the region.
- 4. Prevention of the spread of invasive species.
- 5. Long-term persistence and recovery potential of the donor bed.

4 Proposed Mitigation Methods

4-1 Eelgrass Donor Harvest Methods

Donor material will be harvested by first removing loose sediment around the rhizome and then removing the rhizome using a hand raking method. Care will be taken when removing rhizomes to avoid tearing or ripping them to preserve as much rhizome material as possible. This method minimizes disturbance to surrounding eelgrass and substrate. Divers will perform donor collection in a systematic fashion collecting no more than 10% of eelgrass from any localized portion of the donor bed. Collected rhizomes will be loosely placed in mesh bags for processing at the surface. Donor material will be considered viable if there are a minimum of three internodal segments per rhizome. Higher numbers of internodal segments are preferred for improved transplant success.

In the case of eelgrass collected from impact areas as salvage, divers will remove as much eelgrass as possible to minimize the need for collection from the donor site. Divers will remove eelgrass with similar methods to ensure that as much rhizome is kept intact as possible.

Once on the surface, donor material will be stored in floating mesh bags in the ocean prior to preparation and in a flow-through seawater system during processing. Material will be stored no longer than 24 hours from harvesting to transplant unit preparation. Once prepared, transplant units will be stored in open water no longer than 24 hours prior to planting.

4-2 Eelgrass Transplant Methods

Eelgrass harvested from the donor site will be bundled into transplant units comprised of approximately eight turions each. This bundling method has a high success rate in achieving self-sustaining eelgrass habitat post-transplanting (Merkel 1988). Transplant units will be installed by

hand digging a hole approximately the size of the unit and placing the unit with the rhizomes approximately two inches below the surface. The unit will then be anchored to the substrate using biodegradable stakes and the hole will be backfilled. Divers will conduct planting on a monumented grid system, accessing the planting area from the marina. The grid layout will provide for ease of tracking and quality control of planting. Transplant units will be spaced 1 m on centers (one unit per square meter) in proposed fairways 1-3 (refer to Figure 4). The remaining fairways will be planted with one eelgrass bundle per every 4 square meters.

5 Schedule

5-1 Construction Schedule

The HIWMRP is currently seeking permits from regulatory agencies. Permits for the marina construction may be obtained by May 2024.

5-2 Mitigation Timing

Mitigation will begin upon receipt of state, federal, and local permits and authorizations (including California Department of Fish and Wildlife (CDFW) Letter of Permission for eelgrass harvest) for the Project. The eelgrass transplant shall be initiated as soon as the first section of the marina is demolished that clears space for one or more fairways. Additional proposed fairways will be planted within 30 days of the removal of marina facilities that currently cover those areas. Eelgrass planting will only occur between the months of April and September. This timing will avoid harvesting eelgrass too soon after winter when the rhizomes might not have appropriate starch storage to support the transplant units. It will also avoid planting too late in the season such that newly planted material would go into the winter season without an appropriate period to establish roots.

Based on the current estimated construction start and end dates, mitigation activities could commence as early as July 2024.

6 Mitigation Monitoring and Performance

6-1 Pre-Impact and Post-Impact Assessment Surveys

To assess impacts from the HIWMRP, pre- and post-construction eelgrass surveys will be conducted in accordance with the CEMP. The pre- and post-construction surveys will be conducted during the active growing season (March through October) to accurately assess both vegetated and unvegetated eelgrass habitat, as defined by the CEMP. Reports of all surveys will be provided to the appropriate regulatory agencies and the District within 30 days of survey completion. Additional post-construction surveys will be conducted in both the Project site and reference areas 12 and 24 months after construction if required by Project permits, to determine the occurrence and extent of any significant indirect impacts attributable to the Project. Any significant indirect impacts identified by these surveys would be mitigated.

Within the donor site, pre- and post-harvest surveys will be conducted within 30 days prior to harvesting, and again within 30 days following harvest, to document the efficacy of harvest methods relative to protection of harvest beds. SCUBA surveys will be conducted along transects within the eelgrass donor site. The donor site surveys will document percent cover along transects and turion density within quadrats randomly placed along transects. This information will be included in the post-transplant report (Year 0).

6-2 Eelgrass Mitigation Monitoring Surveys

Once the planting effort has concluded, monitoring of the mitigation site will be conducted for 60 months (5 years) to document the success of the mitigation as outlined in the CEMP. Monitoring surveys will begin immediately after transplanting has been completed at intervals of 0, 6, 12, 24-, 36-, 48-, and 60-months post-transplant. The monitoring program will assess the aerial extent, percent cover, and density of eelgrass in the mitigation site using the same methods proposed for the pre- and post-construction surveys. Monitoring dates will be scheduled during the active eelgrass growing season to collect information on growth and survival.

Additional monitoring after the fifth year may be necessary if the aerial extent and density of eelgrass in the mitigation site does not meet the mitigation performance milestones. The reference area will be monitored in concert with the mitigation site to account for any natural fluctuations in the aerial extent and density of eelgrass in the area.

6-3 Mitigation Performance Milestones

Criteria for transplanting success will be determined based on the mitigation performance milestones as specified in the CEMP and outlined in Table 2 below.

Nonitoring Date	
(post transplanting)	Performance Milestones
Month 0	Confirmation of full coverage distribution of planting units over the initial
	mitigation site.
Month 6	Persistence and growth of eelgrass in the initial mitigation site
	50% survival of initial planting units and well distributed coverage
	Monitoring date should be flexible to fall within active growing season
Month 12	40% eelgrass coverage in the initial mitigation site
	20% density of adjacent reference areas
	No less than 1.2 times the area of the impact site
Month 24	85% eelgrass coverage in the initial mitigation site
	70% density of reference areas
	No less than 1.2 times the area of the impact site
Month 36	100% eelgrass coverage in the initial mitigation site
	85% density of reference areas
	No less than 1.2 times the area of the impact site
Month 48	100% eelgrass coverage in the initial mitigation site
	85% density of reference areas
	No less than 1.2 times the area of the impact site
Month 60	100% eelgrass coverage in the initial mitigation site
	85% density of reference areas
	No less than 1.2 times the area of the impact site

 Table 2. Mitigation performance milestones for eelgrass transplanting (CEMP, NMFS 2014).

6-4 Mitigation Contingency/Adaptive Management

If the eelgrass transplanting fails to meet the established success criteria in the initial mitigation site, supplemental mitigation may be required in consultation with CDFW and NMFS. Supplemental transplants could occur in any areas within the marina that failed to establish. Any supplemental transplant would occur at the point within Table 3 where a failure to meet the performance criteria occurred.

If the site cannot support the necessary eelgrass within the designated areas as they will exist following construction, site modification may be necessary to establish eelgrass within the HIWMRP area. This could include importing fill to raise the seafloor elevation in specific locations enough to increase the carrying capacity of the marina relative to eelgrass. Alternately, the HIWMRP proponents could propose out of kind mitigation such as purchase of credits in a suitable mitigation bank or provision of funds to an in lieu fee program if one exists at the time it is required. Any actions taken to obtain credit for impacts to eelgrass beyond the actions described in this mitigation plan would be subject to consultation with regulatory agencies including but not limited to NMFS, CDFW, and U.S. Fish and Wildlife Service.

7 Mitigation Coordination and Schedule

7-1 Letter of Permission and Notifications

Prior to the beginning of the eelgrass transplant work, a letter of permission to harvest and plant eelgrass will be obtained from the CDFW. Also, prior to the beginning of the eelgrass transplant work, a scientific collecting permit will be obtained to account for the harvesting of eelgrass within the donor site in accordance with this mitigation plan. A minimum five-day notification and a preliminary transplanting schedule will be given to CDFW prior to commencement of the transplant work.

7-2 Monitoring Reports

Monitoring reports shall be provided to the resource agencies (CDFW, NMFS) and the District within 30 days after the completion of each required monitoring period and shall include spatial data. Per the CEMP (NMFS 2014), these reports will include: a description of the action, action party, mitigation consultants, relevant points of contact, and relevant permits; the size of permitted impacted estimates, location of activities, actual eelgrass impacts, and eelgrass mitigation needs; a detailed description of eelgrass habitat survey methods, donor harvest methods, and transplant methods; and mitigation performance milestone progress. The initial monitoring report (0 months) will document any variances from the mitigation plan, sources of donor materials, and the full area of planting. The final monitoring report will include an overall assessment of the performance of the eelgrass mitigation site relative to natural variability of the reference site to evaluate if mitigation responsibilities were met.

7-3 Notification of Completion

If mitigation performance milestones (refer to Table 2) have been met once the final monitoring event has been completed, a Notice of Completion will be forwarded along with the final

Monitoring Report. At that point, implementation of the Mitigation Plan will be considered complete.

8 **References**

- Marine Taxonomic Services, Ltd. [MTS]. 2018. Harbor Island West Marina Updated Baseline Eelgrass Resources Report. Prepared for ICF International. April 2, 2018 (revised December 10, 2018).
- Marine Taxonomic Services, Ltd. [MTS]. 2022. Harbor Island West Marina Updated Eelgrass Resources Impact Report. Prepared for ICF International. January 28, 2022.
- Merkel, K.W. 1988. Growth and survival of transplanted eelgrass: The importance of planting unit size and spacing. In: Proceedings of the California Eelgrass Symposium. Chula Vista, CA.
- National Marine Fisheries Service [NMFS], National Oceanic and Atmospheric Administration (NOAA), 2014. California Eelgrass Mitigation Policy and Implementation Guidelines. NOAA Fisheries, West Coast Region, Long Beach, CA.
- U.S. Navy Region Southwest Naval Facilities Engineering Command [NAVFACSW]. 2020. 2020 San Diego Bay Eelgrass Inventory. Prepared by Merkel & Associates, Inc. December 2020.

Appendix A: Project Plans

		- G D-	LEGEND: EXISTING MARINA NEW MARINA	A	
	Bellingham MARINE MARINE The Work Med Compensation The Work Med Compensation	SITE IMPROVEMENT PLAN ACCEPTED BY: CITY ENGINEER R.C.E. EXP. DATE	PROJECT NUMBER: SCALE: 11-3-651 DRAWN BY ENGINEER / DESIGNER: DATE: DATE:	NTS HARBOR ISLAND WEST 8-31-21 SAN DIEGO, CA	
NO. DATE DESCRIPTION BY REVISIONS	1205 Business Park Drive Dixon, CA 95620 TEL: (707) 678-2385 FAX: (707) 678-1760	ACCEPTED BY: CITY ENGINEER R.C.E. EXP. DATE	CHECKED BY: DRAWING:	EXISTING & NEW OVERLAY LAYOUT #4 REV. 2-2021	-

MARINE TAXONOMIC SERVICES, LTD.

Harbor Island West Marina Marine Biological Resources Report

Prepared for Charlie Richmond ICF International 525 B Street, #1700 San Diego, CA 92101

Prepared by Robert Mooney, Ph.D. Marine Taxonomic Services, Ltd. 920 Rancheros Drive, Suite F-1

San Marcos, CA 92069

MTS

April 2, 2018 (Revised September 2, 2019)

Contents

Introduction	1
Methods	1
Results	3
Marine Habitats	3
Unvegetated Soft Bottom	3
Vegetated Soft Bottom	4
Docks and Piles	6
Riprap	6
Open Water	6
Sensitive Species	7
Essential Fish Habitat Assessment	7
NMFS Managed Ichthyofauna Present in San Diego Bay	
Habitat Areas of Particular Concern	
Analysis of Pile Driving Noise	11
Discussion	
References	16

List of Figures and Tables

Figure 1. Aerial image showing location of the Harbor Island West Marina (black polygon) within San Diego Bay.	2
Figure 2. The above figure shows the distribution of eelgrass resources within the Harbor Island West eelgrass	
survey area	.5
Table 1. PFMC-managed coastal pelagic fish species and pacific coast groundfish species with nabitat requirement	S
n San Diego Bay	.8
Γable 2. NMFS thresholds and calculated isopleths to thresholds for Level A harassment of marine mammals for	
each of the marine mammal hearing groups. Isopleths are in meters and thresholds are in dB	1
Table 3. NMFS thresholds and calculated isopleths to thresholds for physical injury and behavioral effects in fishes	
Physical injury for all fishes can occur if peak sound levels are above 206 dB or if cumulative sound exposure level	S
exceed 187 dB for fish ≥ 2 grams or 183 dB for fish < 2 grams. Behavioral modification is assumed to occur for all	
ish at above 150 dB RMS1	3

Harbor Island West Marina Marine Biological Resources Report

April 2, 2018 (Revised September 2, 2019)

Introduction

Marine Taxonomic Services (MTS) was contracted by ICF International to provide a marine biological survey and essential fish habitat assessment at Harbor Island West Marina in San Diego, California. MTS has previously completed the survey and analysis of the resources at Harbor Island West Marina and has prepared a report on the findings. This report updates that effort by providing additional analyses relative to acoustic effects of pile driving on marine mammals, sea turtles, and fishes. This report is intended to support the environmental planning associated with proposed construction activities. As such the results are discussed relative to potential impacts associated with planned construction activities at the marina.

Harbor Island West Marina is located in the northern portion of San Diego Bay along the northwestern shore of Harbor Island (Figure 1). The Harbor Island West Marina Renovation Project (Project) entails demolishing and replacing all existing buildings and structures as well as replacing landscaping, reconfiguring hardscape, modernizing utilities, modernizing lighting, renovating the parking lot, adding a public promenade, and improving view corridors. On the water, the docks will be replaced and slightly reconfigured. The replacement docks will follow the existing layout except that two-extension dock/headwalks will be consolidated into a single dock/headwalk. This will reduce the current 11 dock/headwalks to 10 docks/headwalks and will reduce the over water coverage of the docks from 146,000 square feet to 140,000 square feet. The number of slips will be reduced from 620 to 603 with adjustments made to the distribution of slip sizes within the marina.

Methods

MTS staff Robert Mooney performed a side-scan sonar survey of the marina on March 26, 2018. The side-scan sonar survey was performed to detect and map any eelgrass (*Zostera marina*) present, the sonar survey was performed by navigating a small vessel along a series of transects through the study area. The vessel was fitted with a pole-mounted side-scan sonar operating at 450 kHz. The sonar was set to scan 30 meters on both the port and starboard channels for a total scanning swath of 60 meters. Survey transects were navigated such that adjacent sonar swaths overlapped, providing complete bottom coverage within the marina study area.

Figure 1. Aerial image showing location of the Harbor Island West Marina (black polygon) within San Diego Bay.

Following the field surveys, the collected side-scan sonar files were geographically registered using the vessel's navigation data collected during the survey. The side-scan files were then compiled to create a contiguous view of the seafloor across the entirety of the study site. The boundaries of the eelgrass present were then digitized from the compiled data set using ESRI ArcView software and plotted on a geographically registered image of the project area.

On March 26, 2018, MTS staff Angelica Lopez and Kees Schipper further inspected the survey area using SCUBA. Each of the habitat types in the marina was surveyed to characterize it and document the dominant flora and fauna present. Notes were made on the occurrence or potential for occurrence of sensitive species that could be impacted by the proposed project.

To determine the potential for noise from pile driving to impact sensitive species, an analysis of potential noise levels was performed. The analysis used the compendium of pile driving noise data from Buchler et al. (2015) to establish potential noise levels at the source of pile driving. The potential for generated noise to cause Level A (injury) and Level B (behavioral) Harassment of marine mammals was then evaluated by calculating isopleths over which noise would attenuate to thresholds established by NOAA (NMFS 2016a and NMFS 2016b). Isopleth calculations for Level A Harassment were performed using the NOAA companion spreadsheet for NMFS (2016a); the isopleths for Level B Harassment were calculated with direct application of the practical spreading loss model (refer to MTS and ICF 2016). Analysis of potential impacts to fish used the NOAA developed spreadsheet and associated thresholds for injury and behavioral effects on fishes¹.

Results

Marine Habitats

The natural and man-made habitats surveyed within the study site were unvegetated soft bottom, vegetated soft bottom, docks and pilings, riprap, and open water. Each is discussed below.

Unvegetated Soft Bottom

The majority of the marina is loosely consolidated soft bottom, ranging in depth from intertidal to -17-feet Mean Lower Low Water (MLLW). The intertidal portions are mostly shoreline rip-rap while the soft bottom habitats start at approximately -1-foot MLLW (low intertidal). Shallow shoreline areas typically have greater content of fine sands that quickly give way to mud as one moves to deeper water. Most of the approximately 13.6-hectare survey area is unvegetated soft bottom. The primary vegetation present was eelgrass growing over approximately 1.5 hectares and leaving approximately 12.1 hectares of unvegetated soft bottom within the surveyed area.

¹ https://www.wsdot.wa.gov/NR/rdonlyres/1C4DD9F8.../BA_NMFSpileDrivCalcs.xls

The most common invertebrates observed were the tube-dwelling anemone (*Pachycerianthus fimbriatus*) and sea pens (Sylatula elongata). Additionally, the mud evidence numerous showed of burrowing invertebrates, likely including bivalves, burrowing anemones, and amphipods. During the 2014 survey (MTS 2015), a core of mud representative of the unvegetated soft bottom habitat was collected and processed through a sieve. Inspection of the macrofauna retained by the sieve revealed a variety of infaunal polychaetes and a jackknife clam (Tagelus californianus). Additionally, the exotic colonial

Unvegetated soft bottom with invertebrate burrows.

bryozoan, Zoobotryon verticillatum was found in occasional clumps over soft bottom.

Common motile invertebrates observed on the mud bottom included spiny lobster (*Panulirus interruptus*), California aglaja (*Navanax inermis*), and cloudy bubble snails (*Bulla gouldiana*). The observed lobsters were associated with debris items.

Fish species observed over unvegetated soft bottom included numerous round stingrays (*Urobatis halleri*). Fleeing flatfish were observed that were difficult to identify but likely included diamond turbot (*Hypsopsetta guttulata*) and California halibut (*Paralichthys californicus*). Barred sand bass (*Paralabrax nebulifer*) and spotted sand bass (*Paralabrax maculatofaciatus*) were also observed over unvegetated soft bottom.

Vegetated Soft Bottom

Eelgrass occurs in a portion of the un-shaded soft bottom habitat across much of the marina. Mapping of the side-scan sonar record identified 15,256 square meters of eelgrass patches within the study site, growing at depths ranging from approximately -1 to -13-feet MLLW (Figure 2). Eelgrass density varied across the survey area. The average eelgrass density was 59.5 \pm 44.7 (mean \pm 1 sd) leaf shoots per square meter. A total of 155 quadrats (n=155) were sampled to

Eelgrass with the green alga Ulva lactuca.

determine the leaf shoot density estimate. The eelgrass was generally observed to be healthy with a minimal epiphyte load and was not flowering at the time of the survey. Eelgrass growing in shallow water along shore was typically shorter (less than 30 centimeters tall) relative to eelgrass in deeper water that was typically greater than 40 centimeters in length.

Frequently intermixed with the eelgrass were loose clumps of a Gracilarioid red alga (Family Gracilariaceae). This alga is frequently found in eelgrass beds in southern California, at times in such abundance as to smother the

eelgrass. The green alga, Ulva lactuca was also occasionally observed intermixed with eelgrass.

Figure 2. The above figure shows the distribution of eelgrass resources within the Harbor Island West eelgrass survey area.

Fish observed within the eelgrass included a few round stingrays, barred sand bass, spotted sand bass, and a Pacific seahorse (*Hippocampus ingens*).

The most common invertebrate observed within eelgrass was the tube-dwelling anemone. The soft-bottom associated with eelgrass was generally similar to unvegetated areas with evidence of numerous burrowing invertebrates, likely including bivalves, burrowing anemones, and amphipods. Common motile invertebrates observed included the California aglaja and cloudy bubble snails.

Docks and Piles

A large portion of the study site is covered by floating docks and their associated piles. The upper reaches of the piles (0 to -6-feet MLLW) were generally colonized by a fouling community dominated by barnacles (*Balanus glandula* and *Chthamalus* sp.), tunicates (*Styela clava, Ciona* sp. *Botrylloides* spp., and others), sponges, oysters (*Ostrea lurida*), the soft bryozoan *Zoobotryon verticillatum*, encrusting bryozoans (*Eurystomella* sp.), hydroids, and the green algas *Ulva intestinalis*, and *Ulva lactuca*. Sponges were the primary fauna on the piles below -6-ft MLLW.

Fish observed around the piles included giant kelpfish, kelp bass (*Paralabrax clathratus*), and barred sand bass. Schools of topsmelt (*Atherinops affinis*) were observed nearby while inspecting the docks.

The sides of the dock floats were fouled by similar flora and fauna as the piles. Dominant algal species were *Ulva lactuca*, *Mazzaella splendens*, and the exotic kelp *Undaria pinnatifida*.

Riprap

The riprap revetment along the marina shoreline supported a limited amount of hard bottom intertidal marine life. Occasional barnacles, limpets, and the green alga *Ulva intestinalis* colonized the riprap. Near the tow of the rip-rap the exotic alga *Sargassum muticum* occurred at low density as interspersed individuals. The crevices formed by the rocks likely provide shelter to small fish, though none were seen during the survey. Spiny lobsters were observed associated with the rip-rap particularly in areas associated with wharf piles.

Open Water

Schools of topsmelt were observed in the open water around and between the boat docks. It is likely that other schooling bait fish frequent the open waters of the marina, including slough anchovy (*Anchoa delicatissima*) and deepbody anchovy (*Anchoa compressa*) (Pondella and Williams 2009). These fish are important prey items for sea birds that can be expected to forage in the marina, including brown pelicans (*Pelecanus occidentalis californicus*), double-crested cormorants (*Phalacrocorax auritus*), grebes, loons, and terns. While pelicans loons, and terns were not observed during the survey, double-crested cormorants, and western grebes (*Aechmophorus occidentalis*) were observed.

Sensitive Species

Protected, rare, threatened, or endangered species that may occur within Harbor Island West Marina include east Pacific green sea turtle (*Chelonia mydas*) (Federal Threatened), California least tern (CLT; *Sternula antillarum browni*) (State Endangered and Federal Endangered), California brown pelican (California Department of Fish and Wildlife Fully Protected). Mammals protected under the Marine Mammal Protection Act and likely to occur within the marina include the harbor seal (*Phoca vitulina*) and California sea lion (*Zalophus californianus californianus*). None of the above species were observed during the survey, though their likelihood of occurrence is as follows.

Individuals from the green sea turtle population that live in San Diego Bay are typically observed in south San Diego Bay. They could potentially enter the marina when migrating but such an occurrence would be a rare event. CLT are seasonally present in San Diego Bay, from April to September. The marina is located approximately 1.5 miles from each of two nesting site in north San Diego Bay and it is likely that CLT could forage within the marina during nesting season. Yearlong, baywide avian surveys identified CLT across the water at Spanish Landing in 2006 and 2009 (TDI 2009, 2011). California brown pelicans do not nest in San Diego Bay, but frequently loaf and forage in marina habitats. During the 2006 and 2009 baywide avian surveys, California brown pelicans were observed a total of 15 and 14 times, respectively (TDI 2009, 2011). Harbor seals and California sea lions do not breed in San Diego Bay, but forage there year-round and may occasionally enter the marina.

Essential Fish Habitat Assessment

The following assessment of Essential Fish Habitat (EFH) for Harbor Island West Marina is provided in accordance with the 1996 amendments to the Magnuson-Stevens Fishery Management and Conservation Act (MSA) (Code of Federal Regulations (CFR) Title 50, Chapter VI, Part 600). The amendments require the delineation of "essential fish habitat" for all managed species. Federal action agencies which fund, permit, or carry out activities that may adversely impact EFH are required to consult with the National Marine Fisheries Service (NMFS) regarding the potential effects of their actions on EFH and respond in writing to the NMFS's recommendations.

The MSA defines EFH as "those waters and substrate necessary to fish for spawning, breeding, feeding, or growth to maturity." For the purpose of interpreting the definition of essential fish habitat: "waters" include aquatic areas and their associated physical, chemical, and biological properties that are used by fish and may include aquatic areas historically used by fish where appropriate; "substrate" includes sediment, hard bottom, structures underlying the waters, and associated biological communities; "necessary" means the habitat required to support a sustainable fishery and the managed species' contribution to a healthy ecosystem; and "spawning, breeding, feeding, or growth to maturity" covers a species' full life cycle. A healthy ecosystem is defined under the MSA as, "an ecosystem where ecological productive capacity is maintained, diversity of the flora and fauna is preserved, and the ecosystem retains the ability to regulate itself".

The purpose of this EFH assessment is to comprehensively identify and analyze EFH occurring within the Harbor Island West Marina, so that federal agencies can best determine whether or not the proposed Project would adversely affect designated EFH, and identify possible conservation measures to avoid, minimize, or otherwise offset potential adverse effects to EFH. The MSA requires consultation for all federal agency actions that may adversely affect EFH. EFH consultation with NMFS is required by federal agencies undertaking, permitting, or funding activities that may adversely affect EFH, regardless of its location. Under Section 305(b)(4) of the MSA, NMFS is required to provide EFH conservation and enhancement recommendations to federal and state agencies for actions that adversely affect EFH. As such, the following EFH assessment, which includes an analysis of species managed by the Pacific Fishery Management Council (PFMC) that are known to utilize EFH within the Project area, and an analysis of potential HAPCs within the Project area, will provide all of the information necessary for NMFS to conduct any future EFH consultations for the proposed Project.

NMFS Managed Ichthyofauna Present in San Diego Bay

To adequately address EFH at the project site, fish species managed by the PFMC that are known to either occur within the Project area, have historically occurred within the Project area, or depend upon those marine habitats that are known to occur within the Project area, were identified. This was accomplished through a thorough review of the latest PFMC's Fishery Management Plans (PFMC 2019 and 2016), a thorough analysis of the range and habitat requirements of PFMC managed fish species (McCain 2003, Love et al. 2002, Henderson and Mooney 2001, and PFMC 2005), running an analysis of the latest EFH mapping GIS software regularly maintained and updated by NOAA Fisheries (NOAA Fisheries 2019), and by evaluating fish species identified during the most recent fisheries inventories conducted throughout San Diego Bay in 2016 (Williams et al. 2016).

In all, 100 species of marine fishes, and one species of marine invertebrate were identified to contain EFH within Harbor Island West Marina (NOAA Fisheries 2019). Of these species identified, 96 are currently managed under the Pacific Coast Groundfish FMP, and 5 are managed under the Coastal Pelagic Species FMP (PFMC 2019 and 2016). Thorough analyses of the range and habitat requirements of each of these species suggests that 57 of the 101 species identified to contain EFH within Harbor Island West Marina have the greatest likelihood to occur within the Project area based on species-specific habitat requirements. This subset of marine species that maintain the strongest affinities for bays and harbors in Southern California are listed below in Table 1.

Common Name	Species Name					
Coastal Pelagic Species FMP						
Jack Mackerel	Trachurus symmetricus					
Market Squid	Loligo opalescens					
Northern Anchovy*	Engraulis mordax					
Pacific Mackerel	Scomber japonicas					
Pacific Sardine*	Sardinops sagax					
Pacific Coast	Groundfish EMP					

 Table 1. PFMC-managed coastal pelagic fish species and pacific coast groundfish species with habitat requirements in San Diego Bay.

Aurora Rockfish Bank Rockfish Blue Rockfish Boccaccio **Big Skate Brown Rockfish** Cabezon Calico Rockfish **California Scorpionfish*** California Skate Canary Rockfish **Chilipepper Rockfish** Cowcod **Curlfin Sole** Dark Blotched Rockfish Dover Sole **English Sole Finescale Codling Gopher Rockfish** Grass Rockfish **Green-Spotted Rockfish** Honeycomb Rockfish Kelp Greenling Kelp Rockfish Leopard Shark Lingcod Longnose Skate Longspine Thornyhead Mexican Rockfish **Olive Rockfish*** Pacific Cod Pacific Ocean Perch Pacific Sanddab Pacific Whiting Petrale Sole Ratfish **Rex Sole Rock Sloe Rougheye Rockfish** Sablefish Sand Sloe Sharpchin Rockfish Shortbelly Rockfish Shortspine Thornyhead Soupfin Shark Spiny Dogfish Splitnose Rockfish Starry Flounder Stripetail Rockfish Treefish Widow Rockfish Yellowtail Rockfish

Sebastes aurora Sebastes rufus Sebastes mystinus Sebastes paucispinis Raja binoculata Sebastes auriculatus Scorpaenichthys marmoratus Sebastes dallii Scorpaena guttata Raja inornate Sebastes pinniger Sebastes phillipsi Sebastes levis Pleuronichthys decurrens Sebastes crameri Microstomus pacificus Parophrys vetulus Antimora microlepis Sebastes carnatus Sebastes rastrelliger Sebastes chlorostictus Sebastes umbrosus Hexagrammos decagrammus Sebastes atrovirens Triakis semifasciata **Ophiodon** elongatus Raja rhina Sebastes altivelis Sebastes madonaldi Sebastes serranoides Gadus macrocephalus Sebastes alutus Citharichthys sordidus Merluccius productus Eopsetta jordanni Hydrolagus colliei Glyptocephalus zachirus Lepidopsetta bilineata Sebastes aleutianus Anoplopoma fimbria Psettichthys melanostictus Sebastes zacentrus Sebastes jordani Sebastes alascanus Galeorhinus zyopterus Squalus suckleyi Sebastes diploproa Platichthys stellatus Sebastes saxicola Sebastes serriceps Sebastes entomelas Sebastes flavidus

*Indicate species caught during San Diego Bay Fisheries Inventories in 2016 (Williams et al. 2016).

Habitat Areas of Particular Concern

While 100% of the Project area falls within designated EFH for the two FMPs identified above, Habitat Areas of Particular Concern (HAPC) are also designated within Harbor Island West Marina. HAPCs are a discreet subset of EFH (as illustrated below*) that are distinguished by characteristics including their high ecological value and vulnerability to anthropogenic stressors.

Areas within designated EFH can also be designated as a HAPC based on one or more of the following characteristics: 1) The importance of the ecological function provided by the habitat, 2) Its sensitivity to human-induced environmental degradation, 3) The extent of threats posed by development of the habitat, or 4) The rarity of the habitat type (NMFS 2019). HAPCs are considered high priority areas for conservation, management, or research because they are rare, sensitive, stressed by development, or important to ecosystem function (NMFS 2019). The HAPC designation does not necessarily mean additional protections or restrictions upon an area, but they help to prioritize and focus conservation efforts (NMFS 2019). Although these habitats are particularly important for healthy fish populations, other EFH areas that provide suitable habitat functions are also necessary to support and maintain sustainable fisheries and a healthy ecosystem (NMFS 2019). Current HAPC types are estuaries, canopy kelp, seagrass, and rocky reefs.

Seagrass habitat is present in Harbor Island West Marina and is a designated as HAPC by the National Marine Fisheries Service (PFMC 2016). The seagrass present at the marina is known as eelgrass (*Zostera marina*). Mooney and Woodfield (2009) summarized eelgrass functions and contributions to ecological processes:

Eelgrass plays many important roles in estuarine systems. It clarifies water through sediment trapping and stabilization (de Boer 2007). It also provides the benefits of nutrient transformation and water oxygenation (Yarbro and Carlson 2008). Eelgrass serves as a primary producer in detritus-based food webs (Thresher et al. 1992) and is further directly grazed upon by invertebrates, fish, and birds (Valentine and Heck 1999), thus contributing to eco-system health at multiple trophic levels. Additionally, it provides physical structure in the form of habitat to the community and supports epiphytic plants and animals, which are in turn grazed upon by other invertebrates, fish, and birds. Eelgrass is also a nursery

area for many commercially and recreationally important finfish and shellfish (Heck et al. 2003), including both those that are resident within the bays and estuaries, as well as oceanic species that enter the estuaries to breed or spawn. Among recreationally important species, sand basses and lobster make use of eelgrass beds as habitat. Besides providing important habitat for fish, eelgrass and associated invertebrates provide important food resources, supporting migratory birds during critical life stages, including migratory periods.

Analysis of Pile Driving Noise

The MMPA of 1972 states that "take" ("to hunt, harass, capture, kill, or collect") any marine mammal or attempt to do so is prohibited. In 1994, amendments were made to this act that defined two levels of harassment, labeled "Level A" and "Level B". For marine mammals, Level A harassment is defined as, "any act of pursuit, torment, or annoyance which has the potential to injure..." Level B harassment is defined as the potential to disturb by, "causing disruption of behavioral patterns, including, but not limited to, migration, breathing, nursing, breeding, feeding, or sheltering."

According to NMFS, extreme sound levels can cause harassment to marine mammals and other wildlife species (e.g. fish and sea turtles). The sound level thresholds for Level A harassment for marine mammals was updated in July 2016 and provides different thresholds based on the auditory ranges of different types of marine mammals (NMFS 2016a). The thresholds are provided in Table 2. The thresholds were developed using dual metrics of cumulative sound exposure level for a 24-hour accumulation period (L_E) and peak sound level (L_{pk}) for impulsive sounds (e.g. impact pile driving), and only L_E for non-impulsive sounds (e.g. vibratory pile driving). The thresholds for Level B harassment are based on older guidelines and are 160 decibels root mean square (dB RMS) for impulsive noise and 120 dB RMS for unattenuated noise (Table 2). The RMS accounts for variable sound levels over time and provides a measure of the sound magnitude. To calculate the RMS, each point over the calculation period is squared, the average taken, and then the square root of the average is taken. For impact pile driving, RMS is calculated over the period of the pulse that contains 90% of the acoustical energy (Department of the Navy 2013). Only impulsive sounds due to impact pile driving are analyzed for this Project because vibratory methods are not proposed.

The analysis of in-water noise used L_{PK} , RMS, and single-strike sound exposure level values of 185 decibels (dB), 166 dB, and 155 dB, respectively. These values were determined to be the potential worst-case sound energy levels associated with driving 18-inch concrete piles after review of Buchler et al. (2015). The project will use jetting with impact driving for final setting of 12-inch, 14-inch, and 18-inch piles. The calculation of isopleths used assumptions of 12 strikes per pile and installation of 10 piles per day.

Table 2. NMFS thresholds and calculated isopleths to thresholds for Level A harassment of marine mammals for each of the marine mammal hearing groups. Isopleths are in meters and thresholds are in dB.

Hearing Group	Low- Frequency Cetaceans	Mid- Frequency Cetaceans	High- Frequency Cetaceans	Phocid Pinnipeds	Otariid Pinnipeds
<i>L</i> _E Threshold	183	185	155	185	203
PTS Isopleth to <i>L</i> _E Threshold	3.3	0.1	3.9	1.8	0.1
L _{PK} Threshold	219	230	202	218	232
PTS Isopleth to <i>L</i> PK Threshold	0.0	0.0	0.0	0.0	0.0

Level A Harassment (physical injury) has a low likelihood of occurrence as a result of the Project given the projected sound pressure levels from pile-driving activities. Anticipated L_{PK} at the source of pile driving for this project are estimated up to 185 dB (i.e., with use of an impact hammer to drive 18-inch piles) (Buchler et al. 2015). This is below Level A thresholds established by NOAA for low-frequency cetaceans (219 dB), mid-frequency cetaceans (230 dB), high-frequency cetaceans (202 dB), phocid pinnipeds (218 dB), and otariid pinnipeds (232 dB). Thus, the potential for L_{PK} noise levels that would harm marine mammals is negligible.

In addition to L_{PK} thresholds, recent NOAA guidance (NMFS 2016a) regarding Level A Harassment of marine mammals includes thresholds for L_E . The worst case calculated L_E at source would be above the threshold for all marine mammals. However, the threshold exceedance would be so low that the sound levels would attenuate to the thresholds within minimal isopleth distances. Based on an assumption of 12 strikes per pile for 18-inch concrete piles, the mid-frequency cetaceans and otariid pinniped isopleths are 0.1 meter from source. Phocid pinnipeds are 1.8 meters from source. The isopleths for low-frequency cetaceans and high-frequency cetaceans are 3.3 and 3.9 meters from source, respectively. Given such narrow isopleths within which noise levels can exceed thresholds for cumulative exposure, the potential for noise level impacts, as measured by L_E , is negligible.

The recent NOAA guidance for noise level impacts on marine mammals addresses only Level A Harassment (NMFS 2016a). A determination of Level B Harassment (behavioral) relies on previous guidance established by NOAA (NMFS 2016b). Level B Harassment could occur if marine mammals are exposed to in-water sound levels greater than 160 dB RMS. Impact driving of 18-inch concrete piles is anticipated to produce noise levels of 166 dB RMS (Buchler et al. 2015). The isopleth where sound is attenuated from 166 dB rms to 160 dB rms is 25 meters, based on the practical spreading loss model (Table 3). However, there are data showing higher noise levels for driving of smaller (16-inch) piles. Buchler et al. (2015) provide data showing 173 dB RMS at source for driving of 16-inch concrete piles. The isopleth to attenuate sound from 173 dB RMS to 160 dB

RMS is 74 meters based on the practical spreading loss model (Table 3). Therefore, there is minor potential for Level B Harassment of marine mammals and green sea turtles.

Taking a conservative approach, an isopleth of 74 meters would be sufficient to monitor marine mammals during construction. In-air sound attenuates faster that in-water sound and sound levels are generally lower in air. Therefore, monitoring marine mammals within 74 meters of source in air or in water would be sufficient to protect marine mammals. This standard is also protective of green sea turtles.

 Table 3. The below table provides the Level B harassment isopleths as calculated using the anticipated sound levels from driving piles using NMFS guidance and the practical spreading loss model.

Pile Size / Type	Driving Method	Level B Influence Isopleth Distance ¹
16" Concrete	Impact	74 m
18" Concrete	Impact	25 m

¹ 160 dB_{RMS} used as threshold for Level B harassment.

The results of noise analysis relative to fishes used the same worst-case scenarios and assumptions as those used for marine mammals. Applying the NOAA thresholds for physical injury and behavioral modification for fishes, allowed calculation of isopleths within which injury or behavioral modification may occur. L_{PK} sound levels are not anticipated to result in physical injury to fishes given that L_{PK} levels are anticipated to be lower than the threshold for injury based on peak sound levels (Table 4). L_E sound exposure levels are also expected to be too low based on 12 strikes per pile and 10 piles per day to cause physical injury to fishes. RMS levels for behavioral modification of fish based on the worst-case scenario (166 dB RMS) are above the 150 dB RMS threshold established by NOAA. Calculation of the behavioral modification isopleth using the practical spreading loss model requires a 117-meter isopleth to reduce RMS levels from 166 to 150 dB. Thus, behavioral modification may occur for all fish occurring within 117 meters of pile driving (Table 4).

Table 3. NMFS thresholds and calculated isopleths to thresholds for physical injury and behavioral effects in fishes. Physical injury for all fishes can occur if peak sound levels are above 206 dB or if cumulative sound exposure levels exceed 187 dB for fish ≥ 2 grams or 183 dB for fish < 2 grams. Behavioral modification is assumed to occur for all fish at above 150 dB RMS.

	On	Behavior		
	All Fish	Fish ≥ 2 g	Fish < 2 g	All Fish
Threshold	206 dB (L _{pk})	187 dB (L _E)	183 dB (L _E)	150 dB (rms)
Isopleth	0 m	0 m	0 m	117 m

Discussion

The biological communities present in Harbor Island West Marina are typical of the inner reaches of bays and harbors in the region and are not notably diverse, unique, or sensitive. The proposed changes to the dock layout pose no major biological constraints to marina improvements.

However, the following are biological and permitting issues to consider for general planning purposes.

The presence of eelgrass poses the greatest constraint to development activities. Eelgrass creates a unique marine habitat that serves many important functions in the bay environment, and is therefore given special status under the Clean Water Act, 1972 (as amended), Section 404(b)(10). The project has been determined to have impacts to eelgrass anticipated at approximately 177 square meters (1,905 square feet [MTS 2018]). However, the impact assessment identified that due to a reduction of 557 square meters (6,000 square feet) of vessel dock area, the Project would provide additional potential eelgrass habitat. That increased habitat potential could be used as part of a mitigation strategy to restore eelgrass resources on site. The increased habitat potential is expected to provide a net gain of 85 square meters (915 square feet) of eelgrass above that currently present. That means the project will result in eelgrass growth that will replace the 177 square meters of impact plus an additional 85 square meters. This represents a 1.48:1 ratio of impacted to expected growth.

To avoid any additional eelgrass restoration commitments, the Project should seek to avoid impacting eelgrass during construction. Indirect impacts may arise due to disturbance by construction vessels, pile installation, or increased turbidity. To avoid these impacts, Project implementation should minimize shading associated with staging of vessels or dock structures. Construction crews should incorporate techniques that avoid suspension of sediments that could reduce light penetration or settle on eelgrass directly.

Due to the known presence of eelgrass within the marina, state and federal permits will require pre- and post-construction eelgrass surveys be performed, whether or not impacts are anticipated. Surveys and any mitigation must be performed in accordance with the California Eelgrass Mitigation Policy (CEMP) (NMFS 2014). If impacts cannot be avoided, the permitee will be required to prepare and implement an Eelgrass Mitigation Plan per the CEMP, which involves a compensatory restoration of lost eelgrass at a 1.2:1 ratio (or 1:1 for impacts less than 10 square meters) and a five-year monitoring and reporting program. However, given that the Project will result in a net production of eelgrass and potential eelgrass habitat, it is possible that NOAA Fisheries will allow for a 2-year monitoring period prior to assessing impacts. Under that scenario it is likely that any eelgrass lost due to dock realignment will be offset by new growth.

The eelgrass data presented in this report were collected as part of a broad program to characterize the marina habitats. As such, it should be used for planning and permitting purposes; not as a surrogate for a pre-construction eelgrass survey. The project's pre-construction eelgrass survey should make use of extensive diver transect data to ensure mapping accuracy.

Another biological constraint to consider is a potential impact to CLT from turbidity generated by Project activities such as pile jetting and pile driving. This arises from concerns that elevated turbidity reduces visibility in the water and could impair foraging terns, which view prey fish from

above and dive to catch them in surface waters. Most projects with such elements are required utilize best management practices to mitigate turbidity.

An additional concern raised regionally by resource agencies reviewing proposed projects is the loss of open water for foraging by CLT and other piscivorous birds. Given that the dock reconfiguration proposed, this Project will have an overall decrease (4,500 square feet) in over water cover and therefore should be looked upon as favorable to piscivorous birds.

It is not anticipated that the other sensitive species noted above would be significantly impacted by the marina improvements or construction activities.

In addition to the potential impacts noted above, the EFH assessment identified designated EFH habitat for 101 species of marine fish and invertebrates managed under the PFMC Coastal Pelagic and Pacific Coast Groundfish FMPs within Harbor Island West Marina. Furthermore, both estuarine and seagrass HAPCs occur within the Project area and could be impacted by potential project activities. The presence and potential to impact eelgrass, a HAPC was noted above.

With regard to potential impacts to EFH and the coastal pelagic and pacific coast groundfish species managed under the Coastal Pelagic and Pacific Coast Groundfish FMPs, the coastal pelagic species that both occur, and have the potential to occur in San Diego Bay, are generally open water schooling species that would only occasionally be found in a marina environment in San Diego Bay. Fish species managed under the Pacific Coast Groundfish FMP occur in low numbers in San Diego Bay and are not likely to be common within the Project area. More importantly, none of the proposed Project construction activities are expected to negatively alter the ecological roles and processes currently occurring within the Project area that are characteristic of designated EFH for coastal pelagic species and pacific coast groundfish. As such, any potential impacts to the role(s) that waters and substrate within the Project area play for these species regarding habitat for spawning, breeding, feeding, or growth to maturity, are expected to be negligible.

With regard to potential impacts to seagrass HAPC within the Project area, any potential impacts are expected to range from negligible to beneficial. The completed Project will result in the reduction of overwater coverage by Harbor Island West Marina by 6,000 square feet and will pose a negligible impact to eelgrass beds already present with the implementation of best management practices that are protocol for such dock renovation/replacement projects. As such, the removal of shading and increase eelgrass habitat is only expected to benefit/improve seagrass HAPC already present within Harbor Island West Marina, with other potential impacts to seagrass HAPC being negligible, as other ecological roles and processes characteristic of the HAPC will not be altered by the proposed Project.

The results of acoustic analysis of potential pile driving sounds indicates marine mammals, sea turtles, and fish will not be harmed due to pile driving generated sounds. The analysis indicates that there is the potential to cause behavioral modification to marine mammals, green sea

turtles, and fishes. The behavioral isopleths are generally small (less than 74 meters for marine mammals and sea turtles, and 117 meters for fishes). These impacts are minimal and can be mitigated by use of soft-start techniques during pile driving to allow animals to flee the work area as well as a biological observer to ensure no sensitive species are harmed.

References

- Allen, L.G. 1999. Fisheries inventory and utilization of San Diego Bay, San Diego, California. Final report. Nearshore Marine Fish Research Program, Department of Biology, California State University, Northridge.
- de Boer, W.F. 2007. Seagrass-sediment interactions, positive feedbacks and critical thresholds for occurrence: a review. Hydrobiologia 591 (1): 5-24.
- Heck, K.L., G. Hays, and R.J. Orth. 2003. Critical evaluation of the nursery role hypothesis for seagrass meadows. Marine ecology progress series 253:123-136.
- Henderson, H.D. and R.C. Mooney. 2001. Essential Fish Habitat Assessment for the Port of San Diego Harbor Police and Transient Vessel Dock Replacement Project, Shelter Island, San Diego, California. Prepared for Port of San Diego. 12 pp.
- Love, M.S., M. Yoklavich, and L. Thorsteinson. 2002. The Rockfishes of the Northeast Pacific. University of California Press, Berkeley, California.
- McCain, B.B. 2003. Essential fish habitat west coast groundfish draft revised appendix. Seattle, WA: National Marine Fisheries Service, Northwest Fisheries Science Center.
- [MTS] Marine Taxonomic Services, Ltd. 2015. Harbor Island West Marina Baseline Eelgrass Resources Report. Prepared by Robert Mooney. Prepared for ICF International. January 5, 2015, revised January 2, 2017.
- [MTS] Marine Taxonomic Services, Ltd. 2018. Habor Island West Marina Updated Baseline Eelgrass Resources Report. Prepared by Robert Mooney. Prepared for ICF International. April 2, 2018.
- [MTS and ICF] Marine Taxonomic Services and ICF International. 2016. Acoustic Monitoring Plan for the Shelter Island Boat Launch Facility Improvements Project. Prepared for the Port of San Diego Environmental and Land Use Management Department. October 2016.
- Mooney, R.C. and R.A. Woodfield. 2009. Eelgrass and cordgrass (Chapter 4). *In, Batiquitos Lagoon long-term biological monitoring program final report 2009.* Prepared by Merkel & Associates. Prepared for City of Carlsbad Planning Department and The Port of Los Angeles Environmental Management Division.

- [NMFS] National Marine Fisheries Service. 2014. California Eelgrass Mitigation Policy (October 2014).
- [NMFS] National Marine Fisheries Service. 2016a. Technical Guidance for Assessing the Effects of Anthropogenic Sound on Marine Mammal Hearing: Underwater Acoustic Thresholds for Onset of Permanent and Temporary Threshold Shifts. U.S. Department of Commerce, NOAA. NOAA Technical Memorandum NMFS-OPR-55, 178 p.
- [NMFS] National Marine Fisheries Service. 2016b. Interim Sound Threshold Guidance. Available online at: http://www.westcoast.fisheries.noaa.gov/protected_species/marine_ mammals/threshold_guidance.html.
- [NMFS] National Marine Fisheries Service. 2019. Essential Fish Habitat: Habitat Areas of Particular Concern (HAPC). Available online at: https://www.westcoast.fisheries.noaa.gov/habitat/fish_habitat/hpac.html. Accessed 30 Aug. 2019.
- National Oceanic and Atmospheric Administration [NOAA] Fisheries. Essential Fish Habitat Mapper, 2019, https://www.habitat.noaa.gov/application/efhmapper/index.html. Accessed 31 Aug. 2019.
- [PFMC] Pacific Fishery Management Council. 2005. Pacific Coast Groundfish Fishery Management Plan for the California, Oregon, and Washington Groundfish Fishery. Appendix B; Part 2: Groundfish Life History Descriptions. Pacific Fishery Management Council, Portland, OR.
- [PFMC] Pacific Fishery Management Council. 2016. Pacific Coast Groundfish Fishery Management Plan for the California, Oregon, and Washington Groundfish Fishery. Pacific Fishery Management Council, Portland, OR.
- [PFMC] Pacific Fishery Management Council. 2019. Coastal Pelagic Species Fishery Management Plan as amended through amendment 17. Pacific Fishery Management Council, Portland, OR.
- Pondella, D. J. and J. P. Williams. 2009. Fisheries Inventory and Utilization of San Diego Bay, San Diego, California for Surveys Conducted in June 2009. Prepared for the Port of San Diego. 29 pp.
- [TDI] Tierra Data, Inc. 2009. San Diego Bay Avian Species Surveys 2006-2007. Prepared by Tierra Data, Inc. Prepared for Commander Navy Region Southwest Natural Resources Office and San Diego Unified Port District Environmental Services Department. April 2009.

- [TDI] Tierra Data, Inc. 2011. San Diego Bay Avian Species Surveys 2009-2010. Prepared by Tierra Data, Inc. Prepared for Naval Base Coronado Environmental Compliance and San Diego Unified Port District Environmental Services Department. May 2011.
- Thresher, R.E., P.D. Nichols, J.S. Gunn, B.D. Bruce, and D.M. Furlani. 1992. Seagrass detritus as the basis of a coastal planktonic food chain. Limnology and oceanography 37(8):1754-1758.
- [USFWS] United States Fish and Wildlife Service. 2006. California least tern (Sternula antillarum browni) 5-year review summary and evaluation. Prepared by U.S. Fish and Wildlife Service Carlsbad Fish and Wildlife Office. Carlsbad, California. Sept 2006.
- Valentine, J.F., and K.L. Heck. 1999. Seagrass herbivory: Evidence for the continued grazing of marine grasses. Marine ecology progress series 176:291-302.
- Williams, J.P., D.J. Pondella, C.M. Williams, M.J. Robart. 2016. Fisheries Inventory and Utilization of San Diego Bay, San Diego, California for Surveys Conducted in April and July 2016.
 Prepared for the Port of San Diego. November 2016. 68 pp.
- Yarbro, L.A., and P.R. Carlson. 2008. Community oxygen and nutrient fluxes in seagrass beds of Florida Bay, USA. Estuaries and coasts 31(5):877-897.

GEOTECHNICAL INVESTIGATION LANDSIDE IMPROVEMENTS HARBOR ISLAND WEST MARINA SAN DIEGO, CALIFORNIA

Prepared for HARBOR ISLAND WEST MARINA San Diego, California

Project No. 2769A January 28, 2015

Project No. 2769A January 28, 2015

Geotechnical Engineering Coastal Engineering Maritime Engineering

Mr. Eric G. Leslie, Director of Marina Operations HARBOR ISLAND WEST MARINA 2040 Harbor Island Drive San Diego, California 92101

GEOTECHNICAL INVESTIGATION LANDSIDE IMPROVEMENTS HARBOR ISLAND WEST MARINA SAN DIEGO, CALIFORNIA

Dear Mr. Leslie:

In accordance with your request, TerraCosta Consulting Group, Inc. (TCG) is pleased to submit the following report of geotechnical investigation for the subject project, performed in general accordance with our Proposal No. 14123 dated October 15, 2014 in support of the proposed landside improvements for the Harbor Island West Marina located at 2040 Harbor Island Drive in San Diego, California.

The accompanying report presents the results of our review of available reports, plans, and literature, our field investigation, and our conclusions and recommendations pertaining to the geotechnical aspects of the proposed site development.

We appreciate the opportunity to be of service and trust this information meets your needs. If you have any questions or require additional information, please give us a call.

Very truly yours,

TERRACOSTA CONSULTING GROUP, INC.

Matthew W. Eckert, Director of Engineering R.C.E. 45171, R.G.E. 2316

MWE//BRS/jg Attachments

Braven R. Smillie, Principal Geologist R.G. 402, C.E.G. 207

www.terracosta.com
TABLE OF CONTENTS

HARBOR ISLAND WEST MARINA, LANDSIDE IMPROVEMENTS							
GI	EOT	ECHNICAL INVESTIGATION	i				
EXECUTIVE SUMMARY i							
1	INT	TRODUCTION, PROJECT DESCRIPTION, AND SCOPE OF WORK	1				
	1.1	Introduction	1				
	1.2	Project Description	1				
	1.3	Scope of Work	2				
2	PR	EVIOUS STUDIES	3				
3	FIE	LD AND LABORATORY INVESTIGATION	3				
	3.1	Field Investigation	3				
	3.2	Laboratory Testing	4				
4	SIT	E CONDITIONS AND GEOLOGY	4				
	4.1	Regional and Geomorphic Setting	4				
	4.2	Local Geologic Setting	5				
	4.3	Site Geology	6				
	4.4	Site Conditions	6				
	4.5	Subsurface Conditions	7				
	Groundwater	9					
5	GE	OLOGIC HAZARDS	9				
	5.1	Introduction	9				
	5.2	Faulting and Seismicity	9				
		5.2.1 Regional Faulting Seismicity	9				
		5.2.2 Local Tectonics	10				
		5.2.3 Local Faults	11				
		5.2.4 Historical Seismicity	11				
	5.3 Geologic Hazards Associated with Earthquakes		12				
		5.3.1 General	12				
		5.3.2 Ground Rupture	12				
		5.3.5 Ground Snaking	13				
		5.3.4 Isunannis and Seiches	14 1 <i>1</i>				
		5.3.6 Lateral Spreading and Flow Failure	14				
		5.3.7 Seismic-Induced Slope Instability	16				
	5.4	Landslides	17				
	5.5	Slope Stability	17				
	5.6	Collapsible Soils	17				
	5.7	Expansive Soils	18				
	5.8	Corrosive Soils	18				
	5.9	Groundwater	18				

TABLE OF CONTENTS

(continued)

6	DIS	CUSS	ION	18		
	6.1	Site De	evelopment			
	6.2	Site Re	emediation and Mitigation	19		
		6.2.1	Mitigation of Static Slope Stability of Bayfront Slope	19		
		6.2.2	Mitigation of Seismic-Induced Site Hazards	20		
7	RE	COMN	IENDATIONS	22		
	7.1	7.1 Site Preparation				
		7.1.1	Site Preparation and Earthwork Operations	22		
			7.1.1.1 Site Preparation Beneath Sidewalks, Flatwork, and Buildings	22		
			7.1.1.2 Site Preparation for Remaining Areas	23		
			7.1.1.3 Site Preparation and Remediation Within Ground Improvement Areas	23		
			7.1.1.4 General Site Preparation and Earthwork	23		
	7.2	Ground	d Improvement Implementation	24		
		7.2.1	Ground Modification via Wick Drains and Stone Columns Installed by Vibro-			
			Replacement	24		
		7.2.2	Ground Modification via Deep Soil Mixing	27		
	7.3	Foundation	ation Design			
		7.3.1	Deep Foundations Used for Ground Instability Remediation			
		7.3.2	Foundations for Buildings Founded on Improved Ground			
	7.4	Mat Fo	oundation Recommendations	30		
		7.4.1	Static Design			
		7.4.2	Seismic Design Assuming Liquefaction and Lateral Spreading	30		
	7.5	5 Seismic Design Parameters per CBC				
	7.6	Concre	ete Flatwork and Walkways			
	7.7	Soil Co	orrosivity			
	7.8	7.8 Excavations		34		
		7.8.1	Pavements			
8	LIN	ЛІТАТ	TONS	35		

REFERENCES

FIGURE 1	SITE VICINITY MAP
FIGURE 2	SITE PLAN / BORING LOCATION MAP
FIGURE 3	PROPOSED SITE IMPROVEMENTS
FIGURE 4	REGIONAL FAULT MAP
FIGURE 5	SAN DIEGO BAY, 1857
FIGURE 6	GEOLOGIC MAP
FIGURE 7	GEOLOGIC MAP, 1975
FIGURE 8	GENERALIZED GEOLOGIC CROSS SECTION 1

TerraCosta FIGURE 8

TABLE OF CONTENTS (continued)

- FIGURE 9 GENERALIZED GEOLOGIC CROSS SECTION 2
- FIGURE 10 GENERALIZED GEOLOGIC CROSS SECTION 3
- FIGURE 11 GENERALIZED GEOLOGIC CROSS SECTION 4
- FIGURE 12 TSUNAMI MAP
- FIGURE 13 LOCAL ACTIVE FAULT MAP
- APPENDIX A LOGS OF EXCAVATIONS
- APPENDIX B LABORATORY TEST RESULTS
- APPENDIX C EQSEARCH RESULTS

HARBOR ISLAND WEST MARINA, LANDSIDE IMPROVEMENTS GEOTECHNICAL INVESTIGATION

EXECUTIVE SUMMARY

Harbor Island was constructed in the early 1960s by hydraulically dredging relatively clean sands, and then hydraulically pumping and depositing these sands in the current configuration of Harbor Island. These hydraulically placed sands were placed up to about the mean high tide line, and mechanically placed fill soils then imported and placed up to the existing ground surface, with typically about 10 to 12 feet of mechanically placed fills comprising the near-surface soils of Harbor Island. The near-surface fills, hydraulic fills, and natural bay deposits are in turn underlain by the Quaternary-age Bay Point Formation, which was generally encountered near elevation -13 feet MLLW during the earlier Harbor Island West Marina study, and also encountered at elevation -13.5 feet in Boring B-4 during the current study. In one of the offshore borings, specifically Boring B-5 adjacent to the revetted marina slope just offshore of the Harbor Island West pool area, the Bay Point Formation was locally encountered much deeper near elevation -22 feet, with the recent landside Boring B-1 encountering the Bay Point Formation near elevation -27.5 feet. As with other areas in the bay, we anticipate that this was a locally incised drainage channel associated with past flood flows from the San Diego River entering into the bay, now resulting in this locally deeper deposit of loose bay deposits overlain by loose hydraulic fills.

Given this depositional environment, the relatively loose hydraulic fills and granular bay deposits are highly susceptible to liquefaction, with the entirety of Harbor Island at significant risk from liquefaction and its associated lateral spreading during a severe seismic event.

While the Uniform Building Code and the more recently adopted California Building Code (CBC) have required consideration of site seismicity and liquefaction potential, becoming progressively more stringent over time, the 2013 CBC, for the first time, required that potentially liquefiable sites be assessed and mitigated for soil liquefaction resulting from the Maximum Considered Earthquake (MCE), which has a probability of exceedance of 2 percent in a 50-year period, or roughly equivalent to the 2,000-year design event. In contrast, the 2010 CBC required the assessment and mitigation of liquefaction resulting from a probabilistic seismic hazard having a 10% probability of exceedance in a 50-year period, or roughly equivalent to a 400-year design event.

The entirety of Harbor Island has been considered susceptible to liquefaction dating back to the 1970s. However, importantly, the 2013 CBC raised the requirements for mitigation and design to a significantly more severe design event than that used for all of the other structures on Harbor Island.

What this means for the current project is that under the code-specified MCE, site liquefaction and lateral spreading of the margins of the island into the bay must be accounted for in design. Mitigation of liquefaction and soil strength loss can be accommodated through ground improvement, typically stone columns or deep soil mixing; through the use of a robust deep foundation system capable of resisting the seismically induced liquefied lateral loads applied to the deep foundation system; or a rigid structural mat foundation stiff and strong enough to accommodate the anticipated MCE design level settlements and lateral movements without collapse of the structure. All three alternatives are discussed in this report.

GEOTECHNICAL INVESTIGATION LANDSIDE IMPROVEMENTS HARBOR ISLAND WEST MARINA SAN DIEGO, CALIFORNIA

1 INTRODUCTION, PROJECT DESCRIPTION, AND SCOPE OF WORK

1.1 Introduction

TerraCosta Consulting Group, Inc. (TCG) is pleased to present the following report of our geotechnical investigation for the proposed landside improvements at the Harbor Island West Marina located on Harbor Island in San Diego Bay in San Diego, California. This report includes the results of our geotechnical and geologic studies and our recommendations for the landside improvements for the marina.

Harbor Island is a man-made island located just south of the northern boundary of San Diego Bay near the San Diego International Airport (Lindbergh Field). Please refer to the Vicinity Map (Figure 1) and Site Plan (Figure 2). More specifically, the project site is located at approximately 32 degrees 43 minutes and 20 seconds north latitude, and 117 degrees 12 minutes and 38 seconds west longitude.

1.2 **Project Description**

Based on our review of the conceptual design for the marina, we understand that currently proposed landside improvements for the Harbor Island West Marina include the following:

- Demolition of two existing two-story buildings, an existing one-story building, an existing restroom facility, a trash enclosure, and existing pavement;
- Minor regrading of the parking lot area, including modifications to egress and exits to the property;
- Reconstruction of the parking lot, including new landscape islands and possible permeable pavement areas for site infiltration;
- Construction of new trash enclosures and restrooms;

- Construction of three two-story buildings with two covered courtyards;
- Renovation of an existing overlook; and
- Construction of a bayfront promenade and other site pedestrian walkways.

Figure 3 illustrates the current conceptual site development plan. It is important to note that the exact composition of improvements may change during the planning and review process.

1.3 Scope of Work

In order to address the project geologic and geotechnical issues, and to provide input for the environmental reports required for the project, we performed the following scope of work.

- 1. Field Investigation To investigate subsurface soil conditions, we drilled, logged, and sampled four geotechnical test borings ranging in depth from 12 to 48 feet.
- 2. Laboratory Testing To characterize site soils, we performed laboratory testing on selected samples obtained from our field investigation.
- 3. Engineering Analyses We performed engineering analyses to address the following issues:
 - a. The potential for seismically induced liquefaction and lateral spreading;
 - b. Structural foundation loads imposed by buildings (perimeter wall footings and column foundations) and ancillary structures, such as retaining walls, buried utilities, concrete flatwork, and asphalt pavements;
 - c. Site preparation and earthwork operations; and
 - d. Regional and local faulting, seismicity, and geologic hazards, as well as seismic design parameter requirements.

4. Report Preparation - We prepared this report to provide our findings and recommendations.

2 **PREVIOUS STUDIES**

To assist in our preparation for this project, we reviewed our in-house files and available literature. We also reviewed the conceptual design package prepared by SPAL Miller Hall that was submitted to the San Diego Unified Port District for comment. Lastly, we reviewed the following three studies:

- Carol Liana Forrest's 1982 Master's Thesis titled, "The Liquefaction Potential of Harbor Island."
- TerraCosta Consulting Group's December 10, 2012, draft letter-report prepared for Bellingham Marine Industries, Inc. titled, "Guide Pile and Approach Pier/Gangway, Foundation Criteria, Harbor Island West Marina, San Diego, California."
- TerraCosta Consulting Group's December 11, 2012, draft letter-report prepared for Bellingham Marine Industries, Inc. titled, "Addendum to Guide Pile Foundation Criteria, Evaluation of Existing 12-Inch Square Guide Piles, Harbor Island West Marina, San Diego, California."

3 FIELD AND LABORATORY INVESTIGATION

3.1 **Field Investigation**

On December 4, 2014, we performed our field investigation, which included a site reconnaissance; and drilling, sampling, and logging of four 6-inch-diameter exploratory test borings ranging from depths of 12 to 48 feet. The approximate locations of our test borings are shown on the Site Plan / Boring Location Map (Figure 2).

Samples were obtained from the test borings using both a 2-inch O.D. Standard Penetration Test (SPT) sampler and a 3-inch O.D. "California Sampler." The samplers were advanced by driving them into the soil ahead of the auger using a 140-pound hammer falling 30 inches.

Samples obtained from the borings were sealed in the field to preserve in-situ moisture, and transported to the laboratory for additional inspection and testing. The drilling operations were observed, and the borings logged and classified, by a geologist from our firm.

Field logs of the materials encountered in the test borings were prepared based on visual examination of the materials, and on the action of the drilling and sampling equipment. The descriptions on the logs are based on our field observations, sample inspection, and laboratory test results. A Key to Excavation Logs is presented in Appendix A as Figure A-1, and final logs of the test borings are presented as Figures A-2 through A-5.

3.2 Laboratory Testing

Representative soil samples obtained during our field exploration program were tested in the laboratory to verify field classifications and to provide data for geotechnical input to the design of project structures. The results of our laboratory tests are presented in Appendix B.

4 SITE CONDITIONS AND GEOLOGY

4.1 **Regional and Geomorphic Setting**

The site is located in San Diego Bay at the westerly edge of the approximately 10-mile-wide terraced coastal plain, which bounds the Peninsular Ranges geomorphic province of California.

The Peninsular Ranges are a northwest/southeast-oriented complex of tectonically related blocks separated by generally parallel fault zones (Norris and Webb, 1990). Geomorphically, this province is known for its long, low mountain ranges separated by deep alluviated valleys. Geologically, the Peninsular Ranges province extends from the southerly end of the Los Angeles Basin in the north and to the south through Baja California. The general tectonic setting is illustrated on the Regional Fault Map (Figure 4).

Offshore from Southern California is an area known as the Continental Borderland. While this area is not officially designated as a geomorphic province, many of those who study the area consider it a separate province due to its geomorphic complexity. The Continental Borderland is composed of elevated blocks and ridges, which form islands and banks

separated by deep, often enclosed, basins (Legg and Kennedy, 1991). The Continental Borderland extends from the Santa Barbara Basin to the north, south along the coastline into Mexico and offshore approximately 160 miles out to the Patton Escarpment.

4.2 Local Geologic Setting

The topography for most of the San Diego coastal metropolitan area consists of uplifted ancient sea floors and shore platforms that have become the present-day westerly sloping coastal terraces, which are in turn incised by westerly and southwesterly flowing streams and rivers (Abbott, 1999).

Over the last million years, the San Diego region has risen at an average rate of about 5.5 inches per 1,000 years (Abbott, 1999). In the last 80,000 years, the rate of uplift has increased to nearly 12 inches per 1,000 years northwest of the Rose Canyon fault zone, and approximately 18 inches per 1,000 years southwest of the Rose Canyon fault zone. The Rose Canyon system has been suggested to have right-slip (lateral) displacement and is believed to represent a portion of the motion between the North American and Pacific Tectonic Plates.

Conversely, these tectonic forces have also caused down-dropping of the region within San Diego Bay. Following the Rose Canyon fault zone southerly from downtown San Diego, tectonic forces spread across three major faults (and quite possibly other faults) that underlie San Diego Bay. These faults (the Silver Strand, Coronado, and Spanish Bight Faults) are believed to transfer tectonic forces to the Descanso Fault, which lies offshore of Point Loma extending southerly into Mexico. Structurally, the right step, which occurs between the Rose Canyon and the Descanso fault zones, creates a releasing bend that causes the rocks underlying the bay to be stretched and down-dropped to accommodate the movement caused by these tectonic forces. Typical movements along the faults that underlie the bay are observed to experience a significant vertical or normal component to their movement.

From the standpoint of the overall geologic structure, San Diego Bay (located at the southerly end of the Rose Canyon system) is a down-dropped faulted trough (graben) lying just west of a stable hinterland-coastal plain. Bedrock to the east of the zone has been slightly deformed as opposed to that on the west side of this zone, which has experienced extensive faulting and displacement locally. Faults on the east side of the bay (i.e., La Nacion-Sweetwater Faults) display down-to-the-west normal displacement, while many of the unnamed faults on Point Loma display down-to-the-east normal displacement. The

normal faults that parallel the bay to the east are likely a result of subsidence and compaction along the margin of the Pliocene-age San Diego Embayment.

4.3 Site Geology

The project site lies within an area of reclaimed estuarine and low-lying tidelands located south and east of Loma Portal at the north end of San Diego Bay. Historically, prior to the early 1900s, the San Diego River periodically overflowed its banks and reestablished a new course southerly into San Diego Bay (Figure 5).

In the early 1900s, the Army Corps of Engineers created a levee system to prevent flooding and to direct the San Diego River to the west into False Bay (currently Mission Bay). Over the next decades, the low-lying lands in the general San Diego Bay area were developed into what is currently the San Diego International Airport, Harbor Island, Shelter Island, and a few remaining tidelands.

Beginning in 1961, the Harbor Department of San Diego began a major dredging operation of the bay. Dredged material from this operation was used to create Harbor Island. Most of the man-placed fills are of hydraulic origin and generally consist of relatively clean sands placed over relatively granular bay deposits. All of these near-surface overburden soils are underlain at depth by relatively competent Pleistocene-age marine and non-marine terrace deposits.

The local surface geology of the site and adjacent areas, as presented on the State of California's 30 degree by 60 degree geology map of San Diego (Kennedy and Tang, 2005), is shown on Figure 6. Previous representations of local geologic conditions, as presented by Kennedy in 1975, are shown on Figure 7.

4.4 Site Conditions

The Harbor Island West Marina is comprised of eleven floating docks and various landside improvements, consisting of several buildings and shops and paved parking. The existing structures include two single-story and two two-story wood-framed structures. The two-story structures are located immediately adjacent to the north-facing descending bayfront slope. One single-story structure is located at the western end of the property immediately adjacent to the north-facing descending bayfront slope; the other single-story building is located south

of the two two-story buildings. Lastly, the majority of the landward portion of the property is covered with asphalt pavement.

Elevations across the site range from approximately 12 to 15 feet MLLW. The estimated ground surface along the top of the north-facing descending bayfront slope of Harbor Island is near elevation +15 feet MLLW. From the bayfront slope, the site slopes gently downward and to the south toward Harbor Island Drive, to an approximate elevation of +12 feet MLLW, where site parking transitions into an ascending slope to the northern limits of Harbor Island Drive at an approximate elevation of +14 feet MLLW.

4.5 **Subsurface Conditions**

Within the landward portion (Harbor Island proper) of the marina, subsurface conditions encountered by our onshore borings were comprised of both mechanically and hydraulically placed fill soils underlain by bay deposits, in turn underlain by relatively competent Pleistocene-age marine and non-marine terrace deposits commonly referred to as the Bay Point Formation. According to Forrest's review of several sites on Harbor Island, an average subsurface soil profile consisted of fill soils that extended from surface grades down to an elevation of -9 feet, bay deposits that extended to an elevation of -19 feet MLLW, and Pleistocene-age marine and non-marine terrace deposits that extended to the depths explored. At the Harbor Island West Marina site, the contact between fill and bay deposits ranged from -7 to -20 feet MLLW, and the contact between the bay deposits and the Pleistocene-age marine and non-marine deposits ranged between elevations -13.5 feet and -27.5 feet MLLW.

Within the bayward portion of the marina, the subsurface soil conditions encountered by our offshore borings and vane shear tests typically consist of 6 to 12 inches of near-surface, finegrained, colloidal flock exhibiting essentially no shear strength. The bay-floor colloidal flock is underlain by variable thickness (typically 1- to 2-feet thick) bay deposits consisting of very loose to medium dense fine sands, and locally very soft to soft silts and clays. Weathered Bay Point formational terrace deposits were generally encountered below elevation -13 feet and the less weathered (more competent) Bay Point Formation below -20 feet.

All of the offshore borings drilled for the marina project (see Figure 2), with the exception of Boring B-5, encountered weathered Bay Point Formation terrace deposits near elevation -13 feet, suggesting a relatively uniform depositional environment. In offshore Boring B-5, terrace deposits were encountered near elevation -22 feet, which we interpreted to be an older

incised channel associated with past flows of the San Diego River into San Diego Bay. The more recent onshore borings also reflect this locally incised channel with Boring B-1 immediately bayward of the offshore Boring B-5 encountering the weathered Bay Point Formation near elevation -27.5 feet, while the onshore Boring B-4 again encountered weathered Bay Point Formation soils near elevation -13.5 feet. Thus, it would appear that under at least the eastern portion of the proposed improvements, a deeper incised alluvial channel exists, which is now predominantly filled with loose liquefiable soils.

The individual soil units encountered within the project limits are described in more detail below:

<u>Offshore Recent Bay Deposits</u>: The recent bay deposits consist of a relatively thin layer of colloidal flock underlain by very loose and soft, gray, very fine- to medium-grained sands and silt.

<u>Offshore Bay Point Formation</u>: The offshore Bay Point Formation was generally encountered below -13 feet MLLW. The upper 5 to 10 feet of this soil unit is generally weathered, becoming more competent below -20 to -25 feet MLLW. The Bay Point Formation typically consists of old paralic deposits of late to middle Pleistocene age and is mostly poorly sorted, interfingered, beach estuarine and colluvial deposits comprised of siltstones and sandstones and occasional clays.

Fill Deposits: Artificial, or man-placed, fill soils encountered within the project area consist of sands, sands with silt, and silty and clayey sands. These fill soils appeared to have been mechanically placed to a depth just above the groundwater table, and hydraulically placed below the groundwater table. The hydraulically placed fill soils were comprised primarily of sands with fines contents less than 6 percent and contained relatively abundant shell fragments. Sample penetration resistances within the mechanically placed soils range from 6 to 37 blows per foot, and sample penetration resistances within the hydraulically placed soils range from 2 to 7 blows per foot.

<u>Onshore Bay Deposits</u>: The onshore bay deposits are comprised of gray saturated silty sands. Sample penetration resistances within the onshore bay deposits ranged from 3 to 21. In addition, these bay deposits have fines contents that range from 10 to 19 percent.

<u>Onshore Bay Point Formation</u>: The onshore Bay Point Formation was encountered below -14 feet MLLW in Boring B-4 and -28 feet in Boring B-1. The soils encountered in our borings are comprised of gray silty sands and mottled red-brown clayey and silty sands with sample penetration resistances ranging from 21 to 40.

Generalized geologic and geotechnical cross-sections have been prepared to illustrate the subsurface conditions at the site. These cross-sections are presented as Figures 8 through 11.

4.6 **Groundwater**

Groundwater levels at the site can be expected to vary in response to tidal fluctuations. Groundwater highs will likely approach tidal highs in the bay, and groundwater lows may drop slightly below mean sea level. From a construction standpoint, any excavations approaching the upper margins of the tidal zone should be expected to experience severe caving.

5 **GEOLOGIC HAZARDS**

5.1 Introduction

In general, a project may be exposed to risks associated with various geologic hazards. Many of those hazards are related to the actions of earthquakes and faulting. In addition to geologic hazards associated with earthquakes and faulting, other potential geologic hazards exist that could impact a given project, such as landslides, expansive soils, collapsible soils, corrosive soils, and high or perched groundwater. A brief description of the various geologic hazards and their impact on the project site is presented below.

5.2 Faulting and Seismicity

5.2.1 Regional Faulting Seismicity

Movement between the North American and Pacific Plates makes Southern California one of the more seismically active regions in the United States. Strain, caused by movement between the North American Plate and the Pacific Plate, is spread across a 150+ mile wide

zone between the San Andreas fault zone, approximately 100 miles east of San Diego, out to and beyond the San Clemente fault zone located approximately 50 miles west of San Diego.

Nearing the end of the Miocene, approximately 5.5 million years ago, the boundary between the North American and Pacific Plates moved eastward to its present-day position in the Gulf of California (Abbott, 1999). The resultant extension and stretching of the North American continental crust formed a rift between the two plates, creating the Gulf of California, which continues opening through the present day. The San Andreas, San Jacinto, Elsinore, Rose Canyon/Newport-Inglewood, and San Clemente fault zones are just a few of the resultant strain features (faults) created by this tectonic movement (Figure 4.) Today, there is an estimated 22 to 24 inches per year of relative plate motion between the North American and Pacific Plates spread across the faults within this 150+ mile wide zone, of which the Rose Canyon fault zone is estimated to contribute 0.06 inch/year (± 0.02 inch). It is this context within which the local tectonics of San Diego is situated.

5.2.2 Local Tectonics

Of the major active fault systems in Southern California, the Rose Canyon/Newport-Inglewood fault zone has impacted the local San Diego region the most. In addition, the La Nacion fault zone to the east of the project and the Descanso Fault offshore to the west have contributed to the local tectonic state of the project site. Together with other offshore fault zones, these faults have contributed to the formation of San Diego Bay. South of La Jolla, the Rose Canyon fault zone changes its orientation from a northwest/southeast trend to a more north/south trend, creating a left bend in the fault zone. This left bend locally creates a locking mechanism within the predominantly right lateral Rose Canyon fault zone. The compressional forces within this zone have caused folding, uplift, and tilting of the overlying sedimentary rocks, thus creating Mount Soledad and the down-dropped Mission Bay area. To the south in San Diego Bay, the Rose Canyon fault zone separates into a "horsetail splay," spreading movement across the Silver Strand, Coronado, and Spanish Bight Faults (as well as several smaller faults) as it trends offshore toward the Descanso Fault. The Descanso Fault lies offshore from Point Loma, where it extends southerly toward the Agua Blanca fault zone in northern Baja (Legg and Kennedy, 1991). This right step, between the Descanso and Rose Canyon fault zones, creates a releasing bend, causing the rocks to be stretched and down-dropped. In response, the rocks have not deformed elastically, but instead have responded with brittle fault failure (Abbott, 1999). The easterly boundary of this releasing

bend is formed by the La Nacion fault zone, which generally consists of normal faults that down-drop to the west.

5.2.3 Local Faults

The Harbor Island West Marina project is located along the northerly margin of San Diego Bay and west of the active Rose Canyon fault zone. As described above, when the Rose Canyon fault zone is followed southerly, it appears to terminate in San Diego Bay. From there, the fault movement appears to be transferred to the northerly trending Silver Strand, Coronado, and Spanish Bight Faults that continue offshore toward the Descanso Fault. Based on our review of the State of California Earthquake Fault Zone Map for the Point Loma Quadrangle, the earthquake fault zone boundary for the Spanish Bight Fault (the closest active fault to the Harbor Island West project site) is located approximately 1.8 kilometers to the east/southeast (Figure 12).

5.2.4 Historical Seismicity

The historical seismicity of the site can be illustrated from searches of both the California Geological Survey (CGS) database of historical earthquakes and the earthquake database contained in the computer program EQSEARCH. The CGS database contains historical earthquake events from 1800 to 1999 above a minimum magnitude of 5.5, and permits searches for historical earthquakes within a 31 mile radius of the subject site. The database within EQSEARCH contains historical earthquake events between 1800 and 2010 for earthquake magnitudes above 4 for a user-defined search radius (typically on the order of 100 miles from the site). In addition, EQSEARCH permits an estimation of peak ground acceleration (PGA) using common attenuation relationships to help characterize the relative importance that a given historical event may have at a site. For our purposes, we employed a search radius of 100 miles and used Boore, et al., 1997 attenuation relationships for a NEHRP Soil Type D (Vs30m of approximately 820 ft/s).

From our search of the CGS database, four historical earthquakes were identified:

• May 25, 1803, event located at latitude 32.8 degrees north and longitude 117.1 degrees west. This earthquake had a reported magnitude of 5.5 and was located approximately 13.5 kilometers from the site;

- May 27, 1862, event located at latitude 32.55 degrees north and longitude 117.15 degrees west. This earthquake had a reported magnitude of 6.2 and was located approximately 20 kilometers from the site;
- June 25, 1863, event located at latitude 32.4 degrees north and longitude 117.1 degrees west. This earthquake had a reported magnitude of 5.8 and was located approximately 37.3 kilometers from the site; and
- October 23, 1984, event located at latitude 32.8 degrees north and longitude 116.8 degrees west. This earthquake had a reported magnitude of 6.1 and was located approximately 39.4 kilometers from the site.

The results of the EQSEARCH are presented in Appendix C. In general, results of the search are similar to the California Geological Society. However, several of the reported distances of the faults to the site depend on the database searched. The EQSEARCH database reports the May 27, 1862, earthquake occurring closer to the site than the California Geological Society database. This results in a higher estimation of PGA. This is especially true with the event that corresponds to a PGA of 0.38g, which, according to the CGS database, is located approximately 20 kilometers from the site versus the 2.6 kilometers in the EQSEARCH database. Regardless of distance measures, the site has likely experienced historic ground accelerations greater than 0.1g within its lifetime.

5.3 Geologic Hazards Associated with Earthquakes

5.3.1 General

Geologic hazards generally associated with earthquakes include ground rupture, ground shaking, tsunamis, seiches, seismic-induced flooding, liquefaction, seismic-induced ground settlement, and seismic-induced slope instability. With respect to these hazards, we have the following comments.

5.3.2 Ground Rupture

Our review of the CGS Earthquake Fault Zone Map for the Point Loma Quadrangle (see Figure 12), the Fault Activity Map of California and Adjacent Areas, Bulletin 200 (see Figure 7), and the Geologic Map of the San Diego 30-Minute by 60-Minute Quadrangle (see Figure 6) did not indicate that any active faults trend toward or traverse the site. The nearest

active fault is the Spanish Bight segment of the Rose Canyon Fault, located approximately 1.8 kilometers to the east of the site (see Figure 12). Thus, based on our review of these maps, it is our opinion that ground rupture due to faulting is not a hazard for this project.

5.3.3 Ground Shaking

As the proposed project is located in an earthquake-prone area, we consider the risk associated with ground shaking at this site to be very high. As such, the project improvements will be required to satisfy, at a minimum, the prescribed California Building Code (CBC) requirements (see Sections 1613 and 1803.5.8 of the CBC).

Code requirements for ground shaking focus on two issues, with the most common issue pertaining to the imparting of inertial forces into buildings and structures. For this issue, ground shaking is oftentimes characterized in terms of a design response spectrum. The second issue (of equal significance) is the stability of the ground during ground shaking. For this second issue, analyses pertaining to slope instability, liquefaction, lateral spreading, and seismic-induced ground settlement are commonly performed.

In past building codes, the design earthquake considered for both assessing ground stability and building design was based upon the same level of earthquake. However, the 2013 Building Code considers different design earthquakes for different analyses. For example, when assessing liquefaction and soil strength loss, CBC Section 1803.5.12 states that the evaluation to be carried out using site peak ground acceleration, earthquake magnitude, and source characteristics consistent with the maximum considered earthquake (MCE). This is roughly equivalent to the 2,000 year design event. For the assessment of building effects due to earthquake loading, is to be generally assessed using a response spectra based on the design level earthquake, which is taken as two-thirds of the response spectra ordinates based on a response spectra corresponding to the MCE, or roughly equivalent to the 400-year design event.

Design parameters for the assessment of ground shaking are discussed and presented in Section 7.5 of this report.

5.3.4 *Tsunamis and Seiches*

Tsunamis and seiches are considered likely hazards at this project site. A review of the State of California Tsunami Inundation Map for Emergency Planning (2009) indicates that the site will be affected by tsunamis caused by both local and distant sources (Figure 13).

In addition, recent tsunamis generated by distant sources (the 2010 Chilean earthquake and the 2011 Honshu, Japan, earthquake) caused damage within San Diego Bay as a result of rapid changes in water surface elevations as the tsunami waves passed into and out of the bay.

5.3.5 Liquefaction

Three key ingredients are required for liquefaction to occur: liquefaction-susceptible soils, sufficiently high groundwater, and strong shaking. Liquefaction is the phenomena associated with ground shaking that results in the increase of pore pressures within the soil. As the pore pressure increases, the shear strength of the soil is reduced. If the pore pressure is sufficiently increased, the soil takes on a "liquid like" behavior. Consequences commonly associated with soil liquefaction include ground settlements, surface manifestations (sand boils), loss of strength, and possible lateral ground movement typically referred to as lateral spreading, ground oscillations and lurching, and possible ground failure.

Soils susceptible to liquefaction generally consist of loose to medium dense sands and nonplastic silt deposits below the groundwater table. The soil deposits underlying the site are comprised of loose to medium dense fills, including hydraulically placed fills comprised of sands with varying amounts of silts, bay deposits, and Quaternary-age deposits, all of which exist below the water table.

In general, the results of our liquefaction assessment for the MCE event indicates that the fill soils below the groundwater table and bay deposits are liquefiable, whereas the denser and more clayey weathered strata of the terrace deposits and Bay Point Formation soils are not liquefiable.

As described above, potential liquefaction impacts associated with the MCE event include seismic-induced ground settlement, ground lurching, surface manifestations such as sand boils and surface cracking, and lateral spreading. Liquefaction-induced vertical ground

displacements are estimated to be on average approximately 9 inches and expected to range from 4 to 18 inches.

In addition, liquefaction of the saturated fill soils and bay deposits results in a reduction in soil strengths, such that the stability of the bayfront descending slope and areas adjacent to the top of the slope will likely fail due to the reduced soil strengths. A more detailed discussion of the liquefaction-induced slope failure is presented in Section 5.3.7.

5.3.6 Lateral Spreading and Flow Failure

Lateral spreading is a phenomenon related to liquefaction that is characterized by accumulated incremental lateral or horizontal displacements that occur during earthquake shaking. During liquefaction, the strength of the soil decreases to a residual undrained shear strength primarily due to the increase in pore pressures in the soil. The residual undrained strength is oftentimes related to the Standard Penetration Test resistance of the soil, and is generally expressed as either an undrained strength or the ratio of undrained strength to initial effective overburden pressure prior to liquefaction. Lateral spreading is oftentimes distinguished from flow failures on the basis of a comparison of the shear stress acting on the soil during static conditions to the cyclic-induced shear stress on the soils generated during an earthquake.

When the static-induced shear stress exceeds the residual undrained strength of the liquefied soil, flow of the soil mass occurs and the phenomenon is commonly referred to as flow failure. However, when the static shear stress is less than the shear strength of the liquefied soil, ground failure is related to the phenomenon known as cyclic mobility, which results from the development of incremental deformations that are driven by both cyclic and static shear stresses. The magnitude of lateral spreading displacements is related to the number and magnitude of stress impulses that exceed the soil strength. The magnitude of lateral movement varies between negligible and significant. These types of deformations are commonly referred to as lateral spreading and can occur on very gentle to virtually flat ground near or adjacent to a free face.

Estimating lateral displacements due to lateral spreading is an imprecise exercise and estimates vary widely. For this site and for the code-specified earthquake scenarios, we estimate that lateral displacements will be on the order of 6 to 22 feet near the top of the bayfront descending slope. In addition, lateral displacements are expected to extend

landward from the bayfront slope in a diminishing manner. Given that Harbor Island is approximately 320-feet wide at the location of the Harbor Island West Marina, one would anticipate that lateral spreading effects will affect the majority of Harbor Island, with ground cracking associated with differential lateral displacements occurring across Harbor Island.

5.3.7 Seismic-Induced Slope Instability

For this project, there is one primary slope of interest; that being, the bayfront descending slope located along the northern shore of Harbor Island. This slope is a composite slope with inclinations varying from the 1.5:1 to 10:1 (horizontal to vertical). Beginning at the top of the slope near elevation +15 feet MLLW, the slope descends at an inclination of approximately 1.5:1, down to elevation +2 feet MLLW, where the inclination flattens to 3:1 as the slope continues to descend to elevation -2 feet MLLW, where the inclination flattens to 10:1 as the slope continues to descend to elevation -10 feet MLLW.

The slope, which is comprised of fill soils, is underlain by both bay deposits and the Bay Point Formation. From approximate elevation +3 feet to elevation -13 feet (locally -22 feet), the slope is comprised and underlain by liquefiable fill and bay deposit soils, which are anticipated to lose significant strength as the result of liquefaction. Consequently, this slope is prone to seismic instability (both lateral spreading and slope failure).

As discussed above, the effects of lateral spreading are anticipated to extend landward several hundred feet from the top of the slope. In addition, the underlying foundation soils supporting the slope are expected to fail in a bearing capacity manner. This bearing capacity-like failure is estimated to extend approximately 140 feet landward from the top of the slope where the computed seismic factor of safety against failure is approximately 1. It is important to note that the estimated width of Harbor Island near the Harbor Island West Marina is on the order of 320 feet. As such, the potential seismic-induced ground failure extends practically to the middle of Harbor Island. Assuming that the other half of Harbor Island is similar to the half where Harbor Island West Marina is located, the implication is that under the 2,000 year design event, the majority of Harbor Island will experience significant ground damage during the code-specified earthquake event.

Given that a significant portion of the site is expected to experience ground displacement, the CBC requires that areas of the site where buildings are proposed will need to be remediated in order to preclude, or at least mitigate, the effects of liquefaction. As such, during the

code-specified seismic event for liquefaction, the bayfront descending slope and the area adjacent to the slope (not having been remediated) will still be susceptible to seismic-induced movements. These movements are a function of the strength of the slope soils. For the condition where the soils do not liquefy, we estimate that the slope and the area adjacent to the top of the slope could be displaced by upwards of 4 inches during the MCE level seismic event. Such displacements can be reduced to less than 1 inch, provided the soils in question have been sufficiently strengthened.

5.4 Landslides

A review of Bulletin 200 and the geology map of the Point Loma Quadrangle (Figure 7), as well as review of reports by others, indicates that no landslides are mapped on or adjacent to the site. As such, it is our opinion that the risk associated with landslides at the site is negligible.

5.5 Slope Stability

As described above in Section 5.3.7, the primary slope of interest for this project is the bayfront descending slope located along the northern shore of Harbor Island. This slope is a composite slope with inclinations that vary from 1.5:1 to 10:1 (horizontal to vertical).

From our analyses, the static factor of safety against failure of this slope varies with distance from the top of the slope. The slope has a minimum computed factor of safety just greater than 1 for failure surfaces intersecting the ground surface approximately 11 feet from the top of slope. The factor of safety increases to the code-required minimum of 1.5 at a distance of 20 feet from the top of the slope face.

5.6 **Collapsible Soils**

No collapsible soils were reported in the literature reviewed or encountered during our site investigation. As such, it is our opinion that the potential for collapsible soils is low.

5.7 Expansive Soils

Our test borings did not encounter any expansive soils within the proposed grading depths. As such, it is our opinion that the potential for soil movement (swell-shrink) related damage to the development from on-site soils is low to negligible.

5.8 **Corrosive Soils**

In general, marine environments are very corrosive by nature. Soils (and conditions) should be considered moderately to severely corrosive.

5.9 **Groundwater**

Groundwater was encountered in the onshore borings at a depth of approximately 12 feet (elevation +4 feet MLLW) at the time of our investigation. The depth to groundwater is directly related to the level of water within the bay and, as such, is expected to vary with tides. As such, any given groundwater elevation is expected to be transitory and to oscillate between an upper and lower bound. Discounting perching horizons and contributions from rainfall and irrigation, we estimate that the groundwater table elevation will vary between a maximum groundwater table elevation corresponding to the Highest Observed Water Level (HOWL), highest recorded tide elevation record in the bay at +8.14 feet MLLW, and a minimum groundwater table elevation corresponding to the lowest tide at -2.2 feet MLLW for current sea level conditions. However, over time, this highest groundwater elevation is likely to rise given sea level rise. Sea level rise has been estimated at 0.25 to 2.2 feet over the next 50 years (IPCC, 2007). If one assumes that the maximum sea level rise is 2.25 feet, the groundwater table elevation is anticipated to fluctuate between -2.2 feet and about 10.3 feet MLLW.

6 **DISCUSSION**

6.1 Site Development

The proposed project consists of the demolition of existing site improvements, including parking, landscaping, and several existing structures, and the construction of proposed

improvements, which includes minor adjustments to site grades, new pavement, new landscaping, and new buildings.

Constraints to the proposed project include stability of the existing bayfront descending slope, stability of foundation soils under code-specified earthquake conditions, and foundation capacity of on-site soils.

Of the constraints for the proposed project, the key issue or concern is the anticipated performance of site soils during the code-specified earthquake event. As stated in Section 5.3 of this report, the proposed development is located on soils that are susceptible to liquefaction, lateral spreading, and seismic-induced slope instability, which under the design event are anticipated to result in ground failure, excessive ground settlement, and lateral ground displacements during the code-specified earthquake event. Also, as mentioned in Section 5.3, given that the width of Harbor Island near the Harbor Island West Marina is on the order of 320 feet, the extent of seismic-induced ground instability, including ground failure, ground cracking, sand boils, ground settlement and lateral displacements, is anticipated to affect the majority, if not all, of Harbor Island. As such, mitigation of the seismic-induced impacts for new structures is required given current code requirements.

Given the technologies and methods of construction available within the area and the industry, it is our opinion that all the geologic hazards for this project can be mitigated to a level that would permit new development within code requirements.

6.2 Site Remediation and Mitigation

There are two general areas of the site that require remediation and mitigation: the static stability of the existing bayfront slope and ground failure issues associated code-specified earthquake events.

6.2.1 *Mitigation of Static Slope Stability of Bayfront Slope*

Our analyses indicate that areas adjacent to the top of the existing bayfront descending slope have computed factors of safety against slope failure less than the common industry standard of 1.5. Our analyses show that the area from the top of the slope to 20 feet beyond the top of the slope has a computed factor of safety less than 1.5 and greater than 1. As such, locating new structure a distance greater than 20 feet will mitigate concerns of placing new structures near slopes of marginal safety.

6.2.2 *Mitigation of Seismic-Induced Site Hazards*

According to Sections 1803.5.11 and 1803.5.12 of the 2013 Edition of the CBC, structures need to consider the potential for liquefaction and lateral spreading and their impact on the proposed development. As part of this assessment, mitigation measures pertaining to the potential seismic impacts are to be considered as part of the design process for the structures. Such mitigation measures typically include ground stabilization, appropriate foundation systems, and/or other structural systems that can accommodate the anticipated displacements and forces. As we understand the code requirements, the primary focus of seismic mitigation is to mitigate and address life and safety concerns more so than maintaining building performance. As such, it is our opinion that a mitigation measure that prevents building collapse but does not prohibit building damage satisfies code requirements.

It is important to note that, in general, all existing structures and buildings on Harbor Island are at risk to significant impacts associated with ground failure and vertical and lateral soil movements. As such, existing structures will likely be significantly damaged during the code-specified earthquake scenario and, depending upon the foundation system of a given structure, may also experience structural collapse.

That said, it is our understanding that code requirements for mitigation pertain to protecting the life and safety of occupants in the proposed new structures. As such, the selection of the type and extent of mitigation depends on a variety of factors, which includes prevention of structural collapse, protecting the life and safety of occupants, desired condition and end-use of the structure after the occurrence of the code-specified earthquake, cost of mitigation, and cost of repair.

As outlined in the CBC, mitigation measures may include prevention of liquefaction and lateral spreading by improving the ground, selecting foundation systems that can accommodate the anticipated seismically induced ground movements and forces, or a combination of measures that includes some amount of ground stabilization in conjunction with a compatible foundation system.

Oftentimes, the first mitigation strategy considered is remediating site soils to preclude site liquefaction, lateral spreading, and seismically induced slope instability and ground failure. To this end, mitigation methods employed for ground modification and stabilization include the following:

- Soil compaction;
- Deep dynamic compaction;
- Vibro-compaction and vibro-replacement with stone columns;
- Compaction grouting;
- Deep soil mixing;
- Jet grouting; and/or
- Chemical grouting.

Brief descriptions of the ground improvement methods and their advantages and disadvantages are presented in Table 1.

In addition to mitigating the liquefaction and lateral spreading impacts by using ground improvements, the selection and design of the foundation system for the structure or improvement may be a viable alternative. Table 2 summarizes several foundation systems that might be appropriate, pending their ability to accommodate the anticipated liquefaction and lateral spreading-induced ground movements without structural collapse.

The selection of an appropriate strategy for mitigating liquefaction and lateral spreading impacts is oftentimes an iterative process where several alternatives are considered, with the more cost-effective solution selected. These cost-benefit analyses typically consider ground improvement costs, building construction costs, and repair costs. However, given the site soils and anticipated site performance, it is our opinion that, of the potential options available for consideration, the alternatives presented in Table 3 are likely the most feasible. Lastly, to help facilitate this process, we have provided preliminary design criteria for the alternatives presented in Table 3. These criteria are presented in Section 7 of this report.

7 **RECOMMENDATIONS**

7.1 Site Preparation

Site preparation for this project is anticipated to consist of:

- Minor regrading and placement of limited amounts of new fill soils;
- Remediation of ground instability associated with liquefaction, lateral spreading, and seismically induced instability within and adjacent to new building areas by either ground improvement, the use of deep foundations with grade beams and structural floors, or the use of mat foundations;
- Preparation of subgrade soils for other structures and facilities, pavement, and flatwork; and
- Utility installation and trench backfilling.

Recommendations for site preparation and earthwork operations are presented below. Recommendations for ground improvement alternatives are presented in Section 7.2. Recommendations for deep foundations with grade beams and structural floors are presented in Section 7.3. Recommendations for mat foundations are presented in Section 7.4.

7.1.1 Site Preparation and Earthwork Operations

7.1.1.1 Site Preparation Beneath Sidewalks, Flatwork, and Buildings

We recommend that, where improvements consisting of sidewalks, flatwork, pavements, and buildings are to be placed, the site be excavated to a minimum depth of 1 foot below existing grade or finish grade, whichever is deeper, and then scarified to a minimum depth of 8 inches, watered, and properly recompacted to a minimum of 95 percent relative compaction, in accordance with ASTM D 1557. Any loose zones encountered during compaction of the final subgrade should be overexcavated and properly recompacted to 95 percent in order to provide the recommended subgrade density.

7.1.1.2 Site Preparation for Remaining Areas

We recommend that, as a minimum, the existing ground surface or finish grade, whichever is deeper, be scarified to a depth of 8 inches, moistened as needed, and recompacted to a relative compaction of 92 percent.

7.1.1.3 Site Preparation and Remediation Within Ground Improvement Areas

The near-surface soils in the area of ground improvement will be highly disturbed during installation. As such, within the areas of ground improvement, we recommend that the site be excavated to a depth of 4 feet (1 foot below the top of treatment). The contractor is to then place a minimum of 18 inches of 1/2-inch crushed rock or gravel. The crushed rock or gravel shall comply with Section 200-1.2 - Crushed Rock and Rock Dust of the Standard Specifications for Public Works Construction. A non-woven filter fabric shall be placed on top of the 18-inch crushed rock layer. The non-woven filter fabric shall be Mirafi N-140 or equivalent. The contractor shall then place fill materials and recompact the soil to finish grade to a relative compaction of 95 percent.

7.1.1.4 General Site Preparation and Earthwork

Where new fill is to be placed in areas underlying buildings or structures, we recommend that new fill be compacted to 95 percent relative compaction. For areas not underlying buildings, sidewalks, flatwork, and pavements, we recommend placing new fill at a minimum relative compaction of 92 percent.

All fill should be placed at a moisture content between optimum moisture, as determined by the latest approved version of ASTM D 1557, and 2 percent above optimum.

For utility trench backfill, we recommend that the soils within the pipe zone be compacted to the minimum specified relative compaction per the utility designer. Soils used as backfill above the pipe zone shall be compacted to a minimum relative compaction of 92 percent.

We recommend that the existing hydraulic fill sands be compacted by a combination of vibration using a vibratory roller, compactor, and/or heavy track equipment.

Except for as noted above, all site preparation and grading should be performed under the observation of the geotechnical engineer and in accordance with Section 300, "Earthwork," of the Standard Specifications for Public Works Construction.

7.2 **Ground Improvement Implementation**

As discussed above, Sections 1803.5.11 and 1803.5.12 of the 2013 Edition of the CBC require that effects associated with liquefaction, lateral spreading, and seismically induced slope and ground instability be mitigated. This mitigation may be achieved by ground improvements, foundation design, or a combination of both. As the project is still in the planning stages, the selection of the most viable mitigation strategy will require an alternatives evaluation of potentially viable methods. As such, preliminary design guidelines and criteria for two ground improvement methods are presented below. Final design recommendations can be provided once a mitigation strategy has been selected.

As discussed in Section 6.2 of this report, it is our opinion that the two most likely candidates for ground improvement are stone columns installed by vibro-replacement with wick drains and deep-soil-mixing. Preliminary recommendations for use in the evaluation of these two options are presented below.

- 7.2.1 Ground Modification via Wick Drains and Stone Columns Installed by Vibro-Replacement
 - 1. We recommend that the wick drain and stone column system be designed by a design-build contracting team.
 - 2. We recommend that the ground improvements consist of vibro-replaced stone columns installed within the limits of the proposed building footprint, and that the area of treatment extend horizontally a minimum distance of 30 feet from the edge of the building footprint. It is important to note that site improvements and facilities located outside of the ground improvement treatment area will be subjected to significant seismically induced ground movements, as described in previous sections of this report.

- 3. We recommend that the stone column improvements extend vertically from 3 feet below grade to an elevation corresponding to 5 feet below the contact of the Bay Point Formation. For preliminary planning purposes, the elevation of the Bay Point Formation contact may be taken as elevation -30 feet.
- 4. In addition, we recommend that liquefiable soils be improved to a condition such that the post-treated soils have a minimum normalized clean sand CPT tip resistance of 190. The normalized clean sand CPT tip resistance is to be computed using methods outlined by Robertson and Wride (1998). We anticipate that this will require a replacement area ratio ranging from 10 to 20 percent. Our estimates suggest a replacement area ratio of 15 percent. We anticipate that this would require the placement of stone columns on a 7- to 8-foot grid.
- 5. As the silt content of the bay deposits is significant and likely resistant to densification, wick drains may be required in conjunction with the stone column. The design of the wick drain system should mitigate liquefaction within the underlying bay deposits.
- 6. The near-surface soils in the area of ground improvement will be highly disturbed during installation. As such, within the areas of ground improvement, we recommend that the site be excavated to a depth of 4 feet below grade (1 foot below the top of treatment). The contractor shall then place a minimum of 18 inches of 1/2-inch crushed rock or gravel. The crushed rock or gravel shall comply with Section 200-1.2 Crushed Rock and Rock Dust of the Standard Specifications for Public Works Construction ("Greenbook"). A non-woven filter fabric shall be placed on top of the 18-inch crushed rock layer. The non-woven filter fabric shall be Mirafi N-140 or equivalent. The contractor shall then recompact the soil to finish grade to a relative compaction of 95 percent in accordance with ASTM Test Designation D 1557.
- 7. As the buildings will likely be located near the bayfront, the treated ground will be subjected to lateral loading associated with the seismically induced ground movements discussed in Section 5.3 of this report. As such, the ground improved area will act as a buttress to non-treated soils located inland from the bayfront edge. Thus, the area of treatment may need to be enlarged and modified in order that the treated soils remain stable, with limited lateral

movements due to soil loads imposed on the treated area due to the behavior of the non-treated areas. As such, the treated area needs to be designed to accommodate the following two lateral load design cases:

- a. Case 1 assumes a passive pressure loading of the upper soils equal to 480 pcf. The soils generating the passive loading are to be taken from the ground surface to an elevation equal to +3 feet MLLW. Below elevation +3 feet MLLW, the soils are assumed to be liquefied with a lateral pressure equal to 120 pcf. The zone of liquefied soils is to extend to a minimum elevation of -30 feet MLLW. Below elevation -30 feet MLLW, an active soil pressure of 20 pcf is to be assumed.
- b. Case 2 assumes a lateral soil loading of 120 pcf acting against the soil-cement buttress from the ground surface to a minimum elevation of -30 feet. Below elevation -20 feet MLLW, an active soil pressure of 20 pcf is to be assumed. In addition, an equivalent hydro-dynamic loading of the liquefied soil is to be applied. This loading can be estimated by Westergaard's equation using an equivalent fluid unit weight of 120 pcf.
- 8. A base seismic coefficient of 0.53 is to be used in the design. This value may be modified depending upon the allowable displacement assumed for the design.
- 9. A sliding coefficient of 0.6 may be assumed along the bottom of the sliding mass. For passive pressures within the Bay Point Formation, we recommend an unfactored passive pressure of 160 pcf.
- 10. Lastly, as the buildings will likely be located near the descending bayfront slope, the ground improved areas for the buildings will need to be designed in order to maintain global stability near the bayfront slope. As such, the treated area is to be designed such that seismically induced displacements associated with ground instability, including global slope stability near the descending bayfront slope, are less than 0.5 inch. For design purposes, the horizontal seismic coefficient is to be taken as 0.53.

7.2.2 Ground Modification via Deep Soil Mixing

- 1. We recommend that, as a minimum, the deep soil mixing treatment area should include the limits of building footprints, and a minimum distance of 25 feet beyond the building footprints. The actual limits, including embedment, will depend on global stability requirements for overturning and sliding of the treated area. It is important to note that site improvements and facilities located outside of the ground improvement treatment area will be subjected to significant seismically induced ground movements, as described in previous sections of this report.
- 2. We recommend that the area of treatment be designed by a design-build contracting team.
- 3. The soils within the treatment area can either be fully-mixed and augmented by the creation of soil-cement soils generated by the deep-soil-mixing process, or may be partially augmented by the creation of interlocking soil-cement-mixedcolumns. The interlocking soil-cement-mixed column cells shall be designed to maintain structural integrity and limited lateral displacements associated with anticipated seismically induced loads. In addition, if the interconnected cell concept is adopted, we recommend that the outside perimeter of the treated area be comprised of soil column elements such that columns overlap to create a continuously treated soil mass. This continuously treated soil mass should have a minimum width of 15 feet, as measured from the outside edge of the treated The configuration of columns within the interior portion of the soilarea. cement mixed mass should result in a coherent and interlocked treated area. The layout and pattern of interlocking columns within the interior of the buttress is at the discretion of the design-build contractor. Regardless of the layout, the treated area is to function as a coherent mass.
- 4. The strength of the soil-cement mix should be determined by the design-build contractor to prevent shear failure of the soil-cement mixed soil. However, we recommend, as a minimum, that the soil-cement mixed soil has an unconfined compressive strength of 400 psi.
- 5. We recommend that the soil-cement treatment area extend to a minimum of 5 feet below the contact of the Bay Point Formation. Deeper embedment may

be needed to accommodate sliding requirements. For preliminary planning purposes, the elevation of the Bay Point Formation contact may be taken as elevation of -30 feet. The elevation of the top of treatment should be at an elevation of +5 feet.

6. Recommendations provided for stone columns, specifically Section 7.2.1, Items 6 through 9, will also apply for the deep soil mixing alternative.

7.3 **Foundation Design**

7.3.1 Deep Foundations Used for Ground Instability Remediation

As indicated above, one potential alternative for mitigating the effects of ground instability associated with liquefaction, lateral spreading, and seismically induced slope/ground instability is the use of foundation systems that can accommodate the ground displacements. For this site, one such system is either driven piles or cast-in-drilled-hole (CIDH) shafts tied together with grade beams. These deep foundation elements help to isolate the building from the anticipated ground movement. However, key to the design is the need to accommodate the imposed lateral soil loading on the piles. The grade beams are necessary to tie the piles together and thus help to provide additional lateral restraint to the imposed loads.

We recommend the following design parameters for preliminary design and planning assessment of the viability of the use of a deep foundation and grade beam system:

- 1. Piles or CIDH shafts are to be tied structurally together by grade beams in order to provide additional fixity to the pile and shaft system.
- 2. Piles or CIDH shafts are to be designed to accommodate building loads, lateral loads due to ground displacement, and down-drag loads due to the reconsolidating of liquefiable soils. To this end, the following design loads, in addition to building loads, are to be considered in the design of the pile or shaft foundation system:
 - a. Down-drag loads of 1 ksf skin friction for that portion of the pile or shaft that extends from the bottom of the grade beam to elevation -30 feet MLLW.
 - b. Lateral soil loads of 480 pcf for the perimeter piles located landward of the top of the descending bayfront slope for those portions of the grade

beam and pile/shaft foundation system that extend from the ground surface to elevation +3 feet MLLW.

- c. Linearly increasing lateral soil pressure acting over the length of each pile/shaft beginning at elevation +3 feet MLLW at a magnitude of 400 psf, and extending to an elevation of -30 feet MLLW at a magnitude of 900 psf.
- 3. The pile/shaft foundations are to be embedded a minimum of 4 times T, where T is equal to the square root of the modulus of elasticity of the pile/shaft (E), times the moment of the inertia of the pile/shaft (I), divided by the stiffness of the soil (f). The stiffness of the soil (f) is 25 pci.
- 4. For analyses using point of fixity calculations, the point of fixity may be taken as 1.8 times T, as determined in Item 3, above.
- 5. The axial capacities of pile/shafts are to be determined using an ultimate skin friction of 1 ksf and an ultimate bearing capacity of 25 ksf.

7.3.2 Foundations for Buildings Founded on Improved Ground

For those buildings located on improved ground in accordance with Section 7.1.1:

- We recommend that buildings be supported on a combination of continuous strip footings, spread or pad footings, and grade beams.
- We recommend that the foundation elements be designed for an allowable bearing pressure of 2,000 psf or less. The allowable bearing pressure may be increased by one-third for seismic and/or wind loads. We estimate that for foundations designed to these bearing pressures, total settlements due to building loads will be less than 1 inch, and differential settlements will be less than or equal to 1/2 inch.
- We recommend that foundation elements have a minimum embedment depth of 24 inches.
- Foundations shall be designed in accordance with Chapter 18 of the CBC, and shall specifically address the requirements of seismic ties for footings as presented in Section 1809.13 of the CBC.

To provide resistance for design lateral loads, we recommend that an allowable friction coefficient of 0.45 be used between the concrete mat foundation and the underlying recompacted sandy subgrade soils. If, for some reason, additional lateral resistance is required, interior shear keys can be added when located a minimum of three times the depth of the shear key in from the perimeter edge of the mat foundation. Passive pressures, if used, should be limited to an equivalent fluid pressure of 300 pcf.

7.4 Mat Foundation Recommendations

7.4.1 Static Design

We recommend that all mat foundations be designed by a registered civil or structural engineer experienced in mat foundation design. We recommend a subgrade modulus of 100 pci that has been adjusted for foundation size. We recommend that maximum allowable contact stresses be limited to 2,000 psf. This value should not be increased for any transient loads, including seismic and wind loads. The settlement associated with a bearing pressure of 2,000 psf is 0.5 inch. The estimated settlement of the mat foundation may be pro-rated as a function of bearing pressure. Differential settlements of mat foundations are a function of mat loading and relative mat stiffness. We recommend that the mat be designed to limit the differential settlements to 0.25 times the total settlement, or less.

To provide resistance for design lateral loads, we recommend that an allowable friction coefficient of 0.45 be used between the concrete mat foundation and the underlying recompacted sandy subgrade soils. If, for some reason, additional lateral resistance is required, interior shear keys can be added when located a minimum of three times the depth of the shear key in from the perimeter edge of the mat foundation. Passive pressures, if used, should be limited to an equivalent fluid pressure of 300 pcf.

7.4.2 Seismic Design Assuming Liquefaction and Lateral Spreading

The design approach presented below for mat foundations is to:

1. Design the mat foundation to span areas beneath the slab that can lose bearing support due to differential settlements associated with lateral spreading and liquefaction;

- 2. Design deepened footings within the mat foundation systems to resist passive pressures on the footing sides generated potentially by the lateral displacement of the ground due to lateral spreading;
- 3. Design the mat foundation to resist forces exerted on the mat foundations assuming sliding of the mat foundation due to lateral displacement of the ground associated with lateral spreading;
- 4. Design the mat foundation system so that it can undergo rigid-body-like rotations associated with one end of the mat moving or rotating downward relative to the other end of the mat; and
- 5. Design the mat foundation system stiffness to limit differential settlements within the mat after adjustments for rigid-body-like rotations that can be transmitted into the building superstructure that limit angular distortions into the building superstructure so as to maintain life and safety concerns.

To this end, we provide the following:

- 1. We recommend that the buildings be founded on a structural mat foundation designed to support the structure in question and span over areas where potential ground loss may occur, namely under and around the buildings. We anticipate that portions of the mat foundation may become unsupported. To estimate the loss of support, we recommend that the lateral distance subject to loss of support be determined as follows:
 - For building footprint dimensions less than 30 feet, the lateral distance subject to loss of support should be taken as one-third (0.33 times) the dimension of the building; and
 - For building footprint dimensions greater than 30 feet, the lateral distance subject to loss of support should be taken as one-quarter (0.25 times) the dimension of the building, with the following restrictions: the minimum is 7.5 feet and the maximum is 15 feet.

- 2. To accommodate potential lateral movement of the structure, we recommend that:
 - Footings that extend below grade be designed to resist lateral earth passive pressures equal to 500 pcf.
 - For interior footings, the effective depth of the footing is to be taken as the difference between the actual footing embedment and the projected depth of embedment of the adjacent footing below the intersection of the height of the footing in question, projected back along a 2:1 (horizontal to vertical) plane. For example, assuming two footings are spaced 3 feet apart and both are embedded to a depth of 2 feet, the effective embedment of the footing in question would be equal to 2 feet (its embedment) minus 0.5 foot, or an effective height of 1.5 feet. The 0.5-foot height was determined by first computing the projected height of the footing in question onto the adjacent footing, and then subtracting the footing height from this projected height. If the resulting number is negative, the adjacent footing is 2 feet. Hence, the height of the adjacent footing interfering with the footing in question is 0.5 foot, or 2 feet minus 1.5 feet. Therefore, the effective height of the footing in question is 2 feet minus 0.5 foot.
 - Footings and slabs designed to resist potential sliding of the structure must be designed to resist a lateral load that is equal to the weight of the structure. In other words, the axial capacity or longitudinal capacity of the slabs-on-ground or footings are to be designed to accommodate a horizontal force taken to be equivalent to the weight of the structure.
- 3. In addition, we recommend that the foundation system be designed to accommodate the foundation gradients across the mat, which can approach the magnitude of total seismic settlements that are estimated to be on average approximately 9 inches and expected to range from 4 to 18 inches;
- 4. We recommend that the stiffness of the mat foundation be sufficient to limit angular distortions transmitted into the superstructure of the building to levels deemed safe for the structure as it pertains to life and safety concerns of the occupants; and

5. Lastly, we recommend that utility connections into the buildings, including but not limited to water, electric and gas, be designed to accommodate lateral displacements on the order of several feet. Such accommodations may include, but are not limited to, flexible connections and automatic shut-off valves.

7.5 Seismic Design Parameters per CBC

The CBC states that a site-specific seismic response analysis be performed for any site that is considered liquefiable. However, based on ASCE Standard ASCE/SEI 7-05, if the proposed structures have a fundamental period of vibration equal to or less than 0.5 second, site-specific analysis is not required and response spectra can be determined using the equivalent site class for non-liquefiable soil. As such, we have treated the site as a non-liquefiable site having Site Class D.

For structures that are to be designed for earthquake loads per Section 1613 and 1613A of the 2013 CBC, we have provided the following recommended site coefficients for proposed improvements that have a fundamental period of vibration equal to or less than 0.5 second (approximate location: 32.7222 degrees latitude, -117.210 degrees longitude).

CBC Seismic Design Parameters											
F _A	1.018										
F_V	1.539										
S_S	1.205										
\mathbf{S}_1	0.461										
S_{MS}	1.226										
$\mathbf{S}_{\mathbf{M}1}$	0.709										
\mathbf{S}_{DS}	0.818										
S _{D1}	0.473										

7.6 **Concrete Flatwork and Walkways**

We recommend that areas to receive concrete flatwork and walkways be prepared in general accordance with Section 301-1 of the Standard Specifications for Public Works Construction. We recommend that subgrade soils be scarified to a minimum depth of 6 inches, and compacted to a minimum relative compaction of 95 percent. Additional subgrade preparation may be necessary in those areas where flatwork and walkways may be subject to vehicle loading and should be evaluated on a case-by-case basis.

7.7 Soil Corrosivity

The results of corrosivity testing of the near-surface soils indicate a soil pH of 7.0 and 40 years to perforation for a 16-gauge metal culvert. Test results are included in Appendix B.

7.8 Excavations

We recommend that all trenching operations for the proposed pipeline comply with OSHA and CALOSHA requirements. As such, trench excavations for the pipeline will generally need to be either shored or sloped back. Trench shields may be used in lieu of shoring or sloping the excavations, provided CALOSHA and OSHA regulations are followed.

For preliminary design and cost estimating purposes, we anticipate that the majority of the excavations will be within OSHA Type C soils. We recommend that excavation conditions be verified in the field, and that modifications be made to any trench excavation support systems, as needed, based upon the actual exposed conditions in the field. We recommend that the designated "competent person" determine the need for, and method for, trench stabilization as stated in the OSHA and CALOSHA requirements.

For shoring systems that are cantilevered, we recommend that shoring systems be designed for an equivalent lateral earth pressure of 40 pcf, with area surcharge loads included at 0.33 times the surface pressure. A minimum surcharge surface load of 260 psf should be used for an additional uniform lateral pressure of 86 psf. If heavy equipment is to be used near and adjacent to the trench, additional surcharge loads need to be considered in the design of the shoring system. Heavy construction equipment and materials should be kept away from the trench excavation. We recommend that such loads be kept a minimum distance of two times the depth of the excavation.

We recommend that shoring systems that are internally restrained be designed for a uniform lateral earth pressure of 30H psf, where H is the depth of the excavation in feet. Area surcharge loads shall be included in the design of the shoring and shall be 0.5 times the surface pressure. A minimum surcharge surface load of 260 psf should be used for an additional uniform lateral pressure of 120 psf. If heavy equipment is to be used near and adjacent to the trench, additional surcharge loads need to be considered in the design of the shoring system. Heavy construction equipment and materials should be kept away from the

trench excavation. We recommend that such loads be kept a minimum distance of two times the depth of the excavation.

7.8.1 Pavements

As no information concerning frequency of traffic loading was provided, we have provided the following pavement for a conventional asphalt concrete section over a crushed aggregate base section on the basis of a typical Caltrans Traffic Index of 5. If anticipated traffic conditions or patterns include frequent heavy trucks, such as trash trucks, additional recommendations may be needed.

We recommend 3 inches of asphalt concrete overlying 4 inches of compacted crushed aggregate base material having a minimum R-value of 79 or CBR of 80. In addition, we recommend that the subgrade soils be compacted to a relative compaction of 95 percent of the maximum dry density, as determined by ASTM D 1557. The crushed aggregate base is to be compacted to a minimum relative compaction of 95 percent of its maximum dry density, as determined by ASTM D 1557. Subgrade soils should not be pumping when pavement is placed.

8 LIMITATIONS

Coastal and geotechnical engineering, as well as the other earth sciences, are characterized by uncertainty. Professional judgments presented herein are based partly on our evaluation of the technical information gathered, partly on our understanding of the proposed construction, and partly on our general experience. Our engineering work and judgments rendered meet the current professional standards. We do not guarantee the performance of the project in any respect.

We have investigated only a small portion of the pertinent soil and geologic conditions at the subject site. The opinions and conclusions made herein were based on the assumption that the soil and geologic conditions do not deviate appreciably from those encountered during our field investigation. We recommend that a soil engineer from our office observe construction to assist in identifying soil conditions that may be significantly different from those assumed in our design. Additional recommendations may be required at that time.

REFERENCES

- Abbott, P.L., 1999, The Rise and Fall of San Diego: 150 Million Years of History Recorded in Sedimentary Rocks, Sunbelt Publications, San Diego.
- American Society of Civil Engineers, Minimum Design Loads for Buildings and Other Structures, ASCE Standard ASCE/SEI 7-05, including Supplement No. 1 and Errata.
- ASTM Standard D 1557, "Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort," ASTM International, West Conshohocken, PA, <u>www.astm.org</u>.
- Blake T.F, EQSEARCH Version 3.xx A computer program for the estimation of peak acceleration from California Historical Earthquake Catalogs.
- California Department of Conservation, August 2011, http://www.conservation.ca.gov/cgs/geologic_hazards/Tsunami/Inundation_Maps/SanDiego/Pages/Sa nDiego.aspx.
- Forrest, Carol Liana, 1982, The Liquefaction Potential of Harbor Island, San Diego State University.
- Idriss, I.M. and R.W. Boulanger, September 2008, Soil Liquefaction During Earthquakes, Monograph MNO-12, Earthquake Engineering Research Institute, Oakland, CA, 261 pp.
- IPCC, 2007, Climate Change 2007. Synthesis Report, Contribution of Working Groups I, II, and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC, Geneva, Switzerland 104 pp, <u>http://www.ipcc.ch/ipccreports/assessments-reports.htm</u>.
- Kennedy, M.P., and G.L. Peterson, 1975, Geology of the San Diego Metropolitan Area, California: Section A - Western San Diego Metropolitan Area (Del Mar, La Jolla, Point Loma 72 minute quadrangles), California Department of Conservation, Division of Mines and Geology, Bulletin 200.
- Kennedy, M.P., and S.S. Tan, 2005, Geologic Map of the San Diego 30' X 60' Quadrangle, California, Scale 1:100,000, California Department of Conservation, California Geological Survey.
- Legg, M.R., and J.C. Borrero and C.E. Synolakis, C.E., 2004, Tsunami hazards associated with the Catalina fault in southern California: Earthquake Spectra, vol. 20, p. 917-950.

REFERENCES

- Legg, M.R., and M.P. Kennedy, 1991, Oblique Divergence and Convergence in the California Continental Borderland, in Abbott, P.L. and Elliott, W.J. (eds) Environmental Perils, San Diego Region, San Diego Association of Geologists Guidebooks, pp. 1-16.
- Madabhushi, G., J. Knappett, and S. Haigh, 2010, Design of Pile Foundations in Liquefiable Soils, Imperial College Press.
- Norris, R.M., and R.W. Webb, 1990, *Geology of California*, Second Edition, John Wiley & Sons, Inc.
- Public Works Standards, Inc., 2006, Greenbook: Standard Specifications for Public Works Construction, Building News, Inc.
- TerraCosta Consulting Group, Inc., December 11, 2012, Addendum to Guide Pile Foundation Criteria, Evaluation of Existing 12-Inch Square Guide Piles, Harbor Island West Marina, San Diego, California.
- TerraCosta Consulting Group, Inc., December 10, 2012, Guide Pile and Approach Pier/Gangway, Foundation Criteria, Harbor Island West Marina, San Diego, California.
- U.S. Department of the Navy, Naval Facilities Engineering Command, 1986, Foundations and Earth Structures, NAVFAC DM 7.02.

]	Means of Ground	Applicable Soils ⁽²⁾					
Method	Densification	Soil Reinforcement	Soil Modification	Pore Pressure Dissipation	Sands	Sands with Significant Fines	Fines	
Deep Dynamic Compaction	Х				Х			
Vibro- Compaction	Х				Х			
Vibro- Replacement with stone columns	Х	Х			Х		X ⁽³⁾	
Deep Soil Mixing		Х	Х		Х	Х	Х	
Compaction Grouting	Х	Х			Х		Х	
Jet Grouting		Х			Х	Х	Х	
Vibro- Compaction with stone columns and wick drains	Х	Х		Х	Х	Х		
Wick and gravel drains				X	X			
Chemical grout injection			Х		Х			

TABLE 1 SUMMARY OF GROUND MODIFICATION TECHNIQUES

NOTES:

- (1) The "means of ground modification" depends upon the properties of the soil being modified. Densification pertains to physically changing the density of the soil, and thereby increasing its strength and reducing its liquefaction potential. Soil reinforcement pertains to adding structural element to the soil mass, thereby strengthening the soil and, as such, augmenting the liquefaction resistance of the soil. Oftentimes, soil reinforcement is achieved by inserting a cement or soil-cement column within the soil mass. It is these elements that provide resistance to seismic loading. Soil modification pertains to changing the soil composition, and thereby transforming the soil into a new soil. In deep soil-mixing, a soil-cement composite is created by blending and mixing cement into the soil. In chemical grout injection, a cement is injected into the pore space of the soil to create a cement-soil composite.
- (2) The applicability of soil refers to the type of soils that are considered suitable for a particular ground improvement technique. Sands have high permeabilities and, as such, are easy to compact and densify by vibration and other means. Sands with significant fines have lower permeabilities and, as such, are not easy to densify by compactive means. As such, if densification is desired, the drainage of the silty sand soil needs to be improved. One common means for this is through the use of wick drains. As such, the amount of fines and types of fines will have a significant impact on the type of ground modification that will be effective. In fine-grained soils, the only viable ground modification treatment is likely to be reinforcement.
- (3) Stone columns may be applicable in fine soils if the concern is the improvement of the vertical support-carrying capacity of the soil. Its applicability is generally limited to vertical support in fine-grained soils.

Ν	11TIGATE LIQUEFACTION SEISMIC-INDUCED	N, LATERAL S GROUND INS	PREADING, AN FABILITY	D
		Applic	cable Ground Mov	ement
			Limited Lateral	Ground
	Description of	Ground	Ground	Failure and
Method	Mitigation Strategy	Settlement	Displacement	Instability
Mat Foundations	Create a rigid foundation to reduce transferring differential ground movements into the superstructure of the building ⁽¹⁾	Х	Х	
Driven Piles	Isolate building from ground movement ⁽²⁾	Х	Х	Х
CIDH Shafts	Isolate building from ground movement ⁽³⁾	Х	X	Х

TABLE 2 SUMMARY OF FOUNDATION ALTERNATIVES TO

Notes:

- (1) The use of a mat foundation is intended to provide a rigid foundation system that will mitigate the transferring of differential ground movements into the superstructure of the building. As such, the mat will need to be designed to be stiff enough to limit distortion into the structure. It is important to note that buildings founded on mat foundations will undergo rigid body movements and, as such, the functional capacity of a building may be impaired after an earthquake due to significant tilt of the rigid structure due to differential ground settlement. As such, repairs will likely be needed to restore the building to service. The goal of this approach is to prevent structural collapse. As such, this method is applicable when ground movements are such that the movement of the building and mat is acceptable. This system may not be applicable for extreme lateral ground movements and areas where ground instability is anticipated. Lastly, besides designing the mat to accommodate differential settlements, the mat foundation may need to be designed to hold together when the mat moves, as well as when portions of the mat become unsupported due to ground movements.
- (2) The strategy for using driven piles is to isolate the building from the ground movements. As such, the pile foundation will likely need to be held together through the use of grade beams, with the first story of the building consisting of a structural floor founded on the grade beams. In addition, given the types of ground movement anticipated, lateral soil loads applied as the result of lateral spreading and ground failure will need to be accommodated. As such, additional piles will likely be required to accommodate the imposed lateral loads. With driven piles, assuming the soils are predominantly sandy, one benefit is the possibility of using closely spaced piles to densify the soils. This densification may have the added benefit of reducing the liquefaction potential of the soils. Any pile foundation system will also need to be designed for down-drag loads due to seismically induced ground settlements.
- (3) The strategy for using CIDH shafts is similar to that for driven piles, with the possible exception of the potential benefit of soil densification.

TABLE 3SUMMARY OF APPLICABLE SEISMIC-INDUCED GROUND MITIGATIONMETHODS FOR HARBOR ISLAND WEST MARINA LAND IMPROVEMENTS

Method	Type of Mitigation	Applicable	Not Applicable
Deep Dynamic Compaction	Ground Improvement		Х
Vibro-Compaction	Ground Improvement		Х
Vibro-Replacement with Stone Columns	Ground Improvement		Х
Deep Soil Mixing	Ground Improvement	Х	
Compaction Grouting	Ground Improvement		Х
Jet Grouting	Ground Improvement	X	
Vibro-Compaction with Stone Columns and Wick Drains	Ground Improvement	X	
Wick and Gravel Drains	Ground Improvement		Х
Chemical Grout Injection	Ground Improvement		Х
Mat Foundations	Structural	X	
Driven Piles	Structural	X	
CIDH Shafts	Structural	X	

APPENDIX A

LOGS OF EXCAVATIONS

10	GC	F -	TES	TBC	RIN	JG	PROJE	CT NAME				PROJECT	NUMBER		BORING
SITE LO		N				10	HARB	OR ISL	AND WEST MARINA -	LANE	DSIDE T	2769A	SH		LEGEND SHEET NO.
Harb	or Isla	nd, S	an Die	ego						12/	4/2014	12	2/4/2014	1	1 of 2
DRILLI		IPANY						DRILLIN	G METHOD			LOGGED	BY utalia a	CHE	CKED BY
DRILLI	IC DIT	IPMEN	т					BORING	DIA. (in) TOTAL DEPT	'H (ft)	GROUND	ELEV (ft)	DEPTH	IELEV. (GROUND WATER (ft)
Marl	M5	THOP					NOTE	6	40				¥ n/a		
SPT	'Cal	THOD					NOTES	5							
				ZIII											
DEPTH (ft)	ELEVATION (f	SAMPLE TYPI	SAMPLE NO.	PENETRATIO RESISTANCI (BLOWS/ft)	DRY DENSITY (pcf)	MOISTURE (%)	OTHER TESTS	GRAPHIC LOG	DESC	RIPTIC	ON AND	CLASSIF		1	
-									<u>K e y</u>	то	EXC	AVATIO	<u>DN LO</u>	DGS	
-								2	WATER TABLE MEA	SURE	D AT TI	ME OF DF	RILLING		
+									OTHER TESTS						
- 									CC Confined Comp CL Chloride Conte CS Consolidation DS Direct Shear EI Expansion Inde GS Grain Size Ana LC Laboratory Cor pH Hydrogen Ion PI Plasticity Index	oressic nt ex Ilysis npacti	on	ppm par R Res RV R-\ SA Sie SE Sar SF Sul SG Spe SW Sw	ts per m sistivity /alue ve Analy nd Equiv fate ecific Gra ell	illion of vsis alent avity	VOCs*
-									PENETRATION RES	ISTAN	CE (BLC)WS/ft)		105 1	
									Number of blows req	uirea t	o advand	ce the sam	ipler 1 fo	oot.	
- 10									California Sampler bl counts by using an ei 140-pound hammer a	ow cou nd-are and a 3	unts can a conver 30-inch d	be conver sion facto Irop.	ted to e r of 0.67	quivale when i	nt SPT blow using a
-									SAMPLE TYPE						
ŀ		С	1						C ("California Sampl thick-walled sampler. brass rings. Relative brass rings.	l er") - The s ly und	An 18-in sampler i isturbed,	ch-long, 2- is lined wit intact soi	-1/2-inch th eighte il sample	i I.D., 3 en 2-3/ es are r	-inch O.D., '8-inch I.D. etained in the
_		S	2						S ("SPT") - a.k.a. Sta O.D., 1-3/8-inch I.D. (andard drive s	Penetra ampler.	tion Test,	an 18-ir	nch-lon	g, 2-inch
-114/15 		В	3						B ("Bulk") - a.k.a. Bu sample obtained fron bag.	ilk Sac n a spe	k Sampl ecific dep	e, a distur oth interva	bed, but I placed	repres in a lar	entative ge plastic
CLOGMI									NOTES ON FIELD IN	VEST	IGATION	!			
59A.GPJ GD(Borings were advanc 6-inch hollow-stem a	ed usi uger.	ng a truc	k-mounte	d Marl N	15 drill r	ig with a
06(3) 27(
								L		F0 6 ···	(CON	TINUED)			1. And an inclusion of the second states of the second states of the second states of the second states of the
Terral Consultin	Costa g Group	Terr 3890 San I	aCos Murp Diego	sta Cor hy Cany , Califori	on Ro nia 92	ng Gi bad, S 123	roup, uite 2	, Inc. 00	THIS SUMMARY APPLI OF THIS BORING AND SUBSURFACE CONDIT LOCATIONS AND MAY WITH THE PASSAGE C PRESENTED IS A SIMF CONDITIONS ENCOUN	es on At thi Tons I Chang F time Plifica Teree	LY AT TH E TIME O MAY DIFF GE AT TH E. THE D ATION OF D.	IE LOCATIO F DRILLING ER AT OT IIS LOCAT ATA THE ACTI	ON G. HER ION JAL	FIGL	JRE A-1 a

	CG	OF	Т	FS	TBC	RIN	JG	PROJE						PROJECT	NUMBE	R	BORING	
SITE	LOCATI		-	20				HARB	ARBOR ISLAND WEST MARINA - LANDSIDE 2769A LEGE START FINISH SHEET NO.						LEGEND SHEET NO.			
Ha	arbor Is	land,	Sa	n Die	go							12/	4/2014	1	2/4/20	14	2 of 2	
		rilling	NY							G METHOD	lor			LOGGED	BY	СН	ECKED BY	
DRI	LLING EC	UIPM	ENT						BORING	DIA. (in)	TOTAL DEPT	H (ft)	GROUN	D ELEV (ft)	DEPT	H/ELEV.	GROUND WATER (ft)	
M	arl M5	ETUO						NOTE	6		40			0.0 337	⊻ n	/a		
SI	PT/Cal	LINU						NOTES	b									
		5			ZIII													
DEPTH (#)			SAMPLE TYPE	SAMPLE NO.	PENETRATIO RESISTANCE (BLOWS/ft)	DRY DENSITY (pcf)	MOISTURE (%)	OTHER TESTS	GRAPHIC LOG		DESC	RIPTI	ON AND	CLASSI	ICATIO	DN		
											KEV	то	EXC	A V A T I		000		
-										,	KET	10	EXC	AVAII	UNL	.065		
													(CON	ITINUED)				
										NOTES		VEOT						
F										NOTES		VESI	IGATION	Continu	ied)			
- 25 - -	5								 Standard Penetration Tests (SPT) and California Samplers were used to obtain soil samples. The SPT and California Samplers were driven into the soil at the bottom of the borings with a 140-pound hammer falling 30 inches. When the samplers were withdrawn from the boring, the samples were removed, visually classified, sealed in plastic containers, and taken to the laboratory for detailed inspection. Free groundwater was encountered in the borings as shown on the logs. Classifications are based upon the Unified Soil Classification System and include color, moisture, and consistency. Field descritpions have been modified to reflect results of laboratory inspection where deemed appropriate. 									
30)								appropriate.									
	5																	
TCC WELL	eraCosta	Te 389 Sar	rra 90 M n Di	Cos ⁄lurpł ego,	ta Cor ny Cany Califorr	ron Ro nia 92	ng Gi bad, S 123	roup, uite 20	Inc. 00	C. THIS SUMMARY APPLIES ONLY AT THE LOCATION OF THIS BORING AND AT THE TIME OF DRILLING. SUBSURFACE CONDITIONS MAY DIFFER AT OTHER LOCATIONS AND MAY CHANGE AT THIS LOCATION WITH THE PASSAGE OF TIME. THE DATA PRESENTED IS A SIMPLIFICATION OF THE ACTUAL CONDITIONS ENCOUNTERED.							URE A-1 b	

LOG OF TEST BORING	PROJECT NAME	ND WEST MARINA -		PROJECT NU	MBER	BORING
SITE LOCATION			START	FINISH		SHEET NO.
Harbor Island, San Diego		METHOD	12/4/2014		/2014	1 of 3
Pacific Drilling	Hollow	/ Stem Auger		G. Spaul	dina	HECKED BY
DRILLING EQUIPMENT	BORING	DIA. (in) TOTAL DEPT	"H (ft) GROUN	D ELEV (ft)	DEPTH/ELE	V. GROUND WATER (ft)
Marl M5 SAMPLING METHOD	6 NOTES	47.5	14.5		¥ 12.5 / 2	2.0
SPT/Cal	Boring seale	d with bentonite 5' to 4	7.5'			
ЭШ, Zш						
DEPTH (ft) ELEVATION (f ELEVATION (f SAMPLE TYP SAMPLE NO SAMPLE NO SAMPLE NO BENETRATIC (BLOWS/ft) (BLOWS/ft) DRY DENSITY (pcf) MOISTURE (%)	OTHER TESTS GRAPHIC LOG	DESC	RIPTION AND) CLASSIFIC/	ATION	
$\begin{array}{c ccccc} & & & & & & & & & & & & & & & & &$	GS GS	6" AC FILL Interbedded Silty SA fragments HYDRAULIC FILL SAND with Silt (SP-S with shell fragments	ND (SM), red-	brown to tan,	damp, wit	h shell
TerraCosta TerraCosta 3890 Murphy Canyon Road, Su Consulting Group San Diego, California 92123	roup, Inc. uite 200	THIS SUMMARY APPLI OF THIS BORING AND SUBSURFACE CONDIT LOCATIONS AND MAY WITH THE PASSAGE O PRESENTED IS A SIMP CONDITIONS ENCOUN	ES ONLY AT TI AT THE TIME (IONS MAY DIF CHANGE AT T F TIME. THE I LIFICATION O TERED.	HE LOCATION DF DRILLING. FER AT OTHE HIS LOCATION DATA F THE ACTUA		GURE A-2 a

LOG OF TEST BORING								OR ISL	AND WEST	MARINA -	LAN	PROJECT NUMBER B				BORING B-1	
SITE LOO	CATION	4 6	an Dia								STAF	RT	FI	NISH	14	SHEET NO.	
DRILLIN	G COMP	ANY		iyu				DRILLIN	G METHOD		12	4/2014	LOGGEI	DBY	014	CHECKED BY	
Pacifi	C Drillin		г					Hollo	w Stem Aug	er	11 /64)	CROUNT	G. Sp	aulding	g		
Marl N	Л5							6	DIA. (III)	47.5	п (щ	14.5) DEP 및 1	12.5 /	2.0	
SAMPLIN		HOD					NOTES	3			7 51						
501/0		1]		7			Bori	ng seale	ed with bent	tonite 5' to 4	1.5						
DEPTH (ft)	ELEVATION (ft	SAMPLE TYPE	SAMPLE NO.	PENETRATIOI RESISTANCE (BLOWS/ft)	DRY DENSITY (pcf)	MOISTURE (%)	OTHER TESTS	GRAPHIC LOG		DESCI	RIPTI	ON AND	CLASSI	FICATI	ON		
-	_	S	7	5			SA		Fine SA interbed	ND with Silt (ded with shel	(SP-S I fragi	M), loose ments	e to very	oose, g	iray, sa	aturated,	
25	— — —-10	S	8	4			GS										
- 25	_	S	9	2			SA										
-	— — —-15	S	10	2													
- 30	_	S	11	4			SA										
- 25	— — —-20	S	12	6			SA										
	_	S	13	3		27.8	GS PI		RECENT BAY DEPOSITS Very Fine SAND (SP/SM) to SILT (ML), very loose, gray, saturated, interbedded								
	 25	S	14	3		21.7	GS PI										
TerraCo Consulting	Group St	erra 390 an E	aCos Murp Diego,	sta Cor hy Cany Califorr	ron Ro nia 92	ng Gi bad, S 123	roup, uite 20	Inc. 00	THIS SUMMARY APPLIES ONLY AT THE LOCATION OF THIS BORING AND AT THE TIME OF DRILLING. SUBSURFACE CONDITIONS MAY DIFFER AT OTHER LOCATIONS AND MAY CHANGE AT THIS LOCATION WITH THE PASSAGE OF TIME. THE DATA PRESENTED IS A SIMPLIFICATION OF THE ACTUAL CONDITIONS ENCOUNTERED.								

LOC	G O	F 7	ES	ST BC	DRIN	١G							PROJECT	NUMBER	र	BORING	
SITE LO	CATION						HARD	START FINISH SHEET NO.						SHEET NO.			
Harbo	or Islan	d, Sa	an Die	ego							12	/4/2014		2/4/201 BY	4 CH	3 of 3	
Pacifi	c Drillir	ng						Hollow	v Stem Aug	er			G. Sp	aulding		ICCRED BT	
DRILLIN		MEN'	Г					BORING	DIA. (in)	TOTAL DEP	TH (ft)	GROUN	D ELEV (ft)	DEPTH	I/ELEV	GROUND WATER (ft)	
SAMPLI	VIS NG METH	HOD					NOTES	6		47.5		14.5		₹ 12	.5/2	.0	
SPT/0	Cal						Bori	ng seale	ed with bent	onite 5' to	47.5'						
DEPTH (ft)	ELEVATION (ft)	SAMPLE TYPE	SAMPLE NO.	PENETRATION RESISTANCE (BLOWS/ft)	DRY DENSITY (pcf)	MOISTURE (%)	OTHER TESTS	GRAPHIC LOG		DESC	RIPTI	ON AND	CLASSIF	ICATIO	N		
-	_	S	15	21					- Becom	es medium	dense						
-		S	16 39 GS WEATHERED BAY POINT FORMATION Silty SAND (SM), medium dense to de fragments BAY POINT FORMATION Clayey SAND (SC), medium dense, mediu												with s	hell	
- 45 -		S	17	24		14.9	GS PI	BAY POINT FORMATION Clayey SAND (SC), medium dense, mottled red-brown/gray, moist Boring terminated at depth of 47.5 feet.									
- 	35 					Boring terminated at depth of 47.5 feet. Groundwater encountered at depth of 12.5 feet at time of excavation (varies with tides).									xcavation		
- 55	40 																
TerraCosta Consulting Group, Inc 3890 Murphy Canyon Road, Suite 200 San Diego, California 92123									THIS SUM OF THIS E SUBSURF LOCATIOI WITH THE PRESENT	IMARY APPL BORING AND ACE CONDI NS AND MAS PASSAGE (ED IS A SIM	IES ON AT TH TIONS CHAN DF TIM PLIFIC	ILY AT TI IE TIME (MAY DIF IGE AT TI E. THE L ATION O	HE LOCAT DF DRILLII FER AT O HIS LOCA DATA F THE ACT	ION NG. THER FION FUAL	FIG	SURE A-2 c	

LOC	GΟ	F 1	ES	ST BC	DRIN	١G	PROJE HARB	OR ISL	AND WES	Γ MARINA -	IAN	OSIDE	PROJECT 2769A	NUMBER	2	BORING
SITE LO	CATION			den al construction of the second							STAF	RT	FINI	SH		SHEET NO.
Harbo	or Islan	id, Sa	an Die	ego							12	4/2014	12	2/4/201	4	1 of 1
DRILLIN									METHOD				LOGGED	BY	CHE	ECKED BY
DRILLIN	G EQUIF	MEN	Г					BORING	DIA. (in)	TOTAL DEP	TH (ft)	GROUN	DELEV (ft)		I/ELEV.	GROUND WATER (f
Marl I	M5							6		12	01 D.	16		⊻ 12	.0 / 4.0	0
SAMPLI		HOD					NOTES	5								
501/		П					Bori	ng seale	d with ben	otnite 5' to	12'±					
DEPTH (ft)	ELEVATION (ft)	SAMPLE TYPE	SAMPLE NO.	PENETRATION RESISTANCE (BLOWS/ft)	DRY DENSITY (pcf)	MOISTURE (%)	OTHER TESTS	GRAPHIC LOG		DESC	RIPTI	ON AND	CLASSIF	ICATIO	N	
									5" AC /	6" CLASS 3	BASE					
-	15 	B	1						FILL Silty SA	ND (SM), gra	ay-brov	wn to ligh	ut brown, d	amp		
_5		5	2	27												
	10	\vdash														
	-10	C	3	37												
	_															
	<u> </u>															
	F															
- 10		S	4	14												
357.84																
	_5	C	5	17												
		\square	0						,							
	Γ								Boring t	erminated at	depth	of 12 fe	et.			/ ! !!!
	F								tides).	warner encol	intere	u at 12 fe	et at time	or exca	vation	varies with
	F															
- 15	L															
	<u> </u>															
	Γ															
÷																
							14									
	-															
TerraC	osta T 38 Group S	erra 890 an E	aCos Murp Diego	sta Cor hy Cany , Califorr	ron Ro nia 92	ng Gi bad, Si 123	roup, uite 2	Inc. 00	THIS SUM OF THIS SUBSUR LOCATIC WITH TH PRESEN CONDITION	IMARY APPL BORING AND FACE CONDIT NS AND MAY E PASSAGE C FED IS A SIMP DNS ENCOUN	IES ON AT TH FIONS CHAN OF TIM PLIFIC, ITERE	ILY AT THE E TIME C MAY DIFI GE AT THE E. THE C ATION OF D.	HE LOCATI DF DRILLIN FER AT OT HIS LOCAT DATA F THE ACT	ON G. HER ION UAL	FIGI	JRE A-3

LOC	G O	F٦	TES	т вс	DRIN	١G	PROJE HARB	CT NAME	AND WEST I	MARINA -	LAN	OSIDE	PROJECT		R	BORING
SITE LO	CATION					I		011101			STAR	T	FIN	IISH		SHEET NO.
Harbo	or Islan	d, Sa	an Die	ego				DBILLING	METHOD		12/	4/2014	1	2/4/20	14	1 of 2
Pacifi	c Drillir	201						Hollow	Stom Augo	r			G Sn	aulding		HECKED BY
DRILLIN	G EQUIP	PMEN	Т					BORING	DIA. (in)	I TOTAL DEPT	TH (ft)	GROUN	D ELEV (ft)	DEPT	H/ELEV	. GROUND WATER (ft)
Marl I	M5	100					NOTE	6		20		15		₹ 1	1.5/3	8.5
SAMPLI	NGMET	HOD					NOTES	s na coolo	d with hanta	nito El to C	201					
				7			BUI				20					
DEPTH (ft)	ELEVATION (ff)	SAMPLE TYPE	SAMPLE NO.	PENETRATION RESISTANCE (BLOWS/ft)	DRY DENSITY (pcf)	MOISTURE (%)	OTHER TESTS	GRAPHIC LOG		DESC	RIPTI	ON AND) CLASSII	FICATIO	л	
			1 2 3 4	13 11 18 7					5" AC FILL Interbedd gray to gra HYDRAUI Interbedd fragments	ed Silty SA ay-brown, d <u>-IC FILL</u> ed Silty SA	ND (S	s M) and I with she	Fine to M II fragmer	edium F nts	Fine SA	AND (SP),
TerraC Consulting	Osta T 38 Group S	erra 890 an E	aCos Murp Diego	ta Cor hy Cany , Califori	rsultii ron Ro nia 92	ng G bad, S 123	roup, uite 2	Inc. 00	THIS SUMM OF THIS BC SUBSURFA LOCATIONS WITH THE F PRESENTE CONDITION	IARY APPLI DRING AND CE CONDIT S AND MAY PASSAGE C D IS A SIMF IS ENCOUN	ES ON AT TH TONS CHAN OF TIM PLIFIC/ ITEREI	ILY AT THE E TIME (MAY DIF GE AT TH E. THE I ATION OI D.	HE LOCAT DF DRILLII FER AT O HIS LOCA DATA F THE AC	Tion Ng. Ther Tion Tual	FIG	GURE A-4 a

LOC	GΟ	F٦	FES	T BC	DRIN	١G	PROJEC	OR ISI	AND WEST	MARINA -		DSIDE	PROJECT	NUMBER		BORING
SITE LO	CATION							ORIGE			STAF	RT	FINI	SH		SHEET NO.
Harbo	or Islan	Id, S	an Die	ego		en e		DD	0.1127110-		12	/4/2014	12	2/4/2014	4	2 of 2
Pacifi	c Drilli							Hollo		er			G Spa	вY aulding	CHE	CKED BY
DRILLIN	G EQUIF	PMEN	т					BORING	DIA. (in)	TOTAL DEPT	H (ft)	GROUN	D ELEV (ft)	DEPTH	ELEV.	GROUND WATER (ft)
Marl I	M5						NOTE	6		20	20 20	15		⊻ 11	.5 / 3.8	5
SPT	NGWEI	нор					Rori	na seal	ed with hand	onite 5' to 2	0'					
]]		Z			DUII	iy seal			.0					
DEPTH (ft)	ELEVATION (ft	SAMPLE TYPE	SAMPLE NO.	PENETRATION RESISTANCE (BLOWS/ft)	DRY DENSITY (pcf)	MOISTURE (%)	OTHER TESTS	GRAPHIC LOG		DESCI	RIPTI	ON ANE	CLASSIF	ICATION	N	
- 25									Boring te Groundv (varies v	erminated at vater encoun vith tides).	depth tered	r of 20 fe at depth	et. n of 11.5 fe	et at tim	e of ex	cavation
TerraC	osta T	erra	aCos	sta Cor	nsulti	ng Gi	roup,	Inc.	THIS SUM OF THIS E SUBSURF LOCATIO	IMARY APPLI 30RING AND FACE CONDIT NS AND MAY	ES ON AT TH IONS CHAN	NLY AT T IE TIME (MAY DIF IGE AT T	HE LOCAT OF DRILLIN FER AT OT HIS LOCAT	ION IG. THER TION	FIGI	JRE A-4 b
Consulting	Group S	an [Diego	, Califori	nia 92	123			WITH THE PRESENT CONDITIO	E PASSAGE O ED IS A SIMP DNS ENCOUN	F TIM PLIFIC TERE	E. THE I ATION O D.	DATA F THE ACT	UAL		

LOG OF TEST BORING								AND WEST	ND WEST MARINA - LANDSIDE				PROJECT NUMBER		BORING		
SITE LOCA	SITE LOCATION									START			FINI	ISH		SHEET NO.	
Harbor	Islan COMP	d, Sa ANY	an Die	ego					12/4/2014 12/4/2014 1 3 METHOD LOGGED BY CHECKER				1 of 2				
Pacific	Drillir	ng						Hollow	v Stem Auger G. Spaulding						LORED BT		
DRILLING	EQUIP	MEN'	т					BORING	DIA. (in)	DIA. (in) TOTAL DEPTH (ft) GROUND ELEV (ft) DEPTH/ELEV. GROUND WATER (f							
SAMPLING	5 G METH	IOD					NOTES	6		36.5		16		⊻ 12	2.0 / 4.	0	
SPT Boring seale									ed with bent	onite 4' to 3	6.5'						
DEPTH (ft)	ELEVATION (ft)	SAMPLE TYPE	SAMPLE NO.	PENETRATION RESISTANCE (BLOWS/ft)	DRY DENSITY (pcf)	MOISTURE (%)	OTHER TESTS	GRAPHIC LOG		DESCI	SCRIPTION AND CLASSIFICATION						
	-15 - -	S	1	11					5" AC <u>FILL</u> Silty Fin	e SAND (SM) Clayey SAND), gray	, damp red-bro	wn, damp	, with tra	ace grav	vel	
5	- -10 - -	S	2	6													
10 	- -5 -	S	3	8					HYDRAI Silty Fin fragmen	<u>JLIC FILL</u> e SAND (SM) ts), loos	e, gray,	moist to w	ret, with	trace o	f shell	
	- -0 - -	S	4	7													
TerraCosta 3890 Murphy Canyon Road, Suite 200 San Diego, California 92123							THIS SUM OF THIS E SUBSURF LOCATIOI WITH THE PRESENT CONDITIC	IMARY APPLI BORING AND A ACE CONDIT NS AND MAY PASSAGE O ED IS A SIMP DNS ENCOUN	ES ON AT TH IONS I CHAN F TIMI LIFICA TEREI	ILY AT THE E TIME C MAY DIF GE AT TH E. THE D ATION OF D.	HE LOCATI DF DRILLIN FER AT OT HIS LOCAT DATA F THE ACT	ion ig. Ther Ton 'Ual	FIG	URE A-5 a			

LOG OF TEST BORING									E PROJECT NUMBER BORING LAND WEST MARINA - LANDSIDE 2769A R-4							
SITE LO	CATION								START FINISH SHE				SHEET NO			
DRILLIN	or Islar G COMF	DANY	an Die	ego				DRILLIN	I2/4/2014 I2/4/2014 2 of 2 METHOD LOGGED BY CHECKED BY							
Pacifi	<u>c Drilli</u>	ng	_					Hollow	Stem Auger G. Spaulding							
Marl M5									JIA. (in) TOTAL DEPTH (ft) GROUND ELEV (ft) DEPTH/ELEV. GROUND WATER (ft							
SAMPLING METHOD NOTES									50.5		10		<u>+</u> 12	074.0		
SPT Boring seale									ed with bentonite 4' to	36.5'						
DEPTH (ft)	ELEVATION (ft)	SAMPLE TYPE	SAMPLE NO.	PENETRATION RESISTANCE (BLOWS/ft)	DRY DENSITY (pcf)	MOISTURE (%)	OTHER TESTS	GRAPHIC LOG	DESCRIPTION AND CLASSIFICATION							
-	—-5 —	S	5	4												
- 		S	6	3			SA		RECENT BAY DEPO Silty Fine SAND (SM	<u>DSITS</u> 1), loo:	se, dark	gray, satura	ated			
-	_				-				BAY POINT FORM							
_ 30 - -	15 	S	7	21		21.8	GS PI		Silty to Clayey SAN moist	D (SM	/ SC) , me	edium dense	e, mottle	ed red-brown,		
35	 20	S	8	40			SA		Boring terminated a	t depth	of 36.5	feet.				
	_								Groundwater encou (varies with tides).	nterea	l at depti	h of 12.0 fe	et at tim	ne of excavation		
TerraCosta 3890 Murphy Canyon Road, Suite 200 Consulting Group San Diego, California 92123								Inc. 00	THIS SUMMARY APPLIES ONLY AT THE LOCATION OF THIS BORING AND AT THE TIME OF DRILLING. SUBSURFACE CONDITIONS MAY DIFFER AT OTHER LOCATIONS AND MAY CHANGE AT THIS LOCATION WITH THE PASSAGE OF TIME. THE DATA PRESENTED IS A SIMPLIFICATION OF THE ACTUAL CONDITIONS ENCOUNTERED.							

APPENDIX B

LABORATORY TEST RESULTS

9177 Sky Park Ct. San Diego, CA. 92123 PHYSICAL PROPERTIES OF SOILS

PROJECT:	#2769A Harbor Island	LAB NO.: 28891-289	05 (page 1 of 1)	PROJECT NO.: 5014-09-0006.48		
	West Marina	SAMPLED BY:	G. Spaulding	DATE:	12/04/14	
		SUBMITTED BY:	G. Spaulding	DATE:	12/05/14	
		AUTHORIZED BY:	M. Eckert	DATE:	12/05/14	
		REVIEWED BY:	L. Collins	REPORT DATE:	12/17/14	

Sample I.D.	Depth (ft.)	Liquid Limit/ Plastic Limit/PI ASTM D 4318	R- Value CTM301	Percent Passing #200 Sieve ASTM D 1140	Dry Density (pcf)	Moisture Content (%), as received ASTM D 2216
B1-4 (#28891)	12.5'	*	ж	5.8	*	*
B1-5 (#28892)	15'	*	*	5.8	*	*
B1-6 (#28893)	17.5'	*	*	2.0	*	*
B1-7 (#28894)	20'	*	*	4.1	*	*
B1-8 (#28895)	22.5'	*	*	3.7	*	*
B1-9 (#28896)	25'	*	*	4.7	*	*
B1-11 (#28897)	30'	*	*	6.1	*	*
B1-12 (#28898)	32.5'	*	*	5.1	*	*
B1-13 (#28899)	35'	NV/NP	*	19.4	*	27.8
B1-14 (#28900)	37.5'	NV/NP	*	10.4	*	21.7
B1-16 (#28901)	42.5'	*	*	15.8	*	*
B1-17 (#28902)	45'	30.8/18.2/12.6	*	35.0	*	14.9
B4-6 (#28903)	25'	*	*	18.3	*	*
B4-7 (#28904)	30'	NV/NP	*	11.5	*	21.8
B4-8 (#28905)	35'	*	*	13.1	*	*

*Indicates test not requested

TerraCosta Consulting Inc./ G. Spaulding

AMEC E&I, Inc.

Reviewed By:_

Rick Larson, CE#39226 Senior Principal Engineer

Tested By: R. Valles

Checked By: L. Collins

	GRAIN SIZE DISTRIBUTION TEST DATA 12											
Client: TerraCosta Consulting Group, Inc. Project: #2769A Harbor Island West Marina Project Number: 5014-09-0006. Depth: 12.5' Sample Number: B1-4 Material Description: Poorly Graded Sand w/ Silt, SP-SM (#28891) Date: 12/12/14 USCS Classification: SP-SM												
Testing Ren	arks: Assume	ed specific g	gravity of 2.65	used for hy	ydromete	er calcula	tions and soi	l particles small	ler than 0.002mm			
	have be	en classifie	d as clay									
Tested by: F	t. Valles				Check	ked by: L	. Collins					
				Sieve	Test Da	ita						
Sieve Opening Size	Percent Finer											
0.375"	100.0											
#4	99.3											
#10	98.5											
#20	97.0											
#40	93.9											
#100	33.4											
Hydrometer to Percent passi Weight of hyd Hygroscopic Dry weight Tare weigh Hygroscop Table of com Temp., deg Comp. corr. Meniscus cor Specific grav Hydrometer t	est uses mater ing #10 based i frometer samp moisture corre ht and tare = $\frac{3}{3}$ and tare = $\frac{2}{2}$ ic moisture = (posite correction posite correction), C: 1 ::	ial passing # upon completee le =56.63 36.63 36.63 36.63 26.03 0.0% on values: 8.6 -6.0 0.0 2.65	20.2 -5.5	21.7 -5.0	22. -5.	.3 .0	23.2 -5.0					
Flansed	Temp	Actual	Corrected	104 X H ill	1	Eff	Diamotor	Porcont				
Time (min.)	(deg. C.)	Reading	Reading	к	Rm	Depth	(mm.)	Finer				
1.00	20.5	8.5	3.1	0.0136	8.5	14.9	0.0523	5.4				
2.00	20.5	8.0	2.6	0.0136	8.0	15.0	0.0371	4.5				
5.00	20.6	7.5	2.1	0.0135	7.5	15.1	0.0235	3.7				
15.00	20.7	7.5	2.2	0.0135	7.5	15.1	0.0136	3.8				
30.00	20.6	7.5	2.1	0.0135	7.5	15.1	0.0096	3.7				
60.00	20.6	7.0	1.6	0.0135	7.0	15.1	0.0068	2.8				
120.00	20.2	7.0	1.5	0.0136	7.0	15.1	0.0048	2.6				
250.00	20.0	7.0	1.4	0.0136	7.0	15.1	0.0034	2.5				
1440.00	19.3	7.0	1.2	0.0138	7.0	15.1	0.0014	2.1				
				Fracti	onal Compo	nents						
---------	--------	------	-------	--------	------------	-------	-------	------	-------	-------	--	
Cabblaa	Gravel				Sand				Fines			
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total		
0.0	0.0	0.7	0.7	0.8	4.6	88.1	93.5	3.5	2.3	5.8		

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.0917	0.1055	0.1179	0.1418	0.1930	0.2235	0.3072	0.3380	0.3784	0.5225

Fineness Modulus	c _u	с _с
0.96	2.44	0.98

Sample Number: B1-5

Checked by: L. Collins
Sieve Test Data

Client: TerraCosta Consulting Group, Inc.

Project: #2769A Harbor Island West Marina

Project Number: 5014-09-0006.

Depth: 15'

Material Description: Poorly Graded Sand w/ Silt, SP-SM (#28892)

Date: 12/12/14

Tested by: Valles/Sancha

Sieve Opening Size	Percent Finer
0.375"	100.0
#4	99.7
#10	98.6
#20	96.8
#40	94.6
#100	34.7
#200	5.8
	9 P +-

Fractional Component

Cobbios		Gravel			Sa	nd			Fines	
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.3	0.3	1.1	4.0	88.8	93.9			5.8

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.0847	0.0972	0.1104	0.1374	0.1918	0.2226	0.3047	0.3342	0.3723	0.4753

Fineness Modulus	Cu	С _с
0.94	2.63	1.00

12/16/2014

12/16/2014

Client: TerraCosta Consulting Group, Inc.

Project: #2769A Harbor Island West Marina

Project Number: 5014-09-0006.

Depth: 17.5'

Material Description: Poorly Graded Sand, SP (#28893)

Date: 12/12/14

USCS Classification: SP

 A second sec second sec

Tested by: R. Valles

Checked by: L. Collins

Sieve Test Data

Sample Number: B1-6

Sieve Opening Size	Percent Finer
0.5"	100.0
0.375"	99.8
#4	99.0
#10	94.9
#20	83.9
#40	74.5
#100	15.5
#200	2.0

Cobbies		Gravel			Sa	nd			Fines	
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	1.0	1.0	4.1	20.4	72.5	97.0			2.0

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.1281	0.1482	0.1653	0.1974	0.2691	0.3158	0.5290	0.9579	1.3915	2.0185

Fineness Modulus	c _u	c _c
1.63	2.47	0.96

Client: TerraCosta Consulting Group, Inc.

Project: #2769A Harbor Island West Marina

Project Number: 5014-09-0006.

Depth: 20'

Material Description: Poorly Graded Sand, SP (#28894)

Date: 12/12/14

USCS Classification: SP

Tested by: Valles/Sancha

Checked by: L. Collins

Sieve Test Data

Sample Number: B1-7

Sieve Opening Size	Percent Finer
0.375"	100.0
#4	96.9
#10	92.6
#20	79.6
#40	63.7
#100	16.6
#200	4.1
	1

Fractional Components

Cabbles		Gravel			Sa	nd	Fines			
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	· 0.0	3.1	3.1	4.3	28.9	59.6	92.8			4.1

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.1160	0.1425	0.1649	0.2074	0.3099	0.3863	0.8702	1.1654	1.6099	2.7805

Fineness Modulus	Cu	c _c
1.86	3.33	0.96

12/16/2014

12/16/2014

Client: TerraCosta Consulting Group, Inc.

Project: #2769A Harbor Island West Marina

Project Number: 5014-09-0006.

Depth: 22.5'

Material Description: Poorly Graded Sand, SP (#28895)

Date: 12/12/14

USCS Classification: SP

Tested by: R. Valles

Checked by: L. Collins

Sieve Test Data

Sample Number: B1-8

Sieve Opening Size	Percent Finer
0.5"	100.0
0.375"	98.9
#4	96.3
#10	87.7
#20	69.8
#40	51.1
#100	11.7
#200	3.7

Cabbles		Gravel			Sa	nd	Fines			
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Totai	Silt	Clay	Total
0.0	0.0	3.7	3.7	8.6	36.6	47.4	92.6			3.7

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.1391	0.1690	0.1960	0.2524	0.4121	0.5680	1.3347	1.7120	2.3367	3.8382

Fineness Modulus	Cu	С _с
2.27	4.08	0.81

12/16/2014

Client: TerraCosta Consulting Group, Inc.

Project: #2769A Harbor Island West Marina

Project Number: 5014-09-0006.

Depth: 25.0'

Material Description: Poorly Graded Sand, SP (#28896)

Date: 12/12/14

USCS Classification: SP

Tested by: R. Valles

Checked by: L. Collins

Sieve Test Data

Sample Number: B1-9

Sieve Opening Size	Percent Finer
0.375"	100.0
#4	99.8
#10	98.4
#20	90.4
#40	73.7
#100	19.5
#200	4.7

Cabbles		Gravel			Sa	nd	Fines			
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.2	0.2	1.4	24.7	69.0	95.1			4.7

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.1067	0.1313	0.1519	0.1888	0.2693	0.3211	0.5077	0.6175	0.8260	1.2541

Fineness Modulus	Cu	C _c
1.47	3.01	1.04

Checked by: L. Collins

Client: TerraCosta Consulting Group, Inc.

Project: #2769A Harbor Island West Marina Project Number: 5014-09-0006.

Depth: 30.0'

Sample Number: B1-11 Material Description: Poorly Graded Sand w/ Silt, SP-SM (#28897)

Date: 12/12/14

USCS Classification: SP-SM

Tested by: R. Valles

			Sieve Test Data	
Sieve Opening Size	Percent Finer			
0.5"	100.0			
0.375"	99.1			
#4	97.3			
#10	91.0			
#20	79.1			
#40	62.8			
#100	19.7			
#200	6.1			
	· · · ·	10 The second	Ernetional Commercente	100 C 100

Fractional Components

Cohblee	Gravel			Sand				Fines		
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	2.7	2.7	6.3	28.2	56.7	91.2			6.1

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.0980	0.1264	0.1514	0.1977	0.3092	0.3934	0.8971	1.2403	1.8274	3.1300

Fineness Modulus	c _u	c _c
1.86	4.02	1.01

12/16/2014

Client: TerraCosta Consulting Group, Inc.

Project: #2769A Harbor Island West Marina

Project Number: 5014-09-0006.

Depth: 32.5'

Material Description: Poorly Graded Sand w/ Silt, SP-SM (#28898)

Date: 12/12/14

USCS Classification: $\operatorname{SP-SM}$

Tested by: R. Valles

Checked by: L. Collins Sieve Test Data

Sample Number: B1-12

Sieve Opening Size	Percent Finer
0.5"	100.0
0.375"	98.4
#10	89.6
#20	78.4
#40	59.6
#100	16.9
#200	5.1

Fractional Components

Cabbles	Gravel			Sand				Fines		
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	4.9	4.9	5.5	30.0	54.5	90.0			5.1

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.1099	0.1399	0.1655	0.2144	0.3362	0.4296	0.9279	1.2927	2.0970	4.6878

Fineness Modulus	c _u	С _с
1.99	3.91	0.97

12/16/2014

			GRAIN S		RIBUTI	ON TEST	Γ DATA		12/17/2014
Client: TerraC Project: #2769 Project Numb Depth: 35.0'	costa Consult 9A Harbor Is er: 5014-09-	ting Group, 1 sland West M -0006.	Inc. ⁄Iarina		Samp	le Numbe	ər: B1-13		
Material Desc	ription: Silty	y Sand, SM	(#28899)						
Date: 12/12/14	4	PL: N	Р		LL: N	V		PI: NP	
USCS Classifi	ication: SM				AASH	TO Class	sification: A-	-2-4(0)	
Testing Rema	r ks: Assume	ed specific g	ravity of 2.65	used for h	ydromete	er calcula	tions and soi	l particles sma	ller than 0.002mm
	have be	een classified	l as clay						
Tested by: R.	Valles				Chec	ced by: L	. Collins		
		1		Sieve	Test Da	ta			
Sieve Opening Size	Percent Finer								
0.375	100.0								
#4	99.9								
#10	99.0								
#20	94.6								
#40	87.6								
#100	54.4								
#200	19.4								
Hydrometer tes Percent passin Weight of hydro Hygroscopic m Moist weight Dry weight a Tare weight = Hygroscopic Table of compo	t uses materi g #10 based of ometer samp oisture corre and tare = 3 = 2 moisture = 2 moisture = 2	ial passing # upon comple le =57.38 wtion: 17.23 17.16 17.04 10.7%	10 t e sample = 99	Hydrome 9.0	eter Tesi	Data			
Temp., deg. (Comp. corr.: Meniscus corre Specific gravity Hydrometer typ Hydrometer e	c: 1 ection only = $\frac{1}{2}$ of solids = 2 e = 152H	8.6 5.0 0.0 2.65	20.2 -5.5	21.7 -5.0	22 -5	3 0	23.2 -5.0		
Elansed	Temp	Actual	Corrected			Fff	Diamotor	Porcent	
Time (min.)	(deg. C.)	Reading	Reading	к	Rm	Depth	(mm.)	Finer	
1.00	20.7	13.0	7.7	0.0135	13.0	18.7	0.0585	13.3	
2.00	20.7	12.0	6.7	0.0135	12.0	18.8	0.0415	11.6	
5.00	20.6	11.5	6.1	0.0135	11.5	18.9	0.0263	10.7	
15.00	20.8	11.0	5.7	0.0135	11.0	19.0	0.0152	9.9	
30.00	20.8	11.0	5.7	0.0135	11.0	19.0	0.0107	9.9	
60.00	20.9	10.5	5.2	0.0135	10.5	19.0	0.0076	9.1	
120,00	20.5	10.0	4.6	0.0136	10.0	19.1	0.0054	8.0	
250.00	20.1	10.0	4.5	0.0136	10.0	19.1	0.0038	7.9	
1440.00	19.5	9.5	4.2	0.0137	9.5	19.2	0.0016	7.3	

				Fracti	onal Compo	onents				
Cobbles		Gravel			Sa	nd			Fines	
CODDies	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.1	0.1	0.9	11.4	68.2	80.5	14.8	4.6	19.4

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.0462	0.0670	0.0761	0.0939	0.1373	0.1692	0.2983	0.3692	0.5017	0.9037

Fineness Modulus	c _u	c _c
0.78	3.67	1.13

			GRAIN S	IZE DISTF	RIBUTIC	ON TEST	T DATA		12/17/2014
Client: Terra Project: #276 Project Num Depth: 37.5'	Costa Consult 9A Harbor Is per: 5014-09-	ing Group, I land West N 0006.	inc. Iarina		Samp	le Numbe	ər: B1-14		
Material Desc	cription: Poor	rly Graded S	Silty Sand, SP	-SM (#289	900)				
Date: 12/15/1	4	PL: N	Р		LL: N	V		PI: NP	
USCS Classif	ication: SP-S	SM			AASH	TO Class	ification: A-	3	
Testing Rema	arks: Assume have be	ed specific g en classifiec	ravity of 2.65 l as clay	used for hy	/dromete	er calculat	tions and soil	l particles smal	ller than 0.002mm
Tested by: R.	Valles			Sieve	Check Test Da	ked by: L ta	. Collins		
Sieve Opening Size	Percent Finer								
#10	100.0								
#20	92.6								
#40	72.7								
#100	27.5								
Hydrometer te Percent passir Weight of hydr Hygroscopic n Moist weigh Dry weight a Tare weight Hygroscopic Table of comp Temp., deg. Comp. corr.: Meniscus corr Specific gravit Hydrometer ty Hydrometer	st uses matering #10 based to cometer sample noisture correct and tare = 3 and tare = 3 = 2 comoisture = 0 cosite correction C: 1 ection only = 0 y of solids = 2 pe = $152H$ effective dept	al passing # upon comple le =20.65 ction: 5.06 5.05 9.37 .2% on values: 8.6 6.0 0.0 2.65 th equation: I	20.2 -5.5 - = 16.294964	Hydrome 00.0 21.7 -5.0 164 x Rm	i ter Test 22. -5.	Data 3 0	23.2 -5.0		
Elapsed Time (min.)	(deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	
1.00	19.2	8.0	2.2	0.0138	8.0	15.0	0.0533	10.6	
2.00	19.2	8.0	2.2	0.0138	8.0	15.0	0.0377	10.6	
5.00	20.5	7.5	2.1	0.0136	7.5	15.1	0.0235	10.2	
15.00	20.5	7.5	2.1	0.0136	7.5	15.1	0.0136	10.2	
30.00	20.5	7.5	2.1	0.0136	7.5	15.1	0.0096	10.2	
60.00	20.6	7.0	1.6	0.0135	7.0	15.1	0.0068	7.9	
120.00	20.5	7.0	1.6	0.0136	7.0	15.1	0.0048	7.8	
250.00	19.8	7.0	1.4	0.0137	7.0	15.1	0.0034	6.7	
1440.00	19.3	7.0	1.2	0.0138	7.0	15.1	0.0014	5.9	

Cabbles	Gravel				Sar	Fines				
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Tota
0.0	0.0	0.0	0.0	0.0	27.3	62.3	89.6	4.2	6.2	10.4

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.0093	0.1014	0.1214	0.1598	0.2519	0.3141	0.5207	0.6128	0.7469	0.9909

Fineness Modulus	c _u	с _с
1.33	33.94	8.78

Tested By: R. Valles

12/16/2014

Client: TerraCosta Consulting Group, Inc. Project: #2769A Harbor Island West Marina Project Number: 5014-09-0006. Depth: 42.5' Material Description: Silty Sand, SM (#28901) Date: 12/12/14 USCS Classification: SM Tested by: R. Valles

Sample Number: B1-16

Checked by: L. Collins

Sieve Test Data

Sieve Opening Size	Percent Finer
0.375"	100.0
#4	99.4
#10	97.3
#20	88.8
#40	74.9
#100	32.0
#200	15.8

Cabblaa		Gravel			Sa	nd	Fines			
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.6	0.6	2.1	22.4	59.1	83.6			15.8

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
		0.0939	0.1411	0.2327	0.2906	0.5103	0.6547	0.9330	1.4715

Fineness
Modulus
1.33

Tested By: R. Valles

		GRAIN S	SIZE DISTI	RIBUTI	ON TEST	ΓΟΑΤΑ		12/17/2014
Client: TerraCosta Project: #2769A H	Consulting Grou arbor Island Wes	p, Inc. st Marina						
Project Number: 50 Depth: 45.0	014-09-0006.			Samp	le Numbe	ər: B1-17		
Material Descriptio	n: Silty Sand, S	C (#28902)						
Date: 12/12/14	PL	: 18.2		LL: 30).8		PI: 12.6	
USCS Classificatio	on: SC			AASH	TO Class	sification: A-	2-6(1)	
Testing Remarks:	Assumed specifi	c gravity of 2.65	used for h	ydromet	er calculat	tions and soi	l particles sma	ller than 0.002mm
Tested by D. Vall	have been classif	fied as clay		Chool	ad by T	Colling		
Tested by: R. Valie			Sieve	Test Da	ita	. Comis		
Sieve Opening Perce	ent							
Size Fine	er .							
0.5" 100.	1							
#4 98	9							
#10 96	7							
#20 87.	0							
#40 68	8							
#100 42.	7							
#200 35.	0							
Hydrometer test use Percent passing #10 Weight of hydromete Hygroscopic moistu Moist weight and Dry weight and tau Tare weight = Hygroscopic mois Table of composite of	s material passing based upon com er sample = 57.88 re correction: tare = 35.37 re = 35.14 25.39 ture = 2.4% correction values:	g #10 plete sample = 9	6.7					
Temp., deg. C: Comp. corr.: Meniscus correction Specific gravity of so Hydrometer type = 1 Hydrometer effect	18.6 -6.0 only = 0.0 blids = 2.65 52H ive depth equatio	20.2 -5.5 n: L = 20.413 :	21.7 -5.0 x Rm	22 -5	.3 .0	23.2 -5.0		
Elapsed To Time (min.) (de	emp. Actual eg. C.) Readin	Corrected g Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	
1.00 2	20.7 25.5	20.2	0.0135	25.5	17.1	0.0559	34.5	
2.00 2	20.7 25.0	19.7	0.0135	25.0	17.1	0.0396	33.6	
5.00 2	20.8 23.0	17.7	0.0135	23.0	17.4	0.0252	30.3	
15.00 2	20.7 20.0	14.7	0.0135	20.0	17.8	0.0147	25.1	
30.00 2 60.00	20.9 18.0	12.7	0.0135	18.0	18.1	0.0105	21.8	
	20.8 17.0	10.2	0.0135	15.5	18.4	0.0074	20.0	
250.00	20.1 15.0	9.5	0.0135	15.0	18.4	0.0033	16.2	
1440.00	19.7 13.0	7.3	0.0137	13.0	18.7	0.0016	12.6	
				AMEC				

- 6-64				Fracti	onal Compo	onents				
Ochhlee	Gravel				Sa	nd	Fines			
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	1.1	1.1	2.2	27.9	33.8	63.9	21.3	13.7	35.0

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
	0.0026	0.0074	0.0245	0.2120	0.3120	0.6318	0.7741	1.0041	1.5433

Fineness	•
Modulus	
1.32	

12/16/2014

Client: TerraCosta Consulting Group, Inc. Project: #2769A Harbor Island West Marina Project Number: 5014-09-0006. Depth: 25.0' Material Description: Silty Sand, SM (#28903) Date: 12/12/14 USCS Classification: SM Tested by: R. Valles

Sample Number: B4-6

Checked by: L. Collins

Sieve Test Data

Sieve Opening Size	Percent Finer
0.5"	100.0
0.375"	99.2
#4	98.0
#10	96.3
#20	94.3
#40	91.5
#100	59.4
#200	18.3
1 Mar 10 Mar	

Cobblee		Gravel			Sa	nd	Fines			
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	2.0	2.0	1.7	4.8	73.2	79.7			18.3

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
		0.0770	0.0902	0.1258	0.1518	0.2486	0.2972	0.3809	1.2326

Fineness
Modulus
0.73

	GRAIN SIZE DISTRIBUTION TEST DATA 12/17/201									
Client: Terra Project: #270 Project Num Depth: 30.0	Costa Consul 59A Harbor I ber: 5 014-09	ting Group, J sland West M -0006.	nc. Iarina		Samp	e Numbe	er: B4-7			
Material Des	cription: Silt	v Sand, SM	(#28904)		ennp					
Date: 12/12/1	14	PI:N	P		LL: N	v		PI: NP		
USCS Classi	fication: SP-	SM	•		AASH	TO Class	sification: A-	2-4(0)		
Testing Rem	Testing Bemarks: Assumed specific gravity of 2.65 used for hydrometer calculations and soil particles smaller than 0.002mm									
· · · · · · · · · · · · · · · · · · ·	have been classified as clay									
Tested by: R	. Valles		· ··· · ··· · ··· · · · · · · · · · ·		Check	ed by: L	. Collins			
				Sieve	Test Da	ta				
Sieve Opening Size	Percent Finer									
#4	100.0									
#10	99.5									
#20	96.5									
#40	82.0									
#100	41.6									
Hydrometer te Percent passi Weight of hyd Hygroscopic i Moist weigh Dry weight Tare weigh Hygroscopi Table of comp Temp., deg Comp. corr.	est uses mater ng #10 based Irometer samp moisture corre- ht and tare = 1 and tare = 1 ic moisture = 1 bosite correction . C: 1 rection only =	rial passing # upon comple ole =57.15 action: 36.89 36.84 26.81 0.5% on values: 18.6 -6.0 0.0	10 te sample = 99 20.2 -5.5	9.5 21.0 -5.0	22. -5.	3 0	23.2 -5.0			
Specific gravi	ty of solids = 1 /pe = 152H	2.65								
Hydrometer	r effective dep	th equation:	L = 20.413 x	k Rm						
Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer		
1.00	20.8	10.0	4.9	0.0135	10.0	19.1	0.0590	8.5		
2.00	20.8	9.5	4.4	0.0135	9.5	19.2	0.0418	7.7		
5.00	20.8	9.5	4.4	0.0135	9.5	19.2	0.0265	7.7		
15.00	20.9	9.0	3.9	0.0135	9.0	19.2	0.0153	6.9		
30.00	20.9	9.0	3.9	0.0135	9.0	19.2	0.0108	6.9		
60.00	20.9	9.0	3.9	0.0135	9.0	19.2	0.0076	6.9		
120.00	20.7	9.0	3.8	0.0135	9.0	19.2	0.0054	6.7		
250.00	20.1	9.0	3.5	0.0136	9.0	19.2	0.0038	6.1		
1440.00	19.8	8.5	2.9	0.0137	8.5	19.3	0.0016	5.0		

				Fracti	onal Compo	onents				
Oshblas	Gravel				Sa	Fines				
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.5	17.5	70.5	88.5	6.2	5.3	11.5

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.0690	0.0850	0.0968	0.1196	0.1787	0.2249	0.3968	0.4739	0.5820	0.7606

Fineness Modulus	c _u	c _c		
0.99	3.26	0.92		

12/16/2014

Client: TerraCosta Consulting Group, Inc. Project: #2769A Harbor Island West Marina Project Number: 5014-09-0006. Depth: 35.0' Material Description: Silty Sand, SM (#28905) Date: 12/12/14 USCS Classification: SM Tested by: R. Valles

Sample Number: B4-8

Checked by: L. Collins

Sieve Test Data

Sieve Opening Size	Percent Finer
0.375"	100.0
#4	99.9
#10	99.0
#20	89.8
#40	73.5
#100	44.7
#200	13.1
367 A	

Cabbles	Gravel				Sa	nd	Fines			
Coubles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.1	0.1	0.9	25.5	60.4	86.8			13.1

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
	0.0779	0.0863	0.1063	0.1741	0.2444	0.5515	0.6782	0.8590	1.1929

Fineness	
Modulus	
1.14	

APPENDIX C

EQSEARCH RESULTS

* * * * * * * * * * * * * * * * * * * *
* *
* EQSEARCH *
* *
* Version 3.00 *
* *
* * * * * * * * * * * * * * * * * * * *

ESTIMATION OF PEAK ACCELERATION FROM CALIFORNIA EARTHQUAKE CATALOGS

JOB NUMBER: 0042-0000

DATE: 01-13-2015

JOB NAME: Harbor Island West Marina

EARTHQUAKE-CATALOG-FILE NAME: ALLQUAKE.DAT

MAGNITUDE RANGE: MINIMUM MAGNITUDE: 4.00 MAXIMUM MAGNITUDE: 9.00

SITE COORDINATES: SITE LATITUDE: 32.7222 SITE LONGITUDE: 117.2106

SEARCH DATES: START DATE: 1800 END DATE: 2000

SEARCH RADIUS: 100.0 mi 160.9 km

ATTENUATION RELATION: 3) Boore et al. (1997) Horiz. - NEHRP D (250) UNCERTAINTY (M=Median, S=Sigma): M Number of Sigmas: 0.0 ASSUMED SOURCE TYPE: DS [SS=Strike-slip, DS=Reverse-slip, BT=Blind-thrust] SCOND: 0 Depth Source: A Basement Depth: 5.00 km Campbell SSR: Campbell SHR: COMPUTE PEAK HORIZONTAL ACCELERATION

MINIMUM DEPTH VALUE (km): 0.0

					SITE	SITE	APPROX.		
FILE	LAT.	LONG.	DATE	(UTC)	DEPTH	QUAKE	ACC.	MM	DISTANCE
CODE	NORTH	WEST		H M Sec	(km)	MAG.	a	INT.	mi [km]
		+	+	+	-+	 	 .++		
MGT		1117 2000	04/19/1906			4 30	0 167	177 T T	16(26)
MCT	32.7000	117,2000					0.143	V 177 T T	1.0(2.0) 1.6(2.6)
DMC		117,2000					0.143		1.0(2.0)
DMG		117.2000					0.300		1.0(2.0)
MGI	32.7000						0.143	V ⊥ ⊥ ⊥	1.6(2.6)
'I'-A	32.6700		04/15/1865	840 0.0	0.0	4.30	0.126	V I I I	4.3(6.9)
T-A	32.6700	117.1700	05/24/1865	0 0 0.0	0.0	5.00	0.182	INIII	4.3(6.9)
T-A	32.6700	117.1700	12/00/1856	0 0 0.0	0.0	5.00	0.182	VIII	4.3(6.9)
T-A	32.6700	117.1700	10/21/1862	0 0 0.0	0.0	5.00	0.182	VIII	4.3(6.9)
T-A	32.6700	117.1700	01/25/1863	1020 0.0	0.0	4.30	0.126	VIII	4.3(6.9)
PAS	32.6790	117.1510	06/18/1985	32228.7	5.7	4.00	0.104	VII	4.6(7.3)
PAS	32.6150	117.1520	10/29/1986	23815.3	14.6	4.10	0.078	VII	8.1(13.1)
MGI	32.8000	117.1000	05/25/1803	0 0 0.0	0.0	5.00	0.124	VII	8.4(13.5)
PAS	32.6270	117.3770	06/29/1983	8 836.4	5.0	4.60	0.079	VII	11.7(18.8)
DMG	32.8500	117.4830	02/23/1943	92112.0	0.0	4.00	0.042	VI	18.1(29.1)
DMG	33.0000	117.3000	11/22/1800	2130 0.0	0.0	6.50	0.146	VIII	19.9(32.0)
DMG	33.0000	117.0000	03/03/1906	2025 0.0	0.0	4.50	0.046	vi	22.7(36.6)
MGI	33.0000	117.0000	12/29/1914	10 0 0.0	0.0	4.00	0.035	i vi	22.7(36.6)
MGT	33.0000	117.0000	09/21/1856	730 0.0	0.0	5.00	0.060	VT	22.7(36.6)
DMG	32 8000	116 8000	10/23/1894	23 3 0 0			0 082	VII	244(393)
MCT	32.8000		108/14/1027				0 046		24.4(39.3)
MCT	32.0000	116,0000	00/14/102/				0.040		24.4(3).3)
CCD		116,000		071057 5			0.029		29.7(-17.0)
GSP		110.0000		1 = 20 = 5			0.029		33.0(54.4)
PAS		11/./300				4.20	0.029		34.2(55.0)
PAS	32.3020			931 5.7	1 19.8	4.10	0.027		34.8(56.0)
MGT	33.2000		07/20/1923	7 0 0.0	0.0	4.00	0.025		35.2(56.6)
MGT	33.1000	116.8000	06/22/1918	557 0.0	0.0	4.00	0.025		35.3(56.8)
DMG	32.5830	117.8000	04/19/1939	741 0.0	0.0	4.50	0.033	V	35.6(57.3)
DMG	32.7170	117.8330	11/06/1950	205546.0	0.0	4.40	0.031	V	36.2(58.2)
DMG	32.8000	117.8330	01/24/1942	214148.0	0.0	4.00	0.025	V	36.5(58.8)
T-A	32.2500	117.5000	01/13/1877	20 0 0.0	0.0	5.00	0.041	V	36.7(59.1)
PAS	32.9450	117.8060	09/07/1984	11 313.4	6.0	4.30	0.028	V	37.8(60.8)
PAS	32.9700	117.8030	07/14/1986	03246.2	10.0	4.00	0.024	IV	38.4(61.8)
GSP	32.9700	117.8100	04/04/1990	085439.3	6.0	4.00	0.023	IV	38.7(62.4)
PAS	32.9450	117.8310	07/29/1986	81741.8	10.0	4.10	0.025	V	39.1(63.0)
DMG	33.2670	117.0170	06/07/1935	1633 0.0	0.0	4.00	0.023	IV	39.2(63.2)
PAS	32.9330	117.8410	07/29/1986	81741.6	10.0	4.30	0.027	v	39.4(63.3)
GSP	32.9850	117.8180	06/21/1995	211736.2	6.0	4.30	0.027	v	39.6(63.8)
MGI	33.0000	116.6000	06/11/1917	354 0.0	0.0	4.00	0.023	i iv i	40.3(64.8)
PAS	32.7590	117.9060	10/18/1976	172753.1	13.8	4.20	0.025	i v i	40.5(65.1)
USG	33.0170	117.8170	07/16/1986	1247 3.7	10.0	4.11	0.024	v	40.6(65.4)
USG	33.0170	117.8170	07/14/1986	11112.6	10.0	4.12	0.024	v	40.6(65.4)
PAS	32 7140	117 9100	10/18/1976	172652 6	151	4 20	0 025	v i	40 6(65 4)
DVG	32.9260	1178440	10/01/1986	201218 6			0.022		41 0(66 0)
DVG	32.9000	117 9/90		1/1 122 0			0.022		11.0(00.0)
DAG	32.9900	117,0490	07/13/1986	$12/7 \ 0 \ 2$		<u>-</u> .00	0.031	V 177	41.4(00.0)
MOT		11, 5, 000					0.044		42.9(07.5)
DMC	22 1000	116 6330	00/00/10E0	17/020 01			0.022	⊥∨ ⊤₹7	72.2(U/.0)
		116 7000		1 / 4 U 2 8 . U					42.4(00.3)
DMG	33.2000	116.7200	05/12/1930	1017 0 0		4.20	0.024	1V	43.5(70.1)
MGT	33.1000	116.6000	05/28/1917	101/ 0.0		4.00	0.021	1V	44.0(70.7)
MGI	33.1000	1116.6000	03/04/1915	1250 0.0	0.0	4.00	0.021	VI	44.0(70.7)
MGI	33.1000	1116.6000	05/11/1915	1145 0.0	0.0	4.00	0.021	IV	44.0(70.7)
MGI	33.1000	116.6000	08/10/1921	19 6 0.0	0.0	4.00	0.021	IV	44.0(70.7)
MGI	33.1000	116.6000	02/05/1922	1915 0.0	0.0	4.00	0.021	IV	44.0(70.7)

		 I	 I		 I	 I I				
DIID	тат				ן זייייים אייייים ו		STIF	SIIE MM	APPRO	JA.
LTTE		LONG.	DAIE		DEPIR	IQUARE I MAC	ACC.	וייווייו דידיד	DISI	ANCE [lem]
CODE	NORTH	WESI		г н м зес			. y	1111 -	1111	ן גווו ן
мат	+·	+ 116 6000	+ 0 2 / 1 6 / 1 9 1 5		-+ 0 0		0 0 0 2 1	 T 77	44 0(
MCT	33.1000	110.0000	02/10/1913	1330 0.0				±v тъл	44.0(70.7)
MCT	33.1000	110.0000	00/10/1921	$\begin{bmatrix} 2 \\ 7 \end{bmatrix} 0.0$				±v тъл	44.0(70.7)
MGI	33.1000	110.0000						⊥ V ⊤ v	44.0(70.7)
DMC		110.0000					0.021		44.0(70.7)
DMG	33.2000	110.7000	01/01/1920	235 0.0			0.030		44.3(/1.3) 70 7)
PAS	32.7500	117.9000	01/12/19/5				0.034		45.2(/2./) 72 7)
DMG	32.0830	117.0000		34925.0			0.021		45.8(/3./)
DMG	32.10/0	11/.00/0	10/29/1935	1017 0.0					40./(/5.1) 75 4)
DMG			12/02/1935 07/11/1001 07/11001 07/110001 07/110001 07/1100000 07/11000				0.020		40.0(75.4)
PAS	32.6250					4.30	0.024		40.9(/5.4)
PAS	33.0330	11/.9440				4.30	0.023		4/.6(/6.6)
DMG	33.1100	116.5230	01/24/195/			4.60 5.20	0.02/		48.0(//.3)
MGI	33.2000	116.6000		1/48 0.0			0.039		48.4(//.8)
DMG	32.1130	116./850		1131825.4	10.0	4.20	0.022		48.8(/8.6)
DMG	33.0020	116.4360	07/02/1957	65638.5	12.8	4.10	0.021		48.9(78.7)
DMG	33.0000	116.4330	06/04/1940	1035 8.3		5.10	0.035		49.0(78.9)
GSP	32.7260	118.0680		002714.1	6.0	4.10	0.020		49.8(80.1)
DMG	32.6800	116.3540				4.10	0.020		49.9(80.2)
PAS	33.1380	116.5010	10/10/1984	212258.9	11.6	4.50	0.025		50.1(80.7)
DMG	32.6800	118.0770	10/28/1973	22 0 2.7	8.0	4.50	0.025	V	50.4(81.1)
DMG	32.0000	117.0670	06/23/1939	2048 0.0	0.0	4.50	0.025	V	50.6(81.4)
DMG	32.9670	116.3830	10/31/1942	15 758.0	0.0	4.00	0.019	IV	50.9(81.9)
DMG	32.3330	116.4670	01/13/1935	224 0.0	0.0	4.00	0.019	IV	50.9(82.0)
DMG	33.1000	116.4500	11/23/1953	1339 7.0	0.0	4.30	0.022	IV	51.2(82.4)
DMG	32.0000	117.0000	04/27/1942	112754.0	0.0	4.00	0.019	IV	51.4(82.6)
DMG	32.0000	117.0000	02/11/1949	95725.0	0.0	4.00	0.019	IV	51.4(82.6)
DMG	33.1670	116.5000	06/23/1932	22552.7	0.0	4.00	0.019	IV	51.4(82.7)
DMG	33.1670	116.5000	06/23/1932	23037.1	0.0	4.00	0.019	IV	51.4(82.7)
DMG	33.0970	116.4440	08/18/1959	215221.3	17.3	4.30	0.022	IV	51.4(82.7)
GSP	32.6810	118.1090	06/20/1997	043540.5	6.0	4.70	0.027	V	52.3(84.1)
DMG	32.5290	118.0820	05/26/1973	234633.3	8.0	4.30	0.022	IV	52.4(84.3)
DMG	32.6000	116.3170	06/15/1946	194653.0	0.0	4.80	0.028	V	52.6(84.7)
DMG	32.0000	117.5000	05/03/1939	828 0.0	0.0	4.00	0.019	IV	52.6(84.7)
DMG	32.0000	117.5000	06/24/1939	1627 0.0	0.0	5.00	0.031	V	52.6(84.7)
DMG	32.0000	117.5000	06/25/1939	1 9 0.0	0.0	4.00	0.019	IV	52.6(84.7)
DMG	32.0000	117.5000	05/03/1939	2358 0.0	0.0	4.50	0.024	V	52.6(84.7)
DMG	32.0000	117.5000	05/01/1939	2353 0.0	0.0	5.00	0.031	V	52.6(84.7)
DMG	32.0000	117.5000	05/01/1939	2357 0.0	0.0	4.50	0.024	V	52.6(84.7)
DMG	32.2000	116.5500	11/06/1949	23 510.0	0.0	4.00	0.019	IV	52.7(84.9)
DMG	32.2000	116.5500	11/05/1949	43524.0	0.0	5.10	0.033	V	52.7(84.9)
DMG	32.2000	116.5500	11/04/1949	204238.0	0.0	5.70	0.045	VI	52.7(84.9)
DMG	32.2000	116.5500	11/11/1949	1354 0.0	0.0	4.20	0.021	IV	52.7(84.9)
DMG	32.2000	116.5500	11/05/1949	20 2 7.0	0.0	4.00	0.019	IV	52.7(84.9)
DMG	33.1670	116.4670	08/01/1960	193930.0	0.0	4.20	0.021	IV	52.9(85.1)
DMG	32.7000	116.3000	02/24/1892	720 0.0	0.0	6.70	0.077	VII	52.9(85.2)
DMG	31.9920	116.9270	04/10/1968	104237.8	10.0	4.50	0.024	V	53.1(85.4)
DMG	33.1170	116.4170	10/21/1940	64933.0	0.0	4.50	0.024	IV	53.5(86.0)
DMG	33.1170	116.4170	06/04/1940	103656.0	0.0	4.00	0.018	IV	53.5(86.0)
DMG	33.4540	116.8980	07/29/1936	142252.8	10.0	4.00	0.018	IV	53.7(86.4)
DMG	33.4560	116.8960	06/16/1938	55916.9	10.0	4.00	0.018	IV	53.8(86.6)
DMG	33.0380	116.3610	02/26/1957	211652.2	0.0	4.10	0.019	IV	53.9(86.7)
GSP	32.6850	118.1380	06/20/1997	053855.0	6.0	4.20	0.020	IV	53.9(86.8)
GSP	33.1100	116.4000	04/01/1984	071702.3	11.0	4.00	0.018	IV	54.1(87.0)

				TIME			SITE	SITE	APPROX.
FILE	LAT.	LONG.	DATE	(UTC)	DEPTH	OUAKE	ACC.	іммі	DISTANCE
CODE	NORTH	WEST		H M Sec	(km)	MAG	a		mi [km]
CODE			1		()2(())		9	- 10 - 1	
							0 0 0 1	 	
I-A DVG	33.5000		12/29/1000		0.0		0.021		54.3(07.4)
DMG	32.0830			1231 0.0	0.0	4.00	0.018		54.3(87.4)
DMG	32.0830	116.6670	09/27/1934	2140 0.0	0.0	4.00	0.018	IV	54.3(87.4)
DMG	32.0830	116.6670	11/25/1934	818 0.0	0.0	5.00	0.031	V	54.3(87.4)
GSP	32.6260	118.1510	06/20/1997	080413.6	6.0	4.60	0.025	V	55.1(88.6)
DMG	33.5000	117.0000	08/08/1925	1013 0.0	0.0	4.50	0.023	IV	55.1(88.6)
DMG	33.1670	116.4170	12/05/1939	173352.0	0.0	4.00	0.018	IV	55.3(89.0)
DMG	33.1670	116.4170	07/10/1938	18 6 0.0	0.0	4.00	0.018	IV	55.3(89.0)
DMG	33.1670	116.4170	10/14/1935	1550 0.0	0.0	4.00	0.018	i iv i	55.3(89.0)
DMG	31,9540	117.5060	09/29/1972	141341.2	8.0	4.30	0.021	ΙτνΙ	55.8(89.7)
DMG	32 1000		01/07/1950	93735 0	0 0		0 018	_ V TV	55 8 (89 8)
DMG	32 7180	118 1720	04/28/1938	6 728 0	10 0		0 023		55 8 (89 9)
	32.7100	116 2900	01/20/1930		10.0 8 0		0.025	±v т\7	55.0(09.9)
DMC		110.2900	00/20/19/1	$\begin{bmatrix} 23 & 033.0 \\ 121042 & 7 \end{bmatrix}$			0.010		55.9(09.9)
DMG	32.9230				10.0		0.023		56.2(90.4)
DMG	33.5000	116.9170	11/04/1935	355 0.0	0.0	4.50	0.023	I TA I	56.3(90.6)
DMG	32.9520	116.2790	09/13/1973	173039.8	8.0	4.80	0.027	V	56.3(90.6)
PAS	32.9050	116.2610	12/25/1975	71852.3	3.6	4.00	0.018	IV	56.5(91.0)
PAS	33.4200	116.6980	06/05/1978	16 3 3.9	11.9	4.40	0.022	IV	56.6(91.0)
DMG	33.1210	116.3490	05/25/1971	10 252.9	8.0	4.10	0.018	IV	57.0(91.8)
DMG	32.0830	117.8330	09/13/1940	144548.0	0.0	4.50	0.023	IV	57.1(91.9)
DMG	31.9390	116.8930	04/10/1968	1055 3.2	10.0	4.30	0.020	IV	57.2(92.0)
DMG	33.0530	116.3060	04/02/1967	201538.6	1.0	4.30	0.020	IV	57.2(92.1)
DMG	32,7500	118.2000	06/25/1939	149 0.0	0.0	4.50	0.023	IV	57.5(92.5)
DMG	33 1830	116 3830	10/14/1949	02925 0	0 0		0 018	I TV I	57 5(92 6)
DMC	32 9900	116 2680	11/08/1958	132044 1	2 4		0 018		57 7 (92 9)
DMC		116 2500		1 2 2 5 5 2 0			0.010	± v тъл	57.7(52.5)
DMG	32.9500	110.2500	11/14/1951				0.018		57.9(95.2)
DMG	32.0000		12/02/1929	11240.0			0.022		58.1(93.5)
DMG	33.4880		06/12/1959		5./	4.00	0.017		58.5(94.2)
MGI	33.5000	116.8000	06/02/1917	435 0.0	0.0	4.00	0.017	IV	58.7(94.5)
MGI	33.5000	116.8000	03/30/1918	16 5 0.0	0.0	4.60	0.023	IV	58.7(94.5)
MGI	33.5000	116.8000	05/31/1917	435 0.0	0.0	4.00	0.017	IV	58.7(94.5)
MGI	33.5000	116.8000	11/26/1916	17 5 0.0	0.0	4.00	0.017	IV	58.7(94.5)
DMG	33.4500	116.6830	04/25/1955	25515.0	0.0	4.00	0.017	IV	58.8(94.6)
MGI	32.8000	116.2000	07/23/1929	1155 0.0	0.0	4.30	0.020	IV	58.9(94.8)
DMG	32.8170	116.2000	11/22/1953	81138.0	0.0	4.10	0.018	IV	59.0(95.0)
DMG	33.0430	116.2600	08/22/1961	231933.6	12.1	4.40	0.021	IV	59.4(95.6)
DMG	32.1000	116.5000	01/08/1937	1246 0.0	0.0	4.00	0.017	i iv i	59.7(96.0)
DMG	33,4000	116.5670	02/04/1953	43616.0	0.0	4.30	0.020	IV	59.8(96.2)
DMG	31 9700	116 6980	04/23/1968	132234 8	10 0		0 017	I TV I	59 9(96 4)
DMG	32 1670	116 4170	101/23/1900	194330 0			0 022		60 1(96 7)
	32.1070						0.022	±v т\7	60.1(96.8)
DMC	22 1020	116, 7000	12/20/10/1940	2321 ± 0			0.017	_ V _ T 7 /	60.1(90.0)
DMG	33.4030	110.7000			10.0		0.017	_ V _ T 7 /	(0.3(97.0))
GSG	31.8490			160231.5	12.0	4.40	0.021		60.3(97.0)
GSP	32.8220	116.1750	05/24/1992	122225.8	12.0	4.10	0.018	IV	60.5(97.4)
DMG	33.0330	116.2330	09/20/1961	5 410.0	0.0	4.00	0.017	I IV	60.6(97.5)
DMG	33.0190	116.2250	08/20/1969	152957.2	0.6	4.00	0.017	IV	60.7(97.7)
DMG	33.4170	116.5670	12/22/1950	2 536.0	0.0	4.00	0.017	IV	60.7(97.7)
DMG	33.0500	116.2380	08/23/1961	1 047.8	11.9	4.70	0.024	V	60.8(97.8)
DMG	33.0210	116.2230	01/13/1963	23938.9	13.0	4.20	0.018	IV	60.9(98.0)
DMG	32.8670	118.2500	02/13/1952	151337.0	0.0	4.70	0.024	IV	61.1(98.4)
DMG	32.5330	116.1830	02/22/1939	1030 0.0	0.0	4.00	0.016	IV	61.2(98.4)
DMG	32.5330	116.1830	11/12/1939	1849 0.0	0.0	4.00	0.016	IV	61.2(98.4)
DMG	33,4670	116.6330	02/20/1934	1035 0.0	0.0	4,00	0.016	i iv i	61.3(98.7)
-			, , =- 3 =						

	TIME			SITE	SITE	APPROX.			
FILE	LAT.	LONG.	DATE	(UTC)	DEPTH	OUAKE	ACC.	MM	DISTANCE
CODE	NORTH	WEST		H M Sec	(km)	MAG.	a	INT.	mi [km]
			· +						
CCD		1116 1670	102/12/1000	 122120 1	60	' I ⁄I ⊃∩ I	0 010	T T	61 / 00 0)
GGP							0.019		(1.4(90.0))
GSP	32.5920	110.1050		030832.2	3.0	4.20	0.018		61.4(98.9)
GSP	32.5930	116.1630	04/07/1999	062640.1	8.0	4.00	0.016	I TA I	61.5(99.0)
GSP	32.5870	116.1630	04/18/1999	155301.1	7.0	4.20	0.018	IV	61.6(99.1)
DMG	33.3330	116.4330	02/12/1954	94428.0	0.0	4.50	0.021	IV	61.7(99.3)
DMG	33.2000	116.3000	05/12/1930	414 0.0	0.0	4.00	0.016	IV	62.2(100.1)
DMG	33.4000	116.5000	10/11/1918	4 0 0.0	0.0	4.00	0.016	IV	62.3(100.2)
PAS	33.0580	116.2110	03/22/1982	85328.6	4.6	4.50	0.021	IV	62.4(100.4)
DMG	33.3680	116.4440	03/25/1937	232026.7	10.0	4.00	0.016	IV	62.9(101.2)
DMG	33.4670	116.5830	03/26/1937	2124 0.0	0.0	4.00	0.016	IV	62.9(101.3)
DMG	33.4670	116.5830	03/27/1937	742 0.0	0.0	4.50	0.021	IV	62.9(101.3)
DMG	33.4670	116.5830	03/27/1937	528 0.0	0.0	4.00	0.016	IV	62.9(101.3)
DMG	33.4670	116.5830	01/04/1938	029 0.0	0.0	4.50	0.021	TV	62.9(101.3)
DMG	31 8110	117 1310	12/22/1964	205433 2	2.3	5 60	0 037		63 1(101 5)
DMG	33 2830	1116 3500	04/13/1949	75336 0	0.0	2.00 4 10	0 017	, ту ту	63.1(101.5)
DMC	33.2030	116, 1500	04/15/1942	195030.0			0.017	±v тъл	63.1(101.3)
DMG	32.9500	116 1000		100939.0			0.016	⊥∨ тът	(5.5(102.2))
DMG		116.4900		\perp 1 3 ± 0.0	10.0		0.010		(102.5)
DMG	33.5080				10.7	4.10	0.017		63.8(102.6)
DMG	32.8940	116.1190	09/16/1961	194939.4	18.5	4.40	0.020		64.4(103.7)
DMG	33.2910	116.3170	03/19/1966	142156.0	10.9	4.00	0.016	IV	65.0(104.5)
DMG	33.5060	116.5850	05/21/1967	144234.4	19.4	4.70	0.023	IV	65.1(104.8)
DMG	32.6000	116.1000	12/24/1941	73012.0	0.0	4.50	0.020	IV	65.1(104.8)
PAS	31.7940	117.4100	03/31/1979	213656.7	5.0	4.70	0.023	IV	65.1(104.8)
DMG	33.2350	116.2660	04/09/1968	93833.0	5.2	4.00	0.016	IV	65.2(104.9)
DMG	33.5330	116.6330	09/21/1942	7 754.0	0.0	4.00	0.016	IV	65.2(104.9)
USG	32.7700	118.3340	06/16/1985	1027 0.7	5.0	4.14	0.017	IV	65.3(105.1)
DMG	33.2000	116.2330	04/05/1942	92039.0	0.0	4.00	0.016	IV	65.5(105.5)
PAS	33.5580	116.6670	06/15/1982	234921.3	12.2	4.80	0.024	IV	65.7(105.7)
DMG	33.3430	116.3460	04/28/1969	232042.9	20.0	5.80	0.040	v	65.9(106.0)
DMG	33.3000	116.3000	01/04/1940	8 711.0	0.0	4.00	0.016	IV	66.1(106.4)
DMG	32.3340	116.1700	08/24/1963	204749.5	4.8	4.10	0.016	IV	66.2(106.6)
PAS	33.4840	116.5130	08/11/1976	152455.5	15.4	4.30	0.018	IV	66.3(106.7)
DMG	33.4170	116.4170	01/02/1943	141118.0	0.0	4.50	0.020	IV	66.4(106.9)
DMG	33 5450	117 8070	10/27/1969	1316 2 3	65		0 020	 TV	66 5(106 9)
DMG	32 8170		12/26/1951	04654 0	0.0	<u>1</u> .30 5 90	0 042		66.5(107.0)
DMG	32.0250	116 4240	08/20/1961	42843 0	12 6		0.012		66.5(107.0)
DMC	32.0250	116 2050		1021 2 0	12.0			±v тъл	66 5(107.0)
DMC	33.3130	116,3030	07/09/1900		10 0		0.022	⊥v ⊤v7	66.7(107.0)
DMG			03/25/193/	20 4 0.3	10.0		0.015		66.7(107.3)
DMG	33.4030	116.5000		104/59.0	0.0		0.024		66.7(107.3)
DMG	33.4830	116.5000			0.0	4.80	0.024		66./(10/.3)
PAS	33.5200	116.5580	08/02/19/5		13.4		0.022		66.8(107.4)
DMG	33.2000	116.2000	05/28/1892	1115 0.0	0.0	6.30	0.052	VI	67.2(108.1)
PAS	33.5010	116.5130	02/25/1980	104738.5	13.6	5.50	0.034	V	67.2(108.2)
DMG	32.7860	116.0550	07/04/1938	215945.3	10.0	4.00	0.015	IV	67.2(108.2)
DMG	32.7960	116.0550	11/30/1965	84325.1	16.4	4.00	0.015	IV	67.3(108.3)
DMG	33.5340	116.5610	09/23/1956	112441.9	12.2	4.30	0.018	IV	67.5(108.6)
DMG	33.3330	116.3000	08/05/1933	2331 0.0	0.0	4.40	0.019	IV	67.5(108.6)
DMG	33.3330	116.3000	08/06/1933	332 0.0	0.0	4.70	0.022	IV	67.5(108.6)
PAS	32.2020	116.2290	12/12/1979	213741.0	5.5	4.00	0.015	IV	67.5(108.7)
DMG	33.5000	116.5000	09/30/1916	211 0.0	0.0	5.00	0.026	v	67.6(108.8)
DMG	33.2790	116.2490	01/07/1966	191023.0	-1.7	4.00	0.015	IV	67.7(108.9)
DMG	31.8590	116.6570	11/15/1972	205117.4	8.0	4.00	0.015	iv	67.8(109.1)
DMG	33.7000	117.1000	06/11/1902	245 0.0	0.0	4.50	0.020	iv	67.8(109.1)
-								i - 1	,

				TIME			SITE	SITE	APPROX.
FILE	LAT.	LONG.	DATE	(UTC)	DEPTH	OUAKE	ACC.	MM	DISTANCE
CODE	NORTH	WEST		H M Sec	(km)	MAG.	a	INT.	mi [km]
	+-	+	, +	+	-+	 	.++		
DZG	33 4580	1116 4340	02/12/1979	44842 3	२ q	4 20	0 017		67 8(109 1)
	22 1670	116, 1510					0.015	<u> </u>	67.8(109.1)
DMC			11/10/1937	1007 0.0			0.013	_ V _ T 7 /	69.1(109.1)
DMG		116.0650			4.⊥ 11 0		0.017		60.1(109.6)
GSP	33.3990	116.3540	07/26/1997	031456.0		4.80	0.023		68.1(109.6)
DMG	33.5000	116.4830	02/23/1941	183614.0	0.0	4.50	0.020	IV	68.2(109.8)
DMG	33.4670	116.4330	05/12/1939	1925 2.2	0.0	4.50	0.020	IV	68.3(109.9)
DMG	33.7000	117.4000	04/11/1910	757 0.0	0.0	5.00	0.026	V	68.4(110.1)
DMG	33.7000	117.4000	05/13/1910	620 0.0	0.0	5.00	0.026	V	68.4(110.1)
DMG	33.7000	117.4000	05/15/1910	1547 0.0	0.0	6.00	0.043	VI	68.4(110.1)
DMG	32.7170	116.0330	06/01/1959	163536.0	0.0	4.60	0.021	IV	68.4(110.1)
PAS	32.0580	116.3370	01/29/1980	1949 3.3	5.0	4.40	0.019	IV	68.5(110.3)
GSP	33.6320	116.7190	07/19/1999	220927.5	14.0	4.20	0.017	IV	68.9(110.9)
PAS	33.4830	116.4380	07/02/1988	02658.2	12.6	4.00	0.015	IV	69.0(111.0)
DMG	33.2370	116.1900	04/14/1968	125558.7	10.8	4.30	0.018	IV	69.0(111.0)
DMG	33.1170	1116.1170	06/18/1943	161546.0	0.0	4.50	0.020	ΙτνΪ	69.0(111.0)
DMG		116 2000	03/03/1957				0 019		69 0(111 1)
DMC	33 6820	117 5530	00/05/1938	18 655 7			0 020		69.2(111.3)
DMC		116, 7500		101056 0			0.020	<u> </u>	69.1(111.6)
		110.7300	109/03/1930				0.023	⊥ ∨ ⊤ \7	69.4(111.0)
GSP		1117 5110				4.20 E EO	0.017		09.0(112.0)
DMG				83455.4	10.0		0.033		69.6(112.1)
DMG	31.8670	116.5/10	02/2//193/	12918.4			0.025		69.9(112.4)
GSP	33.5100	116.4500	02/18/1990	155259.9	9.0	4.10	0.016	IV	69.9(112.6)
DMG	33.3100	116.2240	05/22/1968	132655.4	7.5	4.40	0.018	IV	70.1(112.8)
DMG	32.1020	116.2580	05/07/1966	32657.4	12.7	4.50	0.019	IV	70.1(112.8)
DMG	33.7380	117.1870	04/27/1962	91232.1	5.7	4.10	0.016	IV	70.1(112.9)
DMG	33.7100	116.9250	09/23/1963	144152.6	16.5	5.00	0.025	V	70.2(112.9)
DMG	31.9940	116.3700	08/20/1961	125245.9	8.2	4.00	0.015	IV	70.2(113.0)
DMG	33.5010	116.4290	02/23/1971	0 739.2	8.0	4.20	0.016	IV	70.2(113.0)
DMG	33.3670	118.1500	04/16/1942	72833.0	0.0	4.00	0.015	IV	70.3(113.1)
DMG	32.7500	116.0000	02/19/1919	458 0.0	0.0	4.50	0.019	IV	70.3(113.2)
DMG	33.1670	116.1170	04/09/1968	23930.0	0.0	4.40	0.018	IV	70.4(113.3)
DMG	33.1670	116.1170	04/09/1968	233 9.0	0.0	4.30	0.017	IV	70.4(113.3)
PAS	33,4600	116.3700	09/07/1984	175730.3	15.2	4.10	0.016	TV	70.4(113.3)
DMG	33 3330	1116 2360	10/05/1962	1529 2 6	139		0 016		$70 \ 4(113 \ 3)$
		116 3000	02/09/1902	12 6 0 0		1.10 6 30	0.010		70.1(113.3)
DMC	22 1000	116, 1200	02/09/1090	12 0 0.0			0.050		70.5(113.1)
DMC		116 2220		22000.1	11		0.052	V⊥ T\7	70.5(113.4)
DMC		110.3230	09/20/1901				0.010	_ v _ t t /	70.5(113.5)
DMG		110.2330	06/09/1942				0.015		70.0(113.0)
DMG			08/06/1938			4.00	0.015		70.8(113.9)
DMG	33.7170	117.5170	06/19/1935			4.00	0.015	I IV I	70.9(114.1)
PAS	33.7010	116.8370	08/22/1979	2 136.3	5.0	4.10	0.015	IV	70.9(114.2)
DMG	32.0320	116.3090	08/27/1963	121 1.8	14.6	4.00	0.015	IVI	71.0(114.2)
DMG	33.2830	116.1830	03/19/1954	101957.0	0.0	4.50	0.019	IV	71.0(114.2)
DMG	33.2830	116.1830	03/19/1954	101522.0	0.0	4.50	0.019	IV	71.0(114.2)
DMG	33.2830	116.1830	03/19/1954	14 057.0	0.0	4.10	0.015	IV	71.0(114.2)
DMG	33.2830	116.1830	03/19/1954	10 139.0	0.0	4.20	0.016	IV	71.0(114.2)
DMG	33.2830	116.1830	03/19/1954	13 8 4.0	0.0	4.30	0.017	IV	71.0(114.2)
DMG	33.2830	116.1830	03/19/1954	102610.0	0.0	4.00	0.015	IV	71.0(114.2)
DMG	33.2830	116.1830	03/20/1954	41919.0	0.0	4.90	0.024	IV	71.0(114.2)
DMG	33.2830	116.1830	03/19/1954	95748.0	0.0	4.00	0.015	IV	71.0(114.2)
DMG	33.2830	116.1830	03/19/1954	95556.0	0.0	5.00	0.025	i v i	71.0(114.2)
DMG	33.2830	116.1830	03/19/1954	957 7 0	0.0	4.60	0.020	IV	71.0(114.2)
DMG	33 2830	116 1830	03/19/1954	143750 0			0 015	- • T\7	71 0(114 2)
Divid	155.2050	1 0 0 - 0 - 0	00/10/1004	1 - 13 / 30 . 0	0.0	1 1.001	0.010	- v	, 1 . 0 (117.2)

				TIME			SITE	SITE	APPROX.
FILE	LAT.	LONG.	DATE	(UTC)	DEPTH	QUAKE	ACC.	MM I	DISTANCE
CODE	NORTH	WEST		H M Sec	(km)	MAG.	q	INT.	mi [km]
	' ++-	' +	' +	, +	· +	, , +	++		
DMG	33,2830	1116.1830	04/04/1954	42920.0	0.0	4.10	0.015	TV	71.0(114.2)
DMG	33 2830	116 1830	03/20/1954	6 353 0			0 017		71.0(114.2)
	33 2830	116 1830	10/26/1944	225410 0			0.016		71.0(111.2)
DMC	2030	116, 1020		1 11150 0		1 .20 5 10	0.010		71.0(114.2)
DMG		110.1030					0.020		71.0(114.2)
DMG DMG		116.1830		95429.0		6.20 E E0	0.047		71.0(114.2)
DMG		116.1830					0.032		/1.0(114.2)
DMG		116.1330	08/15/1945	1/5624.0		5.70	0.036		/1.2(114.5)
DMG	33.7250	117.4980	01/03/1956	02548.9	13.7	4.70	0.021	I TA I	71.2(114.6)
DMG	33.1330	116.0830	10/16/1940	175213.0	0.0	4.00	0.015	IV	71.2(114.6)
DMG	33.1330	116.0830	10/06/1940	181953.0	0.0	4.00	0.015	IV	71.2(114.6)
DMG	33.1330	116.0830	05/07/1936	1147 0.0	0.0	4.50	0.019	IV	71.2(114.6)
DMG	33.1330	116.0830	02/28/1940	1728 7.0	0.0	4.50	0.019	IV	71.2(114.6)
DMG	33.7330	117.4670	10/26/1954	162226.0	0.0	4.10	0.015	IV	71.3(114.8)
PAS	33.4710	118.0610	02/27/1984	101815.0	6.0	4.00	0.015	IV	71.4(114.8)
DMG	33.2000	116.1170	12/28/1950	52211.0	0.0	4.20	0.016	IV I	71.4(114.9)
DMG	33.1030	116.0610	04/09/1968	111754.5	4.8	4.00	0.015	IV	71.6(115.3)
PAS	33.1360	116.0710	02/29/1984	2 731.7	6.6	4.30	0.017	IV	72.0(115.8)
DMG	33.7500	117.0000	06/06/1918	2232 0.0	0.0	5.00	0.025	v	72.0(115.9)
DMG	33.7500	117.0000	04/21/1918	223225.0	0.0	6.80	0.064	VI	72.0(115.9)
DMG	32 9670		11/02/1943	1753 5 0			0 014		72 2(116 2)
	32.9670		03/26/1943	62957 0			0 014		72.2(116.2)
	32.9070		10/21/1942	162654 0			0.025		72.2(110.2) 72.2(116.2)
DMC	32.0070		10/21/10/2	162519 0			0.025		72.2(110.2)
DMC				102319.0			0.025		72.2(110.2)
DMG							0.014		72.2(110.2)
DMG			04/07/1943	34614.0			0.014		72.2(116.2)
DMG			10/21/1942	11638 6.0		4.50	0.019		72.2(116.2)
DMG	32.9670	116.0000	10/29/1942	1556 0.0	0.0	4.50	0.019		72.2(116.2)
DMG	32.9670	116.0000	03/07/1943	205631.0	0.0	4.00	0.014	IV	72.2(116.2)
DMG	32.9670	116.0000	02/24/1943	15831.0	0.0	4.00	0.014	IV	72.2(116.2)
DMG	32.9670	116.0000	10/29/1942	162157.0	0.0	4.50	0.019	IV	72.2(116.2)
DMG	32.9670	116.0000	10/21/1942	191028.0	0.0	4.50	0.019	IV	72.2(116.2)
DMG	32.9670	116.0000	11/07/1942	439 6.0	0.0	4.00	0.014	IV	72.2(116.2)
DMG	32.9670	116.0000	10/22/1942	113951.0	0.0	4.00	0.014	IV	72.2(116.2)
DMG	32.9670	116.0000	10/21/1942	163439.0	0.0	4.50	0.019	IV	72.2(116.2)
DMG	32.9670	116.0000	10/22/1942	125553.0	0.0	4.00	0.014	IV	72.2(116.2)
DMG	32.9670	116.0000	08/17/1943	155058.0	0.0	4.00	0.014	IV	72.2(116.2)
DMG	32.9670	116.0000	11/12/1942	0 737.0	0.0	4.00	0.014	IV I	72.2(116.2)
DMG	32.9670	116.0000	10/21/1942	162213.0	0.0	6.50	0.054	VI	72.2(116.2)
DMG	32.9670	116.0000	01/08/1943	024 3.0	0.0	4.00	0.014	IV	72.2(116.2)
DMG	32.9670	116.0000	11/22/1942	63951.0	0.0	4.00	0.014	IV	72.2(116.2)
DMG	32.9670	116.0000	10/30/1942	53545.0	0.0	4.50	0.019	IV	72.2(116.2)
DMG	32.9670	116.0000	11/02/1943	18 134.0	0.0	4.00	0.014	IV	72.2(116.2)
DMG	32,9670	116.0000	10/29/1942	173552.0	0.0	4.00	0.014	TV	72.2(116.2)
DMG	32 9670		11/16/1943	18 9 9 0			0 014		$72 \ 2(116 \ 2)$
DMG	32 9670		11/02/1943	164759 0			0 019		72.2(116.2)
	32.9670		11/03/1942	101834 0			0.014		72.2(116.2)
DMC	32.90,0		10/22/1042	181326 0			0 025	× 17	72 2(116 2)
DMC	22.2010	11600000000000000000000000000000000000	11 / 02 / 10/0	5 620 0		J.UU		V TT7	$72.2(\pm\pm0.2)$
DMC	22.20/0	116 0000	± ± / U 3 / ± 9 ± 2	165716 0			0.019	± V ₇₃₇	$12.2(\pm 0.2)$
DMC	132.90/U	116 0000	$ \pm \pm / \cup \angle / \pm 943$	0.01/000		4.00 4.00	0.014	± V + + + + +	12.2(110.2)
DMG		116.0000	$ \pm 0/2\pm/\pm 942$	214920.0		4.50	0.014		12.2(110.2)
DMG	32.96/0	116.0000	04/30/1943	175041			0.014		/2.2(116.2)
DMG	32.9670	116.0000	$ \perp \perp / \cup \angle / \perp 943$	1 / 5041.0		4.50	0.019	<u> </u>	/2.2(116.2)
DMG	32.9670	1110.0000	04/27/1943	32833.0	0.0	4.00	0.014	I TA	/2.2(116.2)

				TIME			SITE	SITE	APPROX.
FILE	LAT.	LONG.	DATE	(UTC)	DEPTH	QUAKE	ACC.	MM	DISTANCE
CODE	NORTH	WEST		H M Sec	(km)	MAG.	g	INT.	mi [km]
	++- 20 9670	+ 116 0000	+ 1 0 / 26 / 1 9 / 2	+ 131 1 0	-+ 0 0	+ 1 00	++	 TV7	
	32.9070	110.0000	10/20/1942	-434 + 0					72.2(110.2)
	32.9070		10/21/1942	125942 0		4.00 4.50	0.014		72.2(110.2) 72 2(116 2)
	32.5070	117 4790	06/22/1971	104119 0		4.30 4.20	0.015		72.2(110.2) 72 5(116 7)
DMG			03/25/1937	1649 1 8			0.010		72.5(116.7)
DMG			05/18/1920	$\begin{bmatrix} 625 & 0 \\ 0 \end{bmatrix}$		0.00 4 50	0 019	I TV I	72.8(117.1)
DMG	33.0500	116.0170	08/26/1955	52322.0		4.30	0.017	TV I	72.8(117.2)
DMG	31,7000	116.9000	11/21/1952	192618.0	0.0	4.10	0.015	IV	72.9(117.3)
DMG	33.1040	116.0360	04/09/1968	34810.3	4.8	4.70	0.021	IV	73.0(117.5)
DMG	33.1130	116.0370	04/09/1968	3 353.5	5.0	5.20	0.027	v v	73.2(117.8)
DMG	33.0400	116.0050	05/11/1968	810 4.0	8.8	4.20	0.016	IV	73.3(117.9)
DMG	33.3490	116.1880	05/19/1969	144033.0	8.6	4.50	0.019	IV	73.3(118.0)
DMG	32.9830	115.9830	05/23/1942	154729.0	0.0	5.00	0.024	v	73.4(118.2)
DMG	33.5670	117.9830	07/07/1937	1112 0.0	0.0	4.00	0.014	IV	73.5(118.2)
DMG	33.5670	117.9830	04/17/1934	1833 0.0	0.0	4.00	0.014	IV	73.5(118.2)
PAS	33.5080	118.0710	11/20/1988	53928.7	6.0	4.50	0.019	IV	73.6(118.5)
GSP	33.2240	116.0880	07/10/1998	212913.8	12.0	4.10	0.015	IV	73.7(118.6)
GSP	33.6200	117.9000	04/07/1989	200730.2	13.0	4.50	0.019	IV	73.7(118.6)
DMG	33.5750	117.9830	03/11/1933	518 4.0	0.0	5.20	0.027	V	73.9(118.9)
DMG	33.2330	116.0860	08/26/1965	133814.0	-2.0	4.50	0.019	IV	74.1(119.2)
DMG	32.3830	116.0000	01/03/1956	1424 1.0	0.0	4.70	0.021	IV	74.2(119.5)
DMG	33.0560	115.9930	04/09/1968	35836.0	7.9	4.30	0.017	IV	74.3(119.5)
DMG	31.9670	116.3000	05/31/1961	72339.0	0.0	4.00	0.014	IV	74.4(119.8)
DMG	33.0480	115.9860	04/16/1968	33029.9	8.3	4.80	0.022	IV	74.5(119.9)
DMG	33.2670	116.1000	01/04/1954	233152.0	0.0	4.20	0.016	IV	74.5(119.9)
GSP	32.7270	115.9260	01/13/1999	132056.0	2.0	4.40	0.017	IV	74.6(120.1)
DMG	33.1070	116.0070	04/09/1968	8 038.5	4.0	4.00	0.014	IV	74.6(120.1)
DMG	33.5170	118.1000	03/22/1941	82240.0	0.0	4.00	0.014	IV	75.2(121.0)
DMG	33.0830	115.9830	12/15/1937	958 0.0	0.0	4.00	0.014	IV	75.4(121.3)
DMG	33.0830	115.9830	03/02/1934	2130 0.0	0.0	4.50	0.018	IV	75.4(121.3)
DMG	33.0830	115.9830	07/13/1940	163923.0	0.0	4.00	0.014	IVI	75.4(121.3)
DMG	33.0830	115.9830	07/14/1940	0 144.0	0.0	4.00	0.014	IVI	75.4(121.3)
DMG	33.0830	115.9830	12/10/1938	312 0.0		4.00	0.014		75.4(121.3)
DMG		117.0000	12/25/1899	1225 0.0		6.40	0.050		75.4(121.3)
DMG	32.7920	115.9140	10/12/1936	135631.8	10.0	4.00	0.014		75.4(121.4)
DMG		117 0670	08/26/1965			4.20	0.016		/5.6(121./)
DMG	33.61/0	117.96/0	03/11/1933	154 / .8			0.04/		75.7(121.8)
DMG	32.7640	110 0500	10/12/1936	1/ /5U.1	10.0		0.014		75.7(121.8)
DMG	33.5010	110.0580	01/15/193/	183547.0			0.014		75.9(122.1)
		110.0000	03/11/1933	231 0.0		4.40 1 50	0.017		75.9(122.1)
		115 9/90	05/06/1968	217 0.0					75.9(122.1) 76.3(122.0)
		110.9490	12/25/1025	171500			0.019		76.5(122.9)
CCD			12/23/1935				0.015		76.5(123.0)
DMC		116 1670	00/31/1990	1111530 0		4.20 4.50	0.019		76.5(123.0)
MGT		116 9000	12/18/1920	172600		4.50 4 nn	0.010		76.5(123.1)
MGT		116 9000	12/10/1920				0.014		76.5(123.2)
MGT	33 8000	116 9000	06/14/1919				0 014	± v T\7	76 5(123.2)
MGT		116,9000	04/23/1918				0.014		76.5(123.2)
DMG	33.2400	116.0360	04/28/1961	63021.2	-1.2	4,20	0.015		76.8(123.7)
DMG	33,3330	116.1000	06/12/1943	192141.0			0.014		76.9(123.7)
DMG	32.9550	115.9110	04/10/1967	04717.3	4.4	4.00	0.014		77.1(124.0)
DMG	32.0500	116.1500	03/01/1945	111958.0	0.0	4.40	0.017	IV	77.3(124.4)
	•	•		•					. ,

				TIME			SITE	SITE	APPROX.
FILE	LAT.	LONG. WEST	DATE	UTC)	DEPTH (km)	QUAKE MAC	ACC.	MM	DISTANCE
	NORIII ++-	+	 +	+	-+	+	9		
DMG	33.6170	118.0170	10/02/1933	1326 1.0	0.0	4.00	0.014	III	77.4(124.5)
DMG	33.6170	118.0170	03/14/1933	19 150.0	0.0	5.10	0.025	V	77.4(124.5)
DMG	33.6170	118.0170	03/15/1933	111332.0	0.0	4.90	0.022	IV	77.4(124.5)
DMG		117.4000	06/05/1940		0.0		0.014		77.5(124.7)
DMG	33.10/0	115.9830	07/21/1940	$\begin{vmatrix} 836 3.0 \\ 1227 9 0 \end{vmatrix}$		4.40 4 00	0.017	<u> </u>	77.5(124.7)
DMG		11760000	00/16/1903				0.014	<u> </u>	77.7(124.7)
MGI	33.8000	117.6000	04/22/1918	2115 0.0	0.0	5.00	0.023		77.7(125.1)
DMG	32.5000	115.9000	06/25/1941	1715 0.0	0.0	4.00	0.014		77.7(125.1)
DMG	32.1170	116.0830	07/09/1951	9 622.0	0.0	4.20	0.015	IV	77.9(125.3)
DMG	33.3170	116.0670	09/04/1944	125528.0	0.0	4.10	0.014	IV I	77.9(125.4)
DMG	33.6170	118.0330	05/21/1938	944 0.0	0.0	4.00	0.014	III	77.9(125.4)
DMG	31.9670	116.2170	02/18/1955	152728.0	0.0		0.020	IV	78.0(125.5)
PAS	31.8640	116.3420	12/09/1984			4.30	0.016		78.U(125.5)
DMG	31.8990	116.2900	06/04/1964	10 341.3	-0.5	4.10 5 00	0.014		78.2(125.9) 78.2(125.9)
MGT		11790040	05/20/195/	945 0 0			0.023	<u> </u>	78.2(125.9) 78 4(126 1)
DMG	33.2830	116.0330	03/16/1949	18 027.0	0.0	4.00	0.014		78.4(126.2)
DMG	33.2830	116.0330	03/29/1951	233929.0	0.0	4.40	0.017	IV	78.4(126.2)
DMG	33.6590	117.9810	10/20/1961	20 714.5	6.1	4.00	0.014	III	78.5(126.4)
DMG	33.6540	117.9940	10/20/1961	194950.5	4.6	4.30	0.016	IV	78.7(126.6)
DMG	33.6650	117.9790	10/20/1961	214240.7	7.2	4.00	0.014	III	78.8(126.8)
DMG	33.0360	115.9030	10/05/1964	121 9.5	-2.0	4.10	0.014	IV	78.9(126.9)
DMG		115.8650	10/27/1963	145822.4	-2.0	4.40	0.017	IV	78.9(127.0)
DMG	31.7500	116.5000			0.0		0.023		78.9(127.0)
DMG	31.7500	116.5000	05/01/1935	055 0.0		4.00 4.00	0.014 0.014	<u>⊥</u> ⊥⊥ <u>⊤</u> ⊤⊤	78.9(127.0) 78.9(127.0)
DMG	31,7500	116,5000	05/01/1935			4.00 4.50	0.014		78.9(127.0)
DMG	31.7500	116.5000	04/29/1935	2149 0.0	0.0	4.00	0.014		78.9(127.0)
DMG	31.7500	116.5000	05/01/1935	352 0.0	0.0	4.00	0.014		78.9(127.0)
DMG	31.7500	116.5000	05/01/1935	1825 0.0	0.0	4.00	0.014	III	78.9(127.0)
DMG	32.7000	115.8500	11/01/1941	142434.0	0.0	4.00	0.014	III	79.1(127.2)
DMG	33.2880	116.0180	07/27/1965	14 441.4	0.6	4.30	0.016	IV	79.3(127.7)
GSP	33.2100	115.9700	07/19/1991	024136.8	3.0	4.00	0.013		79.4(127.7)
DMG		118.5500	02/24/1948	81510.0			0.027		79.4(127.8)
PAS	33.0290	115.8880	11/20/198/	1/39 2.0	⊥.8 71	4.30 1.21	0.015		79.0(128.0) 79.6(128.1)
PAS	32.0450	1115 8810	11/24/1987	185040 3		4.21 4.30	0.015		79.0(120.1) 79.7(128.3)
DMG	32.1520	116.0200	02/16/1967	194127.4	5.3	4.00	0.013		79.8(128.4)
PAS	32.9930	115.8720	11/24/1987	133259.9	0.0	4.20	0.015	IV	79.9(128.5)
DMG	33.0330	115.8830	08/27/1945	112520.0	0.0	4.00	0.013		79.9(128.6)
DMG	31.8330	116.3330	06/26/1932	103222.0	0.0	4.00	0.013	III	80.0(128.7)
DMG	31.8330	116.3330	06/27/1932	1016 9.0	0.0	4.00	0.013	III	80.0(128.7)
DMG	31.8330	116.3330	06/27/1932	94643.0	0.0	4.00	0.013	III	80.0(128.7)
DMG		116.3330	06/27/1932	10 720.0	0.0	4.50	0.017	IV	80.0(128.7)
DMG		116.7000	08/11/1911			4.00 4.50	0.013		80.0(128.8)
	33.0000	117 9930	11/20/1911	85334 7		4.50 4.00	0.017	<u> </u>	80.1(128.8)
DMG	33.7670	117.8170	08/22/1936	521 0.0	0.0	4.00	0.013	<u>+</u> ++ <u>T</u> TT	80.2(129.0)
DMG	33.6710	118.0120	10/20/1961	223534.2	5.6	4.10	0.014		80.2(129.1)
GSP	33.8060	117.7150	03/07/2000	002028.2	11.0	4.00	0.013	III	80.3(129.2)
DMG	33.1000	115.9000	04/25/1957	22 5 0.0	0.0	4.20	0.015	IV	80.3(129.3)
DMG	33.1000	115.9000	04/25/1957	2248 0.0	0.0	4.10	0.014	IV	80.3(129.3)

				TIME			SITE	SITE	APPROX.
FILE	LAT.	LONG.	DATE	(UTC)	DEPTH	QUAKE	ACC.	MM	DISTANCE
CODE	NORTH	WEST		H M Sec	(km)	MAG.	g	INT.	mi [km]
	++-	+	+	+	-+	+	++		
DMG	33.1000	115.9000	04/25/1957	2249 0.0	0.0	4.20	0.015	IV I	80.3(129.3)
PAS	32.9320	115.8470	09/05/1982	52126.6	4.2	4.40	0.016	IV	80.4(129.4)
PAS	33.5380	118.2070	05/25/1982	134430.3	13.7	4.10	0.014	IV	80.6(129.7)
DMG	33.5000	118.2500	06/18/1920	10 8 0.0	0.0	4.50	0.017	IV	80.6(129.7)
DMG	33.6170	118.1170	01/20/1934	2117 0.0	0.0	4.50	0.017	IV	81.0(130.3)
DMG	31.5700	117.4880	05/01/1939	202223.3	10.0	4.00	0.013	III	81.2(130.7)
DMG	33.0450	115.8630	12/17/1968	225351.2	8.0	4.70	0.019	IV	81.2(130.8)
DMG	33.9000	117.2000	12/19/1880	0 0 0.0	0.0	6.00	0.038	V	81.3(130.9)
DMG	32.0000	116.1000	12/15/1959	152419.0	0.0	4.30	0.015	IV	81.7(131.5)
PAS	31.9430	116.1550	08/06/1980	94622.7	7.4	4.00	0.013	III	81.8(131.6)
MGI	33.8000	117.8000	11/09/1926	1535 0.0	0.0	4.60	0.018	IV	81.8(131.7)
MGI	33.8000	117.8000	05/20/1917	945 0.0	0.0	4.00	0.013	III	81.8(131.7)
MGI	33.8000	117.8000	11/07/1926	1948 0.0	0.0	4.60	0.018	IV	81.8(131.7)
MGI	33.8000	117.8000	11/10/1926	1723 0.0	0.0	4.60	0.018	IV	81.8(131.7)
MGI	33.8000	117.8000	05/19/1917	635 0.0	0.0	4.00	0.013	III	81.8(131.7)
MGI	33.8000	117.8000	05/19/1917	719 0.0	0.0	4.00	0.013	III	81.8(131.7)
MGI	33.8000	117.8000	11/04/1926	2238 0.0	0.0	4.60	0.018	IV	81.8(131.7)
DMG	33.0530	115.8550	10/05/1964	12455.5	0.0	4.40	0.016	IV	81.8(131.7)
DMG	31.9000	116.2000	08/21/1960	212732.0	0.0	4.00	0.013	III	81.9(131.7)
DMG	31.7000	116.5000	01/12/1941	12 8 0.0	0.0	4.00	0.013	III	81.9(131.8)
DMG	31.5500	116.9830	09/05/1959	91744.0	0.0	4.00	0.013	III	82.0(132.0)
PAS	33.0130	115.8390	11/24/1987	131556.5	2.4	6.00	0.038	V	82.0(132.0)
DMG	31.7920	116.3340	06/12/1963	221516.9	8.8	4.80	0.020	IV	82.1(132.2)
DMG	33.0000	115.8330	01/08/1946	185418.0	0.0	5.40	0.027	V	82.2(132.2)
DMG	33.6830	118.0500	03/11/1933	658 3.0	0.0	5.50	0.029	V	82.2(132.2)
DMG	33.6830	118.0500	03/11/1933	1250 0.0	0.0	4.40	0.016	IV	82.2(132.2)
PAS	31.9370	116.1520	11/07/1984	142326.8	6.0	4.00	0.013	III	82.2(132.2)
DMG	33.8000	116.6000	09/10/1931	436 0.0	0.0	4.00	0.013	III	82.3(132.5)
PAS	31.7820	116.3400	07/24/1981	113846.2	15.0	4.60	0.018	IV	82.4(132.7)
PAS	33.1330	115.8730	11/24/1987	133355.8	0.0	4.00	0.013	III	82.5(132.8)
DMG	32.1000	116.0000	02/03/1960	83718.0	0.0	4.50	0.017	IV	82.6(132.9)
PAS	32.9790	115.8160	11/25/1987	135410.0	0.6	4.20	0.014	IV	82.8(133.3)
DMG	33.2670	115.9330	12/30/1960	214025.0	0.0	4.00	0.013	III	83.0(133.6)
PAS	32.9960	115.8160	11/27/1987	11010.5	6.0	4.70	0.019	IV	83.1(133.7)
DMG	32.9310	115.7980	01/12/1972	1231 9.6	0.0	4.00	0.013	III	83.2(133.9)
PAS	32.9950	115.8130	12/02/1987	4 3 6.2	1.7	4.00	0.013	III	83.2(133.9)
PAS	32.9800	115.8090	11/28/1987	03910.9	0.8	4.20	0.014	IV	83.2(133.9)
DMG	33.0330	115.8210	09/30/1971	224611.3	8.0	5.10	0.023	IV	83.4(134.2)
PAS	33.0140	115.8150	11/24/1987	131848.9	6.0	4.10	0.014	III	83.4(134.2)
PAS	33.0360	115.8200	11/24/1987	21435.5	4.7	4.50	0.017	IV	83.5(134.4)
DMG	31.7870	116.3000	01/18/1965	65719.5	6.3	4.00	0.013	III	83.6(134.6)
DMG	33.7000	118.0670	03/11/1933	51022.0	0.0	5.10	0.023	IV	83.7(134.7)
DMG	33.7000	118.0670	03/11/1933	85457.0	0.0	5.10	0.023	IV	83.7(134.7)
DMG	33.7000	118.0670	07/20/1940	4 113.0	0.0	4.00	0.013	III	83.7(134.7)
DMG	33.7000	118.0670	02/08/1940	165617.0	0.0	4.00	0.013	III	83.7(134.7)
DMG	32.5510	115.7850	01/23/1971	22 736.0	8.0	4.10	0.014	III	83.7(134.7)
PAS	33.0330	115.8140	11/24/1987	22159.6	4.5	4.00	0.013	III	83.8(134.8)
PAS	33.0220	115.8080	11/24/1987	62323.1	3.4	4.00	0.013	III	83.9(135.1)
PAS	33.0400	115.8120	11/24/1987	253 0.7	3.5	4.70	0.019	IV	84.0(135.2)
DMG	33.9330	117.3670	10/24/1943	02921.0	0.0	4.00	0.013	III	84.1(135.3)
DMG	33.8540	117.7520	10/04/1961	22131.6	4.3	4.10	0.014	III	84.2(135.4)
DMG	31.8000	116.2670	06/20/1963	446 8.0	0.0	4.00	0.013	III	84.2(135.5)
DMG	31.8000	116.2670	06/11/1963	154948.0	0.0	4.00	0.013	III	84.2(135.5)

				TIME			SITE	SITE	APPROX.
FILE	LAT.	LONG.	DATE	(UTC)	DEPTH	OUAKE	ACC.	i mm i	DISTANCE
CODE	NORTH	WEST		H M Sec	(km)	MAG.	a	ITNT.	mi [km]
	+-	+	, +	+	-+	+	++		
DMG	31 8000	1116 2670	106/12/1963	1221556 0		I 4 701	0 019		84 2(135 5)
DMC		116 2670	06/12/1062	05526 0			0.012	<u>+</u> v <u>+</u> ++	01.2(135.5) 01.2(125.5)
DMG							0.013		04.2(135.5)
DMG						4.20	0.014		84.3(135.7)
DMG	31.7960	116.2690	06/11/1963	152338.3	-2.0	5.80	0.033		84.3(135.7)
DMG	33.7500	118.0000	11/16/1934	2126 0.0	0.0	4.00	0.013	III	84.3(135.7)
PAS	33.0470	115.8080	11/24/1987	143629.9	0.0	4.00	0.013	III	84.4(135.8)
MGI	33.8000	117.9000	05/22/1902	740 0.0	0.0	4.30	0.015	IV	84.4(135.8)
DMG	32.2000	115.9000	05/31/1960	191736.0	0.0	4.00	0.013	III	84.4(135.9)
DMG	32.4170	115.8000	05/13/1960	123640.0	0.0	4.10	0.014	III	84.7(136.4)
DMG	33.6300	118.2000	09/13/1929	132338.2	0.0	4.00	0.013	III	84.8(136.5)
PAS	33.0500	115.8000	11/24/1987	21647.2	6.0	4.00	0.013	III	84.9(136.6)
PAS	33.0480	115.7980	11/24/1987	21523.2	5.0	4.80	0.019	IV	84.9(136.7)
PAS	33.0080	115.7860	11/24/1987	1321 0.2	6.0	4.10	0.013		84.9(136.7)
DMG	33 6330	118 2000	11/01/1940	20 046 0			0 013		85 0(136 8)
DMC	33 1830		04/25/1957	2001480			0 014		85 0(136 8)
DMC		1115 0500				1 .20 5 10	0.014	±v тъл	05.0(130.0)
DMC		115.0500	04/25/1957				0.023		05.0(130.0)
DMG			02/24/1933				0.017		05.1(137.0)
PAS	32.9420	115.7630		123439.9	14.0	4.80	0.019		85.3(137.3)
PAS	33.0670	115.7810	11/24/1987	13248.1	4.0	4.20	0.014	I TA I	86.2(138.8)
PAS	33.0720	115.7820	11/24/1987	153 3.2	4.2	4.00	0.013	III	86.3(138.8)
DMG	32.0000	116.0000	02/07/1930	2323 0.0	0.0	4.50	0.016	IV	86.4(139.1)
DMG	32.0000	116.0000	07/19/1954	20 154.0	0.0	4.80	0.019	IV	86.4(139.1)
DMG	32.0000	116.0000	07/20/1963	14518.0	0.0	4.20	0.014	IV	86.4(139.1)
DMG	33.5430	118.3400	09/14/1963	35116.2	2.2	4.20	0.014	IV	86.5(139.1)
DMG	33.7330	118.1000	03/11/1933	1350 0.0	0.0	4.40	0.016	IV	86.7(139.4)
DMG	33.7330	118.1000	03/11/1933	15 9 0.0	0.0	4.40	0.016	IV	86.7(139.4)
DMG	33.7330	118.1000	03/11/1933	1447 0.0	0.0	4.40	0.016	IV	86.7(139.4)
DMG	33.9170	116.7500	01/25/1933	1444 0.0	0.0	4.00	0.013	i III	86.7(139.5)
PAS	33 0820	115 7750	11/24/1987	15414 5	4 9		0 032		86 8(139 8)
DMG			03/12/1933	2354 0 0		<u> </u>	0 016		87 0(140 0)
DMC			03/11/1033			$\begin{vmatrix} 1.30 \\ 4 10 \end{vmatrix}$	0.013	<u>+</u> v <u>ттт</u>	87 0(140 0)
DMC		110.0030	03/11/1033				0.013	<u>+</u> + + -	07.0(140.0)
DMC		110.0030	03/23/1933				0.013		87.0(140.0)
DMG							0.021	_V _T_T	07.0(140.0)
DMG			03/11/1933			4.10	0.013		87.0(140.0)
DMG	33.7500	118.0830	03/11/1933		0.0	4.40	0.015	I TA I	87.0(140.0)
DMG	33.7500	118.0830	03/15/1933	432 0.0	0.0	4.10	0.013	III	87.0(140.0)
DMG	33.7500	118.0830	03/11/1933	2231 0.0	0.0	4.40	0.015	IV	87.0(140.0)
DMG	33.7500	118.0830	03/11/1933	252 0.0	0.0	4.00	0.013	III	87.0(140.0)
DMG	33.7500	118.0830	03/12/1933	616 0.0	0.0	4.60	0.017	IV	87.0(140.0)
DMG	33.7500	118.0830	03/21/1933	326 0.0	0.0	4.10	0.013	III	87.0(140.0)
DMG	33.7500	118.0830	03/12/1933	034 0.0	0.0	4.00	0.013	III	87.0(140.0)
DMG	33.7500	118.0830	03/11/1933	311 0.0	0.0	4.20	0.014	IV	87.0(140.0)
DMG	33.7500	118.0830	03/23/1933	840 0.0	0.0	4.10	0.013	III	87.0(140.0)
DMG	33.7500	118.0830	03/11/1933	350.0	0.0	4.20	0.014	IV	87.0(140.0)
DMG	33.7500	118.0830	03/11/1933	290.0	0.0	5.00	0.021	I TV I	87.0(140.0)
DMG	33.7500	118.0830	04/02/1933				0.013		87.0(140 0)
DMC	33 7500	118 0830	03/11/1022				0 013	, <u>-</u> <u>-</u>	87 0(140 0)
DMC	22 7500	110.0030	02/12/1022	1522 0.0		1.00 1 10		<u>+</u> + + _T + - +	97 0(140.0)
DMC		110.0030	03/13/133				0.014		07.0(140.0)
DMG		110 0000	03/13/13/233			4.20	0.014	<u> </u>	0/.U(140.0)
DMG			03/11/1933	1021 0.0		4.80	0.019	1V '	$\delta / . U (140.0)$
DMG	33.7500	110.0830	03/23/1933	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.0	4.10	0.013		8/.0(140.0)
DMG	33.7500	1118.0830	03/11/1933	230 0.0	0.0	5.10	0.022	I IV	87.0(140.0)
DMG	33.7500	118.0830	03/11/1933	837 0.0	0.0	4.00	0.013	III	87.0(140.0)

				TIN	ЧE			SITE	SITE	APPROX.
FTLE	LAT.	LONG.	DATE	ן (דד	TC)	DEPTH	OUAKE	ACC	MM I	DISTANCE
CODE	NORTH	WEST		ни	Sec	(km)	MAG	a		mi [km]
CODE			1	11 1.1	, DCC	(12)		9		
			+	 1 2 5 7		- -		0 012	 	07 0 (140 0)
DMG					0.0			0.013		07.0(140.0)
DMG	33.7500		03/12/1933		0.0	0.0	4.20	0.014		87.0(140.0)
DMG	33.7500	118.0830	03/11/1933	436	0.0	0.0	4.60	0.017	IV	87.0(140.0)
DMG	33.7500	118.0830	03/11/1933	440	0.0	0.0	4.70	0.018	IV	87.0(140.0)
DMG	33.7500	118.0830	03/12/1933	2128	0.0	0.0	4.10	0.013	III	87.0(140.0)
DMG	33.7500	118.0830	03/11/1933	1956	0.0	0.0	4.20	0.014	IV	87.0(140.0)
DMG	33.7500	118.0830	03/11/1933	1547	0.0	0.0	4.00	0.013	III	87.0(140.0)
DMG	33.7500	118.0830	03/15/1933	540	0.0	0.0	4.20	0.014	IV	87.0(140.0)
DMG	33.7500	118.0830	03/11/1933	25	0.0	0.0	4.30	0.015	IV	87.0(140.0)
DMG	33.7500	118.0830	03/13/1933	343	0.0	0.0	4.10	0.013	i III	87.0(140.0)
DMG	33.7500	118.0830	03/12/1933	027	0.0	0.0	4.40	0.015	IV	87.0(140.0)
DMG	33 7500	118 0830	03/11/1933	23 5	0 0	0 0	4 20	0 014	TV I	87 0(140 0)
			03/11/1933	751	0.0			0 014		87 0(140 0)
DMC			03/11/1033		0.0			0.013	<u>+</u> <u>-</u>	87 0(140 0)
DMC					0.0			0.015		07.0(140.0)
DMG					0.0			0.015		07.0(140.0)
DMG	33.7500		03/12/1933		0.0	0.0	4.00	0.013		87.0(140.0)
DMG	33.7500	118.0830	03/11/1933	832	0.0	0.0	4.20	0.014	I IV	87.0(140.0)
DMG	33.7500	118.0830	03/20/1933	1358	0.0	0.0	4.10	0.013	III	87.0(140.0)
DMG	33.7500	118.0830	03/30/1933	1225	0.0	0.0	4.40	0.015	IV I	87.0(140.0)
DMG	33.7500	118.0830	03/11/1933	258	0.0	0.0	4.00	0.013	III	87.0(140.0)
DMG	33.7500	118.0830	03/12/1933	1825	0.0	0.0	4.10	0.013	III	87.0(140.0)
DMG	33.7500	118.0830	03/11/1933	39	0.0	0.0	4.40	0.015	IV	87.0(140.0)
DMG	33.7500	118.0830	03/12/1933	1738	0.0	0.0	4.50	0.016	IV	87.0(140.0)
DMG	33.7500	118.0830	04/02/1933	1536	0.0	0.0	4.00	0.013	III	87.0(140.0)
DMG	33.7500	118.0830	03/11/1933	1045	0.0	0.0	4.00	0.013	i III	87.0(140.0)
DMG	33.7500	118.0830	03/11/1933	336	0.0	0.0	4.00	0.013		87.0(140.0)
DMG			03/16/1933	1529	0 0			0 014		87 0(140 0)
			03/13/1933	617	0.0			0 013	<u>+</u> <u>T</u> TT	87 0(140 0)
DMC			02/12/1022	017 1210'			<u>1.00</u> <u>5</u> 20	0.015		87 0(140 0)
DMC		110.0030	03/13/1933	1 3 L 0 2				0.025		07.0(140.0)
DMG				439	0.0			0.020		07.0(140.0)
DMG			03/11/1933		0.0	0.0	4.40	0.015		87.0(140.0)
DMG	33.7500		03/13/1933	1929	0.0	0.0	4.20	0.014		87.0(140.0)
DMG	33.7500	118.0830	03/11/1933	227	0.0	0.0	4.60	0.017	IVI	87.0(140.0)
DMG	33.7500	118.0830	03/14/1933	1219	0.0	0.0	4.50	0.016	IV I	87.0(140.0)
DMG	33.7500	118.0830	03/11/1933	210	0.0	0.0	4.60	0.017	IV I	87.0(140.0)
DMG	33.7500	118.0830	03/11/1933	24	0.0	0.0	4.90	0.020	IV	87.0(140.0)
DMG	33.7500	118.0830	03/15/1933	28	0.0	0.0	4.10	0.013	III	87.0(140.0)
DMG	33.7500	118.0830	03/31/1933	1049	0.0	0.0	4.10	0.013	III	87.0(140.0)
DMG	33.7500	118.0830	03/11/1933	524	0.0	0.0	4.20	0.014	IV	87.0(140.0)
DMG	33.7500	118.0830	03/11/1933	555	0.0	0.0	4.00	0.013	i III	87.0(140.0)
DMG	33.7500	118.0830	04/01/1933	642	0.0	0.0	4.20	0.014	IV	87.0(140.0)
DMG	33.7500	118.0830	03/11/1933		0.0	0.0	4.00	0.013		87.0(140.0)
DMC			03/11/1933	216	0 0			0 019		87.0(140.0)
DMC			03/11/1032		0.0			0.015		87.0(140.0)
DMC		110.0030	03/11/1933	1 5 2 0	0.0			0.013	<u> </u>	87.0(140.0)
DMC	22.7500	110.0030	03/10/1933	1 3 0 E 0	0.0			0.014	±±± +++	07.0(140.0)
		110.0030	03/10/1933		0.0		4.20	0.014		0/.U(140.U)
DMG	33./500	118.0830	03/11/1933	88	0.0	0.0	4.50	0.016	I TA	8/.0(140.0)
DMG	33.7500	1118.0830	03/11/1933	926	0.0	0.0	4.10	0.013	III	87.0(140.0)
DMG	33.7500	1118.0830	03/11/1933	759	0.0	0.0	4.10	0.013	III	87.0(140.0)
DMG	33.7500	118.0830	03/14/1933	036	0.0	0.0	4.20	0.014	IV	87.0(140.0)
DMG	33.7500	118.0830	03/11/1933	515	0.0	0.0	4.00	0.013	III	87.0(140.0)
DMG	33.7500	118.0830	03/11/1933	910	0.0	0.0	5.10	0.022	IV	87.0(140.0)
DMG	33.7500	118.0830	03/11/1933	1944	0.0	0.0	4.00	0.013	III	87.0(140.0)

				TIME			SITE	SITE	APPROX.
FTLE	LAT.	LONG.	DATE	(UTC)	DEPTH	OUAKE	ACC.	MM I	DISTANCE
CODE	NORTH	WEST		H M Sec	(km)	MAG	a		mi [km]
CODE			1		(12)		9	- 11 - 1	[[[]]]
					- -		0 014		07 0(140 0)
DMG							0.014		07.0(140.0)
DMG	33.7500		03/11/1933	1138 0.0	0.0	4.00	0.013		87.0(140.0)
DMG	33.7500	118.0830	03/11/1933	553 0.0	0.0	4.00	0.013	III	87.0(140.0)
DMG	33.7500	118.0830	03/11/1933	259 0.0	0.0	4.60	0.017	IV	87.0(140.0)
DMG	33.7500	118.0830	03/11/1933	1025 0.0	0.0	4.00	0.013	III	87.0(140.0)
DMG	33.7500	118.0830	03/11/1933	339 0.0	0.0	4.00	0.013	III	87.0(140.0)
DMG	33.7500	118.0830	03/13/1933	432 0.0	0.0	4.70	0.018	IV	87.0(140.0)
DMG	33.7500	118.0830	03/11/1933	1141 0.0	0.0	4.20	0.014	IV	87.0(140.0)
DMG	33.7500	118.0830	03/12/1933	15 2 0.0	0.0	4.20	0.014	IV	87.0(140.0)
DMG	33.7500	118.0830	03/12/1933	1651 0.0	0.0	4.00	0.013	İ IIIİ	87.0(140.0)
DMG	33.7500	118.0830	03/11/1933	257 0.0	0.0	4.20	0.014	iv	87.0(140.0)
DMG	33 7500	118 0830	03/11/1933	911 0 0	0 0		0 015	TV I	87 0(140 0)
			03/11/1933				0 014	±v т\/	87 0(140 0)
DMC			03/11/1033				0.015		87 0(140 0)
DMC							0.013	±v тъл	07.0(140.0)
DMG							0.014		07.0(140.0)
DMG	33.7500		03/1//1933	1651 0.0	0.0	4.10	0.013		87.0(140.0)
DMG	33.7500	118.0830	03/11/1933	611 0.0	0.0	4.40	0.015	I TA I	87.0(140.0)
DMG	33.7500	118.0830	03/11/1933	513 0.0	0.0	4.70	0.018	IV	87.0(140.0)
DMG	33.7500	118.0830	03/11/1933	618 0.0	0.0	4.20	0.014	IV	87.0(140.0)
DMG	33.7500	118.0830	03/14/1933	2242 0.0	0.0	4.10	0.013	III	87.0(140.0)
DMG	33.7500	118.0830	03/16/1933	1456 0.0	0.0	4.00	0.013	III	87.0(140.0)
DMG	33.7500	118.0830	03/11/1933	521 0.0	0.0	4.40	0.015	IV	87.0(140.0)
DMG	33.2330	115.8330	06/14/1942	222549.0	0.0	4.00	0.013	III	87.2(140.4)
DMG	33.2330	115.8330	06/14/1942	213623.0	0.0	4.00	0.013	III	87.2(140.4)
DMG	33.2330	115.8330	06/24/1942	235240.0	0.0	4.00	0.013	i III	87.2(140.4)
DMG	33.8000	118.0000	10/21/1913	938 0.0	0.0	4.00	0.013	<u> </u>	87.3(140.4)
DMG	33 9500	116 8500	109/28/1946	719 9 0			0 021		87 3(140 5)
	33 9500	1175830	04/11/1941	12024 0			0 012	<u>+</u> • <u>т</u> тт	87 4(140 7)
DMC	22.2200						0.015	<u> </u>	07.1(110.7)
DMC		115.0000	09/20/1959				0.013	<u> </u>	07.0(140.9)
DMG							0.012		07.0(140.9)
DMG		115./330					0.029		87.6(140.9)
DMG	32.8560	115.7100	09/18/1936	144032.1	10.0	4.50	0.016	IV	87.6(140.9)
DMG	33.9170	116.7000	11/17/1943	112841.0	0.0	4.50	0.016	IV	87.6(141.0)
DMG	33.9330	116.7500	08/06/1938	228 0.0	0.0	4.00	0.012	III	87.7(141.2)
DMG	33.9330	116.7500	10/28/1944	183016.0	0.0	4.40	0.015	IV	87.7(141.2)
DMG	32.7330	115.7000	04/21/1960	233920.0	0.0	4.20	0.014	IV	87.7(141.2)
DMG	31.6670	116.3670	07/17/1959	72630.0	0.0	4.90	0.020	IV	88.0(141.6)
DMG	33.9960	117.2700	02/17/1952	123658.3	16.0	4.50	0.016	IV	88.0(141.6)
DMG	32.9500	115.7170	06/14/1953	41729.9	0.0	5.50	0.027	v	88.1(141.7)
DMG	32.9500	115.7170	06/14/1953	42958.0	0.0	4.80	0.019	i iv i	88.1(141.7)
DMG	33,9680	116.8820	06/27/1959	162211.1	13.8	4.00	0.012	i III	88.1(141.7)
DMG	33.2160	115.8080	04/25/1957	215738.7	-0.3	5.20	0.023	I TV I	88.1(141.8)
DMC		115,7000	12/19/1958	1437 0 0			0 013	<u>-</u> , <u>T</u> TT	88 2(141 9)
DMC		115,7000	12/10/106	1 2/2 0			0.013	<u>+</u> ++ _T T T	99.2(111.9)
MOT			04/20/1903	1 1 3 1 2 0			0.012	<u>+</u> + + -	00.2(141.9) 00.2(142.0)
DMC		$ \pm \pm 0.0000$	0141/00/20/1000	$ \frac{425}{72026} 0.0 $				±±± ,,	00.2(142.0)
		⊥ ⊥ / . ∠500	0 1 / 23 / 1923				0.041	V TTT'	00.3(142.0)
DMG	34.0000			445 0.0	0.0	4.00	0.012		88.3(142.0)
DMG	34.0000	1117.2830	11/07/1939	1852 8.4	0.0	4.70	0.018	IV	88.3(142.1)
DMG	32.9000	115.7000	10/02/1928	19 1 0.0	0.0	5.00	0.021	IV	88.5(142.4)
DMG	33.7500	118.1330	03/11/1933	11 4 0.0	0.0	4.60	0.017	IV	88.7(142.8)
DMG	32.9150	115.6970	05/23/1963	63635.7	1.2	4.30	0.014	IV	88.8(142.9)
MGI	34.0000	117.4000	05/22/1907	652 0.0	0.0	4.60	0.017	IV	88.9(143.1)
T-A	34.0000	117.4200	04/12/1888	1315 0.0	0.0	4.30	0.014	IV	89.0(143.3)

				TIME			SITE	SITE	APPROX.
FILE	LAT.	LONG.	DATE	(UTC)	DEPTH	OUAKE	ACC.	MM	DISTANCE
CODE	NORTH	WEST		H M Sec	(km)	MAG.	a	INT.	mi [km]
	+-	+	, +	+	-+	+	+		
Ψ-Δ		117 4200	109/10/1920	11415 0 0		4 30	0 014		89 0(143 3)
			06/20/1022				0.011		99.0(113.3)
DMC	22 1670	117.0000	00/30/1923				0.010		09.1(143.3)
DMG DMG		117 7000		43840.0		4.30	0.014		89.1(143.4)
DMG	31.5000			34542.0		4.00	0.012		89.1(143.4)
DMG	33.7670	118.1170	11/04/1939	2141 0.0	0.0	4.00	0.012	III	89.1(143.4)
DMG	33.9500	116.7330	04/26/1942	151023.0	0.0	4.00	0.012	III	89.1(143.4)
DMG	33.9670	116.8000	09/07/1945	153424.0	0.0	4.30	0.014	IV I	89.1(143.5)
DMG	32.3330	115.7500	12/15/1938	0 2 0.0	0.0	4.00	0.012	III	89.2(143.5)
DMG	33.8980	116.5690	11/17/1964	145228.2	10.3	4.00	0.012	III	89.2(143.6)
MGI	33.7000	116.2000	08/12/1917	11 0 0.0	0.0	4.00	0.012	III	89.2(143.6)
GSG	31.8060	116.1280	03/23/1994	025916.2	22.0	5.00	0.021	IV I	89.4(143.9)
DMG	33.1750	115.7640	10/28/1963	81417.1	0.9	4.00	0.012	III	89.5(144.0)
PAS	32.9140	115.6840	01/28/1988	254 2.4	5.9	4.70	0.018	I IV	89.6(144.1)
GSP	33.9510	117.7090	01/05/1998	181406.5	11.0	4.30	0.014	IV	89.6(144.2)
DMG	34.0000	1117.5000	07/03/1908	1255 0.0	0.0	4.00	0.012	і ттті	89.8(144.5)
MGT		1175000	12/16/1858				0 060		89 8(144 5)
DZG		117 2450	10/02/1985	2344124	1 15 2	4 80	0.000		89 8(144 6)
	34.0230	117.2450	10/02/1000	12 655 7					90.0(144.0)
CCD		117,0300		12 055.7			0.017		09.9(144.0)
GSP		117.2300					0.010		09.9(144.7)
DMG	33.7500		05/16/1933	205855.0			0.012		89.9(144.7)
DMG		115.8330	06/10/1961	21/42.0		4.10	0.013		90.0(144.8)
DMG	33.9730	1116.7690	06/10/1944	111531.9	10.0	4.00	0.012		90.0(144.9)
MGI	33.7500	116.2500	11/19/1917	1730 0.0	0.0	4.00	0.012	III	90.1(144.9)
DMG	33.9760	116.7750	10/17/1965	94519.0	17.0	4.90	0.020	IV	90.1(145.1)
DMG	32.0000	118.5000	07/15/1943	2138 0.0	0.0	4.00	0.012	III	90.2(145.2)
DMG	33.7500	118.1830	08/04/1933	41748.0	0.0	4.00	0.012	III	90.5(145.6)
DMG	33.7830	118.1330	10/02/1933	91017.6	0.0	5.40	0.025	V	90.6(145.7)
DMG	33.7830	118.1330	11/20/1933	1032 0.0	0.0	4.00	0.012	III	90.6(145.7)
DMG	33.7830	118.1330	01/13/1940	749 7.0	0.0	4.00	0.012	III	90.6(145.7)
DMG	32.9900	115.6820	11/29/1964	142526.4	13.8	4.20	0.014	III	90.6(145.7)
DMG	34.0330	117.3170	09/03/1935	647 0.0	0.0	4.50	0.016	IV	90.7(146.0)
DMG	33.7830	116.2830	03/04/1937	16 4 0.0	0.0	4.00	0.012	III	90.7(146.0)
DMG	34.0330	117.3500	04/18/1940	184343.9	0.0	4.40	0.015	IV	90.9(146.2)
DMG	31 8000	116 1000	10/10/1953	1849 6 0		5 00	0 021	TV	90 9(146 2)
DMG		118 7340	09/13/1937	221439 5			0 012	<u>-</u> ,	91 0(146 4)
DMG	33 9760	1167210	06/12/1944	104534 7		5 10	0 022		91 1(146 5)
		1115 6670	00/12/1911	23021 0			0.012	<u>+</u> • <u>T</u> TT	91 1(146 6)
DMC	32.3000	115.0070	02/12/1952				0.015		91 1(1/6 6)
DMC		115.7500					0.013		91.1(140.0)
DMG		115.7500					0.017		91.1(140.0)
DMG DMG		115.7500				4.30	0.014		91.1(146.6)
DMG	32.2500	115.7500	02/16/1959	643 0.0		4.00	0.012		91.1(146.6)
DMG	32.2500	115.7500	01/18/1959		0.0	4.00	0.012		91.1(146.6)
DMG	32.2500	115.7500	12/19/1958	1533 0.0	0.0	4.00	0.012	III	91.1(146.6)
DMG	32.2500	115.7500	01/07/1959	1514 0.0	0.0	4.30	0.014	IV I	91.1(146.6)
DMG	32.2500	115.7500	12/25/1958	127 0.0	0.0	4.60	0.017	IV	91.1(146.6)
DMG	32.2500	115.7500	12/02/1958	957 0.0	0.0	4.30	0.014	IV I	91.1(146.6)
DMG	32.2500	115.7500	12/04/1958	142 0.0	0.0	4.20	0.013	III	91.1(146.6)
DMG	32.2500	115.7500	01/25/1959	345 0.0	0.0	4.00	0.012		91.1(146.6)
DMG	32.2500	115.7500	02/26/1959	3 3 0.0	0.0	4.50	0.016	IV	91.1(146.6)
DMG	32.2500	115.7500	01/25/1959	10 1 0.0	0.0	4.00	0.012	III	91.1(146.6)
DMG	32.2500	115.7500	01/22/1959	023 0.0	0.0	4.60	0.017	IV	91.1(146.6)
DMG	32.2500	115.7500	12/15/1958	621 0.0	0.0	4.60	0.017	IV	91.1(146.6)
DMG	32.2500	115.7500	12/14/1958			4,20	0.013	TTT	91.1(146.6)
2.10	122.2300	1	1 - 2, - 1, - 2, 50	, , , , , ,		1 1.20	0.010		

				TIME			SITE	SITE	APPROX.
FILE	LAT.	LONG.	DATE	(UTC)	DEPTH	QUAKE	ACC.	MM	DISTANCE
CODE	NORTH	WEST		H M Sec	(km)	MAG.	q	INT.	mi [km]
	' ++-	' +	' +	+	-+	, +	++		
DMG	32,2500	115.7500	12/01/1958	843 0.0	0.0	4.10	0.013		91.1(146.6)
DMG	32.2500	115.7500	12/01/1958	620.0	0.0	5.50	0.027		91.1(146.6)
DMG	32 2500	115,7500	12/08/1958		0 0		$0 \ 015$	TV I	91 1(146 6)
DMG	32 2500	115,7500	12/08/1958				0 016		91 1(146 6)
DMG	32.2500	115,7500	12/02/1958			1.30	0.013	<u>+</u> v ттт	91 1(146 6)
	32.2500	115,7500	12/02/1950	1235 0.0			0.012	<u>+</u> + + <u>+</u> + - + +	91 1(146 6)
DMC	32.2500	115.7500	01/02/1050					<u>+</u> + + -	91.1(140.0)
DMC		115.7500	12/23/1950				0.012	±±± тъл	91.1(140.0)
DMC		115.7500	12/20/1950				0.010	⊥ V ⊤₹7	91.1(140.0)
DMC		115.7500					0.013		91.1(140.0)
		115.7500	12/01/1950				0.021	⊥∨ ⊤⊤⊤	91.1(140.0)
		115.7500	12/24/1990					<u>⊥</u> ⊥⊥ _T T T	91.1(140.0)
		115.7500	01/10/1050			4.10	0.013	<u>⊥</u> ⊥⊥ _T T T	91.1(140.0)
		115.7500	12/01/1950				0.013		91.1(140.0)
DMC		115.7500	12/01/1950						91.1(140.0)
DMG		115.7500					0.018	1V TTT	91.1(140.6)
DMG		115.7500		1922 0.0		4.10 4.00	0.013		91.1(146.6)
DMG	32.2500	115.7500			0.0		0.012		91.1(146.6)
DMG	32.2500	115.7500	12/06/1958	331 0.0	0.0	4.50	0.016		91.1(146.6)
DMG	32.2500	115.7500			0.0	4.00	0.012		91.1(146.6)
DMG	32.2500	115.7500	12/20/1958	0 7 0.0	0.0	4.70	0.018		91.1(146.6)
DMG	32.2500	115.7500	12/02/1958	1358 0.0	0.0	4.20	0.013		91.1(146.6)
DMG	32.2500	115.7500	12/17/1958	1330 0.0	0.0	4.30	0.014	IV	91.1(146.6)
DMG	32.2500	115.7500	03/04/1959	1659 0.0	0.0	4.10	0.013		91.1(146.6)
DMG	32.2500	115.7500	01/14/1959	332 0.0	0.0	4.20	0.013	III	91.1(146.6)
DMG	32.2500	115.7500	12/01/1958	32118.0	0.0	5.80	0.031	V	91.1(146.6)
DMG	32.2500	115.7500	12/01/1958	340 0.0	0.0	4.00	0.012		91.1(146.6)
DMG	32.2500	115.7500	01/10/1959	15 2 0.0	0.0	4.00	0.012		91.1(146.6)
DMG	32.2500	115.7500	12/03/1958	19 6 0.0	0.0	4.10	0.013	III	91.1(146.6)
DMG	32.2500	115.7500	01/22/1959	820 0.0	0.0	4.10	0.013	III	91.1(146.6)
DMG	32.2500	115.7500	01/22/1959	739 0.0	0.0	4.00	0.012	III	91.1(146.6)
PAS	31.8940	115.9940	03/04/1979	183746.0	5.0	4.00	0.012	III	91.2(146.7)
DMG	33.0270	115.6810	05/23/1963	1553 1.8	0.4	4.80	0.018	IV	91.2(146.7)
DMG	34.0430	117.2280	04/03/1939	25044.7	10.0	4.00	0.012	III	91.2(146.8)
PAS	33.9760	116.7130	08/06/1984	81436.6	14.2	4.30	0.014	IV	91.2(146.8)
DMG	31.8540	116.0320	07/23/1970	125947.0	8.0	4.40	0.015	IV	91.2(146.8)
DMG	33.9590	116.6510	09/23/1949	214440.1	12.2	4.00	0.012	III	91.3(146.9)
GSP	34.0470	117.2550	02/21/2000	134943.1	15.0	4.50	0.016	IV	91.5(147.3)
DMG	33.8800	116.4370	04/17/1959	1619 0.2	22.2	4.20	0.013	III	91.6(147.3)
DMG	33.9810	116.7020	06/12/1944	222119.5	10.0	4.20	0.013	III	91.7(147.6)
PAS	33.9790	116.6810	12/16/1988	553 5.0	8.1	4.80	0.018	IV	92.0(148.0)
DMG	33.0080	115.6600	06/17/1965	74013.5	8.8	4.10	0.013	III	92.1(148.2)
PAS	33.0790	115.6800	04/26/1981	124043.4	6.0	4.20	0.013	III	92.1(148.2)
GSP	32.6120	115.6280	07/27/1992	204008.8	15.0	4.10	0.013	III	92.3(148.5)
DMG	33.9940	116.7120	06/12/1944	111636.0	10.0	5.30	0.024	IV	92.4(148.7)
PAS	33.9670	116.6170	07/08/1986	155526.2	6.0	4.00	0.012	III	92.5(148.9)
PAS	33.9670	116.6170	07/08/1986	102240.6	6.0	4.40	0.015	IV	92.5(148.9)
PAS	32.7880	115.6180	10/15/1979	2355 2.6	5.0	4.20	0.013	III	92.6(149.0)
PAS	33.9530	116.5720	10/15/1986	22847.8	8.7	4.70	0.017	IV	92.6(149.0)
MGI	34.0000	117.7000	12/03/1929	950.0	0.0	4.00	0.012	III	92.6(149.1)
DMG	32.3000	115.7000	02/28/1961	212254.0	0.0	4.40	0.015	IV	92.7(149.1)
DMG	34.0140	116.7710	06/10/1944	111150.5	10.0	4.50	0.016	IV	92.7(149.2)
DMG	32.7940	115.6150	04/23/1968	1624 9.5	5.0	4.10	0.013	III	92.8(149.3)
DMG	33.7830	118.2000	12/27/1939	192849.0	0.0	4.70	0.017	IV	92.9(149.5)

				TIME			SITE	SITE	APPROX.
FILE	LAT.	LONG.	DATE	(UTC)	DEPTH	QUAKE	ACC.	MM	DISTANCE
CODE	NORTH	WEST		Н М Ѕес	(km)	MAG.	g	INT. $ $	mi [km]
	++-	+	+	+	-+	+	++		
DMG	32.1500	115.7670	06/10/1959	172046.0	0.0	4.10	0.013	III	92.9(149.6)
DMG	34.0000	116.7000	08/25/1944	73025.0	0.0	4.20	0.013	III	93.0(149.7)
DMG	32.8830	115.6170	01/16/1946	11 654.0	0.0	4.20	0.013	III	93.1(149.9)
DMG	33.6330	118.4000	10/17/1934	938 0.0	0.0	4.00	0.012	III	93.2(149.9)
PAS	33.9890	116.6490	07/17/1986	203515.0	6.2	4.00	0.012	III	93.3(150.1)
GSP	32.9750	118.7910	03/04/1992	190627.0	6.0	4.20	0.013	III	93.3(150.2)
DMG	32.0330	115.8330	01/28/1932	171749.0	0.0	4.50	0.015	IVI	93.4(150.2)
DMG	32.0330	115.8330	01/08/1932	23445.0	0.0	4.00	0.012		93.4(150.2)
PAS	33.9910	116.6490	07/17/1986	215445.2	7.4	4.40	0.015		93.4(150.3)
DMG	32.2670	115.7000	06/11/1960	213656.0	0.0	4.50	0.015		93.4(150.3)
DMG		115./1/0	10/22/1942	15038.0	0.0		0.026		93.4(150.3)
DMG		115./1/0	10/26/1942	615 4.0		4.50 4.50	0.015		93.4(150.3)
DMG		115./1/0	10/26/1942	3 215.0			0.015		93.4(150.3)
DMG			10/26/1942	34310.0			0.012		93.4(150.3)
PAS	31.7760	116.0660		232612.9			0.013		93.5(150.4)
DMG	34.0290 22.7500	110.7870	04/30/1954	03023.9		4.20 4.50	0.013		93.5(150.4)
DMG	33.7590 21.0220	118.2530	08/31/1938	31814.2		4.50 4.10	0.015		93.5(150.5)
	21.0330 21	116.0000	00/07/1950	640.0					93.0(150.0)
	21.0330 21	110.0000	04/20/1950	041 0.0			0.014		93.0(150.0)
	21.0330	116.0000	05/10/1950	121210			0.020		93.0(150.0)
DMG		110.2000	10/31/1943	131210.0	2 2	4.50	0.013		93.0(150.7) 93.7(150.8)
PAS	34.0000	117.7390	02/10/1909	101615 0				<u> </u>	93.7(150.0)
PAS T-N	34 0800	117,0550	10/07/1869			4.30			93.8(150.9) 93.8(150.9)
	33 2840	117.2500	10/07/1963	145023 4				<u> </u>	93.8(151.0)
	31 5680	116 3630	08/13/1967	8 213 0		4.00 4.50	0.012		93 8(151 0)
	31.7090	116, 1370	02/16/1967	1738 8 0	28	4.30 4.20	0.013	<u> </u>	93.0(151.0)
			10/17/1954	225718 0		570	0.019		94 1(151 4)
DMG		1165000	10/18/1939	557 0 0			0.020	• ттт	94.1(151.4)
PAS	33 9650	117 8860	01/01/1976	172012 9	6 2	4 20	0.012	<u>+</u> + + <u>+</u> + + +	$94 \ 2(151 \ 6)$
DMG	33 2330	115,7000	08/30/1946	111645 0			0.016		94 3(151 8)
DMG	32,4500	115.6170	01/31/1939	1616 0.0	0.0	4.00	0.012	<u> </u>	94.6(152.2)
DMG	32,4500	115.6170	06/20/1935	724 0.0	0.0	4.00	0.012		94.6(152.2)
DMG	32.4500	115.6170	03/21/1939	1351 0.0	0.0	4.00	0.012		94.6(152.2)
DMG	32.4500	115.6170	04/17/1938	347 0.0	0.0	4.00	0.012		94.6(152.2)
DMG	32.4500	115.6170	03/25/1939	259 0.0	0.0	4.00	0.012	i III	94.6(152.2)
PAS	32.6630	115.5830	10/31/1980	125536.7	3.6	4.40	0.015	IV	94.7(152.3)
DMG	33.7830	118.2500	11/14/1941	84136.3	0.0	5.40	0.025	v	94.7(152.4)
PAS	33.9980	116.6060	07/08/1986	92044.5	11.7	5.60	0.027	v	94.7(152.5)
PAS	33.9870	116.5690	07/09/1986	01232.1	6.0	4.40	0.014	IV	94.8(152.6)
DMG	32.5000	115.6000	12/08/1933	437 0.0	0.0	4.00	0.012	III	94.9(152.7)
DMG	32.1590	115.7240	01/19/1972	15942.8	8.0	4.00	0.012	III	94.9(152.8)
GSP	34.0850	116.9890	06/30/1992	214900.3	3.0	4.40	0.014	IV	95.0(152.8)
PAS	32.0880	115.7650	04/13/1984	32835.6	6.0	4.10	0.012	III	95.0(152.8)
DMG	33.0560	115.6200	06/16/1965	242 6.1	-0.5	4.40	0.014	IV	95.1(153.0)
DMG	32.2000	115.7000	10/16/1954	8 518.0	0.0	4.00	0.012	III	95.1(153.0)
DMG	32.8830	115.5830	04/13/1938	1929 0.0	0.0	4.50	0.015	IV	95.1(153.0)
DMG	33.6630	118.4130	01/08/1967	738 5.3	17.7	4.00	0.012	III	95.1(153.1)
PAS	33.0980	115.6320	04/26/1981	12 928.4	3.8	5.70	0.029	V	95.1(153.1)
PAS	32.8390	115.5780	10/15/1979	232552.6	8.1	4.00	0.012	III	95.1(153.1)
MGI	34.1000	117.2000	04/23/1923	2113 0.0	0.0	4.00	0.012	III	95.1(153.1)
DMG	32.2670	115.6670	05/17/1959	1257 0.0	0.0	4.00	0.012	III	95.2(153.2)
PAS	33.0990	115.6300	04/26/1981	12 557.4	4.2	4.00	0.012	III	95.2(153.3)

				TIME			SITE	SITE	APPROX.
FTLE	LAT.	LONG.	DATE	(UTC)	DEPTH	OUAKE	ACC.	I MM I	DISTANCE
CODE	NORTH	WEST		H M Sec	(km)	MAG	a		mi [km]
CODE			1		(12)		9	- 1 4 - 1	
MOT					- -		0 010	 	
MGI	34.1000				0.0		0.012		95.3(153.3)
MGT	34.1000	1117.3000	07/15/1905	2041 0.0	0.0	5.30	0.023	I TA I	95.3(153.3)
MGI	34.1000	117.3000	12/27/1901	11 0 0.0	0.0	4.60	0.016	IV	95.3(153.3)
DMG	34.1000	117.3000	02/16/1931	1327 0.0	0.0	4.00	0.012	III	95.3(153.3)
DMG	33.8170	118.2170	10/22/1941	65718.5	0.0	4.90	0.019	IV I	95.3(153.4)
PAS	33.1100	115.6270	04/25/1981	21155.3	4.8	4.10	0.012	III	95.6(153.9)
DMG	32.2500	115.6670	04/29/1932	165233.0	0.0	4.00	0.012	III	95.6(153.9)
DMG	31.6250	116.2110	06/10/1969	34132.7	-2.0	5.00	0.020	IV I	95.7(153.9)
PAS	32.9040	115.5760	10/17/1979	191438.4	15.9	4.10	0.012	III	95.7(154.0)
GSP	34.0970	116.9960	12/05/1997	170438.9	4.0	4.10	0.012	İ IIIİ	95.7(154.0)
PAS	33.1030	115,6220	11/04/1976	133127.7	3.7	4.20	0.013	і ттті	95.8(154.1)
DMG	33 9330	116 4000	12/10/1948	204257 0	0 0		0 014	I TV I	95 8(154 1)
PAS	33 1030	115 6210	11/04/1976	1139 8 4	0.9		0 012	<u>+</u> • <u>T</u> TT	95 8(154 2)
DVG	34 0310	116 6570		02412 8			0.012		95.0(151.2) 95.8(154.2)
PMC		110.0070		04646 1		1.10 1 10	0.014	<u> </u>	95.0(154.2)
DMG							0.012		96.0(154.4)
DMG	33.6320			/3/30.4	11.4	4.00	0.012		96.0(154.5)
PAS	33.1090	115.6190	11/04/19/6	114940.4	2.2	4.10	0.012		96.0(154.5)
DMG	33.9000	118.1000	07/08/1929	1646 6.7	13.0	4.70	0.017	IV	96.2(154.7)
DMG	33.9330	116.3830	12/04/1948	234317.0	0.0	6.50	0.043	VI	96.3(154.9)
PAS	32.9070	115.5660	10/16/1979	114655.3	11.4	4.80	0.018	IV	96.3(154.9)
PAS	33.1170	115.6150	04/26/1976	64637.5	14.8	4.00	0.012	III	96.4(155.1)
DMG	32.1500	115.7000	09/26/1959	75316.0	0.0	4.10	0.012	III	96.5(155.3)
DMG	33.9670	116.4500	12/11/1948	161220.0	0.0	4.50	0.015	IV VI	96.5(155.3)
GSP	33.8760	116.2670	06/29/1992	160142.8	1.0	5.20	0.022	IV	96.5(155.3)
GSP	33.9450	116.3990	07/05/1992	054938.2	3.0	4.00	0.012	İ IIIİ	96.5(155.4)
DMG	34.1180	117.3410	09/22/1951	82239.1	11.9	4.30	0.014	i III	96.7(155.6)
T-A	33,5000	115.8200	05/00/1868	0 0 0.0	0.0	6.30	0.039	v v	96.7(155.6)
DMG	33.9330	116.3670	12/05/1948	0 721.0	0.0	4.90	0.019	TV	96.7(155.7)
PAS	33 0010	1115 5760	10/16/1979	74947 2	85		0 012	<u>-</u> , <u>T</u> TT	96 7(155 7)
	34 1120	117 4260	0 10 10 10 10 10 10 10	12338 4			0.012		96 8(155 7)
DMC	32 0270	1115 59/0		12000.1			0.012		96 8(155 8)
DMC	33.0370	115.5040	00/17/1903	101020.9			0.014	<u>+</u> + + <u>+</u> + + + <u>+</u> +	90.0(155.0)
							0.013		90.9(155.9)
GSP	33.0300				6.0		0.012		96.9(156.0)
DMG	33.9630	116.4250	01/13/1950	5 719.4	5.9	4.10	0.012		96.9(156.0)
DMG	33.9670	116.4330	12/05/1948	04235.0	0.0	4.60	0.016	IV	96.9(156.0)
DMG	33.2670	115.6670	08/10/1951	1130 8.0	0.0	4.40	0.014	IV	97.0(156.1)
DMG	34.1000	116.8830	10/24/1935	1527 0.0	0.0	4.00	0.012	III	97.0(156.1)
DMG	34.1000	116.8830	10/24/1935	1451 0.0	0.0	4.50	0.015	IV	97.0(156.1)
DMG	34.1000	116.8830	10/24/1935	1452 0.0	0.0	4.50	0.015	IV	97.0(156.1)
DMG	32.4170	115.5830	01/03/1936	14 7 0.0	0.0	4.00	0.012	III	97.0(156.1)
DMG	32.9820	115.5660	05/23/1963	964.7	25.4	4.60	0.016	IV I	97.1(156.2)
DMG	33.0190	115.5730	06/17/1965	743 5.0	-2.0	4.20	0.013	III	97.1(156.3)
DMG	33.2000	115.6330	10/27/1963	145245.2	-2.0	4.10	0.012	İ IIIİ	97.2(156.4)
GSP	33.9460	116.3790	04/24/1992	123605.7	10.0	4.10	0.012		97.2(156.4)
PAS	32 9500		10/16/1979	33934 3	12 1		0 015		$97\ 2(156\ 4)$
	33 0330	116 3500	12/05/1040	04032 0			0 014	<u>+</u> v _T t ₇	97 2(156 5)
DMC	24 1270	110.3300				1.10	0.014		97.2(150.5)
DIVIG	01 1 1 0 0 0	116 0000	06/20/1920	1111100 0			0.014		97.3(10.5)
GSP	34.1200	115 550	00/29/1992	144126.0	4.0	4.40	0.014		97.3(150.6)
DMG	32.1830	115.6670	U9/21/1959	$ \pm 1/53.0$	0.0	4.30	U.UI3		9/.3(156.6)
GSP	34.1120	1116.9200	110/01/1998	1181816.0	4.0	4.70	0.017	IV	97.4(156.8)
DMG	34.1160	117.4750	06/28/1960	20 048.0	12.0	4.10	0.012	III	97.4(156.8)
DMG	33.8000	118.3000	11/03/1931	16 5 0.0	0.0	4.00	0.011	III	97.4(156.8)
MGI	33.8000	118.3000	12/31/1928	1045 0.0	0.0	4.00	0.011	III	97.4(156.8)

				TIME			SITE	SITE	APPROX.
FILE	LAT.	LONG.	DATE	(UTC)	DEPTH	QUAKE	ACC.	MM	DISTANCE
CODE	NORTH	WEST		H M Sec	(km)	MAG.	g	INT. $ $	mi [km]
	++-	+	+	+	-+	+	++		
GSP	33.9020	116.2840	07/24/1992	181436.2	9.0	5.00	0.019	IV	97.4(156.8)
GSP		116.2880	05/07/1995			4.80	0.018		97.5(156.9)
DMG	33.8670	118.2000				4.00	0.011		97.5(156.9)
PAS	33.11/0	115.5950	11/04/19/6				0.014		97.5(156.9)
DMG	32.3540	115.5930	03/1//19/2	029 1.2		4.50	0.015		97.5(156.9)
PAS	33.1180 22 1220	115.5950	11/04/19/6	62110.7					97.5(157.0)
PAS	33.1230 22 1100	115.5900	11/04/19/0	54020.9		4.20	0.013		97.0(157.0) 07.0(157.4)
CGD		115.3900	11/04/19/0					<u>+</u> + + <u>+</u> + + + +	97.0(157.4) 97.8(157.4)
CGD	33.7500	116 3410	12/10/1902	011602 6			0.011	<u>+</u> + + <u>+</u> + + + +	97.0(157.4)
DVG	33.9400	110.3410	03/04/1992	011002.0				<u>+</u> + + <u>+</u> + + + +	97.9(157.0) 97.9(157.6)
CGD CGD	34 1210	1116 9280	08/16/1998	133440 2	1 <u>2.0</u>		0.012 0.017		97.9(157.6)
PAS	32 9270	115 5400	10/16/1979	54910.2	10.0	5 10	0.017		98 0(157 6)
PAS	32.9450	115,5430	10/16/1979	31625 4	10.1	4 10	0.020	<u>+</u> • <u>T</u> TT	98 0(157 6)
DMG	32.5130	115 5330	04/02/1947	151539 0			0.013	<u>+</u> + + <u>T</u> T T	98 0(157 7)
PAS	32 9280	115 5390	10/16/1979	61948 7	9 2	5 10	0 020		98 0(157 7)
DMG	34 1240	117 4800	05/15/1955	17 326 0			0.020	<u>+</u> • <u>T</u> TT	98 0(157 7)
DMG	34,1000	116.8000	10/24/1935	1448 7.6		5.10	0.020		98.0(157.8)
PAS	32,9600	115.5440	10/16/1979	31047.1	9.4	4.50	0.015	IV	98.1(157.8)
DMG	33.8670	118.2170	06/19/1944	0 333.0	0.0	4.50	0.015	IV	98.1(157.8)
DMG	33.8670	118.2170	06/19/1944	3 6 7.0	0.0	4.40	0.014	IV	98.1(157.8)
DMG	34.0000	116.4670	12/05/1948	05057.0	0.0	4.40	0.014	IV	98.1(157.9)
DMG	34.0000	116.4670	12/06/1948	246 8.0	0.0	4.30	0.013	III	98.1(157.9)
PAS	33.0140	115.5550	10/16/1979	65842.8	9.1	5.50	0.025	v	98.1(157.9)
DMG	34.1320	117.4260	04/15/1965	20 833.3	5.5	4.50	0.015	IV	98.1(157.9)
DMG	34.1400	117.3390	02/26/1936	93327.6	10.0	4.00	0.011		98.2(158.0)
PAS	32.9130	115.5340	10/16/1979	6 439.0	8.0	4.00	0.011	III	98.2(158.0)
DMG	32.3000	115.6000	01/07/1960	175130.0	0.0	4.10	0.012	III	98.2(158.0)
DMG	34.0170	116.5000	07/25/1947	15647.0	0.0	4.60	0.016	IV	98.3(158.3)
DMG	34.0170	116.5000	07/30/1947	52217.0	0.0	4.20	0.013	III	98.3(158.3)
DMG	34.0170	116.5000	08/01/1947	17 137.0	0.0	4.10	0.012	III	98.3(158.3)
DMG	34.0170	116.5000	07/25/1947	75730.0	0.0	4.20	0.013	III	98.3(158.3)
DMG	34.0170	116.5000	07/26/1947	24941.0	0.0	5.10	0.020	IV	98.3(158.3)
DMG	34.0170	116.5000	07/24/1947	225426.0	0.0	4.90	0.018	IV	98.3(158.3)
DMG	34.0170	116.5000	07/25/1947	61949.0	0.0	5.20	0.021	IV	98.3(158.3)
DMG	34.0170	116.5000	07/29/1947	163615.0	0.0	4.20	0.013	III	98.3(158.3)
DMG	34.0170	116.5000	07/25/1947	161453.0	0.0	4.50	0.015	IV	98.3(158.3)
DMG	34.0170	116.5000	07/26/1947	231351.0	0.0	4.10	0.012	III	98.3(158.3)
DMG	34.0170	116.5000	07/25/1947	04631.0	0.0	5.00	0.019	IV	98.3(158.3)
DMG	34.0170	116.5000	07/24/1947	221046.0	0.0	5.50	0.025	V	98.3(158.3)
DMG	34.0170	116.5000	08/08/1947	64745.0	0.0	4.00	0.011	III	98.3(158.3)
DMG	34.0170	116.5000	07/26/1947	12415.0	0.0	4.20	0.013	III	98.3(158.3)
DMG	34.0170	116.5000	07/24/1947	225341.0	0.0	4.30	0.013	III	98.3(158.3)
DMG	34.0170	116.5000	07/25/1947	51752.0	0.0	4.30	0.013	III	98.3(158.3)
DMG	34.0170	116.5000	07/26/1947		0.0	4.50	0.015	IV	98.3(158.3)
USG	34.1390	117.3860	02/21/1987	231530.1	2.6	4.07	0.012		98.3(158.3)
GSP	33.1920	115.6080	12/31/1997		10.0	4.10	0.012	III	98.3(158.3)
DMG	33.9960	117.9750	06/15/1967	458 5.5	10.0	4.10	0.012	III	98.4(158.3)
PAS	32.8920	115.5260		2011 6.4	5.0	4.10	0.012		98.5(158.4)
PAS	32.9090	115.5280	10/16/19.79	$ \perp 013.9$	4.8	4.60	U.U16		98.5(158.5)
PAS	34.1350	116 0500		/1930.4	4.6	4.10	0.012 0.011		98.5(158.5)
DMG	34.⊥330	116.9500	00/10/1938			4.00	U.UII		98.0(158.6)
GSG	33.9430	⊥⊥b.3250	04/23/1992	∪5∠3⊥6.2	5.0	4.00	0.011	TTT	98.6(158.6)

				TIME			SITE	SITE	APPROX.
FILE	LAT.	LONG.	DATE	(UTC)	DEPTH	QUAKE	ACC.	MM	DISTANCE
CODE	NORTH	WEST		H M Sec	(km)	MAG.	g	INT.	mi [km]
	++-	+	+	+	-+	+	++		
PAS	32.9320	115.5300	10/16/1979	61346.5	8.0	4.10	0.012	III	98.6(158.6)
PAS	33.1820	115.5990	03/06/1989	221647.6	1.0	4.30	0.013	III	98.6(158.7)
DMG	34.1270	117.5210	12/27/1938	10 928.6	10.0	4.00	0.011	III	98.6(158.7)
DMG	33.9670	118.0500	01/30/1941	13446.9	0.0	4.10	0.012	III	98.6(158.7)
GSP	33.9470	116.3300	09/09/1992	125045.1	5.0	4.30	0.013	III	98.6(158.7)
GSP	33.9510	116.3380	05/18/1992	154418.0	7.0	4.90	0.018	IV	98.6(158.7)
DMG	33.7710	116.0500	09/02/1956	24637.0	14.1	4.20	0.013	III	98.7(158.8)
GSP	33.9330	116.3020	04/27/1992	031119.3	0.0	4.20	0.013	III	98.7(158.8)
DMG	32.9670	115.5330	02/13/1951	174634.0	0.0	4.10	0.012	III	98.8(158.9)
DMG	32.9670	115.5330	02/13/1951	1716 0.0	0.0	4.20	0.013	III	98.8(158.9)
PDP	33.9370	116.3060	07/25/1992	043160.0	5.0	4.90	0.018	IV	98.8(159.0)
DMG	33.9580	116.3460	01/08/1952	63427.4	11.4	4.40	0.014	IV	98.8(159.0)
GSP	33.9430	116.3150	05/06/1992	023843.3	7.0	4.50	0.015	IV	98.9(159.1)
PAS	33.9850	116.4020	02/15/1985	232626.6	2.3	4.00	0.011		98.9(159.1)
PAS	33.1820	115.5940	03/07/1989	74344.1	0.5	4.20	0.013		98.9(159.1)
DMG	33.8500	118.2670	03/11/1933	1425 0.0	0.0	5.00	0.019	IV	98.9(159.1)
DMG	33.8500	118.2670	03/11/1933	629 0.0	0.0	4.40	0.014		98.9(159.1)
PAS	32.8990	115.5190	10/16/19/9	/2324.2	9.0		0.013		98.9(159.2)
PAS	32.9260	115.5230			9.6	4.30	0.013		98.9(159.2)
DMG	34.1000	117.6830	01/18/1934		0.0		0.011		98.9(159.2)
DMG	34.1000	1117.6830	01/09/1934	1410 0.0		4.50	0.015		98.9(159.2)
DMG		115.6000	11/12/1942	1 / 56 1 2 . 0			0.011		99.0(159.3)
PAS	32.9470	115.525U	10/10/19/9	139 3.3		4.00 4.10	0.011		99.0(159.3)
DMG	32.2020	115.6000		94253.4			0.012		99.0(159.4)
DMG	33.11/0 22.1170	115.56/0		1024 0.0			0.011		99.1(159.4)
	33.1170 22.1170 22.1170 23	115.5070	07/20/1950	1/2/0.0		4.70 1 10	0.010	<u> </u>	99.1(159.4)
	33.1170 22.1170 22.1170 23	115.5070	07/20/1950	2113 0.0		4.10		<u>⊥</u> ⊥⊥ <u>⊤</u> ⊤⊤	99.1(199.4)
	33.1170 22.1170 22.1170 23	115.5070	07/20/1950	1730 0.0				<u>⊥</u> ⊥⊥ <u>⊤</u> ⊤⊤	99.1(199.4)
	33.1170 22 1170 100	115.5070	07/29/1950	1 / 1 + 0.0		4.30 1 10	0.013	<u>⊥</u> ⊥⊥ <u>⊤</u> ⊤⊤	99.1(159.4)
	33.1170	115 5670	07/27/1950	954 0.0				<u>+</u> + + <u>+</u> + + + +	99.1(159.4)
	33.1170	1115 5670	07/20/1950	1949 0.0			0.015		99.1(159.4) 99.1(159.4)
	33.1170	115.5070	00/14/1950	1 017 0 0.0			0.015		99.1(159.4)
DMC	33.1170	1115 5670					0.015		99.1(159.4)
	33.1170	1115 5670	00/01/1950			<u>4</u> .70 <u>4</u> .20	0.013	<u> </u>	99.1(159.4)
		115 5670	07/29/1950	143632 0			0.015		99 1 (159 4)
	33,1170	115 5670	07/29/1950	1843 0 0		3.30 4 70	0.025		99 1(159 4)
DMG		115 5670	07/28/1950				0.011	<u>+</u> v <u>T</u> TT	99 1(159 4)
		115 5670	07/28/1950	1817 0 0			0.013	<u>+</u> + + <u>+</u> + + +	99 1 (159 4)
	33,1170	115 5670	07/27/1950	2251 0 0		4 50	0.015		99 1(159 4)
DMG	33,1170	115 5670	07/27/1950	112926 0		4 80	0.017		99 1(159 4)
DMG	33,1170	1115 5670	07/29/1950	15900	0.0		0 015		99 1(159 4)
DMG	33,1170	1115 5670	07/28/1950				0 016		99 1(159 4)
DMG	33,1170	115.5670	07/28/1950	175812.0	0.0	4.80	0.017	TV I	99.1(159.4)
DMG	33,1170	115.5670	07/28/1950	175048.0	0.0	5.40	0.024	TV I	99.1(159.4)
GSP	33.9420	116.3040	05/04/1992	161949.7	12.0	4.80	0.017	IV	99.1(159.5)
DMG	33.0000	115.5330	10/25/1955	174942.0	0.0	4.30	0.013		99.2(159.6)
MGI	34.0000	118.0000	05/05/1929	170.0	0.0	4.60	0.016	IV	99.3(159.8)
MGI	34.0000	118.0000	12/25/1903	1745 0.0	0.0	5.00	0.019	IV	99.3(159.8)
MGI	34.0000	118.0000	05/05/1929	735 0.0	0.0	4.00	0.011	III	99.3(159.8)
MGI	33.9000	118.2000	10/08/1927	1914 0.0	0.0	4.60	0.016	IV	99.4(159.9)
DMG	32.7330	115.5000	05/19/1940	43640.9	0.0	6.70	0.047	VI	99.4(159.9)
DMG	33.9170	116.2500	08/15/1946	19 1 8.0	0.0	4.00	0.011	III	99.4(159.9)

				TIME			SITE	SITE	APPROX.
FTLE	і т.ат	LONG	DATE		рертн	OIIAKE	ACC	I MM I	DISTANCE
CODE	NORTH	WEST		H M Sec	(km)		a.		mi [km]
CODE					(1/2111)		9	- 10	
					- -		0 010	 	
PAS		115.8210			6.0		0.019		99.4(159.9)
MGT	32.7000	115.5000			0.0	4.60	0.016		99.4(159.9)
MGI	32.7000	115.5000	01/16/1927	19 5 0.0	0.0	4.60	0.016	IV	99.4(159.9)
MGI	32.7000	115.5000	10/14/1918	12 5 0.0	0.0	4.00	0.011	III	99.4(159.9)
MGI	32.7000	115.5000	01/13/1927	1048 0.0	0.0	4.00	0.011	III	99.4(159.9)
MGI	32.7000	115.5000	12/09/1926	548 0.0	0.0	4.00	0.011	III	99.4(159.9)
MGI	32.7000	115.5000	11/03/1916	555 0.0	0.0	4.00	0.011	III	99.4(159.9)
MGI	32.7000	115.5000	12/08/1917	945 0.0	0.0	4.00	0.011	III	99.4(159.9)
MGI	32.7000	115.5000	06/08/1917	031 0.0	0.0	4.00	0.011	III	99.4(159.9)
MGI	32.7000	115.5000	01/01/1927	13 0 0.0	0.0	5.30	0.022	I IV	99.4(159.9)
MGT	32.7000	115.5000	01/01/1927	950.0	0.0	4.60	0.016	TV	99.4(159.9)
MGT	32 7000	1115 5000	12/07/1916	1855 0 0	0 0		0 011		99 4(159 9)
MGT			109/23/1928	1744 0 0			0 011	<u>+</u> ++	99 4(159 9)
MCT		115.5000	00/20/1920				0.011		99.1(159.9)
MCT		115.5000		10000.00000000000000000000000000000000			0.011	<u>+</u> + + <u>+</u> + + + +	99.4(159.9)
MGI							0.011		99.4(159.9)
MGI		115.5000			0.0		0.011		99.4(159.9)
MGI	32.7000	115.5000		2045 0.0	0.0	4.00	0.011		99.4(159.9)
MGT	32.7000	115.5000	07/16/1927	155 0.0	0.0	4.00	0.011		99.4(159.9)
MGI	32.7000	115.5000	11/17/1921	1958 0.0	0.0	4.00	0.011	III	99.4(159.9)
PAS	32.9030	115.5110	10/21/1977	132424.6	15.5	4.20	0.013	III	99.4(160.0)
PAS	32.9580	115.5200	10/16/1979	02214.2	10.0	4.20	0.013	III	99.4(160.0)
PAS	32.8730	115.5070	10/16/1979	12 145.6	14.4	4.00	0.011	III	99.4(160.0)
DMG	34.1400	117.5150	01/01/1965	8 418.0	5.9	4.40	0.014	IV	99.4(160.0)
GSP	33.9510	116.3110	04/26/1992	062608.0	0.0	4.20	0.013	III	99.4(160.0)
PAS	32.9340	115.5150	10/16/1979	61160.0	11.0	4.00	0.011	III	99.5(160.0)
T-A	32.6700	115.5000	01/02/1927	10 0 0.0	0.0	4.30	0.013	III	99.5(160.0)
T-A	32.6700	115.5000	01/06/1927	1637 0.0	0.0	4.30	0.013	III	99.5(160.0)
MGI	32.8000	115.5000	08/19/1915	4 0 0.0	0.0	4.00	0.011	III	99.5(160.1)
MGI	32.8000	115.5000	07/03/1915	2345 0.0	0.0	4.60	0.016	IV	99.5(160.1)
DMG	32.8000	115.5000	06/23/1915	456 0.0	0.0	6.25	0.037	V	99.5(160.1)
MGT	32 8000		07/04/1915	5 0 0 0	0 0		0 016	TV I	99 5(160 1)
MGT		115,5000	08/18/1915				0 011	<u>+</u> • <u>T</u> TT	99.5(160.1)
MGT			00/10/1920			1.00 4 60	0.016		99 5(160 1)
MCT		115.5000	02/12/192				0.010	<u>+</u> v <u>+</u> <u></u> + <u></u> + <u></u> +	99 5(160 1)
MCT		115.5000	00/20/1915				0.011	<u>+</u> + + <u>+</u> + + + <u>+</u> +	99.5(100.1)
MGI		115.5000					0.011		99.5(100.1)
MGT									99.5(100.1)
DMG		115.5000	06/23/1915				0.037		99.5(160.1)
MGI	32.8000	115.5000	08/19/1915		0.0	4.00	0.011		99.5(160.1)
DMG	32.6670	115.5000	10/09/1932	2345 0.0	0.0	4.00	0.011	III	99.5(160.1)
DMG	32.6670	115.5000	10/09/1932	2251 0.0	0.0	4.50	0.015	IV	99.5(160.1)
DMG	32.6670	115.5000	10/10/1932	129 0.0	0.0	4.00	0.011	III	99.5(160.1)
GSP	33.9530	116.3140	11/27/1996	014243.8	6.0	4.10	0.012	III	99.5(160.1)
DMG	33.7450	115.9970	09/01/1956	55752.8	15.1	4.00	0.011	III	99.5(160.1)
PAS	32.9390	115.5150	10/16/1979	93641.1	9.9	4.00	0.011	III	99.5(160.1)
PAS	32.8860	115.5070	10/20/1977	102935.9	4.9	4.00	0.011	III	99.5(160.1)
DMG	31.8000	115.9000	01/18/1956	195724.0	0.0	4.10	0.012	III	99.5(160.2)
DMG	31.7830	115.9170	12/22/1956	518 0.0	0.0	4.50	0.015	IV	99.5(160.2)
DMG	34.1000	116.7000	02/07/1889	520 0.0	0.0	5.30	0.022	IV	99.6(160.2)
PAS	34.1510	116.9720	11/20/1978	655 9.5	6.1	4.30	0.013	III	99.6(160.3)
GSG	31,9010	115.8070	03/20/1996	050309 4	5.0	4.00	0.011	ITT	99.6(160.3)
GSP	32 8850	115 5050	06/14/2000	214918 7	4 0	4 501	0.015		99.6(160 3)
GSP	33 9570	116 3170	04/23/1992	022529 9		4 60	0 015	<u> </u>	99 6(160 2)
DVG	22 2200	115 5040	10/20/1077	5301/ 1	<u> </u>		0.011	∸ V ⊤⊤⊤	99 6/160 3V
E HO	JZ.0000	1		1 22014.T	· · ·		0.011	+++	JJ.0(100.3)

जनात्र				TIME		 OIIAKE	SITE	SITE mm	APPROX.					
CODE	NORTH	WEST		H M Sec	(km)	MAG.	q	INT.	mi [km]					
	' ++·	' +	' +	+	-+	· +	·++·							
PAS	32.8930	115.5050	10/21/1977	61236.2	5.9	4.30	0.013	III	99.7(160.4)					
PAS	31.6840	116.0250	05/21/1983	204140.9	5.0	4.00	0.011	III	99.7(160.4)					
DMG	34.0650	116.5740	08/26/1959	53250.2	16.7	4.30	0.013		99.7(160.5)					
GSP	33.9610	116.3180	04/23/1992	045023.0	12.0	6.10	0.034		99.8(160.7)					
GSP	AG 34.1170 116.7500 08/22/1942 125913.0 0.0 4.00 0.011 III 99.9(160.8													
DMG	MG 34.1170 116.7500 08/22/1942 125913.0 0.0 4.00 0.011 III 99.9(160.8 MG 31.7000 116.0000 08/11/1955 174618.0 0.0 4.80 0.017 IV 99.9(160.8													
DMG	MG 31.7000 116.0000 08/11/1955 174618.0 0.0 4.80 0.017 IV 99.9(160.8 PAS 31.9230 115.7830 06/24/1984 12 8 7.0 6.0 4.10 0.012 TTT 99.9(160.8													
PAS	PAS 31.9230 115.7830 06/24/1984 12 8 7.0 6.0 4.10 0.012 III 99.9(160.8 PAS 32.9090 115.5020 10/22/1977 183042.7 5.0 4.00 0.011 TTT 100 0(160 9													
1110	132.9090	1113.3020	1 10/ 22/ 19/ 1	105012.7	5.0	1.00	0.011		100.0(100.))					
* * * * *	***************************************													
-END OF SEARCH- 1016 EARTHOUAKES FOUND WITHIN THE SPECIFIED SEARCH AREA.														
	-END OF SEARCH- 1010 EARTHQUARES FOUND WITHIN THE SPECIFIED SEARCH AREA.													
TIME	PERIOD (OF SEARCH	: 1800 TC	2000										
TENCO			201 100	220										
пенет	IN OF SEA	AKCH IIME	· ZUI yea	115										
THE H	EARTHQUAI	KE CLOSES:	T TO THE SIT	re is abou	JT 1.6	MILES	(2.7 km) AWAY	7					
LARGI	EST EARTI	HQUAKE MAG	GNITUDE FOUR	ND IN THE	SEARCH	H RADIU	JS: 7.0							
LARGI	EST EARTI	HQUAKE SI	LE ACCELERAT	FION FROM	THIS S	SEARCH	0.388	3						
COEFI a-v	FICIENTS	FOR GUTER	NBERG & RICH	HTER RECUP	RENCE	RELATI	ON:							
b-t	<i>r</i> alue= (J.839 - 1 021												
bet	a-value:	= 1.931												
TABL	TABLE OF MAGNITUDES AND EXCEEDANCES:													
Ear	thquake	Number	of Times	Cumulativ	<i>r</i> e									
р /-	anituda	L Drock	bobod	No / Vor										

+	
$\begin{array}{c ccccc} 4.0 & 1016 & \\ 4.5 & 336 & \\ 5.0 & 116 & \\ 5.5 & 46 & \\ 6.0 & 22 & \\ 6.5 & 7 & \\ \end{array}$	5.05473 1.67164 0.57711 0.22886 0.10945 0.03483
7.0 1	0.00498

Project No. 2769 December 10, 2012

Geotechnical Engineering Coastal Engineering Maritime Engineering

Mr. Eric Noegel BELLINGHAM MARINE INDUSTRIES, INC. 1205 Business Park Drive Dixon, California 95620-4303

GUIDE PILE AND APPROACH PIER/GANGWAY FOUNDATION DESIGN CRITERIA **HARBOR ISLAND WEST MARINA** SAN DIEGO, CALIFORNIA

Dear Mr. Noegel:

TerraCosta Consulting Group, Inc. (TCG) is pleased to provide guide pile and approach pier/gangway foundation design criteria for the proposed replacement and associated upgrades for the Harbor Island West Marina, which comprises about the westerly quarter of Harbor Island at the northerly end of San Diego Bay. The project site is generally located at 32.726° north latitude, 117.211° west longitude (Figure 1).

Proposed improvements include the installation of new docks and guide piles, the reconfiguration of the existing marina to improve its use and capacity, and the construction of two ADA-compliant approach piers and gangways to service the facility. This report provides recommendations for laterally loaded guide piles, as well as recommendations for axially loaded approach piers to support the ADA-compliant gangways.

To aid in our understanding of the project, we have discussed the proposed new layout and construction with you and Craig Funston of Redpoint Structures, and received a preliminary design package prepared by Redpoint Structures, including a proposed marina layout with pile and mudline elevations. We also reviewed pertinent technical documents from our files, including three reports of field investigations prepared by our firm for the Harbor Cove Marina [Sunroad Marina] (May 22, 1986), the NTC Marina (April 4, 1988), and the NTC Onshore Marina Building (February 22, 1990). A list of documents reviewed is included in the References section at the end of this letter-report.

FIELD INVESTIGATION

Our field investigation, conducted between January 30 and February 6, 2012, included the drilling of seven test borings and 45 vane shear tests, all performed from the existing floating docks of the marina and fuel pier.

The test borings, drilled by the wash-boring method using a small tripod drill rig, ranged in depth from 11.5 feet to 25.5 feet below the bay floor mudline at the locations indicated on Figure 2. Samples were obtained from the test borings using a 2-inch I.D. Standard Penetration Sampler. The samplers were generally advanced 18 inches by driving with a 140-pound hammer falling 30 inches, at approximately 5-foot intervals. Disturbed samples were obtained from the test borings, sealed, and transported to the laboratory for more detailed inspection and testing. Drilling operations were supervised, and the borings sampled and logged, by the undersigned Project Geologist, Gregory Spaulding.

Field logs of the borings were prepared based on visual examination of the soils encountered and the action of the drilling equipment. A Key to Excavation Logs is presented in Appendix A as Figure A-1. Final logs of the test borings are presented on Figures A-2 through A-8. The descriptions on the logs are based on our field logs, sample inspections, and the results of laboratory testing.

A total of 45 field vane shear tests were conducted (from the deck of the fuel dock, as well as from all eleven floating marina docks) at the locations indicated on Figure 2 to evaluate variations in near-surface soil strengths. A summary of the relevant data obtained from field vane shear testing is presented in Table 1.

LABORATORY TESTING

Representative samples of the soils observed during our field exploration were inspected and tested in the laboratory to verify field classifications and to aid in developing pile design input. Laboratory test results are presented in Appendix B.

N:\27\2769\2769 TCG Reports\2769 R01 Foundation Design Criteria.doc

GEOLOGIC AND SUBSURFACE SOIL CONDITIONS

Geologic Conditions

The historical site conditions generally consist of reclaimed estuarine and low-lying tidelands located southerly and easterly of Loma Portal at the northerly end of San Diego Bay. Historically, prior to the early 1900s, the San Diego River would periodically overflow its banks and reestablish a new course southerly into San Diego Bay (Figure 3). In the early 1900s, the Army Corps of Engineers created a levee system to prevent flooding and to direct the San Diego River to the west into False Bay (currently Mission Bay). Over the next decades, the low-lying lands were developed into what is now the San Diego International Airport, Marine Corps Recruit Depot, U.S. Naval Training Center, Harbor Island, Shelter Island, and the remaining tidelands that surround the America's Cup Harbor. Most of the man-placed fills are of hydraulic origin and generally consist of relatively clean sands placed over relatively granular bay deposits. All of these near-surface overburden soils are underlain at depth by relatively competent Pleistocene age marine and non-marine terrace deposits.

Subsurface Soil Conditions

Subsurface soil conditions encountered in our offshore borings and vane shear testing typically consisted of 6 to 12 inches of near-surface fine-grained colloidal flock, exhibiting essentially no shear strength, underlain by variable thickness (typically 1 to 2 feet thick) bay deposits consisting of very loose to medium dense, fine sands, and locally very soft to soft silts and clays. The underlying weathered Bay Point formational terrace deposits were generally encountered near elevation -13 feet, with the more competent Bay Point Formation below -20 feet. These soils are described in more detail below.

<u>Recent Bay Deposits</u>: The recent bay deposits consist of a relatively thin layer of colloidal flock underlain by very loose and soft, gray, very fine- to medium-grained sands and silt.

<u>Bay Point Formation</u>: The Bay Point Formation was generally encountered below -13 feet MLLW. The upper 5 to 10 feet are generally weathered, becoming more competent below -20 to -25 feet MLLW. The Bay Point Formation generally

consists of old paralic deposits of late to middle Pleistocene age and is mostly poorly sorted, interfingered, beach estuarine and colluvial deposits comprised of siltstones and sandstones and occasional clays.

FAULTING AND SEISMICITY

The site is located in a seismically-active region of Southern California that is subject to significant hazards from moderate to large earthquakes. Ground shaking and surface rupture have occurred in this region in very recent times. Although there are many active fault zones throughout the Southern California region, potential earthquakes from two fault zones are most likely to affect the site: the Rose Canyon fault zone and the Coronado Banks fault zone. The nearest of these, the Rose Canyon fault zone, trends northwest-southeast, and is located approximately 2 miles northeasterly of the site. The Coronado Banks fault zone is 11.9 miles west-southwest of the site. Neither of these faults is known to have produced a moderate to large earthquake since European settlement. It is speculated that a damaging earthquake in 1862 may have originated on one of these faults.

Liquefaction

Liquefaction is a potential hazard in any water-saturated sandy soils. Since most of the fill soils and underlying embayment deposits are predominantly composed of sands, they should be considered to be susceptible to seismically-induced liquefaction. Spontaneous liquefaction develops within sandy soils when they are subjected to rapid buildup of pore pressure, such as that caused by seismic shock, and the result of this condition could be massive mobilization of the slopes surrounding Harbor Island, and the failure (settlement) of any non-pile-supported structural foundations, including the approach piers supporting the ADA-compliant gangways.

APPROACH PIER FOUNDATIONS

The two new approach piers may be supported on either a large gravity mat foundation enabling the approach pier to cantilever out over the rock revetment, on axially-loaded

piles deriving their support from the dense formational soils at depth, or a combination of the two.

Gravity Mat Foundation

We recommend that a mat foundation alternative, if desired, be designed for a maximum soil bearing pressure of 2,500 psf (dead plus live loads), with no increase for wind or seismic forces. The mat foundation should extend a minimum of 2 feet below existing grade and the bottom toe of this mat foundation should be located a minimum of 5 feet from the outside face of the existing revetment.

For the gravity mat foundation alternative, with maximum cantilevered induced toe pressures of 2,500 psf, settlement along the outboard toe of the mat should be assumed to be 3/4 inch and zero at its heel, resulting in an angular rotation of 3/4 inch/mat footing length.

Lateral Resistance

Lateral loads may be resisted by passive resistance of the soil equal to a fluid pressure of 350 pounds per cubic foot, or by soil friction, assuming a friction coefficient of 0.4. If passive pressure is to be used in combination with soil friction, the friction value should be reduced to 0.25. The top 1 foot of soil providing passive resistance to lateral loads should not be used for lateral resistance, unless protected by pavement. Moreover, passive resistance should not be used to resist loads acting normal to the slope face in the direction of the slope face.

Pile-Supported Approach Pier Foundations

A pile-supported approach pier alternate minimizes differential settlements, and can be designed to resist lateral loads associated with liquefaction-induced slope movement in the event of a large magnitude earthquake. We suggest that, if this alternate is considered, pile foundations for the approach piers should be designed to have a tip elevation of -35 feet MLLW. This provides a minimum 10+ feet of penetration into competent formational terrace deposits. For this condition, we recommend an allowable

design load of 20 tons. We estimate settlements for piles driven to -35 feet and loaded to 20 tons will be on the order of 1/2 inch.

GUIDE PILE DESIGN CONSIDERATIONS

As we understand, a variety of guide piles are currently being considered for use at the marina, including 14-, 16-, and 20-inch-diameter pre-stressed concrete piles, 12-, 14-, 18-, and 20-inch square pre-stressed concrete piles, and 12-, 14-, 18-, and 20-inch-diameter round fiberglass piles.

In order to evaluate the structural requirements and load deformation characteristics of the proposed guide piles, we have used the elastic theory approach developed by Matlock and Reese (1962). A condensed version of this approach is outlined in the NAVFAC Design Manual DM-7.02, Chapter 5, Section 7. A copy of this design section is included with our calculation package. We have also used a coefficient of variation of soil modulus of 15 pci as being representative of the near-surface weathered Bay Point Formation soils and the overlying medium dense alluvial sediments. For this condition, we have assumed a design bay floor elevation of -13 feet MLLW, with all piles jetted down to 2 feet above the design tip elevation.

Ultimate lateral load capacity was also evaluated using the approach developed by Broms (1965), which follows the general approach developed by Matlock and Reese.

We have used a roller assembly design load elevation of +8.5 feet, MLLW, as specified in the structural calculation package by Redpoint Structures. For this loading condition, we have calculated guide pile deflections for the above-referenced 11 pile types assuming jetting down to within 2 feet of design tip, and then driven the last 2 feet to redensify the jetted soils. Figures 4a, 4b, and 4c graphically depict the relationship between roller deflection and load application for the 11 pile types. As indicated in the attached calculation package, we have used a design cantilever length of 21.5 feet.

When using the Matlock and Reese solution, in order to minimize guide pile deflections and account for variabilities in subsurface soil conditions, we recommend a minimum

embedment depth on the order of 3.5T or $3.5(EI/f)^{1/5}$. The recommended minimum embedment depth for the 11 pile types is also summarized in Figures 4a and 4b.

WINDS AND WAVES

Although the Harbor Island West Marina is reasonably well protected from windgenerated waves, the fuel dock and westerly most row of slips is exposed to wind-driven waves from the south through the main harbor entrance, in part reflected off Shelter The longest unobstructed fetch is through a relatively narrow corridor of Island. approach from about 200 to 220 degrees originating from Ballast Point. Storms originating from the south primarily result from tropical storms, with several storm events each season generating winds of 30+ knots developing wind waves of 2 to 3 feet, with periods of 3 to 4 seconds. This loading condition results in more severe cyclic loading for the fuel dock and westerly most boat slips, and tends to reduce the soil modulus over the course of time, resulting in slightly higher deflections, which for the fuel pier and westerly docks we would anticipate a 10 to 15 percent increase in calculated deflections over those presented in Figures 4a and 4b. Although we anticipate a reduction in soil modulus associated with this high cyclic loading and an associated 10 to 15 percent increase in laterally loaded deflections, given the relatively competent nearsurface terrace deposits that underlie the marina, we do not recommend any additional embedment depth for these westerly most guide piles.

CONSTRUCTION ASPECTS

Subsurface data obtained from our borings suggests the presence of highly weathered near-surface Bay Point formational soils and less weathered formational soils at depth, which will require pre-jetting of both guide piles and the axially loaded approach pier piles to reach the required design tip elevation. To maximize the lateral load capacity and minimize the deformation in response to lateral loads, jetting should be terminated approximately 2 feet from the design tip elevation and the last 2 feet driven to aid in redensifying the soils disturbed by jetting. We recommend that jetting for the axially loaded approach pier piles be stopped at elevation -30 feet and driven the final 5 feet, with axial capacities determined using a dynamic pile driving formula such as the

Engineering News Record (ENR) formula. We would suggest the use of a minimum 50,000 foot-pound capacity pile hammer to achieve design tip elevations within the underlying terrace deposits.

The jetting of piles should be done using internal jet pipes, and jet volumes and velocities should be limited to the minimum flow needed to advance the piles. In this regard, it is important to recognize that excessive jetting will tend to enlarge the hole and significantly reduce the lateral load capacity of the soil. The proper jetting technique is to use a low-volume, low-pressure flow of water through the internal jet pipe while repeatedly lifting and dropping the pile to displace the formational soils beyond the pile tip and expel the sands up the annulus of the jetted hole without excessively disturbing the surrounding dense formational soils. The proper jetting technique essentially allows the lifting and repeated dropping of the pile to redensify the formational soils as the pile is advanced into the dense underlying formational soils.

We trust this information meets your current requirements. Please do not hesitate to contact us if you have any questions or require additional information.

Very truly yours,

TERRACOSTA CONSULTING GROUP, INC.

Walter F. Crampton, Principal Engineer R.C.E. 23792, R.G.E. 245 Gregory A. Spaulding, Project Geologist C.E.G. 1863, C.H.G. 351, P.G. 5892

WFC/GAS/jg Attachments

REFERENCES

- Broms, B.B., 1965, "Design of Laterally Loaded Piles," in *Journal of the Soil Mechanics and Foundations Division*, American Society of Civil Engineers, Vol. 91, No. SM3, May 1965, pp. 79-99.
- Matlock, H., and L.C. Reese, 1962, "Generalized Solutions for Laterally Loaded Piles," in *Transactions of the American Society of Civil Engineers*, Vol. 127, Part 1, Paper No. 3370, pp. 1220-1251.
- TerraCosta Consulting Group (formerly Group Delta Consultants-San Diego), May 22, 1986, Geotechnical Investigation and Design Criteria for Harbor Cove Marina, San Diego, California. Project No. 6S333A.
- TerraCosta Consulting Group (formerly Group Delta Consultants-San Diego), February 22, 1990, Additional Geotechnical Investigation, Onshore Marina Building, Naval Training Center, San Diego, California. Project No. 1154.
- TerraCosta Consulting Group (formerly Group Delta Consultants-San Diego), April 4, 1988, Geotechnical Investigation, NTC Marina, San Diego, California. Project No. 1154.
- U.S. Department of the Navy, Naval Facilities Engineering Command, 1986, Foundations and Earth Structures, NAVFAC DM 7.02.

Harbor Island West Marina (Project No. 2769)

Vane Shear Number	Location	Time	Depth to Mudline	Tide Height (MLLW)	Bottom Elevation	Vane Shear Reading 20 x 40 mm vane (kPa)										
			(feet)	(feet)	(feet)	(@ 1 foot)	(@ 2 feet)	(@ 3 feet)	(@ 4 feet)	(@ 5 feet)	(@ 6 feet)	(@ 7 feet)	(@ 8 feet)	(@ 9 feet)	(@ 10feet)	Refusal @ x feet
1	1100 Dock End	10:30	14.9	4.25	-10.7	10	12	sandy bot	tom							2.2
2	1100 Dock End	10:55	14.2	3.57	-10.6	14	24	clayey bo	ttom							2.0
3	1100 Dock Middle	11:02	13.8	3.37	-10.4	12	76	very soft f	irst foot the	en sandy (2'					2.0
4	1100 Dock Main Walk	11:07	8.3	3.22	-5.1	12	40	70	sandy @:	2'						3.2
5	1000 Dock Main Walk	11:12	11.0	3.08	-7.9	4	24	26	64	62	very soft;	sandy @2	.'			5.0
6	1000 Dock Middle	11:20	13.4	2.85	-10.6	8	51	84	very soft;	sandy @2	1					3.0
7	1000 Dock Middle	11:25	13.4	2.70	-10.7	4	33	50	very soft;	sandy @2	1					3.5
8	1000 Dock End	11:31	13.7	2.53	-11.2	22	31	78	6" soft; sa	ndy @2.5	'					3.0
9	900 Dock End	11:42	12.7	2.21	-10.5	10	62	soft; 1' sa	nd; refusal	below 2.5						2.5
10	900 Dock Middle	11:46	13.0	2.09	-10.9	18										1.5
11	900 Dock Middle	11:59	12.3	1.73	-10.6	15										1.7
12	900 Dock Main Walk	12:05	12.0	1.56	-10.4	14	10	20	78 @ 3.5	very soft						3.5
13	800 Dock End	12:12	11.9	1.37	-10.5	26	34	sandy bas	se							2.5
14	800 Dock Middle	12:19	11.7	1.18	-10.5	24	50	92	soft bottor	m w/shells;	sandy @	1.5'				3.0
15	800 Dock Middle	12:24	11.7	1.05	-10.7	13	sandy after	ər 1'								1.0
16	800 Dock Main Walk	12:27	8.9	0.97	-7.9	22	16	70	50	42	60	68	60	44	117	10.0
17	700 Dock End	12:41	11.9	0.62	-11.3	24	26	102	sandy bot	tom; soft @	22'					3.0
18	700 Dock Middle	12:45	11.6	0.53	-11.1	10	44	50	sandy @	1'						3.0
19	700 Dock Middle	12:50	12.7	0.41	-12.3	6	8	66	sandy @:	2'+						3.5
20	700 Dock Main Walk	12:54	7.9	0.32	-7.6	18	54	68	64	88	40	38	46	30		10.0
21	600 Dock End	1:40	11.0	-0.55	-11.6	38	62									2.5
22	600 Dock Middle	1:45	10.8	-0.65	-11.5	10	50									2.5
23	600 Dock Main Walk	1:49	7.1	-0.67	-7.8	23	45	78	42	102	78					6.0
24	500 Dock Main Walk	1:55	4.9	-0.74	-5.6	16	44	56	38	50	62	66				7.0
25	500 Dock Middle	2:03	10.8	-0.83	-11.6	10	58									3.0
26	500 Dock Middle	2:09	10.3	-0.89	-11.2	14	47	100								3.0
27	500 Dock End	2:13	10.2	-0.94	-11.1	22	28	108								3.6
28	400 Dock End	2:21	10.5	-0.98	-11.5	52	14	88	sandy @	top						3.5
29	400 Dock Middle	2:26	10.6	-1.01	-11.6	8	57	80	130+							4.0
30	400 Dock Middle	2:30	10.7	-1.02	-11.7	12	98	92								3.6
31	400 Dock Main Walk	2:35	5.0	-1.05	-6.1	27	26	38	32	24	94	130+	sandy @ t	top		7.0
32	300 Dock End	2:43	9.5	-1.06	-10.6	17	130+									2.0
33	300 Dock Middle	2:47	10.7	-1.07	-11.8	16	42	85								3.6
34	300 Dock Main Walk	2:53	5.7	-1.07	-6.8	18	25	130+	60	65	106	130+	3' crunchy	,		7.0
35	200 Dock End	3:04	10.8	-1.05	-11.9	22	54	130+								2.8
36	200 Dock Middle	3:09	11.0	-1.03	-12.0	11										1.5
37	200 Dock Middle	3:13	11.0	-1.01	-12.0	24										1.5
38	200 Dock Main Walk	3:17	4.6	-0.99	-5.6	40	21	26	55	36	130+	106	shell or gr	avel		7.0
39	100 Dock End	3:27	10.9	-0.92	-11.8	28										1.5
40	100 Dock Middle	3:32	11.5	-0.88	-12.4	27	130+									2.0
41	100 Dock Main Walk	3:37	6.8	-0.84	-7.6	*	48	42	68	120						5.0
42	Fuel Dock	3:42	11.7	-0.79	-12.5	24	40	104	130+							4.0
43	Fuel Dock	3:46	11.8	-0.74	-12.5	40	130+	crunchy								2.0
44	Fuel Dock	3:50	11.0	-0.70	-11.7	25	*	16	130+	crunchy						4.0
45	Fuel Dock	3:55	9.6	-0.64	-10.2	130+										6.0

Date of Vane Shear Testing: 2/6/12

* no reading taken

ROLLER DEFLECTION VS. DESIGN LATERAL LOAD

Pile Size (Inches)	Pile Type	Design Embedment Depth, feet	Design Tip Elevation (feet, MLLW)	Deflection (inches) for a 1.00 kip load @ Elev. +8.5'
12	Rnd, Fbrgls	11	-24	10.68″
14	Rnd, Fbrgls	13	-26	5.09"
18	Rnd, Fbrgls	15	-28	2.64"
20	Rnd, Fbrgls	17	-30	1.61″

APPENDIX A

BORING LOGS

LO	GC)F [·]	TES	ST BO	DRI	NG	PROJE						PROJECT	NUMBER		
SITE LO	CATIO	N				I					STAF	रा	FIN	SH		SHEET NO.
DRILLIN	or Isla NG CON	Ind, S	San Di	ego, CA				DRILLIN	G METHOD		1/3	30/2012	LOGGED	2/2012 BY	CHE	1 of 1 CKED BY
Pacif	fic Dril	ling						Wash	Boring				G. Spa	aulding		
	ig EQU	IPMEN	IT					BORING	DIA. (in)	TOTAL DEPT	'H (ft)	GROUND	DELEV (ft)	DEPTH/	ELEV. G	ROUND WATER (ft)
SAMPLI	ING ME	THOD				·	NOTES	3		_ 20		i		<u></u> ∓ 1/a	-	
SPT			·	<u>.</u>	r	Γ		r	1							
DEPTH (ft)	ELEVATION (ft)	SAMPLE TYPE	SAMPLE NO.	PENETRATION RESISTANCE (BLOWS/ft)	DRY DENSITY (pcf)	MOISTURE (%)	OTHER TESTS	GRAPHIC LOG		DESC	RIPTI	ON AND	CLASSIF	ICATION		
			1						WATER OTHER GS GI PENETF Number SAMPLE S ("SPT" O.D., 1-3 NOTES (Borings advance depth. Once the (SPT) S driven in falling 30 sample v taken to Classific include o modified appropria	K E Y TABLE MEA TESTS ain Size Ana ATION RESI of blows requ TYPE ') - a.k.a. Sta 3/8-inch I.D. of ON FIELD INV were advance d by jetting a e desired sam ampler was u to the soil at to) inches. Wh was removed the laboratory ations are ba color, moisture to reflect res ate.	T Q SURI lysis STAN uired f uired f drive s VESTI ed usia 3-inc sed usi 3-inc nple d used f used D AT TI ED AT TI CE (BLO to advance to adva	A V A T I I ME OF DI WS/ft) tion Test, tion Test, ted-access er casing of reached, soil sampl he borings r was with ified, seale spection. Juified So ency. Fiel ory inspect	ONLO RILLING apler 1 foo an 18-ind s TriPod o down to the a Standa es. The 3 s with a 14 drawn fro ed in plas il Classifio d description where	o G S ot. ch-long drill rig. ne desi rd Pen SPT Sa 40-pou m the I tic cont cation S tions has e deem	, 2-inch Holes were red sample etration Test ampler was nd hammer pooring, the tainers, and System and ave been red	
TerraCo Consulting	Osta 7 4 Group S	Ferra 455 San [aCos Murp Diego,	ita Cor hy Cany , Califori	isultir on Ro nia 92	ng Gr bad, Si 123	oup, uite 10	Inc . 00	THIS SUM OF THIS B SUBSURF LOCATION WITH THE PRESENT CONDITION	MARY APPLIE ORING AND A ACE CONDITI IS AND MAY (PASSAGE O ED IS A SIMPI NS ENCOUNT	ES ON AT TH IONS I CHAN F TIMI LIFICA	LY AT TH E TIME O MAY DIFF GE AT TH E. THE D ATION OF	IE LOCATI F DRILLIN IER AT OT IIS LOCAT ATA THE ACTI	ON G. HER ION F	FIGU	RE A-1

ſ	100	<u> </u>		TES	ST BC	DRI	١G	PROJE						PROJEC	TNUM	BER		BORING
	SITE LOO		1					HARB	ORISL	AND WEST	MARINA	STAF	RT	2769 F	NISH			B-1 SHEET NO.
	Harbo	or Isla	nd, S	an Die	ego, CA							1/3	0/2012		1/30/2	2012	01.55	1 of 1
	Pacifi	G COM	PANY lina						Wast	G METHOD				GS	рву pauldi	ina	CHECI	KED BY
ľ	DRILLIN	G EQUI	PMEN	т					BORING	DIA. (In)	TOTAL DEPT	'H (ft)	GROUN	D ELEV (f	t) DE	PTH/EL	EV. GR	OUND WATER (ft
\mathbf{h}	TriPo SAMPLIN	d NG MET	HOD					NOTES	3		15.5		-12.1	0		_n/a		
	SPT																	
	DEPTH (ft)	ELEVATION (ft)	SAMPLE TYPE	SAMPLE NO.	PENETRATION RESISTANCE (BLOWS/ft)	DRY DENSITY (pcf)	MOISTURE (%)	OTHER TESTS	GRAPHIC LOG		DESC	RIPTI	ON AND	CLASS	IFICA	FION		
		— — —-15	S	1	PUSH					MUD LINE <u>RECENT</u> Slity Fine	BAY DEPC SAND (SM)), very	loose, g	jray, wet	, with s	shell fra	agmen	its
	- 		I S I	2	15	- 		GS		WEATHE Find Sand micaceou	<u>RED BAY F</u> iy Silt (Ml s	<u>20INT</u> .), me	<u>FORM</u> / dium der	ATION 1se, olive	e to oliv	ve-brow	vn, we	t,
-	- 10		L S	3	16					Silty SAN micaceou	D (SP-SM), s	grade	s to med	dium der	se, oli	ve-gray	/, wet,	
T GDT 8/17/12	- 15	25 		4	35					BAY POIN SAND to s olive-gray Hole sand	IT FORMA Silty SAND wet, micac	TION (SP/S ceous	M), dens	e, interb	edded	gray-b	rown /	,
C LOG(3) 2769 GPJ GDCLOGM1										воring ten	ninated at d	epth (ər 10.5 fe	er ave to	retus:	11.		
TCG METRIC	TerraCo Consulting (osta 4 ironp	erra 455 San [aCos Murp Diego,	sta Cor hy Cany , Califori	on Ro nia 92	ng Gr bad, S 123	oup, uite 1	Inc. 00	THIS SUMM OF THIS BO SUBSURFA LOCATIONS WITH THE I PRESENTE CONDITION	ARY APPLI RING AND A CE CONDIT AND MAY PASSAGE O D IS A SIMP S ENCOUN	ES ON AT TH IONS CHAN F TIM LIFICA TEREI	ILY AT T E TIME (MAY DIF GE AT T E. THE [ATION OI D.	HE LOCA OF DRILL FER AT (HIS LOCA DATA F THE AC	TION ING DTHER ATION	FI	guf	RE A-2

10)F	TES	ST BO		NG	PROJE	CT NAME					PROJECT	NUMBER		BORING
SITE	LOCATI					10	HARE	IOR ISL	AND WES	MARINA	STAR	<u></u>	2769	SH		B-2
Ha	arbor Is	and. S	San Di	eao. CA							1/3	31/2012	1/	31/2012	1	1 of 1
DRIL	LING CO	MPAN	/					DRILLIN	G METHOD				LOGGED	BY	CHE	CKED BY
Pa	cific D	illing	17					Wash	Boring			000	G. Spa	aulding		BALINE WARDER
	iDod	UIPMEI	N I					BORING	DIA. (In)	TOTAL DEPT	'H (ft)	GROUND	D ELEV (ft)	DEPTH/	ELEV. G	ROUND WATER (ft)
SAM	PLING M	ETHOD					NOTES	<u> </u>		11.5		-11.2	0	<u>+</u> 11/a	_	
SF	<u>т</u>															
DEPTH (ft)	FI EVATION (#)	SAMPLE TYPE	SAMPLE NO.	PENETRATION RESISTANCE (BLOWS/ft)	DRY DENSITY (pcf)	MOISTURE (%)	OTHER TESTS	GRAPHIC LOG		DESC	RIPTI	on and	CLASSIF	ICATION		
5	- - 1	5	2	PUSH					MUD LIN RECEN Clayey S WEATH Hard cla Silty SAI micaceo	E BAY DEPC ILT (ML), ve ERED BAY F y lense ND (SM), mea	POINT	FORMA	ray, wet, w	ith shell fi	ragmer	
- - - - 10	2		3	22					BAY PO Become: Silty CL	NT FORMA Clayey SAN	TION ND (So stiff,	C) red-brow	n, moist			
C LOG(3) 2769 GPJ GDCLOGMT GDT 8/17/12 C LOG(3) 2769 GPJ GDCLOGMT GDT 8/17/12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2! 	5														
TCT TCT TCC WEIKIC	aCosta	Terr 4455 San I	aCos Murp Diego,	sta Con hy Cany , Califori	isultir on Ro nia 92	ng Gr ad, Si 123	oup, uite 1	Inc . 00	THIS SUM OF THIS B SUBSURF LOCATION WITH THE PRESENTI CONDITIO	MARY APPLIE ORING AND / ACE CONDIT S AND MAY (PASSAGE O ED IS A SIMP VS ENCOUNT	ES ON AT THI IONS I CHAN F TIMI LIFICA TEREL	LY AT THE E TIME O MAY DIFF GE AT THE E. THE D ATION OF D.	HE LOCATI OF DRILLING FER AT OT HIS LOCAT OATA THE ACTI	ON G HER ION F	FIGUI	RE A-3

	$\overline{\mathbf{c}}$		TEC				PROJE	CT NAME			••••••		PROJECT	NUMBER	BORING
LO	GO					NG	HARB	OR ISL	AND WES	Γ MARINA			2769		<u>B-3</u>
SITE LO	JCATION	l nd f									STAF	RT	FINI	SH 31/2012	SHEET NO.
DRILLI	NG COM	PANY	an Di	eyo, CA				DRILLIN	G METHOD		1/3	51/2012	LOGGED	BY	
Paci	fic Drill	inα						Wash	Boring				G. Spa	auldina	
DRILLI	NG EQU	PMEN	T					BORING	DIA. (in)	TOTAL DEPT	'H (ft)	GROUNE	ELEV (ft)	DEPTH/E	LEV. GROUND WATER (ft)
TriPo	bd						1	3		16.5		-6		_ ⊈ n/a_	-
SAMPL	ING MET	HOD					NOTES	5							
501	1			1_					1						
DEPTH (ft)	ELEVATION (ft)	SAMPLE TYPE	SAMPLE NO.	PENETRATION RESISTANCE (BLOWS/ft)	DRY DENSITY (pcf)	MOISTURE (%)	OTHER TESTS	GRAPHIC LOG		DESC	RIPTI	ON AND	CLASSIF	ICATION	
			2	PUSH 7 17					MUD LIN RECEN Clayey S fragmen Interbed dark gra BAY PO Silty SA occasior	IE F BAY DEPC SILT (ML), verts ded Silty Fin y, wet, with s INT FORMA ND (SM), mean hal shell frage	DSITS ry loo e SAN hell fr TION dium o nents	se, dark o agments dense to	dense, gra	to gray, we Sandy Sil	et, with shell LT (ML), loose,
DCLOGMT.GD1		S	4	46	:				Boring te	rminated at o	lepth o	of 16.5 fe	et due to re	əfusal.	
L0G(3) 2769 GPJ GL	_ 25														
Terral Terral	osta 4	err a 455 San [aCos Murp Diego,	ita Con hy Cany Califori	i sultir on Ro nia 92	ng Gr bad, S 123	oup, uite 1	Inc . 00	THIS SUM OF THIS E SUBSURF LOCATION WITH THE PRESENT CONDITIO	MARY APPLI ORING AND ACE CONDIT IS AND MAY PASSAGE O ED IS A SIMP NS ENCOUN	ES ON AT TH IONS CHAN F TIM LIFIC/ TERE	ILY AT THE E TIME O MAY DIFF GE AT THE E. THE D ATION OF D.	IE LOCATI IF DRILLIN TER AT OT IIS LOCAT ATA THE ACTI	ON G. HER ION F	IGURE A-4

			-	PROJECT NU	MBER	BORING
SITE LOCATION	RBOR ISLAND	VEST MARINA	ART	Z769 FINISH		SHEET NO.
Harbor Island, San Diego, CA		1	/31/2012	1/31	/2012	1 of 1
	DRILLING METH	OD		LOGGED BY		CHECKED BY
Pacific Drilling DRILLING EQUIPMENT	BORING DIA. (In	g TOTAL DEPTH (ft		ELEV (ft)	aing EPTH/ <i>EL</i>	EV. GROUND WATER (ft)
TriPod	3	11.5	-11.2		n/a_	••
SAMPLING METHOD NO	DTES					
SPT						
DEPTH (ft) ELEVATION (ft) ELEVATION (ft) SAMPLE TYPE SAMPLE TYPE SAMPLE NO. PENETRATION RESISTANCE (BLOWS/ft) (BC) DRY DENSITY (pcf) MOISTURE (%) OTHER	TESTS GRAPHIC LOG	DESCRIP	TION AND	CLASSIFIC/	ATION	
	MI RE Flu Si We	ID LINE CENT BAY DEPOSIT le Sandy SILT (ML), ve EATHERED BAY POIN ty Fine SAND (SP-SM) t, micaceous	<u>S</u> ery loose, d <u>NT FORMA</u>), medium c	lark gray, we <u>TION</u> lense, olive-(t, with sl	hell fragments gray-brown,
$\begin{array}{c c} -5 \\ -5 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$						
	Bd Bd	Y POINT FORMATIO ndy CLAY (CL), very s ring terminated at dept	<u>N</u> stiff to hard, h of 11.5 fee	olive-gray to	olive-br	rown, moist
TerraCosta Consulting Grou 4455 Murphy Canyon Road, Suite	ID, INC. B 100	SUMMARY APPLIES (THIS BORING AND AT T SURFACE CONDITION ATIONS AND MAY CHA H THE PASSAGE OF THE SENTED IS A SUMPLIFY	ONLY AT TH THE TIME O IS MAY DIFF ANGE AT TH IME. THE	E LOCATION F DRILLING ER AT OTHE IIS LOCATION ATA		IGURE A-5

IOG	OF	- 7	TES	T BC	RI	١G	PROJE						PROJECT	NUMBER		BORING
SITE LOCA	TION				- 1 1 1 1	.0	HARB	IOR ISL	AND WES	MARINA	STAF	RT.	2769 Fini	ISH		SHEET NO.
Harbor	Island	1, S	an Die	ego, CA							2/1	/2012	2/	1/2012		1 of 2
DRILLING C	JOMPA	ANY						DRILLIN	G METHOD				LOGGED	BY	CHE	CKED BY
	QUIP	UEN1	г					BORING	DIA. (In)	TOTAL DEPT	'H (ft)	GROUND) ELEV (ft)		IELEV. G	ROUND WATER (ft)
	METH	00					NOTES	3		21.5		-9.3		I III n/a	<u> </u>	-
SPT	WIE	00														
DEPTH (ft)	ELEVATION (ft)	SAMPLE TYPE	SAMPLE NO.	PENETRATION RESISTANCE (BLOWS/ft)	DRY DENSITY (pcf)	MOISTURE (%)	OTHER TESTS	GRAPHIC LOG		DESC	RIPTI	ON AND	CLASSIF		N	
	-10	S	1	PUSH					MUD LIN RECEN Slity CL fragmen	E BAY DEPO AY (CL) to Finits S	SITS ne Sa	ndy SILT	(ML), ver	y soft, gr	ay, wet,	with shell
5 	-15	S	2	3			GS			(,,,			,	.,		
	-20	S	3	4					- Clay lei BAY PO	nse from 9.75	5 to 10).25 feet				
	25								Become Silty SAI yellow-br	s coarse SAN ID (SM), den own, wet	ID (SF se, inf	P), brown	d, mottled	olive-gra	ay / gray	-brown /
	20 (S	4	40					Silty to 5	ine Sandy Cl	ĀV #		stiff to be			niet
TerraCosta Manual Consulting Grow	Te 44 Sa	erra 55 I n D	ICos Murpl Viego,	ta Con hy Cany Califorr	sultin on Ro nia 92	ng Gr ad, Si 123	oup, uite 10	Inc . 00	THIS SUM OF THIS B SUBSURF LOCATION WITH THE PRESENT CONDITIO	MARY APPLIE ORING AND A ACE CONDITI IS AND MAY (PASSAGE O ED IS A SIMP NS ENCOUNT	ES ON AT THI IONS I CHANG F TIMI LIFICA	LY AT THE E TIME O MAY DIFF GE AT THE E. THE D ATION OF D.	ELOCATI F DRILLING ER AT OT IS LOCAT ATA THE ACT	ON G. HER ION UAL	FIGU	RE A-6 a

	\sim		TEC				PROJE	CT NAME					PROJEC	r NUN	ABER	BORING
LUC	30				וואכ	VG	HARB	OR ISL	AND WEST	MARINA			2769			B-5
	GATION		on Di	aaa CA							STAF	(1 12040	Fil	VISH 2/1/2	012	SHEET NO.
DRILLIN	IG COMP	ANY		eyo, CA				DRILLIN	G METHOD		2/1	12012	LOGGE	D BY	012	
Pacif	ic Drilli	ng						Wash	Boring				G. Sr	auld	ling	
DRILLIN	G EQUIP	MEN	т					BORING	DIA. (In)	TOTAL DEPT	H (ft)	GROUN	D ELEV (ft) DI	EPTH/E	LEV. GROUND WATER (fi
							NOTE	3		21.5		-9.3		1	/ n/a_	-
SPT	NGWET	100					NOTES	•								
		Τ	[7												· · · · · · · · · · · · · · · · · · ·
DEPTH (ft)	ELEVATION (ft)	SAMPLE TYPE	SAMPLE NO.	PENETRATION RESISTANCE (BLOWS/ft)	DRY DENSITY (pcf)	MOISTURE (%)	OTHER TESTS	GRAPHIC LOG		DESCI	RIPTI	ON ANE	CLASS	FICA	TION	
-	-30	S	5	35								7.7.7				
	L		ł					<i>[]]]]</i>	Boring te	Jayey SAND	(SC)	dense,	red-brow	n, mo		
-	Γ								Doring te	ininaleu al u	epunt	<i>JI 21.31</i>		reius	<i>a</i> ı.	
	F															
-																
	┝															
25																
	35															
F																
	<u> </u>															
	F															
+	Γ															
	L															
- 30																
L	40															
Γ																
-	-	1														
F																
<u>_</u>																
35	F															
2	45															
2							1									
3	L						1									
i																
şL	-															
20/1							ļ									
	L															
TerraCo Consulting	Dostal Dostal 42 Gromp Sa	erra 155 an E	aCos Murp Diego,	ta Con hy Cany , Califori	nsultir von Ro nia 92	ng Gr bad, S 123	oup, uite 1	Inc. 00	THIS SUM OF THIS B SUBSURF LOCATION WITH THE PRESENT CONDITIO	MARY APPLIE ORING AND A ACE CONDITI IS AND MAY (PASSAGE O ED IS A SIMP NS ENCOUNT	ES ON AT THI ONS I CHAN F TIMI LIFICA	E TIME (MAY DIF GE AT T E. THE (ATION O	HE LOCA DF DRILLI FER AT C HIS LOCA DATA F THE AC	TION NG THEF TION TUAL	r F	GURE A-6 b

LOG	30	F -	TES	ST BC	DRIN	١G							PROJECT	NUMBER		
SITE LOC	ATION	-							AND WES	WARINA	STAF	۲	2709 FINI	SH		SHEET NO.
Harbo	r Islar	nd, S	an Di	ego, CA							2/2	/2012	2/	2/2012		1 of 1
DRILLING	COMF	PANY						DRILLIN	G METHOD			_	LOGGED	BY	CHEC	CKED BY
DRILLING	: Drilli ; EQUIF	ng MEN	r					Wash BORING	Boring DIA, (In)		HIM	GROUNT		DEPTH	ELEV G	ROUND WATER (#)
TriPod	1							3	<i>Dura</i> (111)	16.5	(,	-10.6		I IIII		
SAMPLIN	G MET	HOD					NOTES	5								
SPT							ļ						·			
DEPTH (ft)	ELEVATION (ft)	SAMPLE TYPE	SAMPLE NO.	PENETRATION RESISTANCE (BLOWS/ft)	DRY DENSITY (pcf)	MOISTURE (%)	OTHER TESTS	GRAPHIC LOG		DESCI	RIPTI	ON AND	CLASSIF	ICATION		
		S	1	PUSH					MUD LIN RECEN Fine Sar WEATH Slity Fin with occ	IE <u>BAY DEPO</u> Idy SILT (ML) <u>ERED BAY P</u> B SAND (SM) asional shell 1	<u>SITS</u>), very <u>POINT</u> , loos fragm	v loose, c FORM4 e to med ents	dark gray, v <u>ATION</u> lium dense	wet e, gray to	olive-g	ray, wet,
	15 		2	17					<u>BAY PO</u> Silty SA	INT FORMAT ND (SM), med	<u>FION</u> đium d	Jense, m	nottled olive	-brown, v	wet	
- 10 10 	20 	l ()	3	25					Become olive-bro	s Clayey SAN wn, moist	ID (SC	c), medit	um dense,	interbedo	led oliv	e-gray to
769.GPJ GDCLOGMT.GDT 8/17/12	25 	S	4	30					Silty to F Silty Find Boring te	ine Sandy Cl SAND (SM) minated at de	LAY (CL), very dense, c f 16.5 fe	v stiff, olive gray, moist et due to re	to olive-(, micaced	gray, m Dus	oist
TCC WELKIC FOO(3) 21	30	erra 155 an C	aCos Murp Diego,	ta Con hy Cany Califorr	sultir on Ro nia 92 ⁻	ng Gr bad, Si 123	oup, uite 10	Inc . 00	THIS SUM OF THIS B SUBSURF LOCATION WITH THE PRESENTI CONDITIO	MARY APPLIE ORING AND A ACE CONDITI IS AND MAD PASSAGE OI ED IS A SIMPI NS ENCOUNT	ES ON AT THI IONS I CHANG F TIMI LIFICA TEREE	LY AT TH E TIME O MAY DIFF GE AT TH E. THE D THON OF D.	HE LOCATH F DRILLING FER AT OT HIS LOCAT JATA THE ACTU	ON G. HER ION JAL	FIGUI	RE A-7

ſ								PROJE	CT NAME					PROJECT	NUMBER		BORING
							NG	HARB	OR ISL	AND WEST	MARINA	07		2769	eu		B-7
	olle LOC Harbo	JATION or lelan	d C	an Dia	40 OD							STAF	(1)/2012	FINI 2/	ън 2/2012		SHEET NO.
	DRILLING	G COMP	ANY		ego, on				DRILLIN	G METHOD		212	./2012	LOGGED	BY	CHE	CKED BY
	Pacifi	<u>c Drillin</u>	ng	.				· · · · · · · · ·	Wash	Boring			000	G. Spa	ulding		
		d EQUIP	WEN	1					BORING	DIA. (In)	25.5	H (ft)	GROUNI	DELEV (ft)	DEPTH/	ELEV. G	ROUND WATER (ft)
ł	SAMPLIN		IOD					NOTES	3		20.0		-1.20				
	SPT	·			r												
	DEPTH (ft)	ELEVATION (ft)	SAMPLE TYPE	SAMPLE NO.	PENETRATION RESISTANCE (BLOWS/ft)	DRY DENSITY (pcf)	MOISTURE (%)	OTHER TESTS	GRAPHIC LOG		DESC	RIPTI	ON AND	CLASSIF	ICATION	1	
	-		S	1	PUSH				/ / / ` / ` / ` / ` / `	MUD LIN <u>RECEN</u> Clayey S	IE BAY DEPO It / Silty CL4	<u>sits</u> Ay (M	L/CL), ve	ery soft, gra	ay, wet		
	-5	10 		2	6			GS		Silty Fin shell frag	e SAND (SP∹ ments	SM), I	oose, gra	ay, wet, mi	caceous	, with o	ccasional
-	- 10	15 		3	23					WEATHI Silty Find micaceo	ERED BAY F e SAND (SP- us	<u>°OINT</u> S M), 1	FORM ^A nedium (<u>ITION</u> dense, gra	y to olive	e-gray, v	vet,
G(3) 2769 GPJ GDCLOGMT GDT 8/17/12	- 15	20 		4	35					BAY PO Silty SA	NT FORMAT	fion fium o	dense, m	ottled olive	⊖-gray, w	et	
3			\supset	5	37												
TCG_METRI	TerraCo Consulting G	stal Te 44	erra 155 an D	aCos Murp Diego,	ita Con hy Cany Califorr	sultir on Ro nia 92	ng Gr bad, S 123	roup, uite 1	Inc. 00	THIS SUM OF THIS B SUBSURF, LOCATION WITH THE PRESENTI CONDITIO	MARY APPLIE ORING AND A ACE CONDIT IS AND MAY PASSAGE O ED IS A SIMP NS ENCOUNT	ES ON AT TH IONS CHAN F TIM LIFICA	ILY AT THE E TIME O MAY DIFF GE AT THE E THE D ATION OF D	HE LOCATI OF DRILLING FER AT OT HIS LOCAT DATA THE ACTI	on g Her Ion Jal	FIGU	RE A-8 a

	GC	F -	TES	ST RO	DRI	NG	PROJE						PROJECT	NUMBER		BORING
SITE LO		/ II N				10	HARB	OR ISL	AND WES	I MARINA	STAF	2T	2769	SH		B-7 SHEET NO.
Harb	or Isla	nd. S	San Di	ego, CA							2/2	2/2012	2/	2/2012		2 of 2
DRILLIN	IG COM	PANY						DRILLIN	G METHOD				LOGGED	BY	CHE	CKED BY
Pacif	fic Dril	ling						Wash	Boring				G. Spa	aulding		501115 1115 T
TriDo	ig EQU	PWEN	1					BORING	DIA. (IN)	TOTAL DEPT	H (ft)	GROUND	D ELEV (ft)	DEPTH/	ELEV. G	ROUND WATER (ft)
SAMPLI	ING ME	THOD					NOTES	3		20.0	_	-7.20		<u>+</u> !//a		
SPT																
DEPTH (ft)	ELEVATION (ft)	SAMPLE TYPE	SAMPLE NO.	PENETRATION RESISTANCE (BLOWS/ft)	DRY DENSITY (pcf)	MOISTURE (%)	OTHER TESTS	GRAPHIC LOG		DESCI	RIPTI	ON AND	CLASSIF	ICATION	I	
- 25		S S	6	75					Hole sar Boring te	ND (SM), very	v dens	se, mottle	ed gray, m	oist, mici	aceous	
TerraCo	Usta T 4 Group S	erra 455 San D	aCos Murp Diego,	ta Con hy Cany Califori	isultir on Ro nia 92	ng Gr bad, Si 123	oup, uite 1	Inc .	THIS SUM OF THIS B SUBSURF LOCATION WITH THE PRESENT	MARY APPLIE ORING AND A ACE CONDITI IS AND MAY (PASSAGE O ED IS A SIMP	ES ON AT TH ONS I CHAN F TIMI LIFICA	LY AT THE E TIME O MAY DIFF GE AT TH E. THE D THE O THE OF	HE LOCATI F DRILLIN ER AT OT HIS LOCAT ATA THE ACTI	ON G. HER ION JAL	FIGU	RE A-8 b

APPENDIX B

LABORATORY TEST RESULTS

۳

Checked By: L. Collins

Checked By: L. Collins

	T DATA
PROJECT: Harbor Island West Maring	PROJ. # 498.14
SITE IDENTIFICATION: Lincoln Military Honsing Park ST-1 OB	SERVER(S): Jonathan Higginson
START DATE / TIME: 12/10/14 EN	D DATE / TIME: 12/10/14
METEROLOGICAL CONDITIONS: TEMP: 66 °F HUMIDITY: 76 %R.H. WI	ND: CALM LIGHT MODERATE VARIABLE
WINDSPEED: MPH DIR: N NE E SE S ST SKY: SUNNY CLEAR OVRCST PRTLY CLOUDY FOG RAIN	W NW STEADY GUSTY OTHER:
ACOUSTIC MEASUREMENTS: INSTRUMENT: LD-L×T1 TYPE	E: 0 2 SERIAL #: 0004005
CALIBRATOR: <u>LD - CAL 200</u> CALIBRATION CHECK: PRE-TEST <u>114.0</u> dBA SPL POST-TEST 113	SERIAL #: 6645 .95 dBA SPL WINDSCREEN
SETTINGS: A-WEIGHTED SLOW FAST FRONTAL RANDOM	ANS OTHER:
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \frac{100}{8.33} \xrightarrow{L_{10}} \frac{100}{25} \xrightarrow{OTHER:} (TYPE?) \xrightarrow{L_{00}} \frac{100}{50} \xrightarrow{L_{00}} \frac{100}{51.44} $
COMMENTS:	
SOURCE INFO AND TRAFFIC COUNTS: PRIMARY NOISE SOURCE: TRAFFIC AIRCRAFT RAIL INDUSTRIAL AN ROADWAY TYPE:	IBIENT OTHER: <u>Melicophys</u>
SOURCE INFO AND TRAFFIC COUNTS: PRIMARY NOISE SOURCE: TRAFFIC AIRCRAFT RAIL INDUSTRIAL AN ROADWAY TYPE: TRAFFIC COUNT DURATION:MIN SPEED NB / EB SB / WB NB / EB SB / WB NB / AUTOS:	IBIENT OTHER: <u>Uelicophes</u> #2 COUNT SPEED / EB SB / WB NB / EB SB / WB
SOURCE INFO AND TRAFFIC COUNTS: PRIMARY NOISE SOURCE: TRAFFIC AIRCRAFT RAIL INDUSTRIAL AN ROADWAY TYPE:	IBIENT OTHER: <u>Unlicophys</u> #2 COUNT SPEED / EB SB / WB NB / EB SB / WB
SOURCE INFO AND TRAFFIC COUNTS: PRIMARY NOISE SOURCE: TRAFFIC AIRCRAFT RAIL INDUSTRIAL AN ROADWAY TYPE:	IBIENT OTHER: Usicophys #2 COUNT SPEED / EB SB / WB NB / EB SB / WB
SOURCE INFO AND TRAFFIC COUNTS: PRIMARY NOISE SOURCE: TRAFFIC AIRCRAFT RAIL INDUSTRIAL AN ROADWAY TYPE: TRAFFIC COUNT DURATION:	IBIENT OTHER: <u>Unlicopted</u> #2 COUNT SPEED / EB SB / WB NB / EB SB / WB
SOURCE INFO AND TRAFFIC COUNTS: PRIMARY NOISE SOURCE: TRAFFIC AIRCRAFT RAIL INDUSTRIAL AN ROADWAY TYPE:	IBIENT OTHER: Use is the set of the se
SOURCE INFO AND TRAFFIC COUNTS: PRIMARY NOISE SOURCE: TRAFFIC COUNT DURATION:	IBIENT OTHER: Usicophys #2 COUNT SPEED / EB SB / WB NB / EB SB / WB / EB SB / WB NB / EB SB / WB // EB SB / WB NB / EB SB / WB // EB SB / WB
SOURCE INFO AND TRAFFIC COUNTS: PRIMARY NOISE SOURCE: TRAFFIC AIRCRAFT RAIL INDUSTRIAL AN ROADWAY TYPE: TRAFFIC COUNT DURATION:	IBIENT OTHER: <u>Unlicoptus</u> #2 COUNT SPEED / EB SB / WB NB / EB SB / WB BSERVER DOGS / BIRDS / DIST. INDUSTRIAL ACTIVITIES / OTHER: Kids playsound.
SOURCE INFO AND TRAFFIC COUNTS: PRIMARY NOISE SOURCE: TRAFFIC AIRCRAFT RAIL INDUSTRIAL AN ROADWAY TYPE: TRAFFIC COUNT DURATION:	IBIENT OTHER: <u>Unlicoptus</u> #2 COUNT SPEED / EB SB / WB NB / EB SB / WB BSERVER DOGS / BIRDS / DIST. INDUSTRIAL ACTIVITIES / OTHER: Kidy playground.
SOURCE INFO AND TRAFFIC COUNTS: PRIMARY NOISE SOURCE: TRAFFIC AIRCRAFT RAIL INDUSTRIAL AN ROADWAY TYPE: TRAFFIC COUNT DURATION:	IBIENT OTHER: Usicophys #2 COUNT SPEED / EB SB / WB NB / EB SB / WB / EB SB / WB NB / EB SB / WB // EB SB / WB NB / EB SB / WB // EB SB / WB
SOURCE INFO AND TRAFFIC COUNTS: PRIMARY NOISE SOURCE: TRAFFIC AIRCRAFT RAIL INDUSTRIAL AN ROADWAY TYPE:	IBIENT OTHER: Usicophis #2 COUNT SPEED / EB SB / WB NB / EB SB / WB / EB SB / WB NB / EB SB / WB // EB SB / WB Image: SB / WB Image: SB / WB // EB SB / WB Image: SB / WB Image: SB / WB // EB SB / WB Image: SB / WB Image: SB / WB // EB SB / WB Image: SB / WB Image: SB / WB // BSERVER Image: SB / DIST. INDUSTRIAL ACTIVITIES / OTHER: Kids plagground Image: SB / Barbar rus / Mouths Image: SB / Barbar or Image: SB / Barbar Image: SB / Barbar or Image: SB / Barbar Image: SB / Barbar or Image: SB / Barbar Image: SB / Barbar or Image: SB / Barbar Image: SB / Barbar or Image: SB / Barbar Image: SB / Barbar or Image: SB / Barbar Image: SB / Barbar or Image: SB / Barbar Image: SB / Barbar
SOURCE INFO AND TRAFFIC COUNTS: PRIMARY NOISE SOURCE: TRAFFIC AIRCRAFT ROADWAY TYPE: TRAFFIC COUNT DURATION:	IBIENT OTHER: Usicophys #2 COUNT SPEED /EB SB / WB NB / EB SB / WB /EB SB / WB NB / EB SB / WB //EB SB / WB
SOURCE INFO AND TRAFFIC COUNTS: PRIMARY NOISE SOURCE: TRAFFIC AIRCRAFT RAIL INDUSTRIAL AN ROADWAY TYPE:	IBIENT OTHER: Usicophis #2 COUNT SPEED /EB SB / WB NB / EB SB / WB /EB SB / WB NB / EB SB / WB //EB SB / WB
SOURCE INFO AND TRAFFIC COUNTS: PRIMARY NOISE SOURCE: TRAFFIC AIRCRAFT RAIL INDUSTRIAL AN ROADWAY TYPE: TRAFFIC COUNT DURATION:	IBIENT OTHER: Usicophis #2 COUNT SPEED / EB SB / WB NB / EB SB / WB / EB SB / WB NB / EB SB / WB // EB SB / WB

File: LxT_ Data.004 "The Village at NTC"

	FIELD NOISE MEASUREMENT DATA									
PROJECT: Harber Island West Marina PROJ. # 498.14										
SITE IDENTIFICATION: Spanish Landing Park ST-2 OBSERVER(S): Sonathan Min ADDRESS:	igginion									
START DATE / TIME: 12/10/14 12:24 AM END DATE / TIME: 12/10/14										
METEROLOGICAL CONDITIONS: TEMP: 6 °F HUMIDITY: 736 %R.H. WIND: CALM LIGHT MODERATE	E VARIABLE									
WINDSPEED: MPH DIR: N NE E SE SSW W NW STE SKY: SUNNY CLEAR OVRCST PRTLY CLOUDY FOG RAIN OTHER:	EADY GUSTY									
ACOUSTIC MEASUREMENTS:										
CALIBRATOR: LD - CALIDO SERIAL #: CALIBRATION CHECK: PRE-TEST 114.0 dBA SPL POST-TEST 113.93 dBA SPL WINDSC										
SETTINGS: A-WEIGHTED SLOW FAST FRONTAL RANDOM ANSI OTHER:										
REC # START END L_{eq} L_{max} L_{min} L_{90} L_{60} L_{10} OTHER: (TY	YPE?) -So Lao									
003 12:24 12:43 m 63.4 75.9 53.4 71.9 68.0 67.3 63.4 50	9.6 55.4									
COMMENTS:										
SOURCE INFO AND TRAFFIC COUNTS:										
PRIMARY NOISE SOURCE: I RAFFIC AIRCRAFT RAIL INDUSTRIAL AMBIENT OTHER:										
PRIMARY NOISE SOURCE: IRAFFIC AIRCRAFT RAIL INDUSTRIAL AMBIENT OTHER: ROADWAY TYPE:										
PRIMARY NOISE SOURCE: IRAFFIC AIRCRAFT RAIL INDUSTRIAL AMBIENT OTHER: ROADWAY TYPE:	 3 / WB									
PRIMARY NOISE SOURCE: IRAFFIC AIRCRAFT RAIL INDUSTRIAL AMBIENT OTHER: ROADWAY TYPE:	3 / WB									
PRIMARY NOISE SOURCE: IRAFFIC AIRCRAFT RAIL INDUSTRIAL AMBIENT OTHER: ROADWAY TYPE:	3 / WB									
PRIMARY NOISE SOURCE: IRAFFIC AIRCRAFT RAIL INDUSTRIAL AMBIENT OTHER: ROADWAY TYPE:	3 / WB									
PRIMARY NOISE SOURCE: IRAFFIC AIRCRAFT RAIL INDUSTRIAL AMBIENT OTHER: ROADWAY TYPE:	3 / WB									
PRIMARY NOISE SOURCE: IRAFFIC AIRCRAFT RAIL INDUSTRIAL AMBIENT OTHER: ROADWAY TYPE:	3 / WB									
PRIMARY NOISE SOURCE: IRAFFIC AIRCRAFT RAIL INDUSTRIAL AMBIENT OTHER: ROADWAY TYPE:	3 / WB									
PRIMARY NOISE SOURCE: IRAFFIC AIRCRAFT RAIL INDUSTRIAL AMBIENT OTHER: ROADWAY TYPE:	3 / WB									
PRIMARY NOISE SOURCE: IRAFFIC AIRCRAFT RAIL INDUSTRIAL AMBIENT OTHER: ROADWAY TYPE:	B / WB									
PRIMARY NOISE SOURCE: IRAFFIC AIRCRAFT RAIL INDUSTRIAL AMBIENT OTHER: ROADWAY TYPE:	B / WB									
PRIMARY NOISE SOURCE: IRAFFIC AIRCRAFT RAIL INDUSTRIAL AMBIENT OTHER: ROADWAY TYPE:	B / WB									
PRIMARY NOISE SOURCE: IRAFFIC AIRCRAFT RAIL INDUSTRIAL AMBIENT OTHER: ROADWAY TYPE:	B / WB									
PRIMARY NOISE SOURCE: IRAFFIC AIRCRAFT RAIL INDUSTRIAL AMBIENT OTHER: ROADWAY TYPE:	B / WB									
PRIMARY NOISE SOURCE: INAFFIC AIRCRAFT RAIL INDUSTRIAL AMBIENT OTHER: ROADWAY TYPE:	B / WB									
PRIMARY NOISE SOURCE: IRAFFIC AIRCRAFT RAIL INDUSTRIAL AMBIENT OTHER: ROADWAY TYPE:	B / WB									
PRIMARY NOISE SOURCE: INAFFIC AIRCRAFT RAIL INDUSTRIAL AMBIENT OTHER: TRAFFIC COUNT DURATION:	B / WB									
PRIMARY NOISE SOURCE: IRAFIC AIRCRAFT RAIL INDUSTRIAL AMBIENT OTHER: ROADWAY TYPE:	B / WB									

File= LxT-Data.003

FIELD NO	ISE WEASUREI	VIENT DATA	٦ (۵۵)				
PROJECT: Harbor Island West Me	aring	PF	ROJ. # 498.1	4			
SITE IDENTIFICATION: Hilmy Hotel ST-3		OBSERVER	(S): Jonathan	Higginson			
START DATE / TIME: 12/10/14 11:35 AM		END DATE	TIME: 12/10/	14 11:52 AM			
METEROLOGICAL CONDITIONS:			1.				
TEMP: 6 °F HUMIDITY: 70	%R.H.	WIND: CA	M LIGHT MODER	RATE VARIABLE			
WINDSPEED: MPH DIR: SKY: SUNNY CLEAR OVECST PRIXYEL	N NE E SE	S SW W	NW OTHER:	STEADY GUSTY			
ONT CEAR OTHER TREE	100		UTILA.				
		TVDE 1 2		0001005			
CALIBRATOR: LD-CAL200	- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10		SERIAL #:	6645			
CALIBRATION CHECK: PRE-TEST	dBA SPL POST-TE	ST114.09 dB/	A SPL WI				
SETTINGS: A-WEIGHTED SLOW FAST F	RONTAL RAND	om Ansi	OTHER:				
REC # START END L _{eq} L _{max}	L _{min} L ₉₀	L _{so}	L ₁₀ OTHER:	(TYPE?)			
007 11:35 11:57 56-7 69.4	1.87 (7)	8.33	$\frac{10}{7.7}$ $\frac{125}{54.0}$	<u> </u>			
00C 11:33 11:0L 30-1 0-14	40.0 01.1	01.2 3	1.2 34.0	31.7 44.4			
	<u> </u>	<u> </u>					
COMMENTS:		12 10 92					
SOURCE INFO AND TRAFFIC COUNTS:							
SOURCE INFO AND TRAFFIC COUNTS:							
PRIMARY NOISE SOURCE: TRAFFIC AIRCRAFT	RAIL INDUSTRIA	AMBIENT	OTHER: Helico	otes			
PRIMARY NOISE SOURCE: TRAFFIC AIRCRAFT ROADWAY TYPE:	RAIL INDUSTRIAI	AMBIENT	OTHER: Helico	ptes			
PRIMARY NOISE SOURCE: TRAFFIC AIRCRAFT ROADWAY TYPE: TRAFFIC COUNT DURATION:MIN SPE	RAIL INDUSTRIAI	#2 COUN		ED SB / WB			
PRIMARY NOISE SOURCE: TRAFFIC AIRCRAFT ROADWAY TYPE: TRAFFIC COUNT DURATION:MIN SPE NB / EB SB / WB NB / EB AUTOS:	RAIL INDUSTRIAI	#2 COUN NB / EB SE	OTHER: Helico	ED SB/WB			
PRIMARY NOISE SOURCE: TRAFFIC AIRCRAFT ROADWAY TYPE: TRAFFIC COUNT DURATION:MIN SPE NB / EB SB / WB NB / EB AUTOS: MED. TRUCKS:	RAIL INDUSTRIAI	AMBIENT #2 COUN NB / EB SE	OTHER: Helico IT SPE 3/WB NB/EB	ED SB/WB			
PRIMARY NOISE SOURCE: TRAFFIC AIRCRAFT ROADWAY TYPE: TRAFFIC COUNT DURATION:MIN SPE NB / EB SB / WB NB / EB AUTOS: MED. TRUCKS: HVY TRUCKS: BUISES:	RAIL INDUSTRIAI EED SB / WB	#2 COUN NB / EB SE	OTHER: Helico IT SPE 3/WB NB/EB	рњо ЕD SB / WB			
PRIMARY NOISE SOURCE: TRAFFIC AIRCRAFT ROADWAY TYPE:	RAIL INDUSTRIAI	AMBIENT #2 COUN NB / EB SE	OTHER: Helico IT SPE 3/WB NB/EB	ED SB / WB			
PRIMARY NOISE SOURCE: TRAFFIC AIRCRAFT ROADWAY TYPE:	RAIL INDUSTRIAI	AMBIENT #2 COUN NB / EB SE	OTHER: Helico	2 K-5			
PRIMARY NOISE SOURCE: TRAFFIC AIRCRAFT ROADWAY TYPE: TRAFFIC COUNT DURATION:MIN SPE NB / EB SB / WB NB / EB AUTOS: MED. TRUCKS: HVY TRUCKS: BUSES: MOTORCYCLES: OTHER SOURCES: DIST. AIRCRAFT / RUSTLING L DIST. CHILDREN PLAYING / DIST. TRAFFIC	RAIL INDUSTRIAI	AMBIENT #2 COUN NB / EB SE	OTHER: Helico IT SPE 3/WB NB/EB	USTRIAL			
PRIMARY NOISE SOURCE: TRAFFIC AIRCRAFT ROADWAY TYPE:	RAIL INDUSTRIAI	AMBIENT #2 COUN NB / EB SE	OTHER: Helico IT SPE 3/WB NB/EB 	USTRIAL			
PRIMARY NOISE SOURCE: TRAFFIC AIRCRAFT ROADWAY TYPE: TRAFFIC COUNT DURATION:MIN SPE NB / EB SB / WB NB / EB AUTOS:MED. TRUCKS: MED. TRUCKS: HVY TRUCKS: BUSES: MOTORCYCLES: OTHER SOURCES: DIST. AIRCRAFT / RUSTLING LI DIST. CHILDREN PLAYING / DIST. TRAFFIC O common marine / boot activity	RAIL INDUSTRIAI	AMBIENT #2 COUN NB / EB SE 	OTHER: Helico	DED SB/WB USTRIAL			
PRIMARY NOISE SOURCE: TRAFFIC AIRCRAFT ROADWAY TYPE:	RAIL INDUSTRIAI	AMBIENT #2 COUN NB / EB SE 	OTHER: Helico IT SPE 3/WB NB/EB 	otes ED SB/WB USTRIAL			
PRIMARY NOISE SOURCE: TRAFFIC AIRCRAFT ROADWAY TYPE:	RAIL INDUSTRIAI	AMBIENT #2 COUN NB / EB SE 	OTHER: Helico	otes ED SB/WB USTRIAL			
PRIMARY NOISE SOURCE: TRAFFIC AIRCRAFT ROADWAY TYPE:	RAIL INDUSTRIAI	AMBIENT #2 COUN NB / EB SE 	OTHER: Helico	DED SB/WB USTRIAL			
PRIMARY NOISE SOURCE: TRAFFIC AIRCRAFT ROADWAY TYPE: TRAFFIC COUNT DURATION:MIN SPE NB / EB SB / WB NB / EB AUTOS:MED. TRUCKS: MED. TRUCKS: HVY TRUCKS: BUSES: MOTORCYCLES: OTHER SOURCES: DIST. AIRCRAFT / RUSTLING L DIST. CHILDREN PLAYING / DIST. TRAFFIC O common marine / book activity DESCRIPTION / SKETCH: TERRAIN: HARD SOFT MIXED FLAT OTHER: PHOTOS: OTHER COMMENTS / SKETCH:	RAIL INDUSTRIAI	AMBIENT #2 COUN NB / EB SE //ING / OBSERVER KING DOGS / PING ACTIVIT { talking v	OTHER: Helico IT SPE 3/WB NB/EB BIRDS / DIST. IND IES / OTHER: war verburnut	eto			
PRIMARY NOISE SOURCE: TRAFFIC AIRCRAFT ROADWAY TYPE:	RAIL INDUSTRIAI	AMBIENT #2 COUN NB / EB SE 	OTHER: Helico	otes			
PRIMARY NOISE SOURCE: TRAFFIC AIRCRAFT ROADWAY TYPE:	RAIL INDUSTRIAI	AMBIENT #2 COUN NB / EB SE 	OTHER: Helico	DED SB/WB USTRIAL			
PRIMARY NOISE SOURCE: TRAFFIC AIRCRAFT ROADWAY TYPE:	RAIL INDUSTRIAI	AMBIENT #2 COUN NB / EB SE //ING / OBSERVER KING DOGS / PING ACTIVIT (- talking /	OTHER: Helico	eto			
PRIMARY NOISE SOURCE: TRAFFIC AIRCRAFT ROADWAY TYPE:	RAIL INDUSTRIAI	AMBIENT #2 COUN NB / EB SE 	OTHER: Helico	0 tes ED SB / WB 			
PRIMARY NOISE SOURCE: TRAFFIC AIRCRAFT ROADWAY TYPE:	RAIL INDUSTRIAI	AMBIENT #2 COUN NB / EB SE 	OTHER: Helico	DED SB / WB USTRIAL			
PRIMARY NOISE SOURCE: TRAFFIC AIRCRAFT ROADWAY TYPE:	RAIL INDUSTRIAI	AMBIENT #2 COUN NB / EB SE //ING / OBSERVER KING DOGS / PING ACTIVIT thatking /	OTHER: Helico	0 to			
PRIMARY NOISE SOURCE: TRAFFIC AIRCRAFT ROADWAY TYPE:	RAIL INDUSTRIAI	AMBIENT #2 COUN NB / EB SE	OTHER: Helico	0 tes ED SB / WB USTRIAL - / hotel			
PRIMARY NOISE SOURCE: TRAFFIC AIRCRAFT ROADWAY TYPE: TRAFFIC COUNT DURATION:MIN SPE NB / EB SB / WB NB / EB AUTOS: MED. TRUCKS: HVY TRUCKS: BUSES: MOTORCYCLES: OTHER SOURCES: DIST. AIRCRAFT / RUSTLING L DIST. CHILDREN PLAYING / DIST. TRAFFIC OCCUMENT MARCH / boxt actions DESCRIPTION / SKETCH: DESCRIPTION / SKETCH: DTHER COMMENTS / SKETCH: MARCH / SKETCH / SKETCH: MARCH / SKETCH / SKETCH: MARCH / SKETCH / SKE	RAIL INDUSTRIAI	AMBIENT #2 COUN NB / EB SE //ING / OBSERVER KING DOGS / PING ACTIVIT that wing r	OTHER: Helico	DED SB / WB USTRIAL			

File = LxT_ Data . 002

PROJECT: <u>Harbor Island West Maring</u> PROJ. # 498.14 SITE IDENTIFICATION: Harbor Island Park ST-4 OBSERVER(S): Jongthan Higginson								
SITE IDENTIFICATION: Harbor Island Park ST-4 OBSERVER(S): Jongthan Higginson								
ADDRESS: START DATE / TIME: 12/10/14 101 AM END DATE / TIME: 12/10/14 11:21AM	<u>.</u>							
METEROLOGICAL CONDITIONS:								
TEMP: 64 °F HUMIDITY: 75 %R.H. WIND: CAUM LIGHT MODERATE VARIAB	LE							
WINDSPEED: MPH DIR: N NE E SE S SW W NW STEADY GU	JSTY							
SKY: SUNNY CLEAR OVROST PRILIT CLOUDY FOG RAIN OTHER.	1005 10							
ACOUSTIC MEASUREMENTS:	-							
INSTRUMENT: $(1) - LXT1$ TYPE: (1) 2 SERIAL #: 000400	5							
CALIBRATOR. CD-CALCOD CALIBRATOR CHECK: PRE-TEST (14.0) dBA SPL POST-TEST (13.4) dBA SPL WINDSCREEN	5							
SETTINGS: A-WEIGHTED SLOW FAST FRONTAL RANDOM ANSI OTHER:								
$\begin{bmatrix} \text{REC} \# \text{ START END} & L_{eq} & L_{max} & L_{min} & L_{e0} & L_{50} & L_{10} & \text{OTHER}. (TTPE?) \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ &$.90							
(10) 11:21 60.9 72.8 53.2 68.3 63.1 62.6 61.0 59.5	56.1							
· · · · · · · · · · · · · · · · · · ·								
SOURCE INFO AND TRAFFIC COUNTS:								
SOURCE INFO AND TRAFFIC COUNTS: PRIMARY NOISE SOURCE: TRAFFIC AIRCRAFT RAIL INDUSTRIAL AMBIENT OTHER: Helicopters								
SOURCE INFO AND TRAFFIC COUNTS: PRIMARY NOISE SOURCE: TRAFFIC AIRCRAFT RAIL INDUSTRIAL AMBIENT OTHER: Helicopters ROADWAY TYPE: TRAFFIC COUNT DURATION: MIN SPEED #2 COUNT SPEED								
SOURCE INFO AND TRAFFIC COUNTS: PRIMARY NOISE SOURCE: TRAFFIC AIRCBAFT RAIL INDUSTRIAL AMBIENT OTHER: Helicopters ROADWAY TYPE:								
SOURCE INFO AND TRAFFIC COUNTS: PRIMARY NOISE SOURCE: TRAFFIC AIRCBAFT RAIL INDUSTRIAL AMBIENT OTHER: Helicopters ROADWAY TYPE:								
SOURCE INFO AND TRAFFIC COUNTS: PRIMARY NOISE SOURCE: TRAFFIC AIRCEAFT RAIL INDUSTRIAL AMBIENT OTHER: Helicopters ROADWAY TYPE:								
SOURCE INFO AND TRAFFIC COUNTS: PRIMARY NOISE SOURCE: TRAFFIC AIRCBAFT RAIL INDUSTRIAL AMBIENT OTHER: Helicopters ROADWAY TYPE:								
SOURCE INFO AND TRAFFIC COUNTS: PRIMARY NOISE SOURCE: TRAFFIC AIRCEAFT RAIL INDUSTRIAL AMBIENT OTHER: Helicopters ROADWAY TYPE:								
SOURCE INFO AND TRAFFIC COUNTS: PRIMARY NOISE SOURCE: TRAFFIC AIRCEAFT RAIL INDUSTRIAL AMBIENT OTHER: Helicopters ROADWAY TYPE:								
SOURCE INFO AND TRAFFIC COUNTS: PRIMARY NOISE SOURCE: TRAFFIC AIRCBAFT RAIL INDUSTRIAL AMBIENT OTHER: Helicopters ROADWAY TYPE:								
SOURCE INFO AND TRAFFIC COUNTS: PRIMARY NOISE SOURCE: TRAFFIC AIRCRAFT RAIL INDUSTRIAL AMBIENT OTHER: Helicopters ROADWAY TYPE:								
SOURCE INFO AND TRAFFIC COUNTS: PRIMARY NOISE SOURCE: TRAFFIC ARCEAFT RAIL INDUSTRIAL AMBIENT OTHER: Helicopters ROADWAY TYPE: TRAFFIC COUNT DURATION: -MIN SPEED #2 COUNT SPEED MB / EB SB / WB NB / EB SB / WB AUTOS: -MIN MED. TRUCKS: -MIN BUSES: -MIN SPEED #2 COUNT SPEED BUSES: MOTORCYCLES: -MIN SPEED ESTIMATED BY: RADAR / DRIVING / OBSERVER OTHER SOURCES: DIST. AIRCRAFT / RUSTLING LEAVES / DIST. BARKING DOGS / BIRDS / DIST. INDUSTRIAL DIST. CHILDREN PLAYING / DIST. TRAFFIC / DIST. LANDSCAPING ACTIVITIES / OTHER: Speradic vehicle traffic on Marbor Island Drive								
SOURCE INFO AND TRAFFIC COUNTS: PRIMARY NOISE SOURCE: TRAFFIC AIRCRAFT RAIL INDUSTRIAL AMBIENT OTHER: Helicopters ROADWAY TYPE: TRAFFIC COUNT DURATION:MIN SPEED #2 COUNT SPEED NB / EB SB / WB NB / EB SB / WB NB / EB SB / WB AUTOS:MED. TRUCKS:								
SOURCE INFO AND TRAFFIC COUNTS: PRIMARY NOISE SOURCE: TRAFFIC ARCEAFT RAIL INDUSTRIAL AMBIENT OTHER: Helicopters ROADWAY TYPE: TRAFFIC COUNT DURATION: -MIN SPEED #2 COUNT SPEED NB / EB SB / WB NB / EB SB / WB AUTOS: -MIN MED. TRUCKS:								
SOURCE INFO AND TRAFFIC COUNTS: PRIMARY NOISE SOURCE: TRAFFIC AIRCRAFT RAIL INDUSTRIAL AMBIENT OTHER: <u>Helicopters</u> ROADWAY TYPE: TRAFFIC COUNT DURATION:MIN SPEED #2 COUNT SPEED NB / EB SB / WB NB / EB SB / WB AUTOS:								
SOURCE INFO AND TRAFFIC COUNTS: PRIMARY NOISE SOURCE: TRAFFIC AIRCRAFT RAIL INDUSTRIAL AMBIENT OTHER: Helicopters ROADWAY TYPE:								
SOURCE INFO AND TRAFFIC COUNTS: PRIMARY NOISE SOURCE: TRAFFIC AIRCRAFT RAIL INDUSTRIAL AMBIENT OTHER: Helicopters ROADWAY TYPE: TRAFFIC COUNT DURATION:								
SOURCE INFO AND TRAFFIC COUNTS: PRIMARY NOISE SOURCE: TRAFFIC AIRCRAFT RAIL INDUSTRIAL AMBIENT OTHER: <u>Helicopters</u> ROADWAY TYPE: TRAFFIC COUNT DURATION:MIN SPEED #2 COUNT SPEED NB / EB SB / WB NB / EB SB / WB NB / EB SB / WB AUTOS: MED. TRUCKS:								
SOURCE INFO AND TRAFFIC COUNTS: PRIMARY NOISE SOURCE: TRAFFIC AIRCEAFT RAIL INDUSTRIAL AMBIENT OTHER: Helicopters RAFFIC COUNT DURATION:								
SOURCE INFO AND TRAFFIC COUNTS: PRIMARY NOISE SOURCE: TRAFFIC AIRCRAFT RAIL INDUSTRIAL AMBIENT OTHER: Helicopters ROADWAY TYPE: TRAFFIC COUNT DURATION:MIN SPEED #2 COUNT SPEED NB / EB SB / WB NB / EB SB / WB NB / EB SB / WB AUTOS:MIN SPEED #2 COUNT SPEED SB / WB MED. TRUCKS:								
SOURCE INFO AND TRAFFIC COUNTS: PRIMARY NOISE SOURCE: TRAFFIC AIRCRAFT RAIL INDUSTRIAL AMBIENT OTHER: Helicopters TRAFFIC COUNT DURATION:								
SOURCE INFO AND TRAFFIC COUNTS: PRIMARY NOISE SOURCE: TRAFFIC AIRCRAFT RAIL INDUSTRIAL AMBIENT OTHER: Helicopters TRAFFIC COUNT DURATION: MIN SPEED #2 COUNT SPEED NB / EB SB / WB NB / EB SB / WB AUTOS: MIN SPEED #2 COUNT SPEED MED. TRUCKS:								
SOURCE INFO AND TRAFFIC COUNTS: PRIMARY NOISE SOURCE: TRAFFIC AIRCRAFT RAIL INDUSTRIAL AMBIENT OTHER: Helicopters ROADWAY TYPE: TRAFFIC COUNT DURATION: -MIN SPEED #2 COUNT DURATION: SPEED NB/EB SB/WB NB/EB SB/WB MED. TRUCKS:								
SOURCE INFO AND TRAFFIC COUNTS: PRIMARY NOISE SOURCE: TRAFFIC AIRCEAFT RAIL INDUSTRIAL AMBIENT OTHER: <u>Helicopters</u> ROADWAY TYPE: TRAFFIC COUNT DURATION:MIN SPEED #2 COUNT SPEED NB / EB SB / WB NB / EB SB / WB NB / EB SB / WB AUTOS: MED. TRUCKS:								

File = LXT-DAEA.001

Photograph 1. ST-1, Camera Facing Northeast

Photograph 2. ST-2, Camera Facing Southeast

Photograph 3. ST-1, Camera Facing Southwest

Photograph 4. ST-1, Camera Facing Northwest

Photograph 5. ST-2, Camera Facing North

Photograph 6. ST-2, Camera Facing East

Photograph 7. ST-2, Camera Facing South

Photograph 8. ST-2, Camera Facing West

Photograph 9. ST-3, Camera Facing North

Photograph 10. ST-3, Camera Facing East

Photograph 11. ST-3, Camera Facing South

Photograph 12. ST-3, Camera Facing West

Photograph 13. ST-4, Camera Facing North

Photograph 14. ST-4, Camera Facing East

Photograph 15. ST-4, Camera Facing South

Photograph 16. ST-4, Camera Facing West

This spreadsheet calculates traffic noise levels based on TNM Version 2.5 Lookup Tables.

** Type in yellow cells only.

Type in yellow cells only.					
Traffic Data:	<u>Units:</u>	Calculate	Noise Increase Calculation Construction Traffic:	48.6 dB CNEL	
E Enter ADT Traffic	C Metric		Baseline Traffic: Combined Traffic:	61.7 dB CNEL 61.9 dB CNEL	
E Enter Loudest-hour Traffic	🖸 English		Increase:	0.2 dB	

Link	Deadury Compatible	Hard or Soft		BARRIER			Total Daily		<u>Traffic</u> <u>Mix</u>	Vehicle Speed		Sound Le Receiver L	evels at ocations		
	Roadway	Segment Location	Ground (H or S)	Present 1=yes	Present Height Distance 1=yes min. 7 ft. 35 ft. or max. 32 ft. 100 ft.	V	Traffic /olumes (ADT)	Number #	Description	mph max. 80	Distance feet, min. 33 max. 1000	dB Ldn	dB CNEL	dBA Leq1h (loudest hour)	
1	Peak Construction Traffic	N/A	Н					121	13	Construction Traffic	35	50	47.6	48.6	47.3
2	Existing Harbor Island Drive	Western Terminus to Harbor Island Dr	Н					5,222	10	County of Orange, Arterials	35	50	61.1	61.7	60.2
3															
4															
5															
6															
7															
8															
9															
10							_								
12							_								
13															
14															

	Equipment	Typical						Barrier	
		Level @	Usage	Number	Hours Per	Distance to	Hard or	Attenuation,	Leq(h),
Item No.	Description	50', dBA ¹	Factor ^{1,2}	of Units	Day	Receiver, ft.	Soft Site?	dB	dBA
39	Pneumatic Tools	85.2	0.5	1	8	1650	hard	0	50.1
70	Workboat (estimated)	73	0.1	1	8	1650	hard	0	30.9
12	Crane	80.6	0.16	2	8	1650	hard	0	43.5
35	Pile-driver (Impact)	101.3	0.2	1	1.6	1650	hard	0	55.2
29	Loader (Front End Loader)	79.1	0.4	1	8	2200	hard	0	40.5
18	Excavator	80.7	0.4	1	8	2200	hard	0	42.1
2	Backhoe	77.6	0.4	1	8	2200	hard	0	39.0
34	Paver	77.2	0.5	1	8	2200	hard	0	39.6
44	Roller	80	0.2	1	8	2200	hard	0	38.4
23	Grader	85	0.4	1	8	2200	hard	0	46.4
9	Compactor	83.2	0.2	1	8	2200	hard	0	41.6
71	Bobcat (estimated)	77.6	0.4	1	8	2200	hard	0	39.0
72	Striper (estimated)	77.2	0.5	1	8	2200	hard	0	39.6
2	Backhoe	77.6	0.4	1	8	2200	hard	0	39.0
10	Compressor, Air	77.7	0.4	1	8	2200	hard	0	39.1
47	Saw, Chain	83.7	0.2	2	8	2200	hard	0	45.1
39	Pneumatic Tools	85.2	0.5	2	8	2200	hard	0	50.6
40	Pumps	80.9	0.5	1	6.4	1650	hard	0	44.8
	Combined Equipment								58.9
	Average Hourly Construction	n Traffic							47.0
	Estimated Total Construction	on Noise							59.2

Table 1. Construction Noise Analysis, Phase I, at "The Village" Military Housing

1. Obtained or estimated from:

FHWA Roadway Construction Noise Model (RCNM), Version 1.1, December 8, 2008; and/or

"Transit Noise and Vibration Impact Assessment", FTA, (FTA-VA-90-1003-06), May 2006; and/or

"Noise from Construction Equipment and Operations, Building Equipment, and Home Appliances;" BBN/EPA, December 31, 1971

	Equipment	Typical						Barrier	
		Level @	Usage	Number	Hours Per	Distance to	Hard or	Attenuation,	Leq(h),
Item No.	Description	50', dBA ¹	Factor ^{1,2}	of Units	Day	Receiver, ft.	Soft Site?	dB	dBA
39	Pneumatic Tools	85.2	0.5	1	8	600	hard	0	58.8
70	Workboat (estimated)	73	0.1	1	8	600	hard	0	39.7
12	Crane	80.6	0.16	2	8	600	hard	0	52.3
35	Pile-driver (Impact)	101.3	0.2	1	1.6	600	hard	0	64.0
29	Loader (Front End Loader)	79.1	0.4	1	8	1270	hard	0	45.3
18	Excavator	80.7	0.4	1	8	1270	hard	0	46.9
2	Backhoe	77.6	0.4	1	8	1270	hard	0	43.8
34	Paver	77.2	0.5	1	8	1270	hard	0	44.3
44	Roller	80	0.2	1	8	1270	hard	0	43.2
23	Grader	85	0.4	1	8	1270	hard	0	51.2
9	Compactor	83.2	0.2	1	8	1270	hard	0	46.4
71	Bobcat (estimated)	77.6	0.4	1	8	1270	hard	0	43.8
72	Striper (estimated)	77.2	0.5	1	8	1270	hard	0	44.3
2	Backhoe	77.6	0.4	1	8	1270	hard	0	43.8
10	Compressor, Air	77.7	0.4	1	8	1270	hard	0	43.9
47	Saw, Chain	83.7	0.2	2	8	1270	hard	0	49.9
39	Pneumatic Tools	85.2	0.5	2	8	1270	hard	0	55.3
40	Pumps	80.9	0.5	1	6.4	600	hard	0	53.6
	Combined Equipment								<u> </u>
	Combinea Equipment								00.0
	Average Hourly Construction	n Traffic							47.0
	Estimated Total Construction	n Noise							66.6
									00.0

Table 2. Construction Noise Analysis, Phase I, at Spanish Landing Park

1. Obtained or estimated from:

FHWA Roadway Construction Noise Model (RCNM), Version 1.1, December 8, 2008; and/or

"Transit Noise and Vibration Impact Assessment", FTA, (FTA-VA-90-1003-06), May 2006; and/or

"Noise from Construction Equipment and Operations, Building Equipment, and Home Appliances;" BBN/EPA, December 31, 1971

	Equipment	Typical						Barrier	
		Level @	Usage	Number	Hours Per	Distance to	Hard or	Attenuation,	Leq(h),
Item No.	Description	50', dBA ¹	Factor ^{1,2}	of Units	Day	Receiver, ft.	Soft Site?	dB	dBA
39	Pneumatic Tools	85.2	0.5	1	8	60	hard	0	78.8
70	Workboat (estimated)	73	0.1	1	8	60	hard	0	59.7
12	Crane	80.6	0.16	2	8	60	hard	0	72.3
35	Pile-driver (Impact)	101.3	0.2	1	1.6	60	hard	0	84.0
29	Loader (Front End Loader)	79.1	0.4	1	8	805	hard	0	49.2
18	Excavator	80.7	0.4	1	8	805	hard	0	50.8
2	Backhoe	77.6	0.4	1	8	805	hard	0	47.7
34	Paver	77.2	0.5	1	8	805	hard	0	48.3
44	Roller	80	0.2	1	8	805	hard	0	47.1
23	Grader	85	0.4	1	8	805	hard	0	55.1
9	Compactor	83.2	0.2	1	8	805	hard	0	50.3
71	Bobcat (estimated)	77.6	0.4	1	8	805	hard	0	47.7
72	Striper (estimated)	77.2	0.5	1	8	805	hard	0	48.3
2	Backhoe	77.6	0.4	1	8	805	hard	0	47.7
10	Compressor, Air	77.7	0.4	1	8	805	hard	0	47.8
47	Saw, Chain	83.7	0.2	2	8	805	hard	0	53.8
39	Pneumatic Tools	85.2	0.5	2	8	805	hard	0	59.3
40	Pumps	80.9	0.5	1	6.4	60	hard	0	73.6
	Combined Equipment								85.7
	Average Hourly Construction	n Traffic							47.0
	Estimated Total Construction	n Noise							85.7

Table 3. Construction Noise Analysis, Phase I, at Hilton Hotel

1. Obtained or estimated from:

FHWA Roadway Construction Noise Model (RCNM), Version 1.1, December 8, 2008; and/or

"Transit Noise and Vibration Impact Assessment", FTA, (FTA-VA-90-1003-06), May 2006; and/or

"Noise from Construction Equipment and Operations, Building Equipment, and Home Appliances;" BBN/EPA, December 31, 1971

	Equipment	Typical						Barrier	
		Level @	Usage	Number	Hours Per	Distance to	Hard or	Attenuation,	Leq(h),
Item No.	Description	50', dBA ¹	Factor ^{1,2}	of Units	Day	Receiver, ft.	Soft Site?	dB	dBA
39	Pneumatic Tools	85.2	0.5	1	8	400	hard	0	62.4
70	Workboat (estimated)	73	0.1	1	8	400	hard	0	43.2
12	Crane	80.6	0.16	2	8	400	hard	0	55.8
35	Pile-driver (Impact)	101.3	0.2	1	1.6	400	hard	0	67.5
29	Loader (Front End Loader)	79.1	0.4	1	8	1180	hard	0	45.9
18	Excavator	80.7	0.4	1	8	1180	hard	0	47.5
2	Backhoe	77.6	0.4	1	8	1180	hard	0	44.4
34	Paver	77.2	0.5	1	8	1180	hard	0	45.0
44	Roller	80	0.2	1	8	1180	hard	0	43.8
23	Grader	85	0.4	1	8	1180	hard	0	51.8
9	Compactor	83.2	0.2	1	8	1180	hard	0	47.0
71	Bobcat (estimated)	77.6	0.4	1	8	1180	hard	0	44.4
72	Striper (estimated)	77.2	0.5	1	8	1180	hard	0	45.0
2	Backhoe	77.6	0.4	1	8	1180	hard	0	44.4
10	Compressor, Air	77.7	0.4	1	8	1180	hard	0	44.5
47	Saw, Chain	83.7	0.2	2	8	1180	hard	0	50.5
39	Pneumatic Tools	85.2	0.5	2	8	1180	hard	0	56.0
40	Pumps	80.9	0.5	1	6.4	400	hard	0	57.1
	Combined Equipment								69.7
	Average Hourly Construction	n Traffic							47.0
	Estimated Total Construction	on Noise							69.7

Table 4. Construction Noise Analysis, Phase I, at Harbor Island Park

1. Obtained or estimated from:

FHWA Roadway Construction Noise Model (RCNM), Version 1.1, December 8, 2008; and/or

"Transit Noise and Vibration Impact Assessment", FTA, (FTA-VA-90-1003-06), May 2006; and/or

"Noise from Construction Equipment and Operations, Building Equipment, and Home Appliances;" BBN/EPA, December 31, 1971

	Equipment	Typical						Barrier	
		Level @	Usage	Number	Hours Per	Distance to	Hard or	Attenuation,	Leq(h),
Item No.	Description	50', dBA ¹	Factor ^{1,2}	of Units	Day	Receiver, ft.	Soft Site?	dB	dBA
2	Backhoe	77.6	0.4	1	8	2655	hard	0	37.4
73	Wood Chipper,	88	0.2	1	8	2655	hard	0	44.7
29	Loader (Front End Loader)	79.1	0.4	2	8	2655	hard	0	41.9
18	Excavator	80.7	0.4	1	8	2655	hard	0	40.5
2	Backhoe	77.6	0.4	1	8	2655	hard	0	37.4
18	Excavator	80.7	0.4	2	8	2655	hard	0	43.5
29	Loader (Front End Loader)	79.1	0.4	2	8	2655	hard	0	41.9
23	Grader	85	0.4	1	8	2655	hard	0	44.8
61	Truck, Dump	76.5	0.4	1	8	2655	hard	0	36.3
	Combined Equipment								51.4
	Average Hourly Construction	n Traffic							47.0
	Estimated Total Construction	n Noise							52.8

Table 5. Construction Noise Analysis, Phase 2, at "The Village" Military Housing

1. Obtained or estimated from:

FHWA Roadway Construction Noise Model (RCNM), Version 1.1, December 8, 2008; and/or

"Transit Noise and Vibration Impact Assessment", FTA, (FTA-VA-90-1003-06), May 2006; and/or

"Noise from Construction Equipment and Operations, Building Equipment, and Home Appliances;" BBN/EPA, December 31, 1971
	Equipment	Typical						Barrier	
		Level @	Usage	Number	Hours Per	Distance to	Hard or	Attenuation,	Leq(h),
Item No.	Description	50', dBA ¹	Factor ^{1,2}	of Units	Day	Receiver, ft.	Soft Site?	dB	dBA
2	Backhoe	77.6	0.4	1	8	1240	hard	0	44.0
73	Wood Chipper,	88	0.2	1	8	1240	hard	0	51.4
29	Loader (Front End Loader)	79.1	0.4	2	8	1240	hard	0	48.5
18	Excavator	80.7	0.4	1	8	1240	hard	0	47.1
2	Backhoe	77.6	0.4	1	8	1240	hard	0	44.0
18	Excavator	80.7	0.4	2	8	1240	hard	0	50.1
29	Loader (Front End Loader)	79.1	0.4	2	8	1240	hard	0	48.5
23	Grader	85	0.4	1	8	1240	hard	0	51.4
61	Truck, Dump	76.5	0.4	1	8	1240	hard	0	42.9
	Combined Equipment								58.0
	Average Hourly Construction	n Traffic							47.0
Estimated Total Construction Noise								58.4	

Table 6. Construction Noise Analysis, Phase 2, at Spanish Landing Park

1. Obtained or estimated from:

FHWA Roadway Construction Noise Model (RCNM), Version 1.1, December 8, 2008; and/or

"Transit Noise and Vibration Impact Assessment", FTA, (FTA-VA-90-1003-06), May 2006; and/or

"Noise from Construction Equipment and Operations, Building Equipment, and Home Appliances;" BBN/EPA, December 31, 1971

2. Usage Factor = percentage of time equipment is operating in noisiest mode while in use

	Equipment	Typical						Barrier	
		Level @	Usage	Number	Hours Per	Distance to	Hard or	Attenuation,	Leq(h),
Item No.	Description	50', dBA ¹	Factor ^{1,2}	of Units	Day	Receiver, ft.	Soft Site?	dB	dBA
2	Backhoe	77.6	0.4	1	8	125	hard	0	63.9
73	Wood Chipper,	88	0.2	1	8	125	hard	0	71.3
29	Loader (Front End Loader)	79.1	0.4	2	8	125	hard	0	68.4
18	Excavator	80.7	0.4	1	8	125	hard	0	67.0
2	Backhoe	77.6	0.4	1	8	125	hard	0	63.9
18	Excavator	80.7	0.4	2	8	125	hard	0	70.0
29	Loader (Front End Loader)	79.1	0.4	2	8	125	hard	0	68.4
23	Grader	85	0.4	1	8	125	hard	0	71.3
61	Truck, Dump	76.5	0.4	1	8	125	hard	0	62.8
	Combined Equipment								78.0
	Average Hourly Construction	n Traffic							47.0
Estimated Total Construction Noise		n Noise							78.0

Table 7. Construction Noise Analysis, Phase 2, at Hilton Hotel

1. Obtained or estimated from:

FHWA Roadway Construction Noise Model (RCNM), Version 1.1, December 8, 2008; and/or

"Transit Noise and Vibration Impact Assessment", FTA, (FTA-VA-90-1003-06), May 2006; and/or

"Noise from Construction Equipment and Operations, Building Equipment, and Home Appliances;" BBN/EPA, December 31, 1971

2. Usage Factor = percentage of time equipment is operating in noisiest mode while in use

	Equipment	Typical						Barrier	
		Level @	Usage	Number	Hours Per	Distance to	Hard or	Attenuation,	Leq(h),
Item No.	Description	50', dBA ¹	Factor ^{1,2}	of Units	Day	Receiver, ft.	Soft Site?	dB	dBA
2	Backhoe	77.6	0.4	1	8	660	hard	0	49.4
73	Wood Chipper,	88	0.2	1	8	660	hard	0	56.8
29	Loader (Front End Loader)	79.1	0.4	2	8	660	hard	0	54.0
18	Excavator	80.7	0.4	1	8	660	hard	0	52.5
2	Backhoe	77.6	0.4	1	8	660	hard	0	49.4
18	Excavator	80.7	0.4	2	8	660	hard	0	55.6
29	Loader (Front End Loader)	79.1	0.4	2	8	660	hard	0	54.0
23	Grader	85	0.4	1	8	660	hard	0	56.8
61	Truck, Dump	76.5	0.4	1	8	660	hard	0	48.3
	Combined Equipment								63.5
	Average Hourly Construction	n Traffic							47.0
Estimated Total Construction Noise		n Noise							63.6

Table 8. Construction Noise Analysis, Phase 2, at Harbor Island Park

1. Obtained or estimated from:

FHWA Roadway Construction Noise Model (RCNM), Version 1.1, December 8, 2008; and/or

"Transit Noise and Vibration Impact Assessment", FTA, (FTA-VA-90-1003-06), May 2006; and/or

"Noise from Construction Equipment and Operations, Building Equipment, and Home Appliances;" BBN/EPA, December 31, 1971

2. Usage Factor = percentage of time equipment is operating in noisiest mode while in use

Table 9. Construction Noise Analysis, Noise Increases

		Receptor 2:		
	Receptor 1:	Spanish		Receptor 3:
	"The Village"	Landing Park	Receptor 3:	Harbor Island
	Military Housing	West	Hilton Hotel	Park
Measured existing noise level (L _{eq}), dBA	59.2	63.4	56.7	60.9
Project construction noise levels (L _{eq}), dBA				
Phase 1	59.2	66.6	85.7	69.7
Phase 2	52.8	58.4	78.0	63.6
Combined noise levels (L _{eq}), dBA				
Phase 1	62.2	68.3	85.7	70.2
Phase 2	60.1	64.6	78.0	65.5
Increase due to project, dB				
Phase 1	3.0	4.9	29.0	9.3
Phase 2	0.9	1.2	21.3	4.6

Construction Vibration Analysis, PPV

Vibration attenuation constant (n):	1.1
Vibration Source	Data
	Reference PPV at 25
Equipment Item	feet, in/s ^a
Impact Pile Driver	0.650
Large bulldozer ^b	0.089
Small bulldozer ^c	0.003

Perceptibility Criteria, PPV, in/sec (continuous/frequent intermittent sources)							
Barely perceptible	0.01						
Distinctly perceptible	0.04						
Strongly perceptible	0.1						
Severe	0.4						

^a Obtained from "Transportation and Construction Vibration Guidance Manual", Caltrans 2013

^b Considered representative of any full size/large excavator, dozer, backhoe, etc.

^c Considered representative of any small excavator, dozer, backhoe, skid steer, etc.

	Distance from construction source (Feet)		Vibration PPV Level	(in/sec) at Receptor ation	PPV Threshold for		
Receiver #	Waterside Sources	Landside Sources	Waterside Sources	Landside Sources	Potential Building Damage (in/sec)	Exceeds Threshold?	Human Response
The Village on the Naval Training Center (Lincoln Military Housing)	1,650	2,000	0.006	0.001	0.5	No	Below barely perceptible
Spanish Landing Park West	600	1,000	0.020	0.002	N/A	No	Barely perceptible
Hilton Hotel	50	25	0.303	0.089	0.5	No	Strongly perceptible
Harbor Island Park	400	400	0.031	0.004	N/A	No	Barely perceptible
Tom Ham's Lighthouse Restaurant	300	270	0.042	0.006	0.5	No	Distinctly perceptible

MEMORANDUM

TO: Elyssa Figari, ICF

FROM: Dale Domingo; Chen Ryan Associates

DATE: December 17, 2018

RE: Harbor Island West Marina Redevelopment Project – Technical Memorandum

The purpose of this Technical Memorandum is to identify and document potential transportation impacts related to the construction activities of the Harbor Island West Marina Redevelopment Project (proposed project), as well as to recommend mitigation measures, as necessary, for any identified transportation related impacts associated with the proposed project.

PROPOSED PROJECT

The proposed Harbor Island West Marina Redevelopment Project encompasses the replacement and redevelopment of several elements comprising the Harbor Island West Marina (HIWM), an existing marina facility that provides services and amenities to the boating community and waterfront access opportunities to the public. The purpose of the proposed Project is to replace the existing aged dock structure, existing landside buildings, and infrastructure to accommodate a wider range of vessel sizes, to create more slip opportunities for entry level boaters, and to ensure the HIWM's long-term operation.

In summary, the Project would include the following:

- 1. Demolition of 23,000 square feet of existing building space and reconstruction of approximately 15,682 square feet of new building space;
- 2. Demolition of the existing paved parking lot (120,000 square feet of pavement) and construction of a new paved parking lot (approximately 116,000 square feet);
- 3. Removal of 15,000 square feet of landscaping with installation of approximately 18,000 square feet of new landscaping;
- 4. Construction of a new public 12-foot-wide promenade and replacement of an existing 6,000 square foot viewing deck with a new 6,000 square foot public viewing deck;
- 5. Modernizing utilities and site lighting; and
- 6. Demolition of 146,000 square feet of existing docks (including 620 boat slips) and construction of 140,000 square feet of new docks (including 603 boat slips).

The project site is located at 2040 Harbor Island Drive, San Diego, CA 92101.

PROJECT STUDY AREA

This Technical Memorandum was performed in accordance with the requirements of the City of San Diego Traffic Impact Study Manual requirements. The City of San Diego Traffic Impact Study Manual requires that the defined study area include all freeway segments, roadway segments, and intersections where the proposed project would add 50 or more peak hour trips in either direction.

2 | P a g e

Study Roadway Segments

Based on the project trip assignment, the following four (4) key study area roadway segments were analyzed:

North Harbor Drive between:

- Terminal 2/Spanish Landing to Harbor Island Drive
- Harbor Island Drive to Winship Lane

Harbor Island Drive between:

- North Harbor Drive to Harbor Island Drive Southern Terminus
- Western Terminus to Harbor Island Drive

Freeway Segments

Based on the project trip assignment, no freeway segments will be analyzed for this Technical Memorandum.

Study Intersections

Based on the project trip assignment, the following three (3) key study area intersections were analyzed:

- 1. Harbor Island Drive & Airport Terminal Road / North Harbor Drive
- 2. North Harbor Drive / Winship Lane
- 3. Harbor Island Drive (West) & Harbor Island Drive (East) / Harbor Island Drive

Figure 1 displays the project study area.

Redevelopment Project $CHEN \Rightarrow RYAN$

4 | P a g e

ANALYSIS METHODOLOGY

This technical memorandum was performed in accordance with the requirements of the City of San Diego *Traffic Impact Study Manual*, and the Port District's California Environmental Quality Act (CEQA) project review process. Detailed information on roadway segment and intersection analysis methodologies, standards, and thresholds are discussed in the following sections.

Level of Service Definition

Level of Service (LOS) is a quantitative measure describing operational conditions within a traffic stream, and the motorist's and/or passengers' perception of operations. A LOS definition generally describes these conditions in terms of such factors as delay, speed, travel time, freedom to maneuver, interruptions in traffic flow, queuing, comfort, and convenience. **Table 2.1** describes generalized definitions of the various LOS categories (A through F) as applied to roadway operations.

LOS Category	Definition of Operation
A	This LOS represents a completely free-flow condition, where the operation of vehicles is virtually unaffected by the presence of other vehicles and only constrained by the geometric features of the highway and by driver preferences.
В	This LOS represents a relatively free-flow condition, although the presence of other vehicles becomes noticeable. Average travel speeds are the same as in LOS A, but drivers have slightly less freedom to maneuver.
С	At this LOS the influence of traffic density on operations becomes marked. The ability to maneuver within the traffic stream is clearly affected by other vehicles.
D	At this LOS, the ability to maneuver is notably restricted due to traffic congestion, and only minor disruptions can be absorbed without extensive queues forming and the service deteriorating.
Е	This LOS represents operations at or near capacity. LOS E is an unstable level, with vehicles operating with minimum spacing for maintaining uniform flow. At LOS E, disruptions cannot be dissipated readily thus causing deterioration down to LOS F.
F	At this LOS, forced or breakdown of traffic flow occurs, although operations appear to be at capacity, queues form behind these breakdowns. Operations within queues are highly unstable, with vehicles experiencing brief periods of movement followed by stoppages.

TABLE 2.1 LOS DEFINITIONS

Source: Highway Capacity Manual 2010

Roadway Segment LOS Standards and Thresholds

Roadway segment LOS standards and thresholds provide the basis for analysis of arterial roadway segment performance. The analysis of roadway segment LOS is based on the functional classification of the roadway, the maximum capacity, roadway geometrics, and existing or forecast Average Daily Traffic (ADT) volumes. Table 2.2 presents the roadway segment capacity and LOS standards utilized to analyze roadways evaluated in this report.

TABLE 2.2 CITY OF SAN DIEGO ROADWAY CLASSIFICATIONS AND LOS STANDARDS

Roadway Classification	LOS A	LOS B	LOS C	LOS D	LOS E
Expressway	30,000	42,000	60,000	70,000	80,000
Primer Arterial	25,000	35,000	50,000	55,000	60,000
Major Arterial (6-lane, divided)	< 20,000	< 28,000	< 40,000	< 45,000	< 50,000
Major Arterial (4-lane, divided)	< 15,000	< 21,000	< 30,000	< 35,000	< 40,000
Secondary Arterial / Collector (4-lane w/ center lane)	< 10,000	< 14,000	< 20,000	< 25,000	< 30,000
Collector (4-lane w/o center lane)	< 5,000	< 10,000	< 13,000	< 15,000	< 20,000
Collector (2-lane w/ continuous left-turn lane)	< 5,000	< 10,000	< 13,000	< 15,000	< 20,000
Collector (2-lane no fronting property)	< 4,000	< 5,500	< 7,500	< 9,000	< 10,000
Collector (2-lane commercial-industrial fronting)	<2,500	< 3,500	< 5,000	< 6,500	< 8,000
Collector (2-lane multi-family)	<2,500	< 3,500	< 5000	< 6,500	< 8,000
Sub-Collector (2-lane single family)	-	-	2,200	-	-

Note:

Source: City of San Diego, Traffic Impact Study Manual, July 1998

Bold numbers indicate the ADT thresholds for acceptable LOS.

These standards are generally used as long-range planning guidelines to determine the functional classification of roadways. The actual capacity of a roadway facility varies according to its physical attributes. Typically, the performance and LOS of a roadway segment is heavily influenced by the ability of its intersections to accommodate peak hour traffic volumes. For the purposes of this traffic analysis, LOS D is considered acceptable for the analyzed roadway segments.

Peak Hour Intersection LOS Standards and Thresholds

This section presents the methodologies used to perform peak hour intersection capacity analysis for signalized intersections. The following assumptions were utilized in conducting all intersection LOS analyses:

- *Pedestrian Calls per Hour:* 10 calls per hour for each pedestrian movement was assumed.
- Signal Timing: Based on existing signal timing plans.
- *Peak Hour Factor*: Based on existing peak hour count data for existing conditions included in **Appendix A**.

Signalized Intersection Analysis

The analysis of signalized intersections utilized the operational analysis procedures as outlined in the 2010 *Highway Capacity Manual (HCM)*. This method defines LOS in terms of delay, or more specifically, average stopped delay per vehicle. Delay is a measure of driver and/or passenger discomfort, frustration, fuel consumption and lost travel time. This technique uses 1,900 vehicles per hour per lane (VPHPL) as the maximum saturation volume of an intersection. This saturation volume is adjusted to account for lane width, on-street parking, pedestrians, traffic composition (i.e., percentage trucks) and shared lane movements (i.e. through and right-turn movements originating from the same lane). The LOS criteria used for this technique are described in **Table 2.3**. The computerized analysis of intersection operations was performed utilizing the *Synchro 10* traffic analysis software.

TABLE 2.3 SIGNALIZED INTERSECTION LOS CRITERIA

Average Stopped Delay Per Vehicle (seconds)	Level of Service (LOS) Characteristics
<10.0	LOS A describes operations with very low delay. This occurs when progression is extremely favorable, and most vehicles do not stop at all. Short cycle lengths may also contribute to low delay.
10.1 – 20.0	LOS B describes operations with generally good progression and/or short cycle lengths. More vehicles stop than for LOS A, causing higher levels of average delay.
20.1 – 35.0	LOS C describes operations with higher delays, which may result from fair progression and/or longer cycle lengths. Individual cycle failures may begin to appear at this level. The number of vehicles stopping is significant at this level, although many still pass through the intersection without stopping.
35.1 – 55.0	LOS D describes operations with high delay, resulting from some combination of unfavorable progression, long cycle lengths, or high volumes. The influence of congestion becomes more noticeable, and individual cycle failures are noticeable.
55.1 – 80.0	LOS E is considered the limit of acceptable delay. Individual cycle failures are frequent occurrences.
>80.0	LOS F describes a condition of excessively high delay, considered unacceptable to most drivers. This condition often occurs when arrival flow rates exceed the LOS D capacity of the intersection. Poor progression and long cycle lengths may also be major contributing causes to such delay.

Source: Highway Capacity Manual 2010

Determination of Significant Impacts

The City of San Diego Traffic Impact Study Manual, defines project impact thresholds by facility type. These thresholds are generally based upon an acceptable increase in the Volume / Capacity (V/C) ratio for roadway and freeway segments, and upon increases in vehicle delays for intersections and ramps.

In the City of San Diego, LOS D is considered acceptable for roadway and intersection operations. A project is considered to have a significant impact if it degrades the operations of a roadway or intersection from an acceptable LOS (D or better) to an unacceptable LOS (E or F), or if it adds additional delay to a facility already operating an unacceptable level. **Table 2.5** summarizes the impact significant thresholds as identified within the City of San Diego's guidelines beyond which mitigation measures are required.

	Allowable Change Due to Impact								
	F	reeways	Roadw	ay Segments	Intersections	Ramp Metering			
LOS with Project	V/C	Speed (mph)	V/C	Speed (mph)	Delay (sec)	Delay (min.)			
E (or ramp meter delays above 15 min.)	0.01	1.0	0.02	1.0	2.0	2.0			
F (or ramp meter delays above 15 min.)	0.005	0.5	0.01	0.5	1.0	1.0			

 TABLE 2.4

 CITY OF SAN DIEGO MEASURE OF SIGNIFICANT PROJECT TRAFFIC IMPACTS

Source: City of San Diego, Significance Determination Thresholds, January 2011

7 | P a g e

EXISTING CONDITIONS

This section describes key study intersections, existing peak hour intersection traffic volume information and LOS analysis results under Existing conditions.

Existing Roadway Network

Harbor Island Drive is a four-lane east-west undivided roadway. This road provides access to hotels, restaurants, and boat docking sites on the north side, with parallel parking and parking lots available on the south side. Harbor Island Drive has a posted speed limit of 35 miles per hour (mph) with sidewalks provided on both sides of the roadway. Additionally, Harbor Island Drive is designated as a Class III bicycle route.

Within the study area, North Harbor Drive is a six-lane major arterial. It has a posted speed limit of 45 mph and provides direct access to the San Diego International Airport, as well as Harbor Island. Pedestrian sidewalks are provided on both sides of the roadway, as well as a Class II bicycle lane on the south side of the road.

Existing Intersection and Roadway Volumes

Figure 2 shows both the existing ADT volumes for study area roadway segments and the AM/PM peak hour traffic volumes for the key study area intersections. The roadway segment and study area intersection traffic counts were conducted in January and May of 2017. Count worksheets are provided in **Appendix A**.

Existing LOS Analysis

Roadway segment analysis and intersection LOS analysis are discussed separately below.

Roadway Segment Analysis

Table 3.1 displays the LOS analysis results for key study area roadway segments under Existing conditions.

Roadway Segment	Segment	Cross-section	Threshol d (LOS E)	ADT	V/C	LOS
N Harbor Dr	Terminal 2/Spanish Landing to Harbor Island Dr	6-Lane Major Arterial	50,000	28,826	0.577	С
	Harbor Island Dr to Winship Ln	6-Lane Major Arterial	50,000	49,987	1.000	Е
Harbor	N Harbor Dr to Harbor Island Drive Southern Terminus	4-Lane Major Arterial	40,000	10,862	0.272	А
Island Dr	Western Terminus to Harbor Island Dr	4-Lane Collector	15,000	5,222	0.348	В

TABLE 3.1 ROADWAY SEGMENT LOS RESULTS EXISTING CONDITIONS

Source: NDS, Chen Ryan Associates; December 2018

Notes:

V/C = Volume to Capacity Ratio. **Bold** letter indicates LOS E or F.

As shown, all key study roadway segments currently operate at LOS D or better with the exception of:

• North Harbor Drive, between Harbor Island Drive and Winship Lane (LOS E)

Harbor Island West Marina Redevelopment Project CHEN+RYAN Figure 2 Traffic Volumes -Existing Conditions

9 | P a g e

Intersection Analysis

Table 3.2 displays intersection LOS and average vehicle delay results for the key study area intersections under Existing conditions. LOS calculation worksheets for Existing conditions are provided in **Appendix B**.

TABLE 3.2 PEAK HOUR INTERSECTION LOS RESULTS EXISTING CONDITIONS

		AM Pea	k Hour	PM Peal	k Hour
#	Intersection	Avg. Delay (sec.)	LOS	Avg. Delay (sec.)	LOS
1	Harbor Island Drive / Airport Terminal Road & N Harbor Drive	51.5	D	36.6	D
2	N Harbor Drive & Winship Lane	6.4	А	5.5	А
3	Harbor Island Drive (West) / Harbor Island Drive (East) & Harbor Island Drive	4.6	А	5.4	А

Source: NDS, Chen Ryan Associates; December 2018

Notes: **Bold** letter indicates LOS E or F.

As shown, all key study area intersections currently operate at LOS D or better.

TRIP GENERATION

Project construction is anticipated to begin in Fall 2019 and will occur over a 24-month period over two phases. During this period, debris from existing developments and materials for redevelopment will be hauled to and from the project site. At the peak of project construction, which is estimated to be in December 2019, it is anticipated that 10 hauling trucks will be required to access the project site on a daily basis along with 37 construction employees. **Figure 3** displays the proposed project site plan.

As a worst-case scenario, it was assumed that all construction employees would drive individual vehicles to the project site and would arrive and depart during the AM and PM peak hours, respectively. The daily trip rate per employee is assumed to be three (3) trips per employee to account for a lunch break or off-site errand/meeting. It was also assumed that the hauling trucks would arrive and depart evenly throughout the 8-hour workday. **Table 4.1** displays the assumed vehicle trip generation during the peak of project construction.

TABLE 4.1PROJECT CONSTRUCTION TRIP GENERATION

		Vehicle		Daily	AM Pea	k Hour	PM Pe	ak Hour
Use	Units	Conversion Rate	Rate	Vehicle Trips	In	Out	In	Out
Construction Employees	37	1	3 / Employee	111	37	0	0	37
Hauling Truck	10	3	2 / Truck	60	3	3	3	3
		Total		171	40	3	3	40

Source: Chen Ryan Associates; December 2018

As shown, the proposed project construction is anticipated to generate approximately 171 daily trips including 43 trips (40 in / 3 out) during AM Peak Hour and 43 trips (3 in / 40 out) during the PM peak hour.

Harbor Island West Marina Redevelopment Project CHEN+RYAN

Figure 3 Project Site Plan

11 | Page

Project Trip Distribution and Assignment

Trip distribution for the Proposed Project was developed based on the project's location in relation to surrounding land uses, distribution of residential population throughout the San Diego Region, and the project's accessibility to freeways. Based upon the assumed project trip distribution, daily and AM/PM peak hour project trips were assigned to the adjacent roadway network per route alternative, as displayed in **Figure 4**.

EXISTING PLUS PROJECT

Existing Plus Project Traffic Volumes

Existing Plus Project traffic volumes were derived by combining the existing traffic volumes (displayed in Figure 3) and the project's trip assignment (displayed in Figures 4-2). Daily roadway and peak hour intersection volumes are displayed in **Figure 5**.

Existing Plus Project Traffic Conditions

Roadway segment analysis and intersection LOS analysis are discussed separately below.

Roadway Segment Analysis

Table 5.1 displays the LOS analysis results for key roadway segments under Existing Plus Project conditions.

TABLE 5.1 ROADWAY SEGMENT LOS RESULTS EXISTING PLUS PROJECT CONDITIONS

			Threshold	Existing	Existir	<u>ıg + Proj</u>	ect		
Roadway		Cross-Section	(LOS E)	ADT / V/C / LOS	ADT	V/C	LOS	Δ	S?
N Harbor	Terminal 2/Spanish Landing to Harbor Island Dr	6-Lane Major Arterial	50,000	28,826 / 0.577 / C	28,843	0.577	С	0.000	Ν
DI	Harbor Island Dr to Winship Ln	6-Lane Major Arterial	50,000	49,987 / 1.000 / E	50,141	1.003	F	0.003	Ν
Harbor	N Harbor Dr to Harbor Island Drive Southern Terminus	4-Lane Major Arterial	40,000	10,862 / 0.272 / A	11,033	0.276	A	0.004	Ν
Island Dr	Western Terminus to Harbor Island Dr	4-Lane Collector	15,000	5,222 / 0.348 / B	5,393	0.360	В	0.012	Ν

Notes:

V/C = Volume to Capacity Ratio.

 Δ = Change in V/C Ratio.

S? = Indicates if change in V/C ratio is significant.

Bold letter indicates LOS E or F.

As shown in **Table 5.1**, all key study roadway segments would continue to operate at LOS D or better under Existing Plus Project conditions with the exception of:

• North Harbor Drive, between Harbor Island Drive and Winship Lane (LOS F).

Based on the City of San Diego's Significance Criteria, the traffic associated with the proposed project would not cause a significant change in V/C ratio (more than 0.01) under Existing Plus Project conditions. Therefore, a significant project related impact does not exist and mitigation is not required.

Source: Chen Ryan Associates; December 2018

Harbor Island West Marina Redevelopment Project CHEN + RYAN Figure 4 Construction Trip Distribution and Assignment

Harbor Island West Marina Redevelopment Project CHEN+RYAN Figure 5 Traffic Volumes -Existing Plus Project Conditions

Intersection Analysis

Table 5.2 displays intersection LOS and average vehicle delay results under Existing Plus Project conditions. LOS calculation worksheets for the Existing Plus Project conditions are provided in **Appendix C**.

TABLE 5.2 PEAK HOUR INTERSECTION LOS RESULTS EXISTING PLUS PROJECT CONDITIONS

		Delay w/o		AM Peak	Hour	PM Pea	ak Hour		
#	Intersection	Project (sec.) AM/PM	LOS w/o Project AM/PM	Avg. Delay (sec.)	LOS	Avg. Delay (sec.)	LOS	Change in Delay (sec.) AM/PM	Significant Impact?
1	Harbor Island Drive / Airport Terminal Road & N Harbor Drive	51.5 / 36.6	D/D	51.7	D	38.9	D	0.2 / 2.3	N
2	N Harbor Drive & Winship Lane	6.4 / 5.5	A/A	6.4	Α	5.4	Α	0.0 / -0.1	N
3	Harbor Island Drive (West) / Harbor Island Drive (East) & Harbor Island Drive	4.6 / 5.4	A/A	4.6	A	5.4	A	0.0 / 0.0	N

Source: Chen Ryan Associates; November 2018

Notes: **Bold** letter indicates LOS E or F.

As shown in **Table 5.2**, all key study area intersections currently operate at LOS D or better under Existing Plus Project conditions. Therefore, a significant project related impact does not exist and mitigation is not required.

IMPACT SIGNIFICANCE AND MITIGATION

Roadway Segment

Based on the City of San Diego's Significance Criteria, the proposed project would not contribute to a traffic impact for roadway segments within the project study area under Existing Plus Project Construction conditions. Therefore, no mitigation is required.

Intersection

Based on the City of San Diego's Significance Criteria, the proposed project would not contribute to a traffic impact for intersections within the project study area under Existing Plus Project Construction conditions. Therefore, no mitigation is required.

Please feel free to call me if you have any questions regarding the assumptions presented in this memorandum.

Thank you,

Dale Domingo Chen Ryan Associates, Inc. (619) 202-0231 ddomingo@chenryanmobility.com

Appendix A Count Data and Signal Timing Plans

Prepared by NDS/ATD

N Harbor Dr Bet. Terminal 2/Spanish Landing & Harbor Island Dr

Day: Thursday Date: 5/4/2017

7 - 9 Volume

7 - 9 Peak Hour

7 - 9 Pk Volume

Pk Hr Factor

1280

8:00

705

0.974

2292

7:00

1232

0.911

3572

7:15

1866

0.929

4 - 6 Volume

4 - 6 Peak Hour

4 - 6 Pk Volume

Pk Hr Factor

City: San Diego Project #: CA17_4132_022

2601

16:00

1437

0.905

1684

16:45

904

0.954

4285

16:00

2252

0.976

		ALC			NB		SB		EB		WB						Т	otal
	DAILTIUI	ALS			0		0		14,656		14,170						28	,826
AM Period	NB SE	3	EB		WB		то	TAL	PM Period	NB		SB	EB		WB		тс	DTAL
0:00			35		23		58		12:00				223		239		462	
0:15			29		14 14		43		12:15				195		198		393	
0:45		-	24 11 9	99	14	62	22	161	12:45				219	887	202	825	403	1712
1:00			11		14		25		13:00				259		188		447	
1:15		:	17		27		44		13:15				206		192		398	
1:30		-	11	16	12	62	23	100	13:30				233	010	204	776	437	1604
2:00			/ 4 14	+0	6	05	20	109	13:45				220	910	192	//0	383	1094
2:15			8		8		16		14:15				229		206		435	
2:30		:	10		9		19		14:30				220		192		412	
2:45			20 5	52	8	31	28	83	14:45				296	971	201	756	497	1727
3:00			8 11		10		21		15:15				288		217		505 486	
3:30			11		12		23		15:30				336		209		545	
3:45			6 3	36	13	42	19	78	15:45				357	1256	202	839	559	2095
4:00		-	12		15		27		16:00				397		180		577	
4:15			19 29		27		46 68		16:15				363		206		569	
4:45		(60 1	20	62	143	122	263	16:45				299	1437	237	815	536	2252
5:00			70		74		144		17:00				350		212		562	
5:15		-	76		117		193		17:15				302		237		539	
5:30		(69 00 2	05	112	110	181	754	17:30 17:45				288	1164	218	860	506 426	2022
6:00			<u>30 3</u> 77	05	162	449	230	754	18:00				255	1104	196	809	420	2033
6:15		8	82		216		298		18:15				222		174		396	
6:30		1	111		277		388		18:30				194		167		361	
6:45		1	<u>115 3</u>	85	283	938	398	1323	18:45				193	864	166	703	359	1567
7:00		1	112		200		378 469		19:00				107		152		319	
7:30		1	LG4		338		502		19:30				159		124		283	
7:45		1	152 5	75	306	1232	458	1807	19:45				192	673	143	604	335	1277
8:00		1	181		256		437		20:00				159		142		301	
8:15		1	169		290		459		20:15				184		115		299	
8:45		1	130 175 7	05	251	1060	426	1765	20:45				154	661	125	512	280	1173
9:00		1	192		216		408		21:00				114		108		222	
9:15		1	174		204		378		21:15				116		101		217	
9:30		1	195 196 7	57	199	820	394	1596	21:30				127	150	105	109	232	967
10:00		2	205	57	176	029	381	1380	22:00				84	439	104	408	188	807
10:15		2	210		180		390		22:15				96		93		189	
10:30		2	204		155		359		22:30				103		87		190	
10:45		1	170 7	89	219	730	389	1519	22:45				101	384	86	370	187	754
11:00		1	100 191		208		409		23:15				85 94		73		167	
11:30		2	212		220		432		23:30				79		56		135	
11:45		2	213 8	04	219	865	432	1669	23:45				51	309	49	249	100	558
TOTALS			46	573		6444		11117	TOTALS					9983		7726		17709
SPLIT %			42	2.0%		58.0%		38.6%	SPLIT %					56.4%		43.6%		61.4%
					NB		SB		EB		WB						T	otal
	DAILY TOT	ALS			0		0		14,656		14,170						28	,826
AM Peak Hour			11	1.42		7.00		7:15	PM Peak Hour					15.42		16.45		15.45
AM Pk Volume			8	50		1232		1866	PM Pk Volume					1495		904		2275
Pk Hr Factor			0	953		0 911		0.929	Pk Hr Factor					0.9/1		0.954		0.986

Prepared by NDS/ATD VOLUME

N Harbor Dr Bet. Harbor Island Dr & Winship Ln

Day: Tuesday Date: 5/2/2017

City:	Port o	of San I	Diego
Project #:	CA17_	4132	023

					NB		SB		EB		WB						T	otal
	DAILY TO	ALS			0		0		17,117		32,870						49	,987
AM Period	NB SI	3	EB		WB		TO	TAL	PM Period	NB		SB	EB		WB		TC	DTAL
00:00			81		143		224		12:00				186		479		665	
00:15			63 13		84 59		14/		12:15				213		468 483		681 716	
00:45			40	227	34	320	74	547	12:45				233	872	504	1934	744	2806
01:00			36		22		58		13:00				284		498		782	
01:15			26		27		53		13:15				273		395		668	
01:30			10	89	10	77	33 22	166	13:45				305 284	1146	371 441	1705	725	2851
02:00			18	05	10	.,	28	100	14:00				292	1110	328	1705	620	2001
02:15			20		8		28		14:15				291		336		627	
02:30			11	62	15	45	26	100	14:30				351	1241	403	1420	754	2007
02:45			14	03	10	45	20	108	14:45				307	1241	355	1420	719	2007
03:15			12		15		27		15:15				339		356		695	
03:30			13		34		47		15:30				420		528		948	
03:45			15	58	64	123	79	181	15:45 16:00				467	1590	517	1756	984	3346
04:00			22		93		95 115		16:15				389		398		787	
04:30			48		189		237		16:30				360		406		766	
04:45			45	133	294	651	339	784	16:45				397	1539	409	1585	806	3124
05:00			61		365		426		17:00				332		462		794	
05:15			70 91		405 398		475		17:30				305 241		461		694	
05:45			72	294	426	1594	498	1888	17:45				250	1128	463	1839	713	2967
06:00			120		409		529		18:00				233		411		644	
06:15			109		401		510		18:15				234		375		609 617	
06:45			135	499	467	1719	579	2218	18:45				225	925	429	1607	662	2532
07:00			127		452		579		19:00				203		478		681	
07:15			158		482		640		19:15				191		352		543	
07:30			159	622	504 456	1904	663 645	2527	19:30 19:45				201	701	406	1696	607 646	2477
07:43			174	033	473	1094	647	2327	20:00				247	791	526	1080	773	2477
08:15			193		464		657		20:15				242		365		607	
08:30			180	75.4	588	2006	768	2760	20:30				186	075	428	1612	614	2407
08:45			207 191	754	481 539	2006	688 730	2760	20:45				200	875	293	1612	493	2487
09:15			190		516		706		21:15				203		255		458	
09:30			222		563		785		21:30				176		259		435	
09:45			172	775	557	2175	729	2950	21:45				153	695	193	1005	346	1700
10:00			209		574 545		785 754		22:00				164		284 297		448 419	
10:30			204		568		772		22:30				197		270		467	
10:45			228	852	572	2259	800	3111	22:45				182	665	238	1089	420	1754
11:00			218		476		694 711		23:00				113		203		316	
11:30			209		497		730		23:30				82		235 156		238	
11:45			229	889	552	2027	781	2916	23:45				75	384	144	736	219	1120
TOTALS				5266		14890		20156	TOTALS					11851		17980		29831
SPLIT %				26.1%		73.9%		40.3%	SPLIT %					39.7%		60.3%		59.7%
					NB		SB		EB		WB						T	otal
	DAILY TO	ALS			0		0		17,117		32,870						49	,987
AM Peak Hour				11:00		10:00		10:00	PM Peak Hour					15:30		12:15		15:30
AM Pk Volume				889		2259		3111	PM Pk Volume					1669		1953		3484
Pk Hr Factor				0.954		0.984		0.972	Pk Hr Factor		~		0	0.893		0.969		0.885
7 - 9 Volume				1387		3900		5287	4 - 6 Volume					2667		3424		6091
7 - 9 Peak Hour 7 - 9 Pk Volume				754		2006		2760	4 - 6 Pk Volume					1539		1839		3153
Pk Hr Factor				0.911		0.853		0.898	Pk Hr Factor					0.969		0.993		0.978

Prepared by NDS/ATD

Harbor Island Dr Bet. N Harbor Dr & Southern Terminus Of Harbor Island Dr

Day: Tuesday Date: 1/10/2017

City: San Diego Project #: CA17_4017_008

		A 11 V 7				NB		SB		EB		WB						То	tal
	U,			ALS		5,467		5,395		0		0						10,	862
AM Period	NB		SB		EB	WB		то	TAL	PM Period	NB		SB		EB	W	/B	то	TAL
00:00	23		13					36		12:00	79		87					166	
00:15	17		18					35		12:15	87		61					148	
00:30	26 15	81	12	50				38 22	121	12:30	64 76	306	82 85	315				146 161	621
01:00	8	01	13	50				21	151	13:00	130	500	80	515				210	021
01:15	11		7					18		13:15	115		90					205	
01:30	5	20	0	27				5 12	57	13:30 13:45	121	169	90 70	220				211	907
01:45	3	50	3	27				6	57	14:00	96	400	88	223				181	807
02:15	7		6					13		14:15	85		95					180	
02:30	4	47	3	45				7	22	14:30	90	274	91	252				181	
02:45	5	17	<u>3</u> 7	15				b 12	32	14:45	103	374	94	353				207	121
03:15	5		3					8		15:15	114		82					196	
03:30	5		7					12		15:30	86		107					193	
03:45	4	19	9	26				13	45	15:45 16:00	89	402	107	390				196	792
04:00	3		15					10		16:15	92 74		99					171	
04:30	2		23					25		16:30	83		96					179	
04:45	13	23	18	68				31	91	16:45	108	357	76	350				184	707
05:00	18		12					19 46		17:00 17:15	11/		77					194 180	
05:30	21		27					48		17:30	84		82					166	
05:45	13	59	35	102				48	161	17:45	83	387	83	319				166	706
06:00	29		32					61		18:00 18:15	79		89					168	
06:15	38		22 53					35 91		18:30	92 61		89 72					131	
06:45	36	116	61	168				97	284	18:45	77	309	67	317				144	626
07:00	48		61					109		19:00	68		73					141	
07:15	60 46		61 65					121		19:15 19:30	56 65		58 64					114 120	
07:45	36	190	64	251				100	441	19:45	61	250	77	272				138	522
08:00	51		77					128		20:00	74		55					129	
08:15	47		67					114		20:15	76		58					134	
08:30	33 48	179	62 92	298				95 140	477	20:30	148 97	395	50 57	226				204 154	621
09:00	52	275	73	250				125		21:00	65	000	50	220				115	
09:15	60		64					124		21:15	74		56					130	
09:30	58 62	222	99 80	316				157	5/18	21:30 21:45	80 48	267	43	205				123	172
10:00	60	232	84	510				144	J40	22:00	60	207	24	205				84	472
10:15	81		84					165		22:15	56		55					111	
10:30	69	277	66	222				135	600	22:30	73	227	37	169				110	405
11:00	50	211	84	323				130	000	23:00	40 67	237	32	100				99	405
11:15	63		101					164		23:15	41		26					67	
11:30	116	247	114	402				230	720	23:30	44	475	19	04				63	200
11:45	88	317	104	403				192	720	23:45	23	1/5	1/	94				40	269
SPLIT %		42.9%		57.1%					33.0%	SPLIT %		54.0%		46.0%					67.0%
				•••••															
	D		ΟΤΑ	LS		NB		SB		EB		WB						To	tal 862 -
						5,467		5,395		0		- 0						- 10,	802
AM Peak Hour		11:30		11:15					11:15	PM Peak Hour		13:00		15:30					13:00
AM Pk Volume		370		406					752	PM Pk Volume		468		392					807
Pk Hr Factor		0.797		0.890	0		0		0.817	PK Hr Factor		0.900		0.916		0	0		0.956
7 - 9 Peak Hour		07:15		08:00					08:00	4 - 6 Peak Hour		16:45		16:00					16:30
7 - 9 Pk Volume		193		298					477	4 - 6 Pk Volume		412		350					737
Pk Hr Factor		0.804		0.810					0.852	Pk Hr Factor		0.880		0.884					0.950

Prepared by NDS/ATD

Harbor Island Dr Bet. Western Terminus Of Harbor Island Dr & Southern Terminus Of Harbor Island Dr Day: Tuesday Date: 1/10/2017 City: San Diego Project #: CA17_4017_009

		TOTALS			NB		SB		EB		WB						Тс	otal
	DAIL	TIOTALS			0		0		2,617		2,605						5,	222
AM Period	NB	SB	EB		WB		тс	DTAL	PM Period	NB		SB	EB		WB		TC	TAL
00:00			12		8		20		12:00				42		40		82	
00:15			8		6		14		12:15				40		27		67	
00:30			6	27	3	20	9	47	12:30				34	4.6.6	39	4.45	73	244
00:45			1	27	3	20	4	47	12:45				50	166	39	145	89	311
01:00			4		4		8		13.00				70		57		107	
01.15			2		0		2		13:30				57		43		100	
01:45			0	10	2	8	2	18	13:45				56	253	44	175	100	428
02:00			1	10	1		2		14:00				48	200	46	1/0	94	
02:15			1		2		3		14:15				40		45		85	
02:30			1		3		4		14:30				46		45		91	
02:45			2	5	2	8	4	13	14:45				47	181	40	176	87	357
03:00			5		4		9		15:00				61		46		107	
03:15			2		0		2		15:15				56		38		94	
03:30			3		4		7		15:30				43		50		93	
03:45			2	12	1	9	3	21	15:45				47	207	40	174	87	381
04:00			3		5		8		16:00				42		39		81	
04:15			1		5		6		16:15				41		53		94	
04:30			1 0	10	5 1/1	20	4	40	16:50				59	170	42	170	02	249
04.45			6	12	7	20	13	40	17:00				54	170	30	170	92	540
05:15			6		15		21		17:15				43		38		81	
05:30			8		13		21		17:30				39		44		83	
05:45			8	28	13	48	21	76	17:45				35	171	52	173	87	344
06:00			13		13		26		18:00				35		53		88	
06:15			4		9		13		18:15				44		52		96	
06:30			18		18		36		18:30				31		30		61	
06:45			18	53	20	60	38	113	18:45				30	140	36	171	66	311
07:00			26		18		44		19:00				23		30		53	
07:15			34		21		55		19:15				29		29		58	
07:30			21	104	27	02	48	100	19:30				34	100	34	121	68	240
07:45			23	104	20	92	49	196	19:45				23	109	38	131	61	240
08.00			20		57 27		54		20:00				29		25		32	
08:30			14		27		42		20:10				106		20		133	
08:45			30	97	40	132	70	229	20:45				50	210	32	102	82	312
09:00			27		41		68		21:00				35		25		60	
09:15			29		24		53		21:15				26		32		58	
09:30			26		47		73		21:30				33		20		53	
09:45			35	117	43	155	78	272	21:45				21	115	27	104	48	219
10:00			25		36		61		22:00				21		12		33	
10:15			38		54		92		22:15				13		22		35	
10:30			34		43		77		22:30				28		23		51	
10:45			43	140	52	185	95	325	22:45				14	76	15	72	29	148
11:00			29		48 60		0/		23:00				27		11		38	
11:15			24 10		60		84 111		23:15				1ð 11		2 0		23 10	
11:30			4Z ///	129	57	224	101	373	23:30				11	67	õ Q	22	20	100
TOTALS				744	51	979	101	1723	TOTALS				11	1873	5	1626	20	3499
SPLIT %				43.2%		56.8%		33.0%	SPLIT %					53.5%		46.5%		67.0%
JFLIT /0				43.270		50.6%		55.0%	51 211 76					55.5%		U.J/0		07.07
					NID		CD		ГР		MA/D							4740

			_								
	DAILTION	4L3		0	0	2,617	2,605				5,222
AM Peak Hour			11:30	11:00	11:15	PM Peak Hour			13:00	17:30	13:00
AM Pk Volume			168	234	378	PM Pk Volume			253	201	428
Pk Hr Factor			0.955	0.848	0.851	Pk Hr Factor			0.904	0.948	0.884
7 - 9 Volume	0	0	201	224	425	4 - 6 Volume	0	0	349	343	692
7 - 9 Peak Hour			07:00	08:00	08:00	4 - 6 Peak Hour			16:30	17:00	16:15
7 - 9 Pk Volume			104	132	229	4 - 6 Pk Volume			192	173	360
Pk Hr Factor			0.765	0.825	0.818	Pk Hr Factor			0.857	0.832	0.957

Intersection Turning Movement Prepared by: National Data & Surveying Services

Project ID: 17-4016-008

Day: Tuesday

City: S	San Diego					14	И				Date: 1	l/10/2017					
NS/EW Streets:	Harb	our Island	Dr	Harb	our Island	Dr	N	Harbor Dr		N	Harbor Dr]				
	NC	ORTHBOUN	D	SC	UTHBOUN	D	E	ASTBOUND		V	VESTBOUND)	<u> </u>		UTL	JRNS	
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WТ	WR	TOTAL	NB	SB	EB	WB
LANES:	2	1	1	1.5	1	0.5	1	3	1	2	4	0					
 7:00 AM	7	2	32	27	4	20	24	67	7	51	359	1	601	0	0	7	0
7:15 AM	23	2	28	19	1	21	19	115	10	50	377	3	668	0	0	5	0
7:30 AM	22	3	26	12	1	22	16	107	14	51	378	0	652	0	0	6	0
7:45 AM	10	6	20	11	2	24	22	145	15	49	405	1	710	0	0	7	0
8:00 AM	21	1	26	16	7	23	23	139	14	56	355	1	682	0	0	8	0
8:15 AM	24	2	19	19	5	24	27	158	12	53	355	2	700	0	0	14	0
8:30 AM	10	1	24	14	3	19	25	144	14	43	361	1	659	0	0	8	0
8:45 AM	18	3	25	14	2	18	28	148	20	74	329	0	679	0	0	14	0
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL	NB	SB	EB	WB
TOTAL VOLUMES :	135	20	200	132	25	171	184	1023	106	427	2919	9	5351	0	0	69	0
APPROACH %'s :	38.03%	5.63%	56.34%	40.24%	7.62%	52.13%	14.01%	77.91%	8.07%	12.73%	87.00%	0.27%					
PEAK HR START TIME :	745 A	M											TOTAL				
PEAK HR VOL :	65	10	89	60	17	90	97	586	55	201	1476	5	2751				
PEAK HR FACTOR :		0.854			0.870			0.937			0.924		0.969				

CONTROL : Signalized

Intersection Turning Movement Prepared by: National Data & Surveying Services

Project ID: 17-4016-008

Day: Tuesday

	City: S	San Diego					Ы	м				Date: 1	/10/2017					
	NS/EW Streets:	Harb	our Island	Dr	Hart	our Island	Dr	N	Harbor Dr		N	Harbor Dr						
_		NC	ORTHBOUN	D	S	OUTHBOUN	D	E	ASTBOUND		V	VESTBOUND)	<u> </u>		UTU	JRNS	
		NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL	NB	SB	EB	WB
	LANES:	2	1	1	1.5	1	0.5	1	3	1	2	4	0					
_	4:00 PM	27	12	53	12	7	23	41	394	30	44	264	0	907	0	0	25	1
	4:15 PM	20	7	41	11	7	21	44	418	33	60	247	2	911	0	0	28	0
	4:30 PM	25	9	50	10	9	24	39	377	20	68	260	3	894	0	0	13	0
	4:45 PM	32	9	69	16	5	25	32	296	22	57	228	3	794	0	0	11	0
	5:00 PM	28	8	81	17	6	35	33	299	20	43	266	1	837	0	0	19	0
	5:15 PM	31	5	60	12	5	22	35	291	23	52	325	1	862	0	0	19	0
	5:30 PM	18	6	54	13	11	30	30	272	28	44	270	2	778	0	1	16	0
	5:45 PM	18	7	59	12	4	24	32	207	33	53	209	1	659	0	0	16	0
-		NI	NT	NR	SI	ST	SR	FI	FT	FR	WI	WT	WR	τοται	NB	SB	FB	WB
	TOTAL VOLUMES -	199	63	467	103	54	204	286	2554	209	421	2069	13	6642	0	1	147	1
	APPROACH %'s :	27.30%	8.64%	64.06%	28.53%	14.96%	56.51%	9.38%	83.77%	6.85%	16.82%	82.66%	0.52%	0012	Ŭ	-	11/	1
Г	DEAK HE START TIME .	400 6	M											τοται				
	FLAR IIR START TIME :	1001	PI											TOTAL				
	PEAK HR VOL :	104	37	213	49	28	93	156	1485	105	229	999	8	3506				
	PEAK HR FACTOR :		0.805			0.924			0.882			0.934		0.962				

CONTROL : Signalized

ITM Peak Hour Summary

National Data & Surveying Services

Harbour Island Dr and N Harbor Dr , San Diego

NOON	NONE	NONE
РМ	4:00 PM	6:00 PM

Total Ins & Outs

Total Volume Per Leg

Intersection Turning Movement Prepared by: National Data & Surveying Services

Project ID	: 17-4016-0	09									Day: ⊺	uesday					
City	: San Diego										Date: 1	/10/2017					
NS/EW Streets	Commuter	Terminal /	'Winship Ln	Commuter T	erminal /W	A™ /inship Ln	Harb F	our Island I	Dr	Hart	oour Island I	Dr				IRNS	
LANES:	NL 0	NT 0	NR 0	SL 2	ST 0	SR 1	EL 1	ET 3	ER 0	WL 0	WT 5	WR 1	TOTAL	NB	SB	EB	WB
7:00 AM 7:15 AM 7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	5 6 5 7 6 12 7 3	0 0 0 0 0 0 0	10 7 10 10 10 9 2 9	13 19 15 18 13 14 14 14 18	104 131 146 145 181 181 145 188	0 0 0 0 0 0 0	0 0 0 0 0 0 0	604 560 626 619 609 533 586 568	6 8 16 10 11 6 7 9	742 731 818 809 830 755 761 795	0 0 0 0 0 0 0	0 0 0 0 0 0 0	3 6 4 3 4 4 7 3	0 0 0 0 0 0 0
TOTAL VOLUMES APPROACH %'s	NL 0 #DIV/0!	NT 0 #DIV/0!	NR 0 #DIV/0!	SL 51 43.22%	ST 0 0.00%	SR 67 56.78%	EL 124 9.22%	ET 1221 90.78%	ER 0 0.00%	WL 0 0.00%	WT 4705 98.47%	WR 73 1.53%	TOTAL 6241	NB 0	SB 0	EB 34	WB 0
PEAK HR START TIME	730 0	AM 0	0	30	0	39	60	653	0	0	2387	43	TOTAL 3212				

0.914

0.967

0.946

CONTROL : Signalized

0.000

0.821

PEAK HR FACTOR :

Intersection Turning Movement Prepared by: National Data & Surveying Services

Project ID:	17-4016-00	09									Day: ⊺	uesday					
City:	San Diego					PM	I				Date: 1	/10/2017					
NS/EW Streets:	Commuter	Terminal /	Winship Ln	Commuter T	erminal /W	/inship Ln	Harb	our Island [Dr	Hart	oour Island I	Dr					
	Ν	NORTHBOU	ND	SC	UTHBOUN	D	E	ASTBOUND		V	VESTBOUND)			UTU	JRNS	
	NL	NT	NR	SL	ST	SR	EL 1	ET	ER	WL	WT	WR	TOTAL	NB	SB	EB	WB
LANES.	U	U	0	2	U	1	1	5	U	U	5	1					
4:00 PM	0	0	0	21	0	7	12	438	0	0	396	4	878	0	0	7	0
4:15 PM	0	0	0	14	0	7	13	451	0	0	447	6	938	0	0	10	0
4:30 PM	0	0	0	23	0	5	8	447	0	0	432	3	918	0	0	4	0
4:45 PM	0	0	0	16	0	6	12	379	0	0	459	8	880	0	0	6	0
5:00 PM	0	0	0	36	0	5	18	366	0	0	452	4	881	0	0	12	0
5:15 PM	0	0	0	15	0	13	6	356	0	0	493	7	890	0	0	3	0
5:30 PM	0	0	0	15	0	9	9	333	0	0	411	7	784	0	0	2	0
5:45 PM	0	0	0	9	0	4	12	281	0	0	375	2	683	0	0	6	0
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL	NB	SB	EB	WB
TOTAL VOLUMES :	0	0	0	149	0	56	90	3051	0	0	3465	41	6852	0	0	50	0
APPROACH %'s :	#DIV/0!	#DIV/0!	#DIV/0!	72.68%	0.00%	27.32%	2.87%	97.13%	0.00%	0.00%	98.83%	1.17%				l	
PEAK HR START TIME :	415	PM											TOTAL				
PEAK HR VOL :	0	0	0	89	0	23	51	1643	0	0	1790	21	3617				

0.913

0.964

0.969

0.683

CONTROL : Signalized

0.000

PEAK HR FACTOR :

ITM Peak Hour Summary

National Data & Surveying Services

Commuter Terminal /Winship Ln and Harbour Island Dr , San Diego

NOON	NONE	NONE
РМ	4:00 PM	6:00 PM

Total Ins & Outs

Total Volume Per Leg

Intersection Turning Movement Prepared by: National Data & Surveying Services

Project ID: 17-4016-014

Day: Tuesday

City:	AM Date: 1/10/2017																		
NS/EW Streets:	Hai	rbour Island	d Dr	Hart	our Island	Dr	Harb	our Island	Dr	Harb	our Island	Dr							
	NORTHBOUND SOUTHB					D	EASTBOUND			WESTBOUND					UTURNS				
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL		NB	SB	EB	WB	
LANES:	0	0	0	1	1	1	1.5	0.5	0	0	1	1							
7:00 AM	0	0	0	33	0	19	21	5	0	0	0	16	94		0	0	0	0	
7:15 AM	0	0	0	30	0	19	33	3	0	0	2	10	97		0	0	1	0	
7:30 AM	0	0	0	25	0	32	25	2	0	0	0	12	96		0	0	0	0	
7:45 AM	0	0	0	24	0	33	24	1	0	0	0	5	87		0	0	0	0	
8:00 AM	0	0	0	19	0	40	24	4	0	0	2	13	102		0	0	0	0	
8:15 AM	0	0	0	11	0	29	31	0	0	0	0	11	82		0	0	0	0	
8:30 AM	0	0	0	19	0	35	19	0	0	0	1	10	84		0	0	0	0	
8:45 AM	0	0	0	21	0	48	36	0	0	0	1	8	114		0	0	0	0	
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL		NB	SB	EB	WB	
TOTAL VOLUMES :	0	0	0	182	0	255	213	15	0	0	6	85	756		0	0	1	0	
APPROACH %'s :	#DIV/0!	#DIV/0!	#DIV/0!	41.65%	0.00%	58.35%	93.42%	6.58%	0.00%	0.00%	6.59%	93.41%							
PEAK HR START TIME :	800	AM											TOTAL						
PEAK HR VOL :	0	0	0	70	0	152	110	4	0	0	4	42	382						
PEAK HR FACTOR :		0.000			0.804			0.792			0.767		0.838						

CONTROL : Signalized

Intersection Turning Movement Prepared by: National Data & Surveying Services

Project ID: 17-4016-014

Day: Tuesday

0.936

0.932

	City:	San Diego					PN	1				Date: 1	L/10/2017						
	NS/EW Streets:	Ha	rbour Island	l Dr	Harb	our Island	Dr	Harb	our Island I	Dr	Harb	our Island	Dr						
-		l	NORTHBOU	ND	SC	OUTHBOUN	D	EASTBOUND WESTBOUND)		•		UTU	RNS	
	LANES:	NL 0	NT 0	NR 0	SL 1	ST 1	SR 1	EL 1.5	ET 0.5	ER 0	WL 0	WT 1	WR 1	TOTAL		NB	SB	EB	WB
-	4:00 PM 4:15 PM	0 0	0 0	0 0	31 31	0 0	43 57	45 40	4 6	0 0	0 0	1 1	23 23	147 158		0 0	0 0	0 0	0 0
	4:30 PM 4:45 PM	0 0	0	0 0	33 29	0 0	40 38	40 61	4 5	0 0	0 0	5 4	28 23	150 160		0 0	0	0 0	0
	5:00 PM 5:15 PM 5:20 PM	0	0	0	26 30 26	0	44 42 45	63 46 30	2 7	0	0	1 3 6	36 29 28	172 157 140		0	0 1 0	0	0
	5:45 PM	0	0	0	29	0	57	37	8	0	0	6	20	166		0	0	0	0
-	TOTAL VOLUMES : APPROACH %'s :	NL 0 #DIV/0!	NT 0 #DIV/0!	NR 0 #DIV/0!	SL 235 39.10%	ST 0 0.00%	SR 366 60.90%	EL 371 90.05%	ET 41 9.95%	ER 0 0.00%	WL 0 0.00%	WT 27 10.98%	WR 219 89.02%	TOTAL 1259		NB 0	SB 1	EB 0	WB 0
	PEAK HR START TIME :	500	PM	0	111	0	199	195	22	0	0	16	122	TOTAL					
	PLAK HK VOL :	0	U	0	111	0	100	105	22	0	0	10	122						

0.796

0.869

CONTROL : Signalized

0.000

PEAK HR FACTOR :

ITM Peak Hour Summary

National Data & Surveying Services

Harbour Island Dr and Harbour Island Dr , San Diego

NOON	NONE	NONE
РМ	4:00 PM	6:00 PM

Total Ins & Outs

Total Volume Per Leg

Appendix B Peak Hour Intersection LOS work Sheets Worksheets –Existing Conditions

	٠	-	7	•	+	*	1	t	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	2	***	1	ኘኘ	tttp-		ኘኘ	1	1	2	đ î þ	
Traffic Volume (veh/h)	97	586	55	286	1884	8	65	10	89	60	17	90
Future Volume (veh/h)	97	586	55	286	1884	8	65	10	89	60	17	90
Number	5	2	12	1	6	16	7	4	14	3	8	18
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1792	1863	1863	1793	1900	1863	1863	1863	1863	1863	1900
Adj Flow Rate, veh/h	103	623	47	311	2048	9	76	12	0	61	32	93
Adj No. of Lanes	1	3	1	2	4	0	2	1	1	1	2	0
Peak Hour Factor	0.94	0.94	0.94	0.92	0.92	0.92	0.85	0.85	0.85	0.87	0.87	0.87
Percent Heavy Veh, %	2	6	2	2	6	6	2	2	2	2	2	2
Cap, veh/h	612	2867	1016	379	2186	10	193	104	89	141	148	126
Arrive On Green	0.35	0.59	0.59	0.04	0.11	0.11	0.06	0.06	0.00	0.08	0.08	0.08
Sat Flow, veh/h	1774	4893	1583	3442	6385	28	3442	1863	1583	1774	1863	1583
Grp Volume(v), veh/h	103	623	47	311	1484	573	76	12	0	61	32	93
Grp Sat Flow(s),veh/h/ln	1774	1631	1583	1721	1542	1788	1721	1863	1583	1774	1863	1583
Q Serve(g_s), s	4.8	7.1	1.3	10.6	37.5	37.5	2.5	0.7	0.0	3.9	1.9	6.8
Cycle Q Clear(g_c), s	4.8	7.1	1.3	10.6	37.5	37.5	2.5	0.7	0.0	3.9	1.9	6.8
Prop In Lane	1.00		1.00	1.00		0.02	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	612	2867	1016	379	1584	612	193	104	89	141	148	126
V/C Ratio(X)	0.17	0.22	0.05	0.82	0.94	0.94	0.39	0.12	0.00	0.43	0.22	0.74
Avail Cap(c_a), veh/h	612	2867	1016	645	1584	612	650	352	299	302	317	270
HCM Platoon Ratio	1.00	1.00	1.00	0.33	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	0.82	0.82	0.82	0.99	0.99	0.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	26.9	11.6	7.8	55.7	51.1	51.1	53.8	52.9	0.0	51.8	50.9	53.1
Incr Delay (d2), s/veh	0.0	0.2	0.1	1.4	10.2	20.7	1.3	0.5	0.0	2.1	0.7	8.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	2.4	3.2	0.7	5.1	17.6	22.2	1.2	0.4	0.0	2.0	1.0	3.3
LnGrp Delay(d),s/veh	26.9	11.8	7.9	57.1	61.3	71.8	55.1	53.4	0.0	53.9	51.6	61.4
LnGrp LOS	С	В	Α	E	E	E	E	D		D	D	<u> </u>
Approach Vol, veh/h		773			2368			88			186	
Approach Delay, s/veh		13.6			63.3			54.8			57.2	
Approach LOS		В			E			D			E	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	17.4	74.8		11.5	46.4	45.8		14.3				
Change Period (Y+Rc), s	4.4	5.7		4.9	5.7	* 5.4		4.9				
Max Green Setting (Gmax), s	22.1	33.6		22.3	15.6	* 40		20.1				
Max Q Clear Time (g_c+l1), s	12.6	9.1		4.5	6.8	39.5		8.8				
Green Ext Time (p_c), s	0.4	7.7		0.2	0.1	0.8		0.6				
Intersection Summarv												
HCM 2010 Ctrl Delav			51.5									
HCM 2010 LOS			D									
Notes												

Harbor Island West Marina Redevelopment Project

Synchro 10 Report
	٠	-	•	*	1	~
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	K	***	ttttt	1	**	1
Traffic Volume (veh/h)	60	653	2946	53	30	39
Future Volume (veh/h)	60	653	2946	53	30	39
Number	5	2	2040	16	7	1/
Initial O (Ob) yeb	0	0	0	0	0	0
$Ped_Rike Adi(A phT)$	1 00	U	U	1 00	1 00	1 00
Parking Rus Adi	1.00	1 00	1.00	1.00	1.00	1.00
Adi Sat Elow, yoh/h/lp	1963	1702	1702	1963	1963	1963
Adj Sat How, ven/h/h	66	710	3101	1003	27	30
Adj Flow Rate, ven/11	00	2 10	5101	1	37	39
Auj NO. OI Lalles	0.01	0.01	0.05	0.05	ے دو ر	0.00
	0.91	0.91	0.95	0.95	0.02	0.02
Percent Heavy Ven, %	2	0	0	1040	425	2
Cap, ven/n	00	42/9	5/20	1249	135	62
Arrive On Green	0.05	0.87	0.79	0.00	0.04	0.04
Sat Flow, veh/h	1/74	5055	/600	1583	3442	1583
Grp Volume(v), veh/h	66	718	3101	0	37	39
Grp Sat Flow(s),veh/h/lr	1774	1631	1452	1583	1721	1583
Q Serve(g_s), s	4.3	2.5	18.6	0.0	1.2	2.9
Cycle Q Clear(g_c), s	4.3	2.5	18.6	0.0	1.2	2.9
Prop In Lane	1.00			1.00	1.00	1.00
Lane Grp Cap(c), veh/h	86	4279	5726	1249	135	62
V/C Ratio(X)	0.77	0.17	0.54	0.00	0.27	0.63
Avail Cap(c_a), veh/h	332	4279	5726	1249	720	331
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	0.97	0.97	1.00	0.00	1.00	1.00
Uniform Delay (d), s/veh	า 55.5	1.1	4.6	0.0	55.1	55.8
Incr Delay (d2), s/veh	13.1	0.1	0.4	0.0	1.1	10.0
Initial Q Delav(d3).s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%) veh	$1/1n^{2}.4$	1.2	7.4	0.0	0.6	2.7
LnGrp Delav(d) s/veh	68.6	12	5.0	0.0	56.2	65.9
InGrn I OS	55.5 F	Δ	Δ	0.0	55.2 F	55.5 F
Approach Vol. veh/h	L.	78/	3101		76	L
Approach Dolov, which		6.0	5101		61 1	
Approach LOS		0.9	0.C		01.1	
Approach 205		A	A		E	
Timer	1	2	3	4	5	6
Assigned Phs		2		4	5	6
Phs Duration (G+Y+Rc)	, S	108.5		9.5	10.1	98.4
Change Period (Y+Rc).	S	5.3		4.9	4.4	5.3
Max Green Setting (Gm	ax). s	83.1		24.7	22.1	56.6
Max Q Clear Time (g. c-	+ 1). s	4.5		4.9	6.3	20.6
Green Ext Time (p_c) s	, J	14.4		0.2	0.1	35.8
, o				312	2.1	
Intersection Summary						
HCM 2010 Ctrl Delay			6.4			
HCM 2010 LOS			А			

	٠	→	+	*	1	1
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	5	٠	٠	1	55	1
Traffic Volume (veh/h)	110	4	4	42	70	152
Future Volume (veh/h)	110	4	4	42	70	152
Number	5	2	6	16	7	14
Initial Ω (Ob), yeb	0	0	0	0	0	0
	1 00	0	0	1 00	1 00	1 00
Parking Pus Adi	1.00	1 00	1 00	1.00	1.00	1.00
raikiiy Dus, Auj Adi Sat Elow, yah/h/la	1062	1000	1060	1000	1000	1000
Auj Sat Flow, Ven/n/ln	1003	1003	1003	1003	1003	1003
Adj Flow Rate, ven/n	139	5	5	0	88	0
Adj No. of Lanes	1	1	1	1	2	1
Peak Hour Factor	0.79	0.79	0.77	0.77	0.80	0.80
Percent Heavy Veh, %	2	2	2	2	2	2
Cap, veh/h	0	0	21	18	303	139
Arrive On Green	0.00	0.00	0.01	0.00	0.09	0.00
Sat Flow, veh/h		0	908	1583	3442	1583
Grp Volume(v), veh/h		0.0	5	0	88	0
Grp Sat Flow(s).veh/h/lr	1		1863	1583	1721	1583
Q Serve(a_s), s			0.0	0.0	0.2	0.0
Cvcle Q Clear(q, c) s			0.0	0.0	0.2	0.0
Pron In Lane			0.0	1 00	1 00	1 00
Lane Grn Can(a) yeb/b			21	1.00	303	120
V/C Potic(V)			0.04		0.00	0.00
			0.24	0.00	0.29	0.00
Avail Cap(c_a), ven/h			0332	2303	10000	11/1
HUM Platoon Ratio			1.00	1.00	1.00	1.00
Upstream Filter(I)			1.00	0.00	1.00	0.00
Uniform Delay (d), s/veh	۱		4.4	0.0	3.8	0.0
Incr Delay (d2), s/veh			5.6	0.0	0.5	0.0
Initial Q Delay(d3),s/veh	1		0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh	n/In		0.0	0.0	0.1	0.0
LnGrp Delay(d),s/veh			10.0	0.0	4.3	0.0
LnGrp LOS			А		A	
Approach Vol. veh/h			5		88	
Annroach Delay s/yeb			10.0		/ 3	
Approach LOS			۸		4.5	
Appluacii 200			А		А	
Timer	1	2	3	4	5	6
Assigned Phs				4		6
Phs Duration (G+Y+Rc)	. S			4.8		4.0
Change Period (Y+Rc)	s			4.0		4.0
Max Green Setting (Cm	ax) e			40.0		30.0
Max O Clear Time (g. o.	un, s +11) e			-0.0 2.0		2.0
Green Ext Time (n a) a	,, 5			2.Z		2.0
Green Ext Time (p_C), S	•			0.5		0.0
Intersection Summary						
HCM 2010 Ctrl Delav			4.6			
HCM 2010 L OS			A			
			Л			

	٠	-	7	1	+	*	1	Ť	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	***	1	ሻሻ	tttp		ሻሻ	1	1	٦	đ þ	
Traffic Volume (veh/h)	149	1420	98	321	1397	11	104	37	213	49	28	93
Future Volume (veh/h)	149	1420	98	321	1397	11	104	37	213	49	28	93
Number	5	2	12	1	6	16	7	4	14	3	8	18
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		0.99	1.00		1.00	1.00		0.91
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1792	1863	1863	1793	1900	1863	1863	1863	1863	1863	1900
Adj Flow Rate, veh/h	169	1614	89	345	1502	11	128	46	0	53	30	91
Adj No. of Lanes	1	3	1	2	4	0	2	1	1	1	2	0
Peak Hour Factor	0.88	0.88	0.88	0.93	0.93	0.93	0.81	0.81	0.81	0.92	0.92	0.92
Percent Heavy Veh, %	2	6	2	2	6	6	2	2	2	2	2	2
Cap, veh/h	748	2825	1006	399	1676	12	201	109	93	146	154	119
Arrive On Green	0.42	0.58	0.58	0.15	0.35	0.35	0.06	0.06	0.00	0.08	0.08	0.08
Sat Flow, veh/h	1774	4893	1582	3442	6364	47	3442	1863	1583	1774	1863	1447
Grp Volume(v), veh/h	169	1614	89	345	1092	421	128	46	0	53	30	91
Grp Sat Flow(s),veh/h/ln	1774	1631	1582	1721	1542	1784	1721	1863	1583	1774	1863	1447
Q Serve(g s), s	7.3	25.0	2.6	11.7	26.8	26.8	4.4	2.9	0.0	3.4	1.8	7.4
Cycle Q Clear(g c), s	7.3	25.0	2.6	11.7	26.8	26.8	4.4	2.9	0.0	3.4	1.8	7.4
Prop In Lane	1.00		1.00	1.00		0.03	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	748	2825	1006	399	1218	470	201	109	93	146	154	119
V/C Ratio(X)	0.23	0.57	0.09	0.86	0.90	0.90	0.64	0.42	0.00	0.36	0.20	0.76
Avail Cap(c_a), veh/h	748	2825	1006	462	1218	470	1064	576	490	282	296	230
HCM Platoon Ratio	1.00	1.00	1.00	1.33	1.33	1.33	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	0.92	0.92	0.92	0.96	0.96	0.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	22.2	16.0	8.4	49.8	37.4	37.4	55.2	54.5	0.0	52.1	51.3	53.9
Incr Delay (d2), s/veh	0.1	0.8	0.2	11.9	9.8	21.1	3.2	2.5	0.0	1.5	0.6	9.6
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	3.6	11.4	1.4	6.2	12.4	15.9	2.2	1.5	0.0	1.7	1.0	3.3
LnGrp Delay(d),s/veh	22.2	16.8	8.6	61.7	47.2	58.5	58.4	57.0	0.0	53.6	52.0	63.5
LnGrp LOS	С	В	Α	E	D	E	E	Е		D	D	<u> </u>
Approach Vol, veh/h		1872			1858			174			174	
Approach Delay, s/veh		16.9			52.5			58.1			58.5	
Approach LOS		В			D			E			Е	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	18.3	75.0		11.9	56.3	37.0		14.8				
Change Period (Y+Rc), s	4.4	5.7		4.9	5.7	* 5.4		4.9				
Max Green Setting (Gmax), s	16.1	27.8		37.1	12.6	* 32		19.1				
Max Q Clear Time (q c+l1), s	13.7	27.0		6.4	9.3	28.8		9.4				
Green Ext Time (p_c), s	0.2	0.8		0.7	0.1	2.6		0.5				
Intersection Summary												
HCM 2010 Ctrl Delay			36.6									
HCM 2010 LOS			D									
Notes												

Harbor Island West Marina Redevelopment Project

Synchro 10 Report

	٠	-	+	*	1	~
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	*	***	ttttt	1	**	1
Traffic Volume (veh/h)	51	1643	2067	25	80	23
Future Volume (veh/h)	51	16/12	2007	25	80	20
Number	51	1043	2007	16	09	2J 1/
Initial O (Ob) yeb	0	2	0	0	0	14
	1.00	U	U	1 00	1.00	1 00
Perking Pug Adi	1.00	1.00	1.00	1.00	1.00	1.00
raiking bus, Auj	1000	1700	1700	1000	1000	1000
Adj Claw Data wah	1003	1/92	1792	1003	1003	1003
Auj Flow Rate, Ven/h	56	1805	2131	U	131	28
Adj No. of Lanes	1	3	5	1	2	1
Peak Hour Factor	0.91	0.91	0.97	0.97	0.68	0.68
Percent Heavy Veh, %	2	6	6	2	2	2
Cap, veh/h	73	4195	5660	1235	198	91
Arrive On Green	0.05	1.00	0.78	0.00	0.06	0.06
Sat Flow, veh/h	1774	5055	7600	1583	3442	1583
Grp Volume(v), veh/h	56	1805	2131	0	131	28
Grp Sat Flow(s),veh/h/lr	า1774	1631	1452	1583	1721	1583
Q Serve(g_s), s	3.7	0.0	11.0	0.0	4.5	2.0
Cycle Q Clear(g_c), s	3.7	0.0	11.0	0.0	4.5	2.0
Prop In Lane	1.00			1.00	1.00	1.00
Lane Grp Cap(c), veh/h	73	4195	5660	1235	198	91
V/C Ratio(X)	0.77	0.43	0.38	0.00	0.66	0.31
Avail Cap(c, a) veh/h	312	4195	5660	1235	823	379
HCM Platoon Ratio	1.33	1.33	1 00	1 00	1 00	1.00
Unstream Filter(I)	0.73	0.73	1.00	0.00	1.00	1.00
Uniform Delay (d) sheet	156.2	0.75	4 1	0.00	55 4	54.2
Incr Delay (d2) elveb	11 8	0.0	0.2	0.0	3.7	1 0
Initial O Delay (uz), S/Vell	0.0	0.2	0.2	0.0	0.0	0.0
		0.0	0.0	0.0	0.0	1.0
/one DatikolQ(30%),Ven	60 O	0.1	4.4 10	0.0	Z.Z	1.9
Lingrp Delay(d),s/veh	00.0	0.2	4.3	0.0	59.1	1.00
	E	A	A		<u>E</u>	E
Approach Vol, veh/h		1861	2131		159	
Approach Delay, s/veh		2.3	4.3		58.6	
Approach LOS		А	А		E	
Timer	1	2	3	4	5	6
Assigned Phs		2		4	5	6
Phs Duration (G+Y+Rc)	S	108 2		11.8	93	98.9
Change Period (V+Rc)	, U S	5 3		4 9	<u> </u>	53
Max Green Setting (Cm	av) e	81.1		-+.5 28.7	-+.+ 21 1	55.6
Max O Cloar Time (GIII	11) o	20		20.1	۲I.I 57	12.0
Croop Ext Time (g_C	+11), S	2.0		0.0	0.1	20.4
Green Ext rime (p_C), s)	57.3		0.5	U. I	39.1
Intersection Summary						
HCM 2010 Ctrl Delay			5.5			
HCM 2010 LOS			А			

	٠	-	•	*	1	~
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	×	٠		1	**	1
Traffic Volume (veh/h)	185	22	16	122	111	188
Future Volume (veh/h)	185	22	16	122	111	188
Number	105	22	6	122	7	1/1
Inutified O (Ob) web	0	2	0	10	1	14
	1 00	0	0	1 00	1 00	1 00
Pea-Bike Aaj(A_pol)	1.00	4 00	1.00	1.00	1.00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1863
Adj Flow Rate, veh/h	231	28	17	0	128	0
Adj No. of Lanes	1	1	1	1	2	1
Peak Hour Factor	0.80	0.80	0.93	0.93	0.87	0.87
Percent Heavy Veh, %	2	2	2	2	2	2
Cap, veh/h	0	0	34	29	417	192
Arrive On Green	0.00	0.00	0.02	0.00	0.12	0.00
Sat Flow, veh/h		0	1863	1583	3442	1583
Grn Volume(v) veh/h		0.0	17	0	128	0
Grn Sat Flow(s) vob/b//	n	0.0	1863	1582	1701	1583
	1		005	1000	0.2	0.0
Q Serve(Q_S), S			0.1	0.0	0.0	0.0
Cycle Q Clear(g_c), S			0.1	0.0	0.3	0.0
Prop In Lane				1.00	1.00	1.00
Lane Grp Cap(c), veh/h			34	29	417	192
V/C Ratio(X)			0.49	0.00	0.31	0.00
Avail Cap(c_a), veh/h			6010	5109	14806	6812
HCM Platoon Ratio			1.00	1.00	1.00	1.00
Upstream Filter(I)			1.00	0.00	1.00	0.00
Uniform Delay (d), s/vel	า		4.5	0.0	3.7	0.0
Incr Delay (d2), s/veh			10.5	0.0	0.4	0.0
Initial Q Delav(d3) s/veh	1		0.0	0.0	0.0	0.0
%ile BackOfO(50%) vet	n/ln		0.0	0.0	0.0	0.0
InGrn Delay(d) s/yeb	W111		15.1	0.0	/ 1	0.0
			13.1 D	0.0	4.1 ^	0.0
			D		A 00	
Approach Vol, veh/h			1/		128	
Approach Delay, s/veh			15.1		4.1	
Approach LOS			В		A	
Timer	1	2	3	4	5	6
Assigned Phs				4		6
Phs Duration (G+Y+Rc)	S			51		42
Change Period (Y+Rc)	s			4.0		4.0
May Green Setting (Cm	av) e			10 0		30.0
Max O Close Time (c. c.	11) o			40.0 0.0		00.0 0.1
	+11), S			2.3		Z.1
	j			0.4		0.0
Intersection Summary						
HCM 2010 Ctrl Delay			5.4			
HCM 2010 LOS			А			

Appendix C Peak Hour Intersection LOS work Sheets Worksheets – Existing Plus Project Conditions

	٠	-	7	1	+	*	1	1	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	***	1	ሻሻ	tttp		ሻሻ	+	1	7	đ þ	
Traffic Volume (veh/h)	97	586	59	322	1884	8	65	10	92	60	17	90
Future Volume (veh/h)	97	586	59	322	1884	8	65	10	92	60	17	90
Number	5	2	12	1	6	16	7	4	14	3	8	18
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1792	1863	1863	1793	1900	1863	1863	1863	1863	1863	1900
Adj Flow Rate, veh/h	103	623	51	350	2048	9	76	12	0	61	32	93
Adj No. of Lanes	1	3	1	2	4	0	2	1	1	1	2	0
Peak Hour Factor	0.94	0.94	0.94	0.92	0.92	0.92	0.85	0.85	0.85	0.87	0.87	0.87
Percent Heavy Veh, %	2	6	2	2	6	6	2	2	2	2	2	2
Cap, veh/h	612	2810	998	419	2186	10	193	104	89	141	148	126
Arrive On Green	0.35	0.57	0.57	0.04	0.11	0.11	0.06	0.06	0.00	0.08	0.08	0.08
Sat Flow, veh/h	1774	4893	1583	3442	6385	28	3442	1863	1583	1774	1863	1583
Grp Volume(v), veh/h	103	623	51	350	1484	573	76	12	0	61	32	93
Grp Sat Flow(s),veh/h/ln	1774	1631	1583	1721	1542	1788	1721	1863	1583	1774	1863	1583
Q Serve(g_s), s	4.8	7.3	1.5	11.9	37.5	37.5	2.5	0.7	0.0	3.9	1.9	6.8
Cycle Q Clear(g_c), s	4.8	7.3	1.5	11.9	37.5	37.5	2.5	0.7	0.0	3.9	1.9	6.8
Prop In Lane	1.00		1.00	1.00		0.02	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	612	2810	998	419	1584	612	193	104	89	141	148	126
V/C Ratio(X)	0.17	0.22	0.05	0.84	0.94	0.94	0.39	0.12	0.00	0.43	0.22	0.74
Avail Cap(c_a), veh/h	612	2810	998	645	1584	612	650	352	299	302	317	270
HCM Platoon Ratio	1.00	1.00	1.00	0.33	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	0.81	0.81	0.81	0.99	0.99	0.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	26.9	12.3	8.3	55.5	51.1	51.1	53.8	52.9	0.0	51.8	50.9	53.1
Incr Delay (d2), s/veh	0.0	0.2	0.1	2.7	10.1	20.6	1.3	0.5	0.0	2.1	0.7	8.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.4	3.3	0.7	5.8	17.6	22.1	1.2	0.4	0.0	2.0	1.0	3.3
LnGrp Delay(d),s/veh	26.9	12.4	8.4	58.2	61.2	71.7	55.1	53.4	0.0	53.9	51.6	61.4
LnGrp LOS	С	В	A	E	E	E	E	D		D	D	E
Approach Vol, veh/h		777			2407			88			186	
Approach Delay, s/veh		14.1			63.3			54.8			57.2	
Approach LOS		В			E			D			E	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	18.8	73.5		11.5	46.4	45.8		14.3				
Change Period (Y+Rc), s	4.4	5.7		4.9	5.7	* 5.4		4.9				
Max Green Setting (Gmax), s	22.1	33.6		22.3	15.6	* 40		20.1				
Max Q Clear Time (g_c+l1), s	13.9	9.3		4.5	6.8	39.5		8.8				
Green Ext Time (p_c), s	0.4	7.7		0.2	0.1	0.8		0.6				
Intersection Summary												
HCM 2010 Ctrl Delay			51.7									
HCM 2010 LOS			D									
Notes												

Harbor Island West Marina Redevelopment Project

Synchro 10 Report

		٠	-	+	*	1	4
Movement		EBL	EBT	WBT	WBR	SBL	SBR
Lane Configura	rations	3	***	11111	1	55	1
Traffic Volume	e (veh/h)	60	656	2982	53	30	39
Future Volume	e (veh/h)	60	656	2982	53	30	39
Number		5	2	6	16	7	14
Initial Q (Qb) v	veh	0	0	0	0		0
Ped-Bike Adi(A	A nhT)	1 00	Ŭ	Ŭ	1 00	1 00	1 00
Parking Rus A	Δdi	1.00	1 00	1.00	1.00	1.00	1.00
Adi Sat Flow v	veh/h/ln	1863	1792	1792	1863	1863	1863
Adj Elow Rate		66	721	3130	0	37	30
Adj How Rate,		1	121	5155	1	21	1
Auj NU. UI Lane	otor	0.01	0.01	0.05	0.05	0 0 0	0 0 0
		0.91	0.91	0.95	0.95	0.02	0.02
Percent Heavy	y ven, %	2	0	0 0 5700	2	2	2
Cap, ven/n		86	4279	5/26	1249	135	62
Arrive On Gree	en	0.05	0.87	0.79	0.00	0.04	0.04
Sat Flow, veh/h	/h	1774	5055	7600	1583	3442	1583
Grp Volume(v),), veh/h	66	721	3139	0	37	39
Grp Sat Flow(s	s),veh/h/lr	า1774	1631	1452	1583	1721	1583
Q Serve(g_s), s	S	4.3	2.6	5 19.0	0.0	1.2	2.9
Cycle Q Clear((g_c), s	4.3	2.6	i 19.0	0.0	1.2	2.9
Prop In Lane		1.00			1.00	1.00	1.00
Lane Grp Cap((c), veh/h	86	4279	5726	1249	135	62
V/C Ratio(X)	(),	0.77	0.17	0.55	0.00	0.27	0.63
Avail Cap(c a)), veh/h	332	4279	5726	1249	720	331
HCM Platoon F	Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter	er(I)	0.97	0.97	1.00	0.00	1.00	1.00
Uniform Delay	(d). s/vet	155.5	11	4.6	0.0	55 1	55.8
Incr Delay (d2)) s/veh	13.1	0.1	0.4	0.0	11	10.0
Initial O Delavio	(d3) s/veh	0.0	0.1	0.4	0.0	0.0	0.0
	(50%) voh	10.0	1.0	0.0 7 G	0.0	0.0	0.0
		62.6	1.2	. 7.0 	0.0	56.2	65.0
	u),5/VEIT	00.0 E	1.2	. 5.0	0.0	50.Z	00.9
	vela/l-	E	707	A A		70	E
Approach Vol,	, ven/h		181	3139		/6	
Approach Dela	ay, s/veh		6.8	5.0		61.1	
Approach LOS	5		A	A A		E	
Timer		1	2	3	4	5	6
Assigned Phs			2	,	4	5	6
Phs Duration (((G+Y+Re)	S	108 5		95	10.1	98.4
Change Period	d (Y+Rc)	, U	5 3		1 0	4 /	5 3
Max Green Set	a (T T TC), atting (Cm	av) e	83.1		2/ 7	20 1	56.6
Max O Cloar T	Time (a. c	101), 5	1.60		24.1 1 0	63	21.0
Groon Ext Time	nne (g_C	+11), S	4.0		4.9	0.0	21.0
	ie (p_c), s)	14.0		0.2	U. I	55.5
Intersection Su	ummary						
HCM 2010 Ctrl	rl Delav			6.4			
HCM 2010 L OS)S			A			

	٠	-	+	*	1	~				
Movement	EBL	EBT	WBT	WBR	SBL	SBR			_	
Lane Configurations	3	*	٠	1	ካካ	1			_	
Traffic Volume (veh/h)	113	4	4	42	70	192				
Future Volume (veh/h)	113	4	4	42	70	192				
Number	5	2	6	16	7	14				
Initial Q (Qb), veh	0	0	0	0	0	0				
Ped-Bike Adi(A pbT)	1.00			1.00	1.00	1.00				
Parking Bus, Adi	1.00	1.00	1.00	1.00	1.00	1.00				
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1863				
Adj Flow Rate, veh/h	143	5	5	0	88	0				
Adj No. of Lanes	1	1	1	1	2	1				
Peak Hour Factor	0.79	0.79	0.77	0.77	0.80	0.80				
Percent Heavy Veh. %	2	2	2	2	2	2				
Cap, veh/h	0	0	21	18	303	139				
Arrive On Green	0.00	0.00	0.01	0.00	0.09	0.00				
Sat Flow, veh/h		0	908	1583	3442	1583				
Grp Volume(v), veh/h		0.0	5	0	88	0				
Grp Sat Flow(s).veh/h/lr	1	0.0	1863	1583	1721	1583				
Q Serve(a_s), s	•		0.0	0.0	0.2	0.0				
Cycle Q Clear(a, c), s			0.0	0.0	0.2	0.0				
Prop In Lane			0.0	1.00	1.00	1.00				
Lane Grp Cap(c), veh/h			21	18	303	139				
V/C Ratio(X)			0.24	0.00	0.29	0.00				
Avail Cap(c_a), veh/h			6332	5383	15600	7177				
HCM Platoon Ratio			1.00	1.00	1.00	1.00				
Upstream Filter(I)			1.00	0.00	1.00	0.00				
Uniform Delay (d) s/vet	1		4 4	0.0	3.8	0.0				
Incr Delay (d2) s/veh			5.6	0.0	0.5	0.0				
Initial Q Delav(d3) s/veh	1		0.0	0.0	0.0	0.0				
%ile BackOfQ(50%) veh	n/In		0.0	0.0	0.1	0.0				
LnGrp Delav(d) s/veh			10.0	0.0	4.3	0.0				
LnGrp LOS			. J. J	0.0	Α	0.0				
Approach Vol. veh/h			5		88					
Approach Delay s/veh			10.0		43					
Approach LOS			Δ		4.5 Δ					
			~		Λ					
Timer	1	2	3	4	5	6	7	8		
Assigned Phs				4		6				
Phs Duration (G+Y+Rc)	, S			4.8		4.0				
Change Period (Y+Rc),	S			4.0		4.0				
Max Green Setting (Gm	ax), s			40.0		30.0				
Max Q Clear Time (g_c	+l1), s			2.2		2.0				
Green Ext Time (p_c), s	;			0.3		0.0				
Intersection Summary										
HCM 2010 Ctrl Delav			4.6							
HCM 2010 LOS			А							

	٠	-	7	1	•	*	1	t	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	2	***	1	ኘሻ	ttt12»		ሻሻ	1	1	5	đ î þ	
Traffic Volume (veh/h)	149	1420	98	324	1397	11	108	37	249	49	28	93
Future Volume (veh/h)	149	1420	98	324	1397	11	108	37	249	49	28	93
Number	5	2	12	1	6	16	7	4	14	3	8	18
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		0.99	1.00		1.00	1.00		0.91
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1792	1863	1863	1793	1900	1863	1863	1863	1863	1863	1900
Adj Flow Rate, veh/h	169	1614	89	348	1502	11	133	46	0	53	30	91
Adj No. of Lanes	1	3	1	2	4	0	2	1	1	1	2	0
Peak Hour Factor	0.88	0.88	0.88	0.93	0.93	0.93	0.81	0.81	0.81	0.92	0.92	0.92
Percent Heavy Veh, %	2	6	2	2	6	6	2	2	2	2	2	2
Cap, veh/h	745	2810	1004	404	1676	12	207	112	95	146	154	119
Arrive On Green	0.42	0.57	0.57	0.12	0.26	0.26	0.06	0.06	0.00	0.08	0.08	0.08
Sat Flow, veh/h	1774	4893	1582	3442	6364	47	3442	1863	1583	1774	1863	1447
Grp Volume(v), veh/h	169	1614	89	348	1092	421	133	46	0	53	30	91
Grp Sat Flow(s),veh/h/ln	1774	1631	1582	1721	1542	1784	1721	1863	1583	1774	1863	1447
Q Serve(g s), s	7.3	25.1	2.6	11.9	27.3	27.3	4.5	2.9	0.0	3.4	1.8	7.4
Cycle Q Clear(q c), s	7.3	25.1	2.6	11.9	27.3	27.3	4.5	2.9	0.0	3.4	1.8	7.4
Prop In Lane	1.00		1.00	1.00		0.03	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	745	2810	1004	404	1218	470	207	112	95	146	154	119
V/C Ratio(X)	0.23	0.57	0.09	0.86	0.90	0.90	0.64	0.41	0.00	0.36	0.20	0.76
Avail Cap(c a), veh/h	745	2810	1004	462	1218	470	1064	576	490	282	296	230
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	0.92	0.92	0.92	0.94	0.94	0.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	22.3	16.2	8.5	52.0	42.6	42.6	55.1	54.4	0.0	52.1	51.3	53.9
Incr Delay (d2), s/veh	0.1	0.9	0.2	11.8	9.8	21.1	3.1	2.3	0.0	1.5	0.6	9.6
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	3.6	11.4	1.4	6.3	12.7	16.2	2.3	1.5	0.0	1.7	1.0	3.3
LnGrp Delay(d),s/veh	22.4	17.1	8.7	63.8	52.4	63.7	58.3	56.6	0.0	53.6	52.0	63.5
LnGrp LOS	С	В	А	Е	D	Е	Е	Е		D	D	E
Approach Vol, veh/h		1872			1861			179			174	
Approach Delay, s/veh		17.2			57.1			57.9			58.5	
Approach LOS		В			E			E			E	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	18.5	74.6		12.1	56.1	37.0		14.8				
Change Period (Y+Rc), s	4.4	5.7		4.9	5.7	* 5.4		4.9				
Max Green Setting (Gmax), s	16.1	27.8		37.1	12.6	* 32		19.1				
Max Q Clear Time (g c+l1), s	13.9	27.1		6.5	9.3	29.3		9.4				
Green Ext Time (p_c), s	0.2	0.6		0.7	0.1	2.1		0.5				
Intersection Summarv												
HCM 2010 Ctrl Delay			38.9									
HCM 2010 LOS			D									
Notes			_									
NOLOS												

Harbor Island West Marina Redevelopment Project

	٠	-	+	*	1	~
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	3	***	*****	1	17	1
Traffic Volume (veh/h)	51	1679	2070	25	89	23
Future Volume (veh/h)	51	1679	2070	25	89	23
Number	5	1013	2070	16	7	1/
Initial O (Ob) yeb	0	2	0	10	0	0
	1 00	0	0	1 00	1 00	1 00
Peu-bike Auj(A_por)	1.00	1.00	1.00	1.00	1.00	1.00
Adi Cot Flow, woh/h/lp	1062	1700	1700	1062	1062	1962
Auj Sal Flow, ven/11/11	1003	1015	0124	1003	1000	1000
Adj Flow Rate, ven/n	00	1845	2134	0	131	20
Adj No. of Lanes	1	3	5	1	2	1
Peak Hour Factor	0.91	0.91	0.97	0.97	0.68	0.68
Percent Heavy Veh, %	2	6	6	2	2	2
Cap, veh/h	73	4195	5660	1235	198	91
Arrive On Green	0.05	1.00	0.78	0.00	0.06	0.06
Sat Flow, veh/h	1774	5055	7600	1583	3442	1583
Grp Volume(v), veh/h	56	1845	2134	0	131	28
Grp Sat Flow(s),veh/h/l	n1774	1631	1452	1583	1721	1583
Q Serve(g_s), s	3.7	0.0	11.0	0.0	4.5	2.0
Cycle Q Clear(q c), s	3.7	0.0	11.0	0.0	4.5	2.0
Prop In Lane	1.00			1.00	1.00	1.00
Lane Grp Cap(c), veh/h	73	4195	5660	1235	198	91
V/C Ratio(X)	0.77	0.44	0.38	0.00	0.66	0.31
Avail Cap(c, a) veh/h	312	4195	5660	1235	823	379
HCM Platoon Ratio	1.33	1.33	1 00	1 00	1 00	1 00
Unstream Filter/I)	0.72	0.72	1.00	0.00	1.00	1.00
Uniform Delay (d) e/val	h 56 2	0.12	<u>4</u> 1	0.00	55 4	54.2
Incr Delay (d?) shuch	11 6	0.0	- 1 .1 0.2	0.0	27	10
Initial \cap Delay (uz), sivel	11.0 2 0 0	0.2	0.2	0.0	0.0	0.0
Vilo PackOfO/500/) vol	1 0.0	0.0	0.0	0.0	0.0	1.0
	67.0	0.1	4.4	0.0	Z.Z	1.9
LinGrp Delay(d),s/veh	٥/.ŏ	0.2	4.3	0.0	59.1	50.1
LINGIP LOS	E	A	A		<u>E</u>	E
Approach Vol, veh/h		1901	2134		159	
Approach Delay, s/veh		2.2	4.3		58.6	
Approach LOS		Α	А		E	
Timer	1	2	3	4	5	6
Assigned Phs		2		4	5	6
Phs Duration (G+V+Ro) \$	108 2		11 8	93	98 9
Change Period (V+De)	, S S	5.2		/ 0	J.J / /	50.5
Max Green Setting (Cr		0.0 Q1 1		4.5 22.7	4.4 21.1	55.6
Max O Class Time (Gr	dX, S	01.1		20.1	21.1 E 7	00.0 12.0
wax Q Clear Time (g_c	+11), \$	2.0		0.5	D./	13.0
Green Ext Time (p_c), s	5	58.8		0.5	0.1	39.1
Intersection Summary						
HCM 2010 Ctrl Delav			5.4			
HCM 2010 L OS			A			

$\checkmark \rightarrow \frown \checkmark \checkmark \checkmark$
Movement EBL EBT WBT WBR SBL SBR
Lane Configurations
Traffic Volume (veh/h) 225 22 16 122 111 191
Future Volume (veh/h) 225 22 16 122 111 191
Number 5 2 6 16 7 14
Ped-Bike Adi(A pbT) 1.00 1.00 1.00 1.00
Parking Bus Adi 1.00 1.00 1.00 1.00 1.00 1.00
Adi Sat Flow, veh/h/ln 1863 1863 1863 1863 1863 1863
Adi Flow Rate veh/h 281 28 17 0 128 0
Adi No. of Lanes 1 1 1 1 1 2 1
Peak Hour Eactor 0.80 0.80 0.93 0.93 0.87 0.87
Percent Heavy Veh % 2 2 2 2 2 2 2 2
Can veh/h $0 0 34 29 417 192$
Sat Flow yeh/h 0.1263 1583 3//2 1583
Crn Volume(u) vol/h 0.0 17 0 100 0
Grp Volume(v), ven/m U.U 17 U 128 U
GIP Sat Flow(S), Ven//I/III 1003 1583 1/21 1583
Q Serve(g_s), s U.1 U.U U.3 U.U
Uycle Q Uear(g_C), S U.1 U.U U.3 U.U U.3 U.U Dan In Lana
Prop in Lane 1.00 1.00 1.00
Lane Grp Cap(c), ven/n 34 29 417 192
V/C Ratio(X) 0.49 0.00 0.31 0.00
Avail Cap(c_a), ven/n 6010 5109 14806 6812
HCM Platoon Ratio 1.00 1.00 1.00 1.00
Upstream Filter(I) 1.00 0.00 1.00 0.00
Uniform Delay (d), s/veh 4.5 0.0 3.7 0.0
Incr Delay (d2), s/veh 10.5 0.0 0.4 0.0
Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0
%ile BackOfQ(50%),veh/ln 0.1 0.0 0.2 0.0
LnGrp Delay(d),s/veh 15.1 0.0 4.1 0.0
LnGrp LOS B A
Approach Vol, veh/h 17 128
Approach Delay, s/veh 15.1 4.1
Approach LOS B A
1 1 2 3 4 5 6 / 8
Assigned Phs 4 6
Phs Duration (G+Y+Rc), s 5.1 4.2
Change Period (Y+Rc), s 4.0 4.0
Max Green Setting (Gmax), s 40.0 30.0
Max Q Clear Time (g_c+I1), s 2.3 2.1
Green Ext Time (p_c), s 0.4 0.0
Intersection Summary
HCM 2010 Ctrl Delay 5.4
HCM 2010 LOS A